
Abstract. This review analyzes radiation produced by randomly
inhomogeneous media excited by fast particles Ð i.e., polariza-
tion bremsstrahlung for thermodynamically equilibrium inho-
mogeneities or transition radiation for nonthermal ones Ð
taking into account all the effects important for natural
sources. Magnetic field effects on both the motion of fast
particles and the dispersion of background plasma are consid-
ered, and the multiple scattering of fast particles in the medium
is examined. Various resonant effects occurring under the con-
ditions of Cherenkov (or cyclotron) emission for a particular
eigenmode are discussed. The transition radiation intensity and
absorption (amplification) coefficients are calculated for en-
sembles of fast particles with realistic distributions over mo-
mentum and angles. The value of the developed theory of

transition radiation is illustrated by applying it to astrophysi-
cal objects. Transition radiation is shown to contribute signifi-
cantly to the radio emission of the Sun, planets (including
Earth), and interplanetary and interstellar media. Possible
further applications of transition radiation (particularly stimu-
lated) are discussed.

1. Introduction

Contrary to the old statement ``a particle moving with the
constant velocity does not radiate'', it seems trivial now that
any moving particle produces radiation. The point is that the
particle would not radiate only when moving in empty space
without external fields. Actually, charged particles propagate
in a medium and in the presence of the fields. Moreover,
several microscopic mechanisms of electromagnetic emission
can typically operate simultaneously. This makes both
analysis of experiments and interpretation of natural emis-
sions (e.g., in astrophysics) more complicated.

This paper concentrates on transition radiation genera-
tion by fast particles propagating in media with random
inhomogeneities, which happens frequently in natural condi-
tions.

Note that various authors define `transition radiation'
differently. Some of them consider transition radiation as
emission arising on the sharp boundary of two media only
(transition radiation in the narrow sense of the term). They
treat other similar emissions (e.g., on a system of boundaries
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or in a periodic medium) as independent mechanisms. Others
refer to any radiation produced by a particle moving with
constant velocity in/near media as transition radiation except
for Vavilov ±Cherenkov radiation (see papers [1] and refer-
ences there for the discussion of emission by rectilinearly
moving particles).

Thus, it would be useful to start with a formal definition of
what transition radiation is. However, an exact (and brief)
definition of all the phenomena we regard as transition
radiation appears not easy to give. Sections 1.1 and 1.2
explain in detail what processes are classified as transition
radiation. For the moment we define transition radiation as
follows.

When a source is moving in (close to) a medium, then
transition radiation is the part of the radiation that remains
non-zero for constant velocity of source motion, while vanishing
for a uniform (at any spatial and temporal scales) medium.

This definition seems to be the most general, because it
includes such phenomena as transition radiation at a single
boundary [2], diffraction [3], resonant [4], polarization [5] etc.
radiations. Together with the term `transition radiation' we
use further some other particular terms (e.g., polarization
bremsstrahlung) when appropriate.

1.1 Classification of emission mechanisms
by fast particles in media
An idea of elementary (microscopic) emission mechanisms
is exceedingly productive in building a physical classifica-
tion of the mechanisms (i.e., the simplest radiative pro-
cesses).

To avoid misunderstanding we should emphasize that the
idea of an elementary emission mechanism is a physical
idealization that describes actual radiative processes just
approximately (while the accuracy can be rather high).
When a fast particle is moving in a medium, the radiation is
produced due to the interaction between both components
(the particle and the medium) of the dynamic system. The
total radiation of the system cannot be strictly divided into the
two components Ð emission by the particle and emission by
the medium Ð in any particular case (this separation can be
done differently at least).

Nevertheless, the concept of the two emission channels of
the system, namely, the intrinsic emission by the fast particle
and the emission by the medium excited by the particle, is very
productive and has a wide applicability.

Feynman diagrams represent these two channels in a
simple way. Intrinsic emission (Fig. 1a) arises when the fast
particle exchanges a virtual photon with the medium (and/or
external field) with momentum q and emits a quantum with
momentum k. It is important to note, that the produced
quantum is assumed to obey the material dispersion relation
o � o�k� (a `wrapped' quantum).

The intrinsic radiation can be of various kinds depending
on the external field's nature. A particle rotating in amagnetic
field generates magneto-bremsstrahlung. The emission is
referred to as cyclotron emission for non-relativistic particles
and as synchrotron for ultra-relativistic particles. The term
`gyro-synchrotron' is frequently used for the emission by
mildly relativistic particles.

A particle moving in a Coulomb field produces brems-
strahlung. The same name is used for the emission resulting
from particle deceleration in a medium, i.e., when the particle
is moving in an electric field created by a huge number of
Coulomb centers.

Figure 1b displays the emission by the medium when the
exchange between the particle and the medium by the virtual
photon with momentum q results in the production of
radiation by background electrons. Thus, the account of the
degrees of freedom for the medium is a must to calculate the
respective emission. Obviously, the medium may generate
without any external particle, while this paper considers only
the emission types that are stimulated by fast particle action.
We use the name `transition radiation' in a general sense for
all radiative processes of this kind.

This general type of emission is divided in the literature
into a few particular types. For example, a particle emits
`diffraction' radiation if it moves near a screen or through a
hole, `resonant ' radiation when it propagates in a medium
with periodic (in space) dielectric permeability etc. The cases
have in common the same physical cause providing the
emission, that is inhomogeneities of the medium.

There is one more type of emission, Vavilov ±Cherenkov
radiation (VCR). It seems to be outside the proposed
classification dividing all emissions into either intrinsic or
emission produced by the medium, because no exchange
between the particle and the medium occurs by a virtual
photon with the momentum q (Fig. 1c). The formal electro-
dynamics allows calculation of the intensity of emission by a
particle moving rectilinearly without any acceleration. This
intensity is proportional to d�o�k� ÿ kv� in both vacuum and
medium. Obviously, the equality o�k� � kv must be fulfilled
for the emission to be non-zero. This is only possible for
particles moving with a velocity exceeding the phase speed of
the generated waves, so VCR is a kind of threshold effect.

The phase speed of the electromagnetic waves in vacuum
is the speed of light. Thus, VCR might arise in vacuum for
(hypothetical) superluminal particles only. VCR would
obviously reveal itself as intrinsic emission by the super-
luminal particle because no medium is present in this case.
Moreover, the photon energy is taken from the particle
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Figure 1. Feynman diagrams for various radiative processes in a medium:

(a) bremsstrahlung, (b) polarization bremsstrahlung, (c) Vavilov ±Cher-

enkov radiation.
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energy (this is valid even for a particle of infinitely large mass,
when the respective energy decrease does not affect the
motion itself).

Let us place the particle in a medium with refractive index
larger than unity. The emission still occurs, while its intensity
changes due to the different wave dispersion relation o�k�. It
is important that the threshold of the effect also changes
because the phase speed in the medium is less than the speed
of light. Thus, the condition o�k� � kv may now be fulfilled
for normal (subluminal) particles as well.

This approach allows us to classify VCR as intrinsic
emission by the particle, rather than emission by the medium
(this is emphasized byFrank in the book [6, p. 56], as well as in
papers [7, 8]). The role of the medium is just modification (re-
normalization) of the vacuum particle field in such a way that
subluminal particles produce non-zero intensity in the
medium instead of zero intensity in the vacuum. The
modification is obviously provided by the response polariza-
tion current of the medium, thus, the presence of the medium
is substantial to generate VCR by subluminal particles.

This case is very similar to the generation of other kinds of
intrinsic radiation, e.g., synchrotron radiation (which we
regard as intrinsic radiation in both vacuum and medium).
Synchrotron radiation in amedium is known to be suppressed
strongly compared to vacuum at low frequencies. This
suppression is defined completely by the difference in the
wave dispersion, which is provided finally by the polarization
current in the medium.

Thus, synchrotron radiation might be treated as a
coherent sum of emissions by currents produced by the
particle itself and by the medium's response. The calculations
based on this approach (i.e., when the two radiation fields are
found separately, then their coherent sum is calculated etc.)
are much more extensive, so it is much more convenient to
include into the study the respective wave dispersion relation
in the medium from the very beginning. Accordingly,
synchrotron radiation is always regarded in the literature as
a kind of intrinsic emission by a particle rotating in amagnetic
field. It is important to bear in mind that the physical reason
for the emission modification in media is the medium
response.

Similarly, VCR is the intrinsic emission by a particle
moving rectilinearly with constant velocity. The medium
response is the physical reason for the difference in the
radiation intensity in vacuum and medium. The difference
appears to be most prominent for subliminal particles, which
do not radiate in vacuum while generating non-zero VCR in
media.

We should note as well that both synchrotron emission
and VCR are not associated with momentum transfer
between the particle and the medium, the microscopic state
of the medium does not change, so the medium plays a
`passive' role. Contrarily, to produce transition radiation the
medium receives momentum from the fast particle, which is
the basic difference between transition radiation and VCR.

1.2 Coherence effects in electromagnetic emission
by fast particles in a medium
Let us discuss the mechanisms of coherent emission in a
medium in more detail because the coherence effects are very
important to generate transition radiation. Generally, many
particles are necessary to provide the coherence.

Radiation is known to be incoherent if its intensity is
proportional to the number of particles, while for coherent

radiation this dependence is nonlinear. Note that for
radiation of fast particles in a medium there are various
groups of particles: fast particles, background particles,
electrons in an atom (or in a Debye sphere), particles in a
coherent volume, etc. Hence, the same radiation may be
coherent with respect to one group of particles and incoher-
ent with respect to another one.

For simplicity, let us start with the ideal case of one fast
particle moving in a medium. Both intrinsic emission by the
particle and emission by the medium may be coherent with
respect to background particles under certain conditions.

A relativistic electron moving in a monocrystal produces
the well-known coherent bremsstrahlung (CB). The coherence
is associated here with the order in atom positions [4, 9, 10].
There is a so-called long-range order in the ideal infinite
monocrystal, i.e., atom sites are strictly correlated for any
long distance.

Order in particle positions at macroscopic distances may
also arise in plasma and amorphous condensed matter [11,
12]. Such order may occur in cases of random inhomogene-
ities in a medium (plasma turbulence), propagation of
acoustic waves or for man-made structures (a pile of plates
from different materials). However, the correlation is of
statistical nature here, the particles are ordered locally
(within the respective correlation length), differently than in
a monocrystal.

Macroscopic inhomogeneities in a medium may have a
substantial effect on the generation of bremsstrahlung by
relativistic particles and lead to extra coherent bremsstrah-
lung besides the Bethe ±Heitler incoherent component.While
the emitted wavelength is much less than the scales of the
inhomogeneities, the coherence is provided by the smallness
of the longitudinal momentum transferred to the medium by
the relativistic particle. As a result, the radiation at a
frequency o is produced over a length of order

lc � 2cg 2=o
1� o2

pg 2=o2
; �1�

which can reach a macroscopic value. Here g is the Lorentz
factor of the particle, op is the plasma frequency. The
presence of density inhomogeneities of the same or less size,
in which the positions of electrons and nuclei are correlated,
results in the extra contribution to bremsstrahlung by
relativistic particles, CB.

Emission by the medium may be both coherent and
incoherent as well. The emission is incoherent if all back-
ground electrons radiate independently from each other. For
the medium in thermodynamic equilibrium this occurs at
rather high frequencies o > c=R (where R is the atom radius
or Debye screening radius), because the formation zone here
is of about the wavelength c=o, while the correlation length in
the medium is R. At lower frequencies, o < c=R, all electrons
in the atom (or within the Debye sphere in a plasma) radiate
coherently, hence, the radiation intensity is proportional to
the square of the number of atomic electrons. In a partly
ionized plasma there are two typical scales, where the
positions (and motion) of electrons are correlated: the atom
radius Ra and the Debye radius RD). Hence, all the atomic
electrons radiate coherently at c=RD < o < c=Ra, while for
o < c=RD the coherent emission is produced by the electrons
in the Debye sphere, where number of them may be much
larger.

Emission by a thermodynamically equilibrium medium
(or by individual atoms) excited by a fast particle has received
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various names in the literature: dynamic bremsstrahlung,
transition bremsstrahlung, polarization bremsstrahlung [5].
Historically, the first name came into being when considering
atomic media (or individual atoms); the second appeared
when the same processes were considered in plasma. The third
name is a kind of `unifying' term, which emphasizes the
fundamental importance of the medium's dynamic polariz-
ability in all radiative processes of this type.

Actually, we regard the term `bremsstrahlung' in the
names as senseless because particle deceleration is unneces-
sary for this emission mechanism. It would be more appro-
priate to refer to this radiation as just `polarization radiation'
(or transition radiation on thermodynamically equilibrium
inhomogeneities). Nevertheless, this paper keeps up the
accepted traditional terminology.

Then, one more coherent effect takes place if there are
macroscopic inhomogeneities of a size l in the medium (in
other words, the positions of background particles are
correlated at macroscopic scales), if jqÿ kj � 2plÿ1. Here,
all background electrons located in a coherent volume (which
is much larger than the Debye volume) produce the coherent
radiation. This type of radiation we call transition radiation
in a medium with inhomogeneities (or, for brevity, just
transition radiation).

To proceed from the models of elementary emission
mechanisms to the real conditions of electromagnetic wave
generation, we note that an ensemble of fast particles is
usually present rather than a single one. Obviously, this
modifies both the intrinsic radiation generated by fast
particles and the radiation produced by a medium due to
integration over the fast particle spectrum. Besides, new
(collective) effects appear.

If particles are arranged within bunches with a size of
about radiated wave length, the resulting radiation is
proportional to the square (instead of the first power) of the
number of fast particles in the bunch. The case, when the
bunching is produced by the radiation itself and gives rise to
radiation amplification (the maser effect) is of special interest.
According to the underlying microscopic seed emission
mechanism, cyclotron maser, transition maser, plasma emis-
sion, etc. can be produced.

Let us briefly consider the methods for theoretical
treatment of the transition radiation. Since background
electrons generate the transition radiation, it can be calcu-
lated if the electric current produced by the electrons is
known. The current depends on both the fast particle field
and the background particle spatial distribution, and can be
found, for example, from the kinetic equation. Sections 2 and
3 apply this approach to detailed study of the transition
radiation in media with random non-thermal inhomogene-
ities.

