
Abstract. The advantages and peculiarities of the variational
method of solving electrostatic problems are clearly illustrated
using the ground resistance as a relatively simple example.

1. Introduction

Looking through the manuals on classical electrodynamics,
listed in the comprehensive bibliography at the end of the
well-known encyclopedic type collection of problems [1], one
immediately notices that the variational principles of magne-
tostatics are not discussed in any of them, and just a few
occasionally mention the variational principles of electro-
statics. The problem book itself [1] gives none of the examples
of using the variational principles of electrostatics and
magnetostatics. Neither can such examples be found in
modern courses on electricity and magnetism [2, 3].

Such a situation in the monographs and textbooks on
classical electrodynamics is rather surprising, since in the
classical treatise of James Clerk Maxwell [4] we find clear-cut
formulations of the variational principles of Dirichlet and
Thomson, which in particular allow us to find upper and
lower bounds for the energy parameters, such as the
conductor capacitance, interelectrode resistances, etc. The
same book, with a reference to Rayleigh's works and in
particular to his The Theory of Sound [5], indicates that the
formula for calculating the resistance R of a straight wire of
variable cross section S�l�, made of a homogeneous material
with resistivity r, viz.

R �
�
r dl
S

;

where the integration is performed with respect to the length l
of the wire, leads in reality to underestimated values, i.e. the
following inequality holds true:

R5
�
r dl
S

: �1�

It is interesting that this fact is overlooked by the authors of
university courses [2, 3], who treat expression (1) as an exact
formula. In Ref. [3, p. 224], formula (1) is used for calculating
the resistance of a homogeneous truncated cone with end
contacts.

It is hard to understand the reasons why the variational
principles of electrostatics failed to find their way into the
extensive scientific literature on electrodynamics, since varia-
tionalmethods in physics have always been regarded as highly
efficient. Quite possibly that Rayleigh's variational estimates
for the resistance R of a round conductor of radius a and
length L, made from the material with resistivity r and being
in contact at one of its ends with a conducting homogeneous
half-space characterized by resistivity r 0, quoted by Maxwell
(see Sects 306 ± 308 in his monograph [4]), namely

1� r 0

r
a

L

p
4
<

pa 2

rL
R < 1� r 0

r
a

L

8

3p
; �2�

are rather a demonstration of Rayleigh's skill than a proof of
the universality of variational methods. We believe that
inequalities (2) deserve to be included in all textbooks on
classical electrodynamics.

It is also likely that variational principles of electrostatics
have been ignored in the books on electrodynamics because
the application of variational principles to the solution of
specific problems requires, as seen from examples given by
Rayleigh and cited by Maxwell [4], the development of
appropriate mathematical methods, which sometimes may
be quite sophisticated. Certain typical features of such
methods can be seen in the problems on the capacitance of a
cube and capacitor with round plates, studied byG Polya and
G Szego in their monograph entitled Isoperimetric Inequal-
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ities in Mathematical Physics [6]. However, the electrostatics-
devoted part of this book, with the exception of a few
examples, is not quite consistent with the theme of the book
announced in its title. We also believe that the intent of the
authors to give isoperimetric formulations of the electrostatic
problems leads to the distortion of the physical crux of the
matter. So onemight guess that the physicists were slow in the
development of variational methods in electrostatics because
of mathematical difficulties, while the mathematicians
because of the incomplete understanding of the physical side
of the problem.

For two decades the author has been working on the
construction of electrostatics based on the variational
principles. At first it seemed that this task can be completed
by unifying the knownmethodswith the variational approach
and demonstrating the new possibilities for solving the
different classes of electrostatic problems. Gradually, how-
ever, it was becoming evident that the construction of
analytical electrostatics requires the introduction of new
concepts that are organically inherent in the theory.

The fact is that the main task associated with the
application of variational principles to the solution of a
particular problem consists in the selection of the test
(approximating) fields. With the proper selection one may
hope to obtain exact estimates for the energy parameters, like
those obtained byRayleigh [see Eqn (2)]. By tacit assumption,
the adequate selection of test fields depends on the skill of the
researcher, on his physical intuition. If we accept this point,
then the variational principles of electrostatics ought to be
realized in numerous variational inequalities similar to
Rayleigh's inequalities (1) and (2). And such a set of inequal-
ities actually does exist.