The same process can be treated as scattering of the quasi-
stationary field of the fast particle by the inhomogeneities.
This approach reveals the tight similarity between light
scattering in a medium and the transition radiation. The
analogy with light scattering and the respective formalism
appear to be most convenient for the study of emission in
thermodynamically equilibrium media (polarization brems-
strahlung, Section 4).

Finally, the formulae of transition radiation in a medium
with macroscopic inhomogeneities can be derived from the
formulae of polarization bremsstrahlung per atom or back-
ground ion by direct summing of radiation fields, their
squaring, and subsequent averaging [11]. The coherent

nature of the transition radiation is most pronounced in
such an approach, since the non-diagonal terms �i 6� j� of
the formed double sum contribute the bulk to the radiation
intensity and the result can be expressed by a pair (two-point)
correlator of the particle positions. The respective contribu-
tion vanishes in the absence of the macroscopic inhomogene-
ities.

At least one more way is discussed in the literature to
calculate transition radiation, themean-field reactionmethod
[13 ± 15]. This method is based on the tensor of an effective
dielectric permeability [16 ± 18] and is only valid for small-
scale inhomogeneities [19] with a size l much less than the
formation zone of radiation lc [see Eqn (1)]. This paper does
not use this approach because a broad spectrum of inhomo-
geneities (with the scales l both less and larger than lc) is
assumed to exist in the medium.

The papers [20, 21] use the tensor of an effective dielectric
permeability to calculate the transition radiation by particles
moving in a plasma with strong inhomogeneities modeled by
parallel narrow infinitely long cylinders (a5 lc, where a is the
radius of the cylinder). Other aspects of the transition
radiation in a medium with random inhomogeneities are
discussed in papers [22 ± 25] (for transition radiation of
acoustic waves see, for example, Refs [26, 27]) and mono-
graphs [4, 5, 10, 28] (also see references there).

The paper is arranged as follows. Section 2 considers the
emission by relativistic particles. The respective theory is valid
for any matter because the plasma dielectric permeability is
universal at high frequencies. Section 3 studies the transition
radiation of particles with arbitrary energy, particularly, close
to plasma eigen frequencies. Section 4 describes the transition
radiation generated in thermodynamically equilibriummedia
and Section 5 applies the theory to various astrophysical
conditions.

2. Transition radiation by relativistic particles in
magnetized plasma with random inhomogeneities

2.1 Theory of transition radiation by a particle moving
along a curve
Let us consider transition radiation generated by a particle
moving curvilinearly [19]. TR originates over a length called
the coherence length or formation zone, which is described by
Eqn (1) in the case of a rectilinearly moving particle. The bulk
of energy at frequency o is emitted within a narrow cone
along the velocity vector with the angle

yc �
�
gÿ2 � o2

p

o2

�1=2

: �2�

The radiation at frequency o arises due to the interaction of
the relativistic particle field with the inhomogeneities of scales
kÿ1 � lc�o� if density inhomogeneities with a broad spectrum
exist in the plasma. The velocity direction is assumed to
change by the angle yc over a length l 05 lc�o� for the chosen
particle trajectory. Then the TR spectrum is formed over the
small length l 0 due to the high directivity of radiation. Hence,
the interaction between the relativistic particle field and the
inhomogeneities of scales kÿ1 � lc�o�4 l 0 (forming TR at
the frequency o) becomes weaker, which results in TR
suppression.

Let us deduce general equations for transition radiation
by a relativistic particle moving along an arbitrary path. The
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energy emitted by the relativistic particle current j
Q
o;k might be

expressed as [10]

En;o � �2p�4
�
j
Q�
o; k � Eo; kk

2 dk ; �3�

where Eo; k is the field produced by the current j
Q
o;k in the

medium, if the exact Green function for photon propagation
in the medium is known. Equation (3) contains all types of
emission provided by both curvature of trajectory and
response of medium. The Green function can be found
approximately (within the geometrical optics approxima-
tion) for some inhomogeneous media, e.g., for periodic
media [4]. Respectively, Eqn (3) can be applied to calculate
resonant radiation. However, the Green function is unknown
for media with random inhomogeneities. We calculate TR
approximately based on the perturbation theory.

Let us expand the electric field in a series over the
magnitude of inhomogeneities

Eo; k � E
�0�
o;k � E

�1�
o; k � E

�2�
o; k . . . �4�

that corresponds to the expansion of electric current in the
medium:

jo; k � j
�0�
o;k � j

�1�
o; k � j

�2�
o; k . . . �5�

Then the total emitted energy (3) takes the form

En;o � �2p�4 Re

�ÿ
j
Q�
o; k � E �0�o; k � hj ��1�o; k � E �1�o; ki

� j
Q�
o; k � hE �2�o;ki � hj ��2�o;k i � E �0�o; k

�
k2 dk : �6�

The first term in Eqn (6) is the intrinsic radiation, while TR is
connected with other terms quadratic over the density
inhomogeneities dNo; k. The broken brackets denote aver-
aging over the inhomogeneity spectrum, all terms linear over
dNo; k disappear due to the averaging. The vectors j

Q�
o; k and

E
�0�
o; k are out of the averaging brackets in Eqn (6) because they

do not depend on dNo; k.
The Maxwell equations provide us with the relation

between the transverse electric field and its source (the
respective electric current):

�c 2k2 ÿ o2�Ei
o; k � 4pio

�
di j ÿ ki kj

k2

�
j jo; k : �7�

It is important that we use here the microscopic (vacuum)
Maxwell equations, hence the current j jo; k is the total current
in the medium consisting from both the current of the fast
particle and current of background particles (in particular,
the usual medium response providing the dielectric perme-
ability). Substitution of Eqns (4), (5) into Eqn (7) yields

�c 2k2 ÿ o2�ÿEi�0�
o; k � E

i�1�
o; k � E

i�2�
o; k � . . .

�
� 4pio

�
di j ÿ ki kj

k2

�ÿ
j
j�0�
o; k � j

j�1�
o; k � j

j�2�
o; k � . . .

�
: �8�

Within the perturbation theory, the field E
i�0�
o; k is defined by

the current j
j�0�
o; k , the field E

i�1�
o; k is defined by the current j

j�1�
o; k ,

which is expressed through the field E
i�0�
o; k by means of kinetic

equation, etc. Thus, we have found the complete scheme for
calculating the fields and currents in any order of perturba-
tion.

It is important to note that the denominator of the right-
hand side of Eqn (8) contains repeatedly the difference
c 2k2 ÿ o2 (or c 2k2 ÿ o2e if taking into account the linear
response of unperturbed plasma). The difference vanishes for
eigen waves of the medium, e.g., for the usual transverse
electromagnetic waves, which results in divergence of expres-
sions for E

i�1�
o; k, E

i�2�
o; k, etc. Thus, the perturbation theory is only

valid for the quasi-stationary component of the electric field,
when c 2k2 ÿ o2e does not vanish. The electric field of a
rectilinearly moving particle is quasi-stationary entirely (if
the Vavilov ±Cherenkov condition is not satisfied; see Section
4.3) and the perturbation theory can be properly applied to
the entire field [28]. The situation is more complicated for
motion with acceleration. The particle's field consists here of
two components: the field of radiation and the intrinsic quasi-
stationary field; the perturbation theory is only valid for the
second.

To find the current arising when a relativistic particle is
moving in a plasma with random inhomogeneities we apply
the kinetic equation [28]:

fo; k�p� � e

io

�
Eoÿo 0; kÿk 0

q
qp

fo 0;k 0 �p� do 0 dk0 ; �9�

where e is the charge of an electron. Solution of the equation
using the perturbation theory taking into account the electric
field expansion (4) provides corrections to the undisturbed
distribution function:

f
�0�
o; k�p� � f �p�d�o�d�k� ; �10�

f
�1�
o; k�p� �

eE
�0�
o;k

io
q f �p�
qp
� dfo; k�p� etc:; �11�

where f �p� is normalized by the background particle number
density N, and the correction dfo;k describes the density
inhomogeneities:�

f �p� dp

�2p�3 � N0 ;

�
dfo;k�p� dp

�2p�3 � dNo; k : �12�

The expressions f
�i�
o; k allow calculation of the respective

plasma currents using the well-known formula:

jo; k � e

�
v fo; k�p� dp

�2p�3 : �13�

The integration yields

j
�0�
o; k � j

Q
o;k �

ie 2N

mo
E
�0�
o; k

�
Y�oÿ kv� �Y�kvÿ o�� ; �14�

j
�1�
o; k �

ie 2N

mo
E
�1�
o;k �

ie 2

mo

�
E
�0�
oÿo1; kÿk1dNo1 ;k1

�Y
�
oÿ o1 ÿ �kÿ k1�v

�
do1 dk1

� ie 2

mo

�
E
�0�
oÿo1 ;kÿk1dNo1;k1Y

��kÿ k1�vÿ �oÿ o1�
�
do1 dk1;

�15�
j
�2�
o; k �

ie 2N

mo
E
�2�
o;k �

ie 2

mo

�
E
�1�
oÿo2; kÿk2dNo2 ;k2 do2 dk2 : �16�

In expression (14) the electric field is artificially split into two
components: E

�0�
o; kY�oÿ kv� and E

�0�
o; kY�kvÿ o�, where

Y�x� is the unit step function, and m is the mass of the
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electron. Since Y�x� �Y�ÿx� � 1, the splitting does not
affect Eqn (14) itself, but this allows us to consider separately
the radiation field Y�oÿ kv� and the quasi-stationary field
Y�kvÿ o� in Eqn (8).

Paper [19] studies all four terms in Eqn (6) in detail. The
two last terms are found to vanish in a randomly inhomoge-
neousmedium, while the first term is the intrinsic radiation by
relativistic particle modified by the density inhomogeneities.
The transition radiation is described entirely by the second
term (i.e., the intrinsic radiation and the transition radiation
can be treated separately within the perturbation theory).
Thus, the finding of the first (linear) corrections to the field
and current in the medium is sufficient to calculate the
transition radiation. Equation (8) reads within this approx-
imation:

�c 2k2 ÿ o2��Ei�0�
o; k � E

i�1�
o;k� � 4pio

�
di j ÿ ki kj

k2

�
�
�
j
Qj
o;k �

ie 2N

mo
�E �0� jo; k � E

�1� j
o; k �

� ie 2

mo

�
E
�0� j
oÿo1; kÿk1dNo1; k1

�Y
��kÿ k1�vÿ �oÿ o1�

�
do1 dk1

�
: �17�

The linear in electric field terms �ie 2N=mo�E j
o;k correspond

to the polarization response of undisturbed plasma. They
provide the actual wave dispersion relation in the medium.
Indeed, the transfer of the terms into the left-hand side of
Eqn (17) replaces �c 2k2 ÿ o2� by �c 2k2 ÿ o2e�, where

e � 1ÿ o2
pe

o2
: �18�

This expression for plasma dielectric permeability is correct in
magnetized plasma if

o
oBe

4 1 �19�

that is assumed to be fulfilled when considering the effect of
the trajectory curvature (oBe is the electron gyrofrequency);
the effects of plasma gyrotropy are analyzed separately.

The relations between fields and currents in the respective
orders of the perturbation theory can now be written as

E
�0�i
o; k � G t

i j�o; k� jQj
o; k ; �20�

E
�1�i
o; k � G t

i j�o; k� j �1� jo; k ; �21�

j
�1� j
o; k �

ie 2

mo

�
E
�0� j
oÿo1; kÿk1dNo1; k1

�Y
��kÿ k1�vÿ �oÿ o1�

�
do1 dk1 ; �22�

where

G t
i j�o; k� �

4pio
c 2k2 ÿ o2e

�
di j ÿ ki kj

k2

�
�23�

is the transverse Green function in the medium.
Integration of the second term in Eqn (6) over dk yields

the energy of transition radiation

E tr
n;o � �2p�6

o2

c 3

jn� j

�1�
o;kj2

�
; �24�

where n is the unit vector in the direction of emission, and the
current j

�1�
o; k is defined by Eqn (22). The electric field E

�0�i
o; k is

defined by the relativistic particle current j
Q
o;k that is expressed

from its velocity v�t� and trajectory r�t�:
j
Q
o; k � Q

�
v�t� exp�ÿikr�t� � iot

� dt

�2p�4 ; �25�

where Q is the charge of the relativistic particle.
Further transformations, namely, substitution of

Eqns (25) and (23) into Eqn (20), then of Eqn (20) into
Eqn (22) and of Eqn (22) into Eqn (24), and the averaging of
the obtained expression over random phases of the inhomo-
geneities by means of

hdNo1; k1dN
�
o2; k2
i � jdNj2o1; k1

d�o1 ÿ o2�d�k1 ÿ k2� ; �26�

where jdNj2o1; k1
is the spectrum of inhomogeneities, yield

E tr
n;o �

4Q2e4

m 2c 3o2

�
V

dk1

�1
ÿ1

dtRe

�1
ÿ1

dt

� �n� v�t���n� v�t� t��
� jdNj

2
k1
exp
�
iotÿ i�kÿ k1�

�
r�t� t� ÿ r�t��	�

1ÿ �kÿ k1�2c 2=o2e�o��2 : �27�

Here we assume the inhomogeneities to be quasi-static,
jdNj2o; k � jdNj2kd�o�, and the symbol V indicates that the
integration over dk1 should be performed over the region
oÿ �kÿ k1�v4 0 that corresponds to the quasi-stationary
particle field.

2.2 Suppression of transition radiation by a magnetic field
Let us assume the curvature of the particle path to be caused
by a uniform magnetic field B [19, 29]. Then l 0 � ls �
Mc 2=QB? � c=oB? , where oB? � QB?=Mc is the gyrofre-
quency of the particle; the largest value of lc�o� (1) is achieved
at o � opg: lmax

c � cg=op. Hence, the condition l 05 lc
receives the form:

g4 g � � op

oB?
: �28�

Thus, the rotation of the particle in a magnetic field is
important when Eqn (28) is fulfilled and gives rise to TR
suppression in this region of parameters.