The best known PoincareÂ ± Faber ± Szego inequality [6]
states that the sphere has the minimum capacitance among
the conducting bodies of the same volume, and is essentially
isoperimetric. Other interesting inequalities [7] indicate that
the formulas for the capacitance of flat and cylindrical
capacitors, found in all textbooks and manuals [2, 3], viz.

C � ee0S
d

; C � 2pee0l
ln�b=a� ; �3�

always underestimate the actual capacitance. The known
formula for the single-layer solenoid inductance [2, 3]

L � mm0 n
2Sl �4�

is shown in paper [8] to give exaggerated values of the true
inductance. The inequality L < mm0 n

2Sl seems to be the first
inequality found with the aid of the variational principles of
magnetostatics. Observe that the variational inequalities (1),
(3) and (4) indicate that even though the variational approach
may be not acknowledged expressly, it is present in the
approximate formulas of electrostatics and magnetostatics.

However, considerably more opportunities for implemen-
tation of the variational principles become available when the
selection of test fields is governed not by the intuition of the
researcher but rather a certain procedure. The development
of such procedures was facilitated by the introduction of new
concepts: higher conductor polarizabilities [9], characteristic
multipoles [10], themagnetic quadrupole polarizability [11] as
well as the more general interpretation of conventional
concepts [12, 13]. With the aid of such new notion it was
possible to settle the problem of forming the Lagrange

function of a conducting body in an electrostatic field [10]
and the problem of moments (inverse problem) in electro-
statics [9, 10], to analyze the problem of stability of a
diamagnetic particle in the quadrupole magnetic field [11],
and to proceed from the expressions of particular inequalities
similar to Rayleigh's inequalities (1) and (2) to the study of
whole classes of variational inequalities [14].

Today, when the reality of analytical electrostatics is
beyond doubt, we would like to illustrate its capabilities by a
relatively simple example which could be included in the
textbooks on electrodynamics. This example is based on the
known problem [2, 3] of the ground resistance of an ideally
conducting sphere placed in a homogeneous conducting half-
space. Let us separate out the basic steps in the solution of this
problem by the variational method.

2. Variational formulations of the problem

Assume that the radius of the earthing sphere is a, its center
coincides with the origin of coordinates, and the Earth surface
is represented by the plane z � h > a. The resistivity of the
homogeneous soil surrounding the sphere we denote by r.

To solve the problem of the ground resistance we need to
find the electric potential j0�r� in the spatial domain
V � �z < h; r > a� that will satisfy the Laplace equation in
this domain. This potential assumes a constant valueU on the
surface of the sphere with r � a; the partial derivative ofj0�r�
with respect to z must become zero on the Earth surface
�z � h�. The ground resistance can be expressed via the power
functional PV�j0� of the heat release with the aid of the
relations

U 2

R
� PV�j0� �

1

r

�
V

�Hj0�2 dV � ÿ
U

r

�
r� a

qrj0 dS � UI :

�5�

Basic variational principle. Let us compare with j0�r� the
continuous piecewise smooth potentialsj�r� in the volumeV,
whose value at the surface of the sphere is

j�r�
���
r� a
� U : �6�

Consider the directly verified identity

PV�j� � PV�j0� � PV�jÿ j0� �
2

r

�
V

Hj0H�jÿ j0� dV ;

in the right-hand side of which the integral is zero because the
value of j0�r� on the sphere coincides with j�r�, qzj0�r� � 0
at z � h, and in the domain V we have Dj0 � 0. Given that
the functionalPV�j� is positive definite, we use this identity to
arrive at the inequality

U 2

R
� PV�j0�4PV�j� ; �7�

which allows the lower bounds for the ground resistance R to
be found using the potentials j�r� from the class defined
above.