Let us calculate the transition radiation produced by a
relativistic particle rotating in a magnetic field in plasma with
random density inhomogeneities. First of all, we substitute
the standard expressions of the particle path r�t� and velocity
v�t� into Eqn (27) [30]. The formation zone is much less than
the Larmor radius of an ultra-relativistic particle, so the
arguments of trigonometric functions in r�t� and v�t� are
small, oB?t=g5 1. This allows the expansion off the sine and
cosine in a series over the powers of the small value oB?t=g.
This expansion should keep the next terms after the linear
ones to take properly into account the difference between the
actual particle path and a rectilinear trajectory:

v�t� � nv

�
1ÿ y 2

2

�
� hv ; v�t� t� � v�t� � v�n�X�t ; �29�

r�t� t� ÿ r�t� � v�t�tÿ v�n�X� t
2

2
� v�X� h� t

2

2

ÿ v�X� �n�X�� t 3
6
; �30�
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where X � QB=Mcg, the length of two-dimensional vector h
is equal to the angle between n and v�t�, see Fig. 2a. This
approach is widely used for calculating synchrotron radiation
[31].

Let us proceed further to the radiation energy per unit
time (the radiation intensity) instead of the total emitted
energy. Substitution of Eqns (29), (30) into Eqn (27) omitting
the outer integration over the time dt yields

I tro �
2pQ2e4

m 2c 3

�
dh 0

�
dm dk1 jdNj2k1

m 2
Re

�1
ÿ1

dt

� ÿ�n� h 0�2 � h 0�n�X�t� exp�i�oÿ �kÿ k1�v
�
t

ÿ ioh 0�n�X� t
2

2
� io�n�X�2 t

3

6

�
; �31�

where m � cos# � kk1=kk1.
This formula (31) represents the radiation I tro into the full

solid angle, which is time-independent. Contrarily, the
emission into any particular direction reveals itself as short
repetitive pulses like for synchrotron radiation [31]. Integra-
tion of Eqn (31) is easy to perform by substitution of the
variable h 0 � h� �n�X�t. The substitution does not affect
the limits of integration over dh, because rapid convergence of
the integral allows integration over the angle within infinite

limits:

I tro �
2pQ2e4

m 2c 3

�
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�
dm dk1 jdNj2k1

m 2
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�1
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�
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o2
� y 2 � 2k1v
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�
� io

o2
B?t

3

24g 2

�
: �32�

The inner integral can be expressed with the Airy function
Ai�x�. The substitution x� �oo2

B?=g
2�1=3t=2 together with

the account of Ai 00�x� � xAi�x� and that Ai 0�x� gives no
real contribution [the function Ai�x� is normalized to unity]
yields

I tro �
8p2Q2e4

om 2c 3

�
og
oB?

�2=3 �
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�
dm dk1 jdNj2k1

m 2

�
�
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�2=3

x
�
Ai�x� ; �33�

where

x �
�
gÿ2 � o2

p

o2
� y 2 � 2k1nc

o

��
og
oB?

�2=3

: �34�

The integration in Eqn (33) is taken over the parameter region
x4 0 that corresponds to the scattering of the quasi-
stationary field of the particle.

The further calculation of transition radiation requires for
the spectrum of inhomogeneities jdNj2k1 to be specified. The
spectrum is assumed to be a power-law:

jdNj2k1 �
nÿ 1

4p
k nÿ1
0 hDN 2i
k n�2
1

; �35�

where L0 � 2p=k0 is the main scale and hDN 2i is the mean
square of the inhomogeneities. Substituting Eqn (35) into
Eqn (33) and taking into account the actual limits of
integration arising from x4 0, we find:

I tro �
2p�nÿ 1�Q2e4k nÿ1

0 hDN 2i
om 2c 3
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�
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where

kmin�y� � o
2c

�
gÿ2 � y 2 � o2

p

o2

�
: �37�

Expression (36) allows the correct limiting transition to the
case of zero magnetic field. Indeed, if oB? ! 0 then

lim
b! 0

Ai�a=b�
b

� d�a� � d
�
oÿ �kÿ k1�v

�
; �38�

and the integrals in Eqn (36) over dm and dk1 are taken easily.
Thus, the intensity of transition radiation per unit frequency
per unit solid angle (the spectral-angular distribution)
produced by the rectilinearly moving particle is given by
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Figure 2. (a) Definition of the vectors h, n, v=v, Dv=v and the angles y and

jn�Xjt. (b) Spectral-angular distribution of transition radiation in a fixed
direction �y � gÿ1� with the presence of a magnetic field: (1) numerical

calculations by Eqn (36), (2) asymptotic forms (43), (45), (3) the

dependence without the magnetic field.
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(with omitting the outer integration over dh)

I 1n;o �
8p�nÿ 1�Q2e4hDN 2i

ncm 2o 3

�
2k0c

o

�nÿ1

� y 2

�gÿ2 � y 2 � o2
p=o2�n�2 �39�

in agreement with Ref. [28]. Let us discuss equation (36) in
more detail. It is important to note that expression (36)
omitting the outer integration over dh cannot be interpreted
as the radiation intensity into a given direction n for a
curvilinearly moving particle. This originates from the angle
y depending on the instant direction of particle velocity, while
the emission occurs over a finite (even if small) part of the
particle path, so the direction of the particle velocity is
changing during the emission process. This essential differ-
ence is caused by degradation of the system symmetry: the
system has no axial symmetry with respect to the direction of
particle velocity anymore when the particle is moving
curvilinearly. Nevertheless, omitting the integral over dh in
Eqn (36) is convenient to compare the output expressions
with Eqn (39).

Spectral-angular distribution of TR. The integration (36)
of combinations of the Airy function with polynomials within
finite limits is not easy to perform. Nevertheless, good
asymptotic approximations can be found for some restricted
frequency ranges.

Let us start with the condition

gÿ2 � o2
p

o2
4

�
oB?

og

�2=3

�40�

that is valid in the frequency ranges

o5o� � op

�
opg
oB?

�1=2

; �41�

o4oB?g
2 : �42�

The role of the path curvature is minor here, so the Airy
function can be replaced by a d function (38). However, the
second term in the brackets in Eqn (36) requires account of
the non-zero bandwidth of the Airy function because it
dominates for y! 0. The restricted bandwidth of
�og=oB?�2=3Ai�x� allows x to vary effectively within the
limits ÿ1 < x4 0. Hence, we can accept, e.g., x � ÿ1=3 for
a rough estimate and then find

I 2n;o �
8p�nÿ 1�Q2e4hDN 2i

ncm2o3

�
2k0c

o

�nÿ1

� y 2 � �oB?=og�2=3
�gÿ2 � y 2 � o2

p=o2�n�2 : �43�

This expression differs from Eqn (39) in the only additional
term �oB?=og�2=3 in the numerator, which has little effect on
the intensity of emission into the full solid angle under
conditions (41), (42).

For the other case, gÿ2 � o2
p=o

2 5 �oB?=og�2=3, or
o�5o5oB?g

2 ; �44�

the path curvature is essential, the argument of the Airy
function occurs to be small effectively: jxj5 1 (due to rapid

convergence of the integral over dk1). This allows us to
expand Ai�x� into a series and keep only the first term of the
expansion Ai�x� � Ai�0� � 1=�32=3G�2=3��. Then, the inte-
gration over dm and dk1 is easy to perform:

I 3n;o �
24p�nÿ 1�
n 2�n� 1�

Q2e4hDN 2iAi�0�
cm 2o 3

� �2k0c=o�
nÿ1�og=oB?�2=3
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�
�
1� ny 2

3�gÿ2 � y 2 � o2
p=o2�n�2

�
: �45�

It is important to note that the possibility of replacement of
theAiry functionAi�x� byAi�0� implies an essential change in
the nature of the transition radiation. In particular, the
interaction between the particle and the inhomogeneities
loses its resonant character that was ensured by the d function
d�oÿ �kÿ k1�v� for a rectilinearly moving particle.

According to Eqn (45), the intensity of transition
radiation decreases when the magnetic field increases:
I 3n;o / oÿ2=3B? in contrast to what occurs for synchrotron
radiation. Thus, suppression of transition radiation by the
magnetic field takes place. Figure 2b displays both the
asymptotic forms (43), (45) and the respective curve obtained
from Eqn (36) numerically. The dependence (39) for zero
magnetic field is plotted as well.

Spectral distribution of TR. Integrating Eqns (43), (45)
over the angles, we find the spectral distributions of transition
radiation in the respective frequency ranges:

I 2o �
8p2�nÿ 1�
n 2�n� 1�

Q2e4hDN 2i
cm2o3

�
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�
; �46�

I 3o �
16p2�2n� 1�Ai�0�
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Q2e4hDN 2i
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�
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�2=3

�
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2k0c

�
gÿ2 � o2

p

o2

��1ÿn
: �47�

According to Eqns (46), (47), the whole radiation spectrum
can conventionally be subdivided into four power-law parts:
I tro / onÿ2 at o5o�, I tro / onÿ�10=3� at o�5o5opg,
I tro / oÿnÿ�4=3� at opg5o5oB?g

2, and I tro / oÿnÿ2 at
o4oB?g

2 (Fig. 3a). Thus, the intensity of transition
radiation decreases rapidly at o > o�, the bulk of radiation
is generated at o4o� (41). The suppression effect occurs if
o� < opg that coincides with condition (28) found from
qualitative consideration.

As a result, the curvature of the particle trajectory gives
rise to considerable modification of the transition radiation
produced by particles with sufficiently high energy. Firstly,
the emission is suppressed at frequencies o4opg, where a
rectilinearly moving particle would have emitted most of the
energy. Secondly, the characteristic angle of the TR emission
cone increases (but it remains smaller than unity). Indeed,
substitution of o� into Eqn (2) yields

yc �
�
oB?

opg

�1=2

> gÿ1 : �48�
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A particle rotating along a helix in plasma with random
inhomogeneities generates synchrotron radiation besides
transition radiation. It is important to bear in mind that the
former is exponentially small at frequencies o < opg, while
the latter appears in this very region of frequencies. The
suppression of TR by magnetic field occurs at frequencies
o� < o < opg. Synchrotron emission by protons and other
nuclei is exceedingly small because of their large mass, hence,
transition radiation can dominate over synchrotron even at
o > opg for the nuclei. Thus, the effect of TR suppression by
magnetic field takes place at those frequencies where TR is the
dominant mechanism of emission for both electrons and
heavier particles.

Total energy of TR. Let us calculate now the intensity of
transition radiation integrated over frequency:

I trtot �
�1
op

I tro do : �49�

Without a magnetic field [more precisely, if condition (28) is
not satisfied], themain contribution to the integral (49) comes
from the frequency region o < opg, since at o > opg the
intensity I tro falls rapidly:

I trtot �
� opg

op

I 2o do � 8p2�nÿ 1�
n 2�n� 1�

Q2e4hDN 2i
cm 2o2

p

�
�
2k0c

op
g
�nÿ1

/ g nÿ1 : �50�

For a magnetic field obeying Eqn (28), the transition
radiation drops already at o � o� < opg, so

I trtot �
� o�

op

I 2o do � 8p2�nÿ 1�
n 2�n� 1�

Q2e4hDN 2i
cm 2o2

p

�
2k0c

op

�nÿ1

�
�
opg
oB?

��nÿ1�=2
/ g �nÿ1�=2 : �51�

For a particular case of a set of sharp boundaries we have
n � 2 (this situation can be ensured by a pile of plates, an
ensemble of shock waves etc.), so instead of the linear law
I trtot / g we obtain the square-root law I trtot / g 1=2. This
prominent change is provided by the suppression of transi-
tion radiation by the magnetic field under condition (28) at
those frequencies at which the bulk of emission would be
produced if B � 0.

Astrophysical estimates. Radiation of astrophysical radio
sources is typically generated by electrons distributed with a
power-law over the energy. For this case, synchrotron
emission is suppressed strongly at o < o2

p=oB. Contrarily,
the effect of TR suppression occurs at frequencies
o > o2

p=oB, while it is generated effectively at the lower
frequencies. This allows using standard formulae of TR
generated by rectilinearly moving particles for interpretation
of low-frequency radio spectra in the range o < o2

p=oB.
For a more physical feeling, we give a few illustrative

estimates of g �e;p (28) (for both electrons and protons) for
various circumstances. For laboratory plasma with
ne � 1014 cmÿ3 (op � 5� 1011 sÿ1) and B � 104 G
(oBe � 2� 1011 sÿ1, oBp � 108 sÿ1) we have g �e � 2:5,
g �p � 5� 103. For solar active regions (loops) with
ne � 2:5� 109 cmÿ3 (op � 2:5� 109 sÿ1) and B � 102 G
(oBe � 2� 109 sÿ1, oBp � 106 sÿ1) we find g �e � 1,
g �p � 2� 103. For interplanetary medium (ne � 4 cmÿ3,
B � 5� 10ÿ5 G) they are respectively g �e � 102,
g �p � 2� 105; and for radio galaxies (ne � 10ÿ2 cmÿ3,
B � 10ÿ5 G) they are g �e � 30, g �p � 5� 104. Thus, the
typical case is that transition radiation generated by most of
the relativistic electrons is suppressed strongly, while the
magnetic field effect is unimportant for heavy particles up to
rather high energy. Hence, transition radiation by weakly
relativistic and non-relativistic particles at relatively low
frequencies (of order of the plasma frequency) can be
important as well, see Section 3.

Suppression of TR by a strong magnetic field. The essence
of the suppression effect is modified a bit if the curvature of
the particle trajectory is associated with its motion along a
field line of a very strong magnetic field B � 1012 G (say, in
the magnetosphere of a neutron star). Here, the radius of
curvature of the field line should replace the Larmor radius,
RL ! Rcur. Thus, substituting the frequency ocur � cg=Rcur

(instead of gyrofrequency oB? ) into Eqn (28) we obtain

g � �
�
opRcur

c

�1=2

: �52�

As an example, for op � 1012 sÿ1, Rcur � 107 cm, we have
g � � 104.

2.3 Influence of multiple scattering on transition radiation
The results obtained in the previous section are correct for
transition radiation produced by a relativistic particle
propagating along any regular trajectory until it can be
approximated by a circle within the formation zone. How-
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Figure 3. (a) Spectrum of transition radiation in the presence of a magnetic

field, (b) spectrum of transition radiation in the presence of multiple

scattering, (c) the dependence of total energy emitted by transition

mechanism on the energy of relativistic particle for various types of

motion: (1) rectilinear trajectory, (2) multiple scattering (random walk),

(3) helix.
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ever, besides the regular external field, the scattering of a
particle in a medium by either Coulomb centers or stochastic
electromagnetic fields [32] can cause curvature of the particle
path. Here, the very particle path appears to be a random
function, hence, the calculation of the TR spectrum requires
averaging (27) over the respective ensemble of realizations
[19]:

E tr
n;o �

8Q2e4

m 2c 3o2

� jdNj2k1 dk1�
1ÿ �kÿ k1�2c 2=o2e�o��2

�
�1
ÿ1

dtRe

�1
0

dt exp�iot�

� 
�n� v�t���n� v�t� t�� exp�ÿi�kÿ k1�
�
r�t� t� ÿ r�t��	�:

�53�

Averaging over a random particle path. The averaging
marked in Eqn (53) by the broken brackets can be performed
with the use of distribution functions (the random density
inhomogeneities and the random particle trajectory are
assumed to be statistically independent of each other):

h. . .i �
�
dr dr 0 dv dv 0�n� v��n� v 0� exp�ÿi�kÿ k1��r 0 ÿ r��
� F�r; v; t�W�r; v; r 0; v 0; t�

�
�
dv dv 0 �n� v��n� v 0�Wkÿk1�v; v 0; t� ; �54�

where F �r; v; t� is the distribution function of the particle at
the time t, which (being normalized by unity) is converted to
unity after integrating over dr dv, W�r; v; r 0; v 0; t� is the
conditional probability of the transition of the fast particle
(for the time interval t) from an initial point �r; v� of the phase
space into a final point �r 0; v 0�, and Wkÿk1 is its spatial
Fourier-transform.

The functionW (that obeys the kinetic equation) has been
calculated in the frame of radiation theory for both Coulomb
collisions [33] and scattering by a random field [32]. It can be
expressed as

Wkÿk1�v0; v; t� � vÿ2d�vÿ v0�

� exp

�
ÿi
�
ov
c

�
1ÿ o2

p

2o2

�
� k1nv

�
t
�
u�h0; h; t� ; �55�

where the vectors h0, h are defined like Eqns (29), (30) by

v0 � nv

�
1ÿ y 2

0

2

�
� h0v ; v � nv

�
1ÿ y 2

2

�
� hv ; �56�

and the function u�h0; h; t� obeys the equation
qu
qt
ÿ io

2
y 2u � qDyu : �57�

Here, q � q0gÿ2 is the rate of collisions between the
relativistic particle and either Coulomb centers or small-
scale fields. For the former case [33]

q0 � 2pNv
�
Ze 2

Mc 2

�2

ln
183

Z 1=3
; �58�

whereN and Ze are the number density and the charge of the
background nuclei, while for the latter case [34]:

q0 � L0

3c

Q2hB 2
sti

M 2c 2
� o2

st

3o0
; ost < o0 ; �59�

where L0 and hB 2
sti are the correlation length and the

magnitude of magnetic irregularities, ost � QhB 2
sti1=2=Mc,

o0 � c=L; the magnetic field is regarded as a small-scale
field if ost < o0. For purely electric irregularities equation
(57) remains unchanged, while the definition of q0 requires the
replacement hB 2

sti ! hE 2
sti.

The solution of Eqn (57) with the obvious initial condition
u�h0; h; 0� � d�h0 ÿ h� is

u�h0; h; t� � x

p sinh zt
exp
�ÿx�y 2 � y 2

0 � coth�zt�

� 2x�h0 � h� sinhÿ1�zt�
�
; �60�

where

x � �1ÿ i�
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o
16q

�1=2

; z � �1ÿ i��oq�1=2 : �61�

Spectral-angular distribution of TR. Substituting
Eqns (55), (60) into Eqns (54), (53) and proceeding to the
intensity of emission (the energy emitted per unit time) like in
the previous section, we find

I trn;o �
8Q2e4

m 2co2

� jdNj2k1 dk1�
1ÿ �kÿ k1�2c 2=o2e�o��2 Re

�1
0

dt

�
�
dh �h0 � h� x

p sinh zt
exp

�
iot
2

�
gÿ2 � o2

p

o2
� 2k1nc

o

�
ÿ x�y 2 � y 2

0 � coth�zt� � 2x�h0 � h� sinhÿ1�zt�
�
: �62�

It is important that the analysis of emission into a fixed
direction can be performed correctly in the presence of
multiple scattering, because the system remains axially
symmetric (on average) with respect to the initial velocity of
the particle. Indeed, any direction of the velocity change has
equal probability, so the angle of emission y0 can be counted
from the vector of initial velocity v0. The symmetry surely
arises for an ensemble (beam) of particles, while each
individual particle moves along a unique highly asymmetric
(random) trajectory.

The integrand in Eqn (62) is a Gaussian function of the
angle, hence, the integration over dyx and dyy is easy to
perform over the region �ÿ1;�1�. The limits of integration
can actually be set as infinities due to rapid convergence of the
integrals over dh, which is provided by sharp directivity of the
emission along the velocity of the particle:

I trn;o �
8Q2e4

m 2co2
y 2
0

� jdNj2k1 dk1�
1ÿ �kÿ k1�2c 2=o2e�o��2

�Re

�1
0

dt

p cosh2zt

� exp

�
iot
2

�
gÿ2 � o2

p

o2
� 2k1nc

o

�
ÿ xy 2

0 tanh zt
�
: �63�
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Like in the previous section, we analyze further different
limiting cases of expression (63). If

jzj5 o
2

�
gÿ2 � o2

p

o2

�
; �64�

then the arguments of the hyperbolic functions are small:
jztj5 1, tanh zt � zt, cosh zt � 1 and Eqn (63) reduces to the
familiar expression (39) as for a rectilinearly moving particle.
Inequality (64) is valid for low- and high-frequency regions:

o5o�� � op

2

�
op

q0

�1=3

g 2=3 ; �65�

o4 8q0g 2 : �66�

For the intermediate frequency range, when

jzj4 o
2

�
gÿ2 � o2

p

o2

�
; �67�

or equally

o��5o5 8q0g 2 ; �68�

the multiple scattering is important. Here, the hyperbolic
functions can be simplified as well: tanh zt � 1,
cosh2zt � exp�2zt�=4. Then, the integration over the time
yields

I trn;o �
8Q2e4

m 2co�oq�1=2
y 2
0

� jdNj2k1 dk1�
1ÿ �kÿ k1�2c 2=o2e�o��2 : �69�

The integration of Eqn (69) over dk1 with the spectrum of
inhomogeneities (35) yields

I trn;o �
4�nÿ 1�
n�n� 1�

Q2e4hDN 2i
cm 2o2�oq�1=2

�
2k0c

o

�nÿ1

� y 2
0�

y 2
0 � gÿ2 � o2

p=o2
�n�1 : �70�

Here, contrary to the case of the particle rotation in magnetic
field, the intensity of radiation along the particle velocity
y 2
0 � 0 remains zero. The difference is provided by the

difference in the symmetry in these two cases.
Spectral distribution of TR. Integration of Eqn (70) over

the angles gives rise to the spectrum of transition radiation at
the frequencies (68):

I tro �
2

n 2�n� 1�
Q2e4hDN 2i

cm 2o2�oq�1=2
��

o
2k0c

��
gÿ2 � o2

p

o2

��1ÿn
:

�71�
Hence, the radiation spectrum consists of two power-law
parts in the region (68), I tro / onÿ3:5 at o��5o5opg and
I tro / oÿnÿ1:5 at opg5o5 8q0g 2. Thus, at o5o�� the
transition radiation is suppressed considerably (see Fig. 3b)
and it decreases as the rate of collisions increases
I tro / qÿ1=2.

The effect of suppression of transition radiation by
multiple scattering (71) is essential if the frequency range
(68) actually exists, i.e., o��5 8q0g 2, which [taking into
account Eqn (65)] happens for particles with sufficiently

high energy:

g4 g �� � op

8q0
: �72�

This inequality is similar (to some extent) to condition (28) of
suppression of transition radiation by a magnetic field.

Total energy of TR. Let us calculate the dependence of the
total energy emitted by the transition mechanism under
condition (72). Integrating Eqn (46) over frequency up to
the frequency o��, like Eqn (51), we find

I trtot �
�o��
op

I 2o do � 16p2

2nn 2�n� 1�
Q2e4hDN 2i
cm 2o2

p

�
�
2k0c

op

�nÿ1�opg2

q0

��nÿ1�=3
/ g 2�nÿ1�=3 : �73�

This case seems to be an intermediate in some sense between
rectilinear motion of the particle (50) and its rotation in a
magnetic field (51). Figure 3c displays the dependence of the
total energy generated by TR on the energy of the particle.

Estimate of TR suppression by multiple scattering. Sup-
pression of transition radiation by multiple scattering on
Coulomb centers can be observed in standard condensed
media, for example, in carbon for ge > 104, in iron for
ge > 800 etc., which is the same as for a single boundary case
[35]. For interplanetary plasma [36] hB 2

sti � 3:6� 10ÿ10 G2,
L0 � 3� 1011 cm providing ost � 0:25 sÿ1, o0 � 0:1 sÿ1, so
we have

g ��e �
opo0

2o2
st

� 105 : �74�

Let us assume, that there are weak inhomogeneities of the
magnetic field (say, Alfven waves) in the magnetosphere of a
neutron star with magnitude Bst � hB 2

sti1=2 � 5 G
�� 10ÿ11B0� and L0 � 100 cm, then ost � 108 sÿ1,
o0 � 3� 108 sÿ1. With the use of Eqn (74), we find

g ��e � 102 : �75�

Since the plasma in the vicinity of a neutron star is relativistic
and g5 102 for most of the particles, the suppression of
transition radiation occurs there for most of the electrons and
positrons available. We conclude that the application of the
theory of transition radiation to natural objects with a strong
magnetic field should be done with great caution and paying
particular attention to each effect resulting in curvature of the
trajectories of emitted particles.

2.4 Transition radiation in a gyrotropic plasma
A method for analyzing the radiation by particles in
anisotropic media was proposed by Ginzburg back in 1940
[37]. Ginzburg used this method to analyze Vavilov ±
Cherenkov radiation [38]. Kolomensky generalized this
method to the case of gyrotropic media [39]. He also studied
the formation of the Vavilov ±Cherenkov radiation emitted
by a particle moving along the magnetic field in a magnetized
plasma [40]. Barsukov [41] studied the radiation emitted by
oscillators moving along the axis of symmetry of a gyrotropic
crystal. The results of those early studies, as well as methods
for calculating the radiation in anisotropic media, are
reviewed in Ref. [42]. Here we mention only those papers
which concentrate on the role of the optical anisotropy in
generation of radiation in media. The crystal structure, i.e.,
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order in the positions of the particles in the medium, if
present, gives rise to many interesting effects [9, 43 ± 45],
which are beyond the scope of this paper.

Some problems of transition radiation generation in
anisotropic media have also been studied. The transition
radiation at an interface between an ordinary isotropic
medium and an optically active isotropic medium is studied
in Ref. [46]. The radiation by particles as they pass through
ferroelectric or crystalline plates is studied in Ref. [47].

General treatment.Let us consider the transition radiation
generated by a single relativistic particle propagating at an
arbitrary angle y with respect to the magnetic field through a
gyrotropic magnetized plasma with a broad spectrum of
random density inhomogeneities (35) [48].

As has been shown above (see Refs [28, 19] as well), the
calculation of transition radiation in a plasma with weak
inhomogeneities

DN
N

5 1 �76�

requires one to obtain the current j
�1�
o; k in the medium, which is

bilinear over the field of the relativistic particle E
Q
o; k and over

the amplitude of the inhomogeneities dNk. The expression for
j
�1�
o; k can be found by solving the kinetic equation using the
perturbation theory (see Section 2.1), like when deriving the
dielectric tensor of a magnetized plasma [49]:

j
�1�; a
o; k �

ie 2

mo
wab

�
dk0 EQ; b

o; kÿk 0dNk 0 ; �77�

where the inhomogeneities are assumed to be quasi-static.
The tensor wab is given in the cold-plasma approximation by

wab �

1

1ÿ u

ÿi ���up
1ÿ u

0

i
���
u
p

1ÿ u

1

1ÿ u
0

0 0 1

0BBBBB@

1CCCCCA : �78�

The diagonal components of the tensor wab describe the
currents which are transverse and longitudinal with respect
to the magnetic field �B � Bez�, while the off-diagonal
components describe the Hall current of the plasma elec-
trons. The dimensionless quantity u is determined by the ratio
of the electron gyrofrequency to the radiation frequency:

u � o2
Be

o2
: �79�

The electric field of the relativistic particle in Eqn (77) is
expressed from the current of the particle with the use of the
Green function Gbs�o; k�, like Eqn (20). The Green function
of gyrotropic plasma, however, differs from that in isotropic
medium. It can be found by expanding the field in the
anisotropic medium into normal modes (the Hamiltonian
method [37, 39, 50]). In particular, the Green function can be
written as [cf. Eqn (23) for an isotropic plasma]

Gab�o; k� � 4pio
�

aaoka
� b
ok

o2
ok ÿ o2

� aaeka
� b
ek

o2
ek ÿ o2

�
�80�

for a cold magnetized plasma, where ao; e are the vectors of
polarization of the ordinary and extraordinary waves, and
oo; e are the corresponding eigenfrequencies. These quanti-

ties were derived by Eidman [51] when analyzing the
magneto-bremsstrahlung in gyrotropic plasma. While they
are reproduced in many treatises (see, e.g., Ref. [52]), we
write them down here for convenience in the reading of the
paper:

o 2
j; k �

k2c 2

n 2
j

; j � o; e ; �81�

n 2
o; e � 1ÿ 2v�1ÿ v�

2�1ÿ v�ÿ u sin2 y��u 2 sin4 y� 4u�1ÿ v�2 cos2 y�1=2 ;
�82�

where y is the angle between the vectors k and B, and

v � o2
p

o2
; �83�

aj; k � nj; k

�1� a 2
j � b 2

j �1=2
�1; iaj; ibj� ; j � o; e : �84�

Here the brackets contain �x; y; z� components of the vector
of polarization. The coordinate system is chosen in such away
that the magnetic field B is along the z axis, and the vector k
belongs to the �y; z� plane. Further

aj � Kj cos yÿ gj sin y ; bj � Kj sin y� gj cos y ; �85�

Ko; e � 2
���
u
p �1ÿ v� cos y

u sin2 y� �u 2 sin4 y� 4u�1ÿ v�2 cos2 y�1=2
;
�86�

KoKe � ÿ1 ;

go; e � ÿ
v
���
u
p

sin y� uvKo; e cos y sin y
1ÿ uÿ v�1ÿ u cos2 y� : �87�

These expressions are correct for the electric fields in a plasma
except for the vicinity of the fundamental cyclotron resonance
�u � 1� and possibly its lowest harmonics, where the thermal
motion of the plasma particles (the spatial dispersion) should
be taken into account.