When j�r� is a harmonic function whose sources lie at the
surface of the sphere with r � a and the plane z � h, it may be
convenient to use in place of PV�j� the functional

P�j� � 1

r

�
R 3ÿSp

�Hj�2 dV ; �8�
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where Sp is the point set of the plane z � h. The admissible
potentials j�r� are continuous on the surface of the sphere
with r � a, and their derivatives with respect to z are
continuous at the plane z � h. It is obvious that

U 2

R
� PV�j0�4PV�j�4P�j� : �9�

Dual variational principle. Now let us compare the
solenoidal fields j�r� with the actual distribution of the
current density j0�r� � ÿrÿ1Hj0. Observe that

r
�
V

�
j�r� ÿ j0�r�

�2
dV � PV�j0� ÿQV�j�5 0 ;

QV�j� � 2U

�
r� a

jr dSÿ r
�
V

j 2 dV ;

if

jz

���
z� h
� 0 : �10�

In this way we arrive at the inequality

U 2

R
5QV�j� ; �11�

which allows the upper bounds for the ground resistance to be
found using the solenoidal fields j�r� that satisfy the boundary
condition (10).

When j � ÿrÿ1Hc, and the sources of the potential c lie
on the sphere with r � a and the plane z � h, it is convenient
to use in place of QV�j� the functional

Q�j� � 2U

�
r� a

jr dSÿ r
�
R 3ÿSp

j 2 dV : �12�

Then c�r� is continuously extended into the volume of the
sphere with r < a, and the extension into a domain z > h is
accomplished so as to preserve the continuity of qzc. It is
obvious that QV�j�5Q�j�, and therefore one finds

U 2

R
5QV�j�5Q�j� : �13�

Error estimates. A very attractive feature of the varia-
tional approach to electrostatic problems is that the energy
variable (in our case, the conductivity Y � Rÿ1) is estimated
from both sides. In other words, along with the approximate
value, for which it is natural to take

~YV � 1

2U 2

�
PV�j� �QV�j�

�
; �14�

one can also evaluate the accuracy of this approximation. As
follows from relations

jYÿ ~YVj � 1

2

����PV�j�
U 2

ÿ Y�QV�j�
U 2

ÿ Y

����
4

1

2

�����PV�j�
U 2

ÿ Y

����� ����QV�j�
U 2

ÿ Y

�����
� 1

2

�
PV�j�
U 2

ÿ Y� YÿQV�j�
U 2

�
� 1

2U 2

�
PV�j� ÿQV�j�

�
;

the absolute error of such an approximation by modulus does
not exceed

�
PV�j� ÿQV�j�

�
=2U 2. Accordingly, the relative

error of approximating the variable Y by the quantity ~YV will
not exceed

DV � PV�j� ÿQV�j�
PV�j� �QV�j� : �15�

If the estimates are made with the aid of the functionals
P�j� and Q�j�, then the corresponding approximation for
conductivity and the accuracy of this approximation must be
calculated by formulas (14) and (15), where the subscript V is
dropped out.

Fields ÿHj and rj may be treated as the fields approx-
imating the actual electric field ÿHj0. For such an approx-
imation it is advisable to take �rjÿ Hj�=2. The standard
deviation of the approximating field from the actual field is
given by

1

4r

�
V

�
r�jÿ j0� � H�j0 ÿ j��2 dV

� 1

4

��
V

r�jÿ j0�2 dV�
1

r

�
V

ÿ
H�j0 ÿ j��2 dV�

� 1

4

�
PV�j� ÿ PV�j0� �QV�j0� ÿQV�j�

�
� 1

4

�
PV�j� ÿQV�j�

�
:

Taking into consideration this result, the relative accuracy of
approximation may be expressed as

dV �
�����������
1

2
DV

r
: �16�

To conclude this section, let us note that all these findings
can be extended to the problem of determining the resistance
of earthing performed by a conductor of an arbitrary shape,
by replacing the sphere domain with that of the conductor
without any additional modifications. In other words, here
we have provided the general variational formulation of the
problem of ground resistance.

Inequalities (9) and (13) as well as formulas (15) and
(16) for calculating the errors will be used as the basis for
our variational method of calculating the ground resis-
tance.

It should also be emphasized that the variational scheme
described here will generally apply to other classes of
electrostatic problems, for example, to the calculation of the
capacitance coefficients for a system of conductors.