The energy radiated by a particle into one of the normal
modes during the entire time over which the particle moves
through the plasma can be written, like Eqn (24), as [10]

Ej; n;o � �2p�6 o2

c 3

ja�j; k � j �1�j;o;kj2

�
: �88�

To be more specific, we consider the energy radiated into the
ordinary wave; the expressions for the extraordinary wave are
then found by the exchange of the indices o, e. In the
calculations we assume the relativistic particles to move
rectilinearly. Surely, this approximation is not necessarily
valid. For example, under the condition oBe=op > 1, the
curvature of the trajectory has a very strong effect on the
transition radiation by relativistic electrons of any energy.
Nevertheless, it is still worthwhile to examine the rectilinear
motion of the particles in this case, since we intend to study
the proper effect of the plasma gyrotropy on the radiation
only. Furthermore, for protons and heavier nuclei, this
approximation may be completely valid even in fairly strong
magnetic fields. With these general comments, we end our
discussion of the role of trajectory curvature for the time
being; more quantitative evaluations and the applicability
criteria are given at the end of this section.
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The Fourier component of the proper current produced
by a rectilinearly moving particle is

j
Q
o; kÿk 0 �

Qv

�2p�3 d
�
oÿ �kÿ k0�v� ; �89�

where Q is the charge of the relativistic particle. Substitution
of all that is required into Eqn (88) yields

Eo; n;o � 8pe4Q2o2
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�
dk0 jdNj2k 0
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oÿ �kÿ k0�v���kÿ k0�2c 2=n 2

oÿ o2
���kÿ k0�2c 2=n 2

e ÿ o2
�� ;
�90�

where T is the total duration of emission. Dividing Eqn (90)
by this time yields the radiation intensity (the energy emitted
per unit time). In general, the intensity of the radiation of the
ordinary wave depends on the refractive indices of both
normal modes. The formal reason for this is the difference
between the tensor wab (78) and dab. The Green function (80)
represents the electric field of the particle as the sum of quasi-
stationary (`virtual') ordinary and extraordinary waves. The
scattering of the virtual ordinary wave (and of the extra-
ordinary wave) by inhomogeneities of the medium leads to
the emission of both ordinary and extraordinary waves.
Respectively, we refer to the two contributions to the
radiation of each normal mode as the `radiation through the
virtual ordinary wave' (or through the `virtual extraordinary
wave').

Since the radiation by relativistic particles reveals high
directivity, we use the smallness of the angle # between k and v
(56), which yields:

ja�o; k � vj2 � c 2
K 2

o#
2 sin2 f� # 2 cos2 f

1� K 2
o

� c 2# 2 sin2 f� K 2
e cos

2 f
1� K 2

e

;
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2 f� K 2

e sin
2 f

1� K 2
e

; �91�

2�a�o; k � v��ae;k � v� � ÿ2Kec
2# 2 cos 2f

1� K 2
e

:

Here the conditionKoKe � ÿ1 is taken into account.We have
also discarded some terms proportional to gj which describe
the longitudinal component of the electric field, since the
relations jgjj5 1; jKjj are fulfilled under the conditions of
interest. Here f is the azimuth angle of the vector WW; we have
cosf � 0 when WW belongs to the �B; v� plane, and we have
sinf � 0 when WW is perpendicular to this plane.

Substituting Eqn (91) into Eqn (90), and using
kk0=kk 0 � vk0=vk 0, we can integrate Eqn (90) over the

angles of the vector k0 taking into account the d function.
We obtain further the radiation intensity by dividing
Eqn (90) by T :
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where

k 0 jmin �
o
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#2 � gÿ2 � 2�1ÿ nj�

�
: �93�

In deriving Eqn (92) we ignored the difference between the
directions of k and v everywhere except for expressions like
ja�j;k � vj2 � �n� v�2. In particular, the angle y in Eqn (92) is
assumed to be equal to the angle between the velocity of the
particle and the external magnetic field. Integration of
Eqn (92) over the inhomogeneity spectrum (35) yields:
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The radiation of the extraordinary wave per unit frequency
per unit angle (the spectral-angular distribution of the
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radiation) is calculated similarly. The result is
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Expressions (94) and (95) solve the problem of the transition
radiation generated by a relativistic particlemoving through a
magnetized plasma with random density variations. Let us
now analyze various limiting cases in more detail.

The case of weak gyrotropy. Let us consider high
frequencies (19) at which the plasma gyrotropy has only a
weak effect on the intensity of transition radiation. However,
the weak magnetic field is the only reason for polarization of
the radiation if the fluctuations of the medium are distributed
isotropically. The polarization of the radiation is important
for the expected applications of the transition mechanism to
astrophysical sources. Observing and analyzing the polariza-
tion of radiation appears frequently to be crucial in identify-
ing the mechanisms of astrophysical electromagnetic radia-
tion [53].

To find the degree of polarization of the transition
radiation under condition (19), we proceed in the following
way. We calculate the intensities of the radiation of the two
normal modes (94), (95) by expanding them into power series
over u. Since the expressions for both the refractive indices
(82) and the polarization vectors (86) contain the quantity u in
combinations with sin y and cos y, the respective expansions
are different depending on the relation between cos2 y and u.

Quasi-longitudinal motion. If

cos2 y4 u ; �96�

the polarization of the normal modes in the plasma is almost
circular [53], and the intensities of the ordinary and extra-
ordinary waves are
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where I tro is the intensity of the transition radiation in an
isotropic plasma (46). Obviously, the extraordinary wave is
radiated a bit more efficiently than the ordinary wave. The
difference between the radiation intensities (97) and (98) (on

the one hand) and those in the case of an isotropic plasma (on
the other) arises primarily from the existence of the Hall
current of the background electrons (the terms �2 ���

u
p

cos y).
Since the direction of the electron rotation is the same as the
direction of the electric field rotation in the extraordinary
wave, the respective Hall current increases the radiation of
these waves and reduces the radiation of ordinary waves. The
other terms arise from a small difference between the
refractive indices for the normal modes and they are smaller
than the Hall contributions if n < 2. The degree of polariza-
tion of the radiation is

P � Io;o ÿ Ie;o
Io;o � Ie;o

� ÿ2 oBe

o
cos y

�
1ÿ n

2�1� o2=o2
pg 2�

�
: �99�

According to the definition of the degree of polarization (99),
a positive (negative) value of P corresponds to the predomi-
nant emission of ordinary (extraordinary) waves.

A point of importance for astrophysical applications is
that the degree of polarization (99) at a given frequency is
determined almost exclusively by the strength of the magnetic
field (more precisely, its longitudinal component). In princi-
ple, we thus have a method to measure the magnetic field in
radiation sources, e.g., in solar flares.

Quasi-transverse motion. Now we consider quasi-trans-
verse motion of the particle with respect to the magnetic field:

cos2 y5 u : �100�

Using expansions as in the preceding case, we find
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�
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Here, the ordinary wave is almost linearly polarized along the
magnetic field, while the extraordinary wave is elliptically
polarized, in the plane perpendicular to the magnetic field.
For y � p=2 the quantity Io;o is exactly half the radiation
intensity in an isotropic plasma, since the electric field of the
ordinary wave is directed strictly along the external magnetic
field, so the field has no effect on the radiation and
propagation of the ordinary waves. The degree of polariza-
tion is

P � ÿu� 4 cot2 y� n�cos2 y� u sin2 y�
2�1� o2=o2

pg 2�
: �103�

In the case of strictly transverse motion �cos y � 0�, this
expression reduces to

P � ÿ
�
oBe

o

�2�
1ÿ n

2�1� o2=o2
pg 2�

�
: �104�

In contrast to Eqn (96), the polarization is now inverse
quadratic over the magnetic field and for the typical values
1 < n < 2 we have P < 0. In other words, the extraordinary
waves predominate, as before. The reason for the quadratic
(rather than linear) dependence of the degree of polarization
on the magnetic field is that the polarization is now
dominated by the respective transverse current, rather than
by the Hall current of the plasma electrons.
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Strong gyrotropy, motion along the magnetic field. Let us
consider the condition opposite to Eqn (19) that corresponds
to strong gyrotropy. For sin y � 0 we have

n 2
o; e � 1� v���

u
p � 1

; Ko; e � �1 ; go; e � 0 ; �105�

i.e., the normal modes are circularly polarized. The refractive
indices under the condition
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u
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o; e � 1� o2

p

oBeo
: �106�

When we substitute Eqns (105), (106) into Eqns (94), (95), the
contributions to the emission of the ordinary wave through a
virtual extraordinary wave and vice versa vanish exactly. The
spectral-angular distribution of the radiation of the normal
modes is

I �o; e�n;o �
4p�nÿ 1�

n
e4Q2hDN 2i
cm 2o3

�
o
oBe

�2

� #
2�2k0c=o�nÿ1Y�# 2 � gÿ2 � o2

p=oBeo�
�# 2 � gÿ2 � o2

p=oBeo�n�2
: �107�

Here the Y function is the unit step function. It has been
introduced into the numerator because for

gÿ2 ÿ o2
p

oBeo
< 0 �108�

the Cherenkov condition for the radiation of (slow) extra-
ordinary waves (the so called Z mode) is satisfied. For

# 2 � gÿ2 ÿ o2
p

oBeo
� 0 �109�

expression (107) for the extraordinary wave diverges. There is
a simple physical basis for this divergence. The matter is,
under condition (108), the electric field of a particle moving
through a gyrotropic medium has two components: a quasi-
stationary intrinsic field and a radiation field (Cherenkov
radiation). The scattering of the quasi-stationary field (in
other words, the scattering of the virtual photons emitted by
the particle) occurs over a finite distance, equal to the
formation zone of the transition radiation [19]. There is also
a scattering of propagating Cherenkov photons by irregula-
rities of the medium. In an infinite, transparent medium,
however, the distance over which the photons interact with
irregularities is infinite. This is the reason for these diver-
gences.

Under actual conditions, the intensity of the scattered
Cherenkov radiation is affected by the spatial size of the
system and by the mean free path of the photons. The
respective contribution to the total radiation intensity can be
easily found for a specific problem (see Section 4.3). Here, we
restrict the discussion to the proper transition radiation,
which we regard as the result of a conversion of the quasi-
stationary (virtual) field of the particle into electromagnetic
radiation on irregularities of the medium [19]. We just
mention to finalize the matter at the moment, that when a
particle moves through a plate with the Vavilov ±Cherenkov
condition satisfied in it [28], the respective contribution is
simply the result of repeated refraction and reflection of the
Cherenkov radiation at the boundaries.

An important difference between Eqn (107) and the
radiation intensity in an isotropic medium is the small factor
�o=oBe�2. This factor appears because the radiation is
dominated in this case by the Hall component of the plasma
current, which is described by the off-diagonal terms of the
tensor wab (78). The reason is that the transverse field of the
relativistic particle does not contain any component along the
magnetic field in this geometry. Accordingly, in strong fields,
as �o=oBe�2 ! 0, the transition radiation associated with the
longitudinal electric field of the relativistic particle may
become important (this is the radiation through a virtual
longitudinal wave). This field is

E
Q; l
o; k � ÿ

4piQcd�oÿ kv�
�2p�3oel�o�

B

B
: �110�

Calculating the plasma current excited by the field (110) along
the magnetic field, we find the radiation intensity, as has been
done in deriving Eqns (94), (95):

I
�o; e�
n;o; l �

4p�nÿ 1�
n

e4Q2hDN 2i
cm 2o3e 2l

# 2�2k0c=o�nÿ1
�# 2 � gÿ2 � o2

p=oBeo�n :

�111�
The comparison of expressions (107) and (111) shows that for

g <
�
oBe

op

�1=2

�112�

the radiation (111) through the longitudinal field dominates
at frequencies

op < o < oBegÿ2 ; �113�
while the radiation (107) through the transverse field
dominates at higher frequencies. Note that no Cherenkov
radiation appears at any frequency under condition (112).
However, the intensity (111) diverges, when o! op, since
the condition for Cherenkov emission of longitudinal waves
(Langmuir plasma waves) begins to hold (Section 3 discusses
the respective regularization method in detail).

Integrating Eqns (107), (111) over angle, we find the
respective emission spectra. It occurs that the integration
over d# 2 in Eqn (111) cannot be carried out between infinite
limits, since the result turns out to be infinite. Hence, the
radiation through a virtual longitudinal wave does not
display strong directivity along the velocity of the particle
anymore. However, expression (111) is valid only in a small
interval of angles with respect to the magnetic field, since in
deriving this expression we used the specific expressions (105),
(106) for the refractive indices and the polarization vectors of
the normal modes. To get a feeling of the magnitudes
involved, we estimate the radiation intensity (111) within an
angle #� � gÿ1 under condition (112):

I
�o; e�
o; l �

4p2�nÿ 1�
n

e4Q2hDN 2i
cm 2o3

�2k0c=o�nÿ1
�gÿ2 � o 2

p=oBeo�nÿ2
: �114�

The integration of Eqn (107) can be carried out between
infinite limits, because of the rapid convergence:

I �o; e�o � 4p2�nÿ 1�
n 2�n� 1�

e4Q2hDN 2i
cm 2o3

�
o
oBe

�2 �2k0c=o�nÿ1
�gÿ2 � o2

p=oBeo�n :

�115�
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Thus, I
�o; e�
o � oÿnÿ2 at frequencies op 5o5oBegÿ2 and

I
�o; e�
o � oÿn at frequencies oBegÿ2 5o5oBe under condi-
tion (112) (the dashed curves in Fig. 4, oBe=opg 2 � 28 is
accepted).

For higher-energy particles�
oBe

op

�1=2

< g <
oBe

op
�116�

the radiation through the longitudinal wave is unimportant.
There is a frequency interval in which the condition for
Cherenkov radiation is fulfilled. We consider only that
region of parameters in which this condition does not hold.
For the ordinary wave, this region covers the full frequency
range, while for the extraordinary wave it covers the only
frequencies

o >
o2

p

oBe
g 2 : �117�

Expression (115) remains valid for these cases [the solid line in
Fig. 4b; the line is plotted for the parameters providing the

dimensionless separating frequency �op=oBe�g 2 � 40].
Ordinary wave radiation displays a spectrum composed of
two power-law regions: I

�o�
o � oÿn under condition (117) and

I
�o�
o � const�o� in the opposite case (the solid line in Fig. 4a).

If g > oBe=op, the intensity of the ordinary-wave radia-
tion is constant over the entire frequency interval
op 5o5oBe (the dotted line in Fig. 4a), while the extra-
ordinary waves are generated by the Cherenkov mechanism
here. The intensity of Vavilov ±Cherenkov emission (of
extraordinary waves) considerably exceeds the intensity of
transition radiation (of ordinary waves) at the same frequen-
cies under condition (76), their ratio is

I tr�o�

IVC�e�
�
�
oBe

op

�nÿ1 hDN 2i
N 2

: �118�

It is worthwhile to consider transition radiation of extra-
ordinary waves only outside the Cherenkov angle, i.e., at
# > #� � o2

p=oBeo. As # approaches #�, the intensity of the
transition radiation diverges. Kapitza [54] reported a similar
divergence to occur as the respective parameters of the system
approach the Cherenkov threshold, back in 1960. The matter
is that a virtual photon becomes progressively more `similar'
to a real photon as the Cherenkov threshold is approaching.
At the threshold, the mean free path of the photon becomes
infinite, and the virtual photon itself becomes the real
Cherenkov photon. Under real conditions, this divergence
may be restricted by accounting for the following factors: the
finite size of the main scale of the inhomogeneities, L0; the
curvature of the particle trajectory; the finite size of the
medium and the energy losses in the medium. An example of
such a calculation is given at Section 4.3, which could be
generalized to this case as well.

Strong gyrotropy, motion across the magnetic field. We
consider the motion of a particle across the magnetic field,
cos y � 0. The curvature of the trajectory of a relativistic
particle [19, 29]may in general have an important effect on the
spectrum of the transition radiation in this case. However,
there is a certain range in which the approximation of
rectilinear motion is applicable for protons and heavier
nuclei; this range is determined later on.

The refractive indices for normal modes in the case
cos y � 0 are

n 2
o � 1ÿ o2

p

o2
; n 2

e � 1� o2
p

o2
Be

: �119�

The spectral-angular distribution of the ordinary waves is

I �o�n;o �
8p�nÿ 1�

n
e4Q2hDN 2i
cm 2o3

�2k0c=o�nÿ1# 2 sin2 f

�# 2 � gÿ2 � o2
p=o2�n�2 : �120�

The factor sin2 f provides the directivity pattern to be
elongated along the magnetic field. The spectral distribution
of the radiation in this case is

I �o�o � 4p2�nÿ 1�
n 2�n� 1�

e4Q2hDN 2i
cm 2o3

�2k0c=o�nÿ1
�gÿ2 � o2

p=o2�n �121�

that is half of the total intensity of the transition radiation in
an isotropic medium. The magnetic field has absolutely no
effect on expressions (120), (121), since the direction of the
electric field in the wave is the same as the direction of the
external magnetic field.
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Figure 4. Transition radiation spectra of ordinary (a) and extraordinary

(b) waves when a relativistic particle is moving along the magnetic field in

highly gyrotropic plasma. The presented values of the particle Lorentz

factor (6, 200, 104) correspond to the regions g < �oBe=op�1=2 � 31:6,
�oBe=op�1=2 < g < oBe=op � 103, g > oBe=op. The spectra of extra-

ordinary waves are plotted only if the Vavilov ±Cherenkov condition is

not fulfilled.
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The angular distribution found from Eqn (95) for the
extraordinary wave radiation is

I �e�n;o �
8p�nÿ 1�

n
e4Q2hDN 2i
cm 2o3

�
o
oBe

�4

� �2k0c=o�nÿ1# 2 cos2 f

�# 2 � gÿ2 ÿ o2
p=o

2
Be�n�2

: �122�

The respective directivity pattern is elongated perpendicular
to the magnetic field. It is clear from the above discussion,
that we consider the radiation only by the particles whose
energy is not too high,

g <
oBe

op
; �123�

and the Vavilov ± Cherenkov condition is not satisfied.
Condition (123) allows us to neglect the term �op=oBe�2 in
comparison with gÿ2 in the denominator in Eqn (122). For
the radiation spectrum we find

I �e�o �
4p2�nÿ 1�
n 2�n� 1�

e4Q2hDN 2i
cm 2o 4

Be

og 2n
�
2k0c

o

�nÿ1
: �124�

According to this expression, the radiation by particles of any
energies within the range (123) increases (in the frequency
interval op 5o5oBe) according to the law:

I �e�o � o2ÿn �125�
if n < 2. The ordinary-wave radiation behaves differently: the
spectrum (121) decreases slowly, I

�o�
o � onÿ2, at frequencies

op 5o5opg and then falls off sharply, I
�o�
o � oÿnÿ2, at

higher frequencies. Comparing Eqns (121) and (124), we
conclude the ordinary wave radiation to dominate except
for a narrow frequency region near oBe.

Motion at an arbitrary angle. We turn now to the
properties of the transition radiation of the normal modes
when the particle is moving at an arbitrary angle with respect
to themagnetic field.We start with the angular distribution of
the transition radiation, based on the general expressions
(94), (95).

Figure 5a displays a typical directivity pattern for the
ordinary wave as the relativistic particle is moving at any (but
not too small) angle with respect to the external magnetic
field. The distribution is obviously elongated along the
projection of the magnetic field onto the plane of the figure.
The directivity pattern has such a simple shape because the
ordinary-wave radiation due to the scattering of the virtual
extraordinary wave is always small in comparison with the
main contribution, coming from the scattering of the virtual
ordinary wave.

For extraordinary waves, however, the radiation through
a virtual ordinary wave may be very important. For example,
Fig. 5b ± d displays the directivity patterns for the intensity of
extraordinary waves generated by a particle with g � 5 at a
frequency o � 5op for various magnetic fields
oBe=op � 300, 500, 700. For the first case, the emission is
provided by the scattering of the virtual extraordinary wave
(the pattern is elongated in the direction transverse with
respect to the magnetic field). In the second case the two
components are comparable, and in the third the component
arising from the virtual ordinary wave dominates. This results
in the ordinary-wave radiation, integrated over angles,
depending only on its own refractive index, while the

intensity of the extraordinary waves generally depends on
the refractive indices of both normal modes. In this regard the
transition radiation is quite different from radiation of other
types (e.g., Cherenkov radiation [38, 40] and magneto-
bremsstrahlung [51]), for which the intensity of each normal
mode is determined exclusively by the refractive index
corresponding to the very same mode. This property of the
transition radiation has the same physical origin as the
mutual conversion of normal modes in a gyrotropic plasma
[52].

Let us consider the spectral distribution of the radiation
intensity. When expressions (94), (95) are integrated over
angles, the terms containing cos 2f vanish (these terms
describe the interference between two components of the
radiation). Ignoring the small component of the intensity of
the ordinary-wave radiation associated with ne, we find
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n 2�n� 1�

e4Q2hDN 2i
cm 2o3

�
2k0c

o

�nÿ1

�
��cos2 yÿ 2Ke

���
u
p

cos y� K 2
e �=�1ÿ u� � sin2 y

�2�
gÿ2 � 2�1ÿ no�

�n�1� K 2
e �2

�126�

for the ordinary wave and
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Figure 5. Directivity patterns of transition radiation of normal modes

for g � 5, o=op � 5, y � p=4: (a) o wave, (b) e wave, oBe=op � 300,

(c) e wave, oBe=op � 500, (d) e wave, oBe=op � 700.
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for the extraordinary wave. Here F �2; n; n� 2; 1ÿ z� is the
hypergeometric function.

Let us first find the asymptotic behavior of Eqns (126),
(127) at u4 1. More precisely, we assume

4 cos2 y

u sin4 y
5 1 : �128�

For the refractive indices and the polarization vectors we then
find

2�1ÿ no� �
o2

p

o2
sin2 y ; 2�1ÿ ne� � ÿ

o2
p

o2
Be sin

2 y
;

Ko � ÿ
���
u
p sin2 y

cos y
; Ke � cos y���

u
p

sin2 y
:

�129�

Since the condition for Cherenkov radiation of extraordinary
waves is fulfilled for particles with g > oBe sin y=op, we
consider only particles with lower energies. In this case the
argument z of the hypergeometric function in Eqn (127) is
restricted as jzj5 1. We can thus approximate the function F
by the analytic expression [55]:

F �2; n; n� 2; 1ÿ z� �
�
1� z n ÿ 1

G�2� n�G�2ÿ n�
�ÿ1

: �130�

Substituting Eqn (129) into Eqn (126), and retaining only the
largest terms under condition (128), we find

I �o�o � 4p2�nÿ 1�
n 2�n� 1�

e4Q2hDN 2i
cm 2o3

�2k0c=o�nÿ1 sin4 y
�gÿ2 � o2

p sin
2 y=o2�n : �131�

This expression differs from that for an isotropic plasma (or
for strictly transverse motion of the particle) in the factor
sin2 y in the dispersion law for the ordinary waves, and the
factor sin4 y in the numerator in Eqn (131). The latter factor
describes the projection of the electric field of the ordinary
wave onto the external magnetic field.

Figure 6a displays a set of ordinary-wave radiation
spectra plotted using Eqn (126) for various angles y.
Obviously, the magnetic field provides no qualitative change
in the radiation of the ordinary waves.

Respectively, the transition radiation of extraordinary
waves is

I �e�o �
4p2�nÿ 1�
n 2�n� 1�

e4Q2hDN 2i
cm 2o3
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�132�

Taking expression (130) into account, we can easily analyze
this expression in various frequency regions. At
o5opg sin y, we have

I �e�o �
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2n y

�
:

�133�

The second term, which is associated with the radiation
through the virtual ordinary wave, may become dominant at
low frequencies, close toop (themutual transformation of the
normal modes in a plasma occurs at the very same
frequencies). In the opposite limit,

opg sin y5o5oBe ; �134�

the spectrum is
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The second term may dominate for particles with low energy,
at low frequencies [but satisfying Eqn (134)]. Figure 6b
displays a set of extraordinary-wave spectra for
oBe=op � 300, y � p=4, and various g. With increasing
radiation frequency and/or with increasing energy of the
particle, the component of the radiation through the virtual
ordinary wave becomes less important. This conclusion
agrees with the fact that the mutual conversion of normal
modes in a gyrotropic medium occurs most efficiently for the
parameter region op=o � 1.

Figure 6c displays a set of extraordinary-wave radiation
spectra for the same parameters as in Fig. 6a. For o < oBe,
the transition radiation differs drastically from that in the
case of an isotropic plasma. Indeed, the radiation intensity
decreases with decreasing frequency, I

�e�
o � o2ÿn, instead of

increasing, as it does for an ordinary wave, I
�o�
o � onÿ2.

Figure 6d displays the polarization of the radiation for the
same parameter values. The ordinary wave is predominantly
radiated in the frequency range op < o < oBe, while it is
predominantly the extraordinary wave at o > oBe. The
frequency dependence of the polarization is quadratic for
y � p=2, while it is linear for other angles.

Although the radiation of ordinary waves is usually more
efficient at o < oBe, this may not always be the case. For
example, Fig. 6e displays the radiation spectra for ordinary
and extraordinary waves as the parameter values approach
the Cherenkov threshold. In this case, the radiation of
extraordinary waves may be several orders of magnitude
more intense than the radiation of ordinary waves at certain
frequencies. These curves are plotted with the use of
Eqns (126), (127), which ignore all the effects that could
restrict the enhancement of the radiation.

Discussion of the gyrotropy effect. Transition radiation in
magnetized plasma reveals some new features. In particular,
divergent expressions appear under certain conditions, e.g.,
when the condition for Cherenkov radiation is fulfilled for
either the extraordinary wave or plasma wave. This happens
because the probability of the scattering of the Cherenkov
photon over an infinite distance (in a boundless transparent
medium) is unity. This divergence can be regularized when
specific bound media are analyzed.

Then, an anomalous enhancement of the radiation (of
extraordinary waves) may occur as the Cherenkov threshold
approaches (but when the Cherenkov condition has not yet
become satisfied). A similar enhancement was discovered
long ago [54]; it is provided by the increase of the formation
zone of radiation as the Cherenkov threshold approaches
(virtual photons become almost real ones). Nevertheless, the

252 K Yu Platonov, G D Fle|̄shman Physics ±Uspekhi 45 (3)



increase in the radiation may be limited by many factors
under actual conditions: the finite size of the basic length scale
of the plasma density inhomogeneities, the curvature of the
particle trajectory, the deceleration of the particle in the
plasma, etc.

Furthermore, the expressions for the extraordinary waves
diverge as oBe=o! 1, i.e., at the cyclotron resonance. The
cold-plasma approximation, which we have used here, is well
known [49] to be incorrect in this region. A correct description
would require consideration of the thermal motion of the
plasma particles (spatial dispersion). We have not included
the spatial dispersion, since the approach presented here
becomes incorrect before the spatial dispersion effects
become important. The matter is that, as the cyclotron
resonance is approaching, the condition

j1ÿ n 2
e j5 1 �136�

becomes violated at a certain frequency. Hence, the phase
velocity of the normal mode starts to differ strongly from the
velocity of light in vacuum, c. Consequently, the distinctive
features characterizing the radiation by relativistic particles
fade away; in particular, there is no longer the sharp

directivity of the radiation along the direction of the particle
velocity. For this reason, the peaks in the region o � oBe in
Fig. 6c, e do not have a quantitative sense; they merely
indicate the presence of certain peculiarities there. Actually,
the entire analysis of the transition radiation in this region
should be done differently (we should also note that
extraordinary waves cannot propagate at all in a magnetized
plasma in the narrow frequency region

oBe

�
1� o2

p sin
2 y

2o2
Be

�
< o < oBe

�
1� o2

p

o2
Be

�
:

However, such an analysis would not seem to be particularly
interesting for applications, since more intense cyclotron
radiation is generated at o � oBe.