3. Construction of the sequence of lower bounds
for ground resistance

The potentials admissible in the functionals PV�j� and P�j�
must assume one and the same constant value U on the
earthing conductor. This condition is satisfied by introducing
the potentials

j0�r� � UF0�r� �
XN
k�1

qkG�r; rk� ; �17�

where qk are the constants that have not been defined yet;
F0�r� is the potential created by the charges in the solitary
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earthing conductor, when its self-potential is 1; G�r; rk� is
the Green function of the Dirichlet problem for the region
external with respect to the domain of the earthing
conductor, and rk are the radius vectors of points located
in the region z > h. In the problem under consideration, one
obtains

F0�r� � a

r
;

�18�
G�r;R� � 1

4pe0

�
1

jrÿ Rj ÿ
a�������������������������������������������

r 2R 2 ÿ 2a 2r � R� a 4
p

�
:

The terms in sum (17) are the potentials of point charges qk
located at points rk in the presence of grounded conducting
sphere with r � a. In this way, the true potential j0�r� is
approximated here by the sum of potentials of the point
charges (17).

Substituting potential (17) into the functionals (5) and (8),
we find

PV�j� � U 2

R0

�
R0

R
�i�
0

� 2a � q 0 � q 0 � Â � q 0
�
;

�19�
P�j� � U 2

R0

�
1� 2b � q 0 � q 0 � B̂ � q 0

�
:

Here

R0 �
�
1

r

�
R 3

ÿ
HF0

�2
dV

�ÿ1
is the resistance of the earthing conductor immersed into the
homogeneous medium with the resistivity r, and in addition

1

R
�i�
0

� 1

R0
� 1

r

�
z� h

F0 qzF0 dS ;

q 0 � R0

e0 rU
�q1; q2; . . . ; qN� ; a � �a1; a2; . . . ; aN� ;

ai � e0

�
z� h

G�r; ri� qzF0 dS ;

Â is the quadratic matrix whose elements are

Ai j � r
R0

e 20

�
z� h

G�r; ri� qzG�r; rj� dS ;

bi � ÿF0�ri� ; Bi j � re0
R0

�
Gn�ri; rj� ÿ G�ri; rj�

�
;

Gn�r;R� � 1

4pe0

�
1

jrÿ Rj �
1

jrÿ R� 2k�k � R� ÿ 2hkj
�
; �20�

where, in turn,Gn�r;R� is the Green function of theNeumann
problem for the plane z � h, and k is the unit vector of the
z-axis. Observe that by choosing the natural (in the context of
this problem) units of measurement of the resistance R0 and
charge e0rU=R0 we were able to ensure that only dimension-
less variables are found in parentheses in the right-hand sides
of formulas (19).

When the earthing conductor is a sphere, and the
charges qi are located on the z-axis at points zi > h, we

have

R0 � r
4pa

;
R0

R
�i�
0

� 1ÿ a

4h
; ai � ÿ a

2zi

�
1ÿ azi

2hzi ÿ a 2

�
;

Ai j � 1

2

�
a

zi � zj ÿ 2h
ÿ a 3

2hzizj ÿ a 2�zi � zj�
�
;

bi � ÿ a

zi
; Bi j � a 2

zizj ÿ a 2
� a

zi � zj ÿ 2h
:

Minimizing the right-hand sides of Eqns (19), we arrive at
the following estimates of the ground resistance:

R > R0

�
R0

R
�i�
0

ÿ a � Â ÿ1 � a
�ÿ1

;
�21�

R > R0

�
1ÿ b � B̂ÿ1 � b

�ÿ1
:

Let us denote these estimates corresponding to differentN by
R
�i�
N and ~R

�i�
N . They are the functions of zi, and the

optimization over them could lead to best possible estimates
for a given N. Such an optimization, however, requires the
elaboration of cumbersome patterns of calculation, so we
take

z1 � 2h ; zk�1 � 2hÿ a 2

zk
: �22�

This choice corresponds to the image method in electrostatics
[4], which allows, according to the modern theory [15], the
features of the electrostatic field analytically extended inside
the sphere to be found.