The applicability region. Let us consider when the
approximation of the rectilinear motion of the relativistic
particle is valid. According to Section 2.2, transition radiation
by electrons moving along a helix is strongly suppressed
under the condition

g >
op

oBe sin y
: �137�
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Figure 6. (a) Set of transition radiation spectra of ordinary waves for various pitch angles of the relativistic particle for the parameter values: g � 25,

oBe=op � 100. (1) y � p=2, (2) y � p=4, (3) y � p=6. (b) Set of transition radiation spectra of extraordinary waves for various values of the energy of the

relativistic particle for the parameter values: oBe=op � 300, y � p=4. The radiation intensity increases with Lorentz-factors (labels at the curves). (c) Set

of transition radiation spectra of extraordinary waves for various pitch angles of the relativistic particle for the parameter values: g � 25,oBe=op � 100.

(1) y � p=2, (2) y � p=3, (3) y � p=4, (4) y � p=6. (d) Polarization of the transition radiation versus the frequency for various pitch angles of the particle

for the parameter values: g � 25, oBe=op � 100. (1) y � p=2, (2) y � p=4, (3) y � p=6. P > 0 corresponds to ordinary waves, P < 0 corresponds to

extraordinary waves. (e) Transition radiation spectra of ordinary and extraordinary waves as the threshold for Cherenkov generation of extraordinary

waves approaches. Here the parameters are g � 25, oBe=op � 100, y � p=15.
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The transition radiation by electrons is thus described by the
equations obtained here in weakly gyrotropic plasma and for
quasi-longitudinal motion. The situation is more favorable
for the radiation by protons and other heavy particles.
According to the preceding sections, the curvature of the
particle trajectory strongly influences the transition radiation
(namely, it suppresses this radiation) if the particle turns
through an angle larger than the characteristic angle of the
emission cone at a distance equal to the coherence length of
the radiation. Thus, the approximation of rectilinear motion
of the heavy particles is correct if
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For estimates we consider the least favorable case, in which
the particle is moving strictly transversely to the magnetic
field. For ordinary waves we then find the same applicability
condition as before:
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For extraordinary waves we find [with the use of Eqn (123)]
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The curvature of the trajectory thus does not affect the
radiation of extraordinary waves at any frequency if
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the curvature of the trajectory is unimportant at frequencies
o� < o < oBe but is essential at lower frequencies. However,
the suppression of the extraordinary-wave radiation at
o < o� has only a slight effect on the total energy of the
transition radiation in magnetized plasma. Assuming the
parameters typical for solar flares, we find that conditions
(140) ± (143) are usually satisfied, since the energies of the
protons produced even by the most powerful flares are rarely
in excess of 20 GeV [56] �g � 20�. In the laboratory, on the
other hand, one could apparently arrange various regimes for
transition radiation, in particular, when the curvature of the
trajectory of the heavy particles is important.

Thus, the ordinary and extraordinary waves are generated
in magnetized plasma quite differently, which, particularly,
results in highly polarized radiation. When a particle moves
along the magnetic field, the transition radiation decreases
significantly at frequencies o=oBe < 1 due to suppression of
the transverse motion of the plasma electrons by the magnetic
field. In the case of transverse motion of a relativistic particle
(a proton), ordinary waves are emitted considerably more
efficiently than extraordinary waves (for oBe=op 4 1). The
transition radiation by electrons moving transversely to the
magnetic field is suppressed strongly by the curvature of the
trajectories of the electrons. At frequencies o=oBe > 1, the

polarization of the radiation can be rather high as well. The
degree of polarization depends mainly on the magnetic field
strength in this case. This could be used for finding an
independent estimate of magnetic fields, e.g., by observing
the radio emission from solar flares.

3. Transition radiation generated
by particles with arbitrary energy

Section 2 studies in detail the transition radiation (TR)
generated by ultra-relativistic particles under various condi-
tions. In particular, TR has been found to be produced
effectively by relatively low-energy particles with

g <
op

oB
; �144�

where g � E=Mc 2 is the Lorentz factor of particle, op is the
plasma frequency, and oB � QB=Mc is the gyrofrequency of
the particle. Natural plasmas frequently contain a broad
spectrum of charged particles, falling with energy, e.g.,
dNe / NeE

ÿx dE. Emission by moderately- and non-relati-
vistic particles can appear to be essential in this case. This
section calculates the TR emitted by charged particles with
arbitrary (i.e., not necessarily relativistic) energy in a plasma
with a broad spectrum of random density inhomogeneities
(35).

Along with the spectral and angular distributions of the
radiation intensity by a charge of arbitrary energy, we also
derive the emissivity of an ensemble of particles with a power-
law spectrum as well as coefficients of transition absorption
(or amplification), which is important for the purpose of
application.

3.1 Transition radiation in isotropic plasma
As has been discussed [28, 19], the source of the TR is the
plasma electron current excited by the quasi-stationary field
of a fast charged particle:
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where e and m are the electron charge and mass, dNk 0 is the
variation in the electron density of the medium, andE

Q
o; kÿk 0 is

the quasi-stationary electric field of the radiating particle. The
field of the particle is defined from its current
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(Q is the particle charge and v is its velocity) with the use of the
Green function. Now, in contrast to the ultra-relativistic limit
(Section 2), we must take into account not only the transverse
but also the longitudinal Green function [57, 58]. As a result
the quasi-stationary field EQ takes the form
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The energy emitted by the current (145) at frequency o in the
direction n is described by the expression [similar to Eqn (24)]
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where e � 1ÿ o2
p=o

2 is the dielectric permeability of the
plasma. The account of the value e 1=2 in Eqn (148) is a must,
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since we intend to describe TR correctly at all frequencies
o5op, also including o � op, where e differs substantially
from unity. The ultra-relativistic treatment is valid for
relativistic particles g4 1 at high frequencies o4op, where
e � 1.

Spectral-angular distribution of TR.The use of expressions
(145) ± (148) enables us to derive the distribution of the
radiation intensity per unit frequency per unit solid angle:
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The integrand in Eqn (149) depends on all three dummy
variables (including the azimuth angle j 0 of the vector k0). To
perform the integration of Eqn (149) it is convenient to
assume that the particle moves in the direction parallel to
the z axis, while the vector k is in the �x; z� plane. Then the
azimuth angle j 0 is equal to the angle between the projection
of the vector k0 on the �x; y� plane and the x axis (the
projection of the vector n on the same plane) (Fig. 7a). The
radiation intensity (149) passes into
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cos#r � ÿ�oÿ kv cos#�=k 0v, a � k 0 2 ÿ 2kk 0 cos# cos# 0,
b � ÿ2kk 0 sin# sin# 0. The integration over d cos# 0 is per-
formed trivially using the d function and gives rise to a
Y function, Y�1ÿ cos2 #r�, associated with the obvious
requirement cos2 #r 4 1. Replacing cos# 0 by cos#r in
Eqn (151) and expanding the resulting expression into the
simplest fractions, we find
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Performing the integrals with respect to dj 0 in Eqn (152)
(which are tabulated) and simplifying the results in terms of
their power in cos# in the last term and combining common
terms, we find the following:

F � po2

2k 2
Y�1ÿ cos2 #r�

�
ÿ1

� bÿ2 cos2 #� bÿ1 cos#� �1ÿ bÿ2��1ÿ y 2=2� y 4=4� � y 2=2�
cos2 #� b�y 2 ÿ 2� cos#� b 2 ÿ y 2 � y 4=4

�1=2
� �1ÿ bÿ2�

�
1ÿ y 2

2

�2

� b�1ÿ y 2� cos#ÿ b 2 � y 2=2ÿ y 4=4�
cos2 #� b�y 2 ÿ 2� cos#� b 2 ÿ y 2 � y 4=4

�3=2 � ; (153)

where b � o=kv, y � k 0=k. Thus, the spectral-angular dis-
tribution of the TR intensity reduces to a single integration
over the spectrum of the plasma density inhomogeneities:

In;o � 4pe4Q 2
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where F �y; b; cos#� � 2k 2F=po2Y�1ÿ cos2 #r�. However, it
is impossible to integrate Eqn (154) analytically with the
power-law spectrum (35). Figure 7b displays the normalized
angular distribution of the TR intensity at different values of
the parameter kv=o, obtained by numerical integration of
Eqn (154). In the non-relativistic range the radiation is similar
to that from a dipole and its maximum occurs at angles of
order 90� with respect to the particle velocity. As kv=o
increases the radiation maximum approaches the direction
in which the particle is moving, and a strong directivity is
observed for the radiation in the direction of the velocity
vector in the ultra-relativistic limit. Note that in calculating
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Figure 7. (a) Coordinate system. (b) Normalized angular distribution of

transition radiation for various values of v=vph (labels on curves).
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the TR in the ultra-relativistic limit (39) the radiation
intensityintheforwarddirection�# � 0�vanishes.InFigure7b
we see I�# � 0� > 0, which is provided by the longitudinal
proper field of the fast particle included here, but neglected
there (39).

We proceed now to calculating the TR intensity over the
full solid angle:
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Changing the order of integration with respect to dy and
d cos# we find
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Since the spectrum jdNj2k 0 does not depend on the angle # for
isotropically distributed inhomogeneities, only the function F
is integrated over the angle. We introduce two new functions
F1 and F2:
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Taking into account the variation interval of y in each of the
integrals, we find
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Substitution of the spectrum of the equilibrium thermal
fluctuations jdNj2k 0 into Eqn (156) with the use of Eqns (158),
(159) results in the intensity of the polarization bremsstrah-
lung. This problem is analyzed in Ref. [59], see Section 4 as
well. Unfortunately, the integration cannot be completely
carried out in terms of elementary functions.

Consider the emission that arises when super-thermal
fluctuations are present in the plasma. After expressing the
spectrum (35) by the dimensionless variable y
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the intensity of radiation can be written as
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Then, expression (161) is calculated by expanding the
functions F1 and F2 into the simplest fractions and integrat-
ing by parts the terms which contain logarithms. After
simplifying and performing some identities we find
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The summation over s � �1 is introduced in Eqn (162) to
make it more compact; the integral that remains in Eqn (162)
can be expressed in terms of hypergeometric functions [60].
Equation (162) is valid for a charged particle of arbitrary
energy moving rectilinearly at frequencies o > op, except for
a small region near op, o9op�1� v 2

T=v
2�, where vT is the

thermal velocity of the plasma electrons. In order to describe
the intensity Io correctly in this region we must take into
account the spatial dispersion of the plasma. We just note for
a moment that in isotropic plasma the spatial dispersion gives
rise to the substitution:
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where the function F �a� represents a strong narrow peak in
the spectrum close to the frequencyop.We refer to this part of
the radiation as resonant TR. Under the condition
�oÿ op�=op 4 �vT=v�2 we have F �a� � eÿ3=2 and expres-
sion (162) is valid. In the opposite limit o! op, a5 1 we
have F �a� � �1=18�e 1=2�v=vT�4. If we note that b4 1 holds
here we find
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Let us proceed now to finding asymptotic representations of
the expression S �Ps��1 . . ., which depends on b, for small
and large values of bÿ 1.

Ultra-relativistic limit. For �bÿ 1�5 1 we should put
b � 1 everywhere except in terms of the form �bÿ 1�, and
neglect y in comparison with 2 in the denominator of the
integrand. Then we find

S � �4ÿ n��2ÿ n�
2n 2�n� 1� �bÿ 1�ÿn : �165�

Substituting Eqn (165) into Eqn (162) and setting v � c, e � 1
in the coefficient, we find the ultra-relativistic limit of TR
(46), which is correct for g4 1, o4op.

Non-relativistic limit. In the opposite limiting case,
�bÿ 1�4 1, the quantities �b� 1�ÿn could be expanded in
powers of 1=b, where the first non-vanishing terms of this
expansion arise only in the fourth order. Taking the integrals

256 K Yu Platonov, G D Fle|̄shman Physics ±Uspekhi 45 (3)



to the same accuracy over 1=b we find
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Finally, for �bÿ 1�4 1, we have
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Note that expression (167) is also valid for the TR of
relativistic particles in the limit o! op, since in this case we
have �bÿ 1�4 1.

Using the asymptotic forms (165), (166) and applying the
standard procedure for fitting the numerical results for the
function S by an analytical formula we arrive at the result:
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Retaining only the quantity A1 [consisting of the asymptotic
forms (165), (166)] in Eqn (168) yields the correct order of
magnitude (the error is less than a factor of two), and the
correction A2 provides an average accuracy � 10% and
maximum error � 20%. Thus, the intensity of the transition
radiation of a charged particle of arbitrary energy at all
frequencies o5op is given by the expression
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Figure 8a displays the spectra of TR calculated according to
both Eqn (171) and the relativistic asymptotic forms for
various values of the particle momentum. It demonstrates
that the relativistic expressions provide a good description of
the emission from high-energy particles at high frequencies,
while near the plasma frequency a strong narrow peak
appears which exceeds the level of the `background' by
several orders of magnitude.

These results can be used under laboratory conditions to
analyze experiments with mono-energetic particle beams. For
astrophysical applications it is often necessary to average the
spectra over the energy distribution of the emitting particles
as well.