In particular, for h � a, when one expects the highest
inaccuracy of variational estimates, we have

R
�i�
0

R0
� 4

3
; q 0 � 0 ;

R
�i�
1

R0
� 36

25
� 1:44 ; q 0 �

�
2

3

�
;

R
�i�
2

R0
� 88

61
� 1:44262295 ; q 0 �

�
10

11
; ÿ 5

22

�
;

R
�i�
3

R0
� 5400

3743
� 1:44269303 ; q 0 �

�
44

45
; ÿ 21

54
;
14

135

�
;

~R
�i�
0

R0
� 1 ; q 0 � 0 ;

~R
�i�
1

R0
� 10

7
� 1:42857143 ; q 0 �

�
3

5

�
;

~R
�i�
2

R0
� 75

52
� 1:44230769 ; q 0 �

�
22

25
; ÿ 1

5

�
;

~R
�i�
3

R0
� 1348

1073
� 1:44268406 ; q 0 �

�
750

774
; ÿ 285

774
;
70

774

�
:

Judging from the internal convergence of the lower bounds, it
would seem that the third variational estimate deviates from
the exact value only in the fifth decimal figure. One cannot be
certain, however, without knowing the appropriate upper
bounds.
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4. Construction of the sequence of upper bounds
for ground resistance

In the evaluation of upper bounds for ground resistance, in
the functionals Q�j� and QV�j� one should use the solenoidal
fields of the current density j that satisfy the condition of
impenetrability for the current (10) on the Earth surface. Such
fields of the current densities include

j�r� � ÿ 1

r
H
XN
k� 1

qkGn�r; rk� ; �23�

where rk are the radius vectors of the point charges qk located
in the spatial domain of the earthing conductor, and Gn�r;R�
is the Green function of the Neumann problem for the half-
space z < h, defined by formula (20). We shall later perform
maximization of the functionals

QV�j� � U 2

R0

ÿ
2e � q 0 ÿ q 0 � Ĉ � q 0� ;

�24�
Q�j� � U 2

R0

ÿ
2e � q 0 ÿ q 0 � D̂ � q 0�

over the so far undefined values of charges qk. Above we
utilized the notation

e � �1; 1; . . . ; 1� ; q 0 � R0

e0rU
�q1; q2; . . . ; qN� ;

Ci j � ÿ r
R0

e 20

�
S

Gn�r; ri�n � HGn�r; rj� dS ;

Di j � re0
R0

�
Gn�ri; rj� ÿ G�ri; rj�

�
;

where S is the surface area of the conductor; n is the
outward-directed unit vector normal to the conductor
surface at the point r, and G�r;R� is the Green function of
the Dirichlet problem for the domain occupied by the
conductor.

When the earthing conductor is a sphere, G�r;R� can be
found using formula (18). The symmetry of the problem
prompts us that the charges qi ought to be arranged along
the z-axis; we denote their coordinates by zi �jzij < a�.
According to our calculations, we obtain

Ci j � 1

2

1

1ÿ aiaj
ÿ 1

2

1

1ÿ bi bj
� 1

4

�
1��������
aiaj
p ln

1� ��������
aiaj
p

1ÿ ��������
aiaj
p

�
����
bi
aj

s
ln

1� ��������
ajbi

p
1ÿ ��������

ajbi
p �

����
bj
ai

s
ln

1� ��������
aibj

p
1ÿ ��������

aibj
p

�
���������
bi bj

q
ln

1� ���������
bi bj

p
1ÿ ���������

bi bj
p �

;

ai � zi
a
; bi �

a

2hÿ zi
;

Di j � a 2

a 2 ÿ zizj
� a

2hÿ zi ÿ zj
:

Maximization ofQV�j� andQ�j�with respect to q 0 leads to
the following estimates for the ground resistance:

R < R0

ÿ
e � Ĉÿ1 � e�ÿ1 ; R < R0

ÿ
e � D̂ÿ1 � e�ÿ1 : �25�

We denote these estimates by R
�s�
N and ~R

�s�
N , in the order of

increasing N. They are functions of zi, whose values could be
used for carrying out the optimization. This is, however, a
cumbersome process, so we put

z1 � 0 ; zk�1 � a 2

2hÿ zk
; �26�

using the method of constructing the images in electrostatics.
In particular, for h � a one finds

R
�s�
1

R0
� 4

3
� 1

8
ln 3 � 1:47065987 ; q 0 �

�
24

32� 3 ln 3

�
;

R
�s�
2

R0
� 1:44330464 ; q 0 � �0:93768642; ÿ0:24483200� ;

~R
�s�
1

R0
� 1:5 ; q 0 �

�
2

3

�
;

~R
�s�
2

R0
� 13

9
� 1:4�4� ; q 0 � 1

13
�12; ÿ3� ;

~R
�s�
3

R0
� 189

131
� 1:442748909 ; q 0 � 1

189
�186; ÿ75; 20� ;

~R
�s�
4

R0
� 642

445
� 1:44269629; q 0 � 1

642
�640; ÿ300; 140; ÿ35�:

5. Comparison of estimates, accuracy
calculation, and selection of analytical formulas

The important advantage of the variational method over
other approaches in electrostatics is that it allows evaluation
of the error that is inevitable in any calculations. In other
words, the variational method allows one to make calcula-
tions with a controlled accuracy. Indeed, comparing, for
example, ~R

�s�
4 and R

�i�
3 , we find

D � 1:25� 10ÿ6 ; d � 7:9� 10ÿ4 :

Whence we conclude that the approximation of the electric
field by the combination of test fields (17) and (23) withN � 3
and N � 4, respectively, is accomplished with a mean square
error of 0.079%.

The method of variational inequalities allows one to
perform only those computations that are necessary for
achieving the calculation accuracy required. With this
purpose one makes simultaneous estimates from above and
from below and compares them. For example, if we need to
find the distribution of the electric field around the earthing
conductor for h � 2a with a mean square error less than 1%,
then by calculating

R
�i�
0

R0
� 8

7
;

~R
�s�
1

R0
� 5

4
;

R
�i�
1

R0
� 1:245940 ;

~R
�s�
2

R0
� 1:245977 ;

we see that the approximation accuracy required is given by
the fields corresponding to the first lower bound and the
second upper bound. In this situation the higher order
estimates are not necessary.
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The expressions for variational estimates appear here as a
set of approximate analytical formulas for ground resistance.
Let us quote some of them:

~R
�s�
1

R0
� 1� 1

2H
;

R
�s�
1

R0
� 1� 1

2H
ÿ 1

2�4H 2 ÿ 1� �
1

8H
ln

2H� 1

2Hÿ 1
;

~R
�s�
2

R0
� H�16H 4 � 8H 3 ÿ 12H 2 ÿ 2H� 3�

�4H 2 ÿ 1��4H 3 ÿ 2H� 1� ;

R
�i�
0

R0
� 4H

4Hÿ 1
;

~R
�i�
1

R0
� 2H�4H 2 � 2Hÿ 1�

8H 3 ÿ 2H� 1
;

R
�i�
1

R0
� 4H�4H 2 ÿ 3��4H 2 ÿ 1�2
�4Hÿ1��4H 2ÿ 3��4H 2ÿ1�2ÿ 2�2H 2ÿ1��4H 2ÿ 2Hÿ1�2 :

We employed in the foregoing the notation H � h=a. The
error in the value of ground resistance calculated by the
formula

R � 1

2

ÿ
R
�i�
1 � ~R

�s�
2

� �27�

will not exceed D � 0:0015. In reality, the error is much
smaller, as seen from the comparison of the right-hand side
of Eqn (27) with the higher order estimates, and does not
exceed 0.033% everywhere over the region of variation of
H5 1. Expression (27) can be recommended for calculating
the ground resistance of a conducting sphere.

6. Conclusions

The example discussed above gives a good illustration of the
capabilities of the variational approach to the calculation of
electrostatic fields and their energy characteristics.

The peculiarities of the variational approach depend on
the fact that it significantly extends the scope of concepts used
in electrostatics. The direct and dual variational principles,
the energy functionals, the classes of fields admissible for
comparison, and the upper and lower bounds of the energy
parameters Ð such are the new concepts that are necessary
for the formulation of a variational approach to electro-
statics.

With respect to the conventional methods, the variational
approach stands in a dual perspective. On the one hand, it
relies on the known methods and uses them as subsidiary
ones. In the example described above, such is the electric
image method. On the other hand, the variational modifica-
tions of the known methods may acquire new features. For
instance, in the problem of ground resistance, the charges qi
could be located at the points that do not coincide with the
positions of the images. Such an extension of the image
method from the standpoint of the variational approach
ought to be referred to as the method of approximating the
electric field by the fields of point charges.

We believe that chapters devoted to variational methods
of electrostatics and magnetostatics will sooner or later be
included in the books on electrodynamics.

This work was supported by the Krasnoyarsk Regional
Science Foundation.
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