TR from an ensemble of particles.Usually the spectrum of
emitting particles in astrophysical sources can be represented
in the form

dNe � �xÿ 1�Ne�x > x0� x
xÿ1
0 dx

x x ; x0 < x < x1 ; �172�

where x � p=mc is the dimensionless particle momentum.
Then the emission from the ensemble of particles with the
spectrum (172) can be written as follows:
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Figure 8. (a) Set of transition radiation spectra for various values of the

dimensionless momentum of the charged particle x � p=mc (the labels at

curves). (b) Radiation by a charged particle ensemble with a power-law

distribution over momentum for various spectral indices (labels on the

curves). The dashed curves represent spectra plotted with the use of

relativistic asymptotic forms.
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and the velocity v which enters the definition of a (see below)
should be expressed in terms of the dimensionless momen-
tum:

v

c
� x

�1� x 2�1=2
: �175�

Let us start with the analysis of the asymptotic behavior of the
radiation spectrum in the region o4op, when the peak as
o! op is unimportant. Aswill become clear, the shape of the
corresponding asymptotic forms is different in three various
cases: (1) x > 2n� 1, (2) n� 2 < x < 2n� 1, (3) x < n� 2. If
the number of particles falls off sufficiently rapidly
�x > 2n� 1� with increasing x, then the main contribution
to the emission comes from the non-relativistic particles.
Then we can set x � v=c and integrate Eqn (174) over dv
from v0 to infinity. Here it is necessary to evaluate the integral�1
v0

x n�1ÿx dx [see the asymptotic form (165)], and it obviously
converges for

x > n� 2 ; �176�

which always holds in this region, since n� 2 < 2n� 1 for
n > 1 and the radiation spectrum can be written in the form
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In the other limiting case x < n� 2, the main contribution to
the radiation at these frequencies is associated with the ultra-
relativistic particles. The integration of Eqn (174) for
o < min fo2

p=oBe;opg1g, where g1 � �1� x 2
1 �1=2 is the max-

imum Lorentz factor in the spectrum (172), yields
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Finally, for

n� 2 < x < 2n� 1 �179�

both expressions (177), (178) are correct, and the total
spectrum is given by their sum. Since the emission spectrum
in the relativistic case onÿ1ÿx is flatter than in the non-
relativistic case oÿnÿ2, the emission produced by non-
relativistic particles dominates at lower frequencies, while
the emission comes from the relativistic particles dominates at
higher frequencies; the contribution of particles with
Ekin � mc 2 is unessential.

Figure 8b displays the emissivity P�o� of the particle
ensemble as a function of frequency for three different values
of x corresponding to the three intervals described (we set
n � 1:5 in generating the plots). The solid curves are the
results of calculations by the exact formula (174), while the
dashed curves correspond to the relativistic asymptotic
forms. The figure demonstrates a good agreement between
the asymptotic forms and the exact calculations. The value of
the TR intensity at the peak that remains after integration
over the particle spectrum can be several orders of magnitude
greater than the `background' level of the emission.

3.2 Resonant transition radiation
General remarks. Resonant effects in transition radiation
have already been discussed in Section 2 for TR produced
by ultra-relativistic particles. They are the strong enhance-
ment of TR intensity at the threshold of Cherenkov genera-
tion of extraordinary waves or that at cyclotron frequency if
oBe > op. A similar effect occurs near another plasma eigen
frequency, namely, at the Langmuir frequency op [57]. This
effect can be regarded as more general, since it takes place
independently on the ratio of gyrofrequency to plasma
frequency. We refer to the transition radiation generated
near the plasma frequency as resonant transition radiation
(RTR).

Calculation of RTR. Since the phase velocity of transverse
waves near op is considerably greater than the speed of light,
so v=vph 5 1 holds for any v < c, we may keep only the
longitudinal field of the fast particle (the non-relativistic
approximation) to calculate the resonant transition radia-
tion to an accuracy of �v=vph�2. However, the dielectric
permeability that enters the expression for this field should
be written taking into account the spatial dispersion e�o; k� �
e�o� ÿ 3k 2d 2 � ie 00. Then the intensity of the resonant
transition radiation can be represented in the form
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where d � vT=op is the Debye radius; the imaginary part e 00

of the dielectric permeability is introduced to eliminate the
divergence when Eqn (180) is integrated. Note that e�o�5 1
and k5 k 0 at the frequencies considered. This enables us to
neglect k in comparison with k0 everywhere except in the
resonant denominator. Then it is convenient to integrate
Eqn (180) over the angles of the vector n, i.e., find the energy
emitted over the full solid angle (the directivity pattern
corresponds to that of a dipole in this case):
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In expression (181) we have also performed the trivial
integration over the azimuth angle,

�
dj . . . � 2p, # is the

angle between the vector k0 and the particle velocity v.
Breaking up the integrand into the simplest fractions and
integrating over the angle #, we obtain:

I R
o �

32p3e4Q 2e 1=2

vm 2c 3

�1
o=v

dk 0

k 0
jdNj2k 0

J#
36k 2k 0 2d 4

; �182�

where

J# � a ln
�a� 1�2 � b2

�aÿ 1�2 � b2
ÿ 2� 1� b2 ÿ a2

b

�
�
pY�1ÿ a2 ÿ b2� � arctan

2b

a2 � b2 ÿ 1

�
; �183�

and a � �3k 0 2d 2 ÿ e�o��=�6kk 0d 2�, b � e 00=�6kk 0d 2�. Let us
analyze the expression for J# (183) in more detail. The case of
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a transparent medium corresponds to the limit b! 0. Then
for a2 4 1we have J# !1 as p=b. This divergence has a clear
physical origin. The matter is that for a2 4 1 the condition for
Vavilov ±Cherenkov radiation is fulfilled for longitudinal
(plasma) waves. Hence, the particle field for the respective
values ofo, k, k0 is not quasi-stationary but propagating, and
its interaction with the plasma inhomogeneities corresponds
to scattering of already emitted quanta, rather than the
production of new ones. The mean free path of the
Cherenkov plasmons in an infinite transparent medium is
infinite, which is the very reason for this divergence. In order
to calculate the intensity of the transition radiation, regarded
as the result of conversion of the quasi-stationary field of the
particle into propagating waves [19], we must exclude values
a2 4 1 from the range of integration over dk 0.

In this case the function J# can be simplified. Discarding
the term pY�1ÿ a2 ÿ b2� and expanding arctan x in a series
based on the smallness of its argument for a2 > 1, we find:

J# �
�
a ln
�a� 1�2 � b2

�aÿ 1�2 � b2
ÿ 4

�
Y�a2 ÿ 1� : �184�

The quantity J# has a singularity in the limit b! 0, a2 ! 1,
but this singularity is integrable. This can easily be shown if
we expand J# in powers of 1=a, the expansion converges
within 1=jaj < 1. Retaining the first non-vanishing term of
this expansion

J# ' 4

3a2
Y�a2 ÿ 1� �185�

ensures an accuracy of better than 30%. After substitution of
Eqn (185) into Eqn (182) and transition to the dimensionless
variable m � k 0v=o, we can write the resonant transition
radiation spectrum in the form

I R
o �

32p2�nÿ 1�
27

e4Q 2e 1=2

vm 2c 3
k nÿ1
0 hDN 2i

�
v

o

�n�2�
v

od

�4

�
�1
1

dmY�a2 ÿ 1�
mn�3�m 2 ÿ a�2 ; �186�

where a � e=3�v=od�2 � e=3�v=vT�2. For arbitrary values of
the spectral index n, the integral in Eqn (186) can be expressed
in terms of hypergeometric functions. In fact, the shape of the
peak has only a weak dependence on the spectral index, so it is
convenient to use the result of integrating Eqn (186) for n � 2,
which can be expressed in terms of elementary functions:

F�a� �
�1
1

dmY�a2 ÿ 1�
m 5�m 2 ÿ a�2

� 1

a 3
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1

1ÿ a
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2
� 3
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� 1

a 4
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2� 30:5vT
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1

a 4
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30:5vT

� 1

a 3

�
1

1ÿ a
� 2� a

2
� 3

a
ln�aÿ 1�

��
Y�oÿ o2� ; �187�

where

o1; 2 � op

�
1� 3

2

�
vT
v

�2�
1� 2� 30:5vT

c

��
: �188�

Further, it is convenient to transit from the function F�a� to
another function

F �a� � 2e 1=2
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1ÿ a
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��
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!
; �189�

since for large frequencies o4op, a4 1 we have
F �a� � eÿ3=2�o�, and the respective expression merges with
the overall transition radiation spectrum (162). Thus, the
TR spectrum which is correct at all frequencies o5op is
found after substituting eÿ3=2 ! F �a� in Eqn (162) [see
Eqn (171)]. It is easy to see that at high frequencies
o4op the role of the spatial dispersion is minor, i.e.,
F �a�� eÿ3=2 � 1; at low frequencies, a5 1, we have
F �a� � �e 1=2=18��v=vT�4 / �oÿ op�1=2, while near the
maximum of the spectrum a � 1 we have F �a� � v 3c=v 4

T.
Total energy of RTR. Now let us find the total energy

emitted by the resonant transition mechanism. Integrating
the spectrum (167) that is valid near op over frequency for
particles of arbitrary energy, we find

I R
tot �

64p2�nÿ 1�
45�n� 2�

e4Q 2hDN 2ik nÿ1
0

c 3m 2

�
v

op

�n�1
vc

v 2T
: �190�

The comparison of Eqn (190) with the energy emitted in the
ultra-relativistic region (50) proves the resonant TR by
particles with g < c 2=v 2T to be more intensive than standard
TR. For g > c 2=v 2T most of the energy is emitted at
frequencies om � opg > opc

2=v 2
T.

If the charged particle is moving in a plasma with
gradually varying density [with some distribution F�op�
over the plasma frequencies], then the bulk of the observed
emission at frequencyo comes from the regions of the plasma
with op � o. To estimate the TR from these (large-scale)
non-uniform sources it is convenient to use the approxima-
tion

I R
o �

64p2�nÿ 1�
45�n� 2�

e4Q 2hDN 2ik nÿ1
0

c 3m 2

�
v

op

�n�1
vc

v 2T
d�oÿ op� ;

�191�

which should be convolved with the function F�op�.
RTR from an ensemble of particles. In order to obtain the

TR generated by an ensemble of particles with a broad
spectrum we should convolve expression (191) with the
spectrum (172):

PR
o �

2�nÿ 1�
45�n� 2�

�xÿ 1�G��xÿ 1�=2�G��nÿ x� 3�=2�
G
��n� 2�=2�

� e2

c
x xÿ1
0 Neo2

p

hDN 2i
N 2

�
k0c

op

�nÿ1
c 2

v 2
T

d�oÿ op� : �192�
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Themain contribution to this expression comes fromparticles
of moderate relativistic energy with Ekin � mc 2.

Let us evaluate the contribution provided by the scattering
of Cherenkov plasmons [i.e. the pole contribution discarded in
Eqn (183)] to the entire spectrum of the radiation produced in
a randomly inhomogeneous plasma. The total intensity of
Cherenkov radiation of plasmons is given by the well-known
expression [61]:

I p
tot �

e2o2
p

v
ln

v

vT
; �193�

accordingly, the fraction of plasmons scattered per unit time
into transverse waves does not exceed the ratio of the
probability for a plasmon to be scattered into a transverse
wave to the probability for the plasmon to be scattered into
another plasmon, wl t=wl l � v 3T=c 3 [62].

So the radiation intensity provided by the pole contribu-
tion (i.e., by the scattering of Cherenkov plasmons into
transverse waves) appears to be small in comparison to RTR.

3.3 Resonant transition radiation in magnetic field
The total RTR energy found in Section 3.2 is rather large for
the mechanism to be important in nature. However, the
objects, which can produce RTR, contain magnetic fields
substantially affecting the particle motion, the matter disper-
sion, and emission of electromagnetic waves.

The analysis of the particle path curvature effect on TR
(Section 2) proves that for

op

oB
4 1 ; �194�

where oB � eB=mc is the electron gyrofrequency, the curva-
ture is unessential for the frequencies o < op�opg=oB�1=2,
where g is the Lorentz factor of the particle. This is
particularly valid around the plasma frequency. We consider
the magnetic field effect on the plasma dispersion [63], while
neglecting any curvature of the particle path keeping up the
case of relatively small fields (194).

Calculation of RTR in a magnetic field. The phase velocity
of electromagnetic waves is mach larger than the speed of
light (and, respectively, than the particle speed) at frequencies
o � op. Hence, the non-relativistic approximation is correct
for particle with arbitrary energy. General equations for the
RTR intensity should take into account the presence of
ordinary �s � o� and extraordinary �s � x� waves in magne-
tized plasma as well as the magnetic field effect on the
longitudinal dielectric permeability of the plasma:

e�o; kÿ k0� � e�o� ÿ 3�kÿ k0�2d 2 ÿ o2
po

2
B

o4
sin2 y� ie 00 ;

�195�
where y is the angle between the magnetic field B and the
vector �kÿ k0�. Then, the RTR intensity of each magneto-
ionic mode reads

I R; s
n;o �

4pe4Q 2ns
m 2c 3

�
d3k 0

� �n� k0�2d�oÿ �kÿ k0�v�jdNj2k 0
�kÿ k0�4��e�o� ÿ 3�kÿ k0�2d 2ÿ �o2

po
2
B=o4� sin2 y�2� e 00 2

	 ;
�196�

whereQ, v are the charge and velocity of the emitting particle,
n is the unit vector in the direction of wave propagation, m, e
are the electron mass and charge, jdNj2k 0 is the spectrum of

plasma density inhomogeneities, and e 00 is the imaginary part
of dielectric permeability. Since the mutual orientation of the
vectors B; v; n is arbitrary, the integrand in Eqn (196) depends
on the azimuth angle jk 0 . Unfortunately, this dependence
prevents complete calculation of the respective integrals.
Therefore, we consider RTR by a particle ensemble with an
anisotropic distribution function

f �p� � f �p; yv� �197�
that depends on the polar angle yv between the magnetic field
B and velocity v, and does not depend on the azimuth angle
jv. This kind of anisotropic function covers the majority of
astrophysical applications. The intensity of RTR from the
particle ensemble can obviously be written as

PR;s
n;o �

4pe4Q 2ns
m 2c 3

�
d3p f �p; yv�

�
d3k 0

� �n� k0�2d�oÿ �kÿ k0�v�jdNj2k 0
�kÿ k0�4��e�o� ÿ 3�kÿ k0�2d 2ÿ �o2

po
2
B=o4� sin2 y�2� e 00 2

	 :
�198�

Let us expand the distribution function in a series over
Legendre polynomials:

f � p; yv� � 1

4p

X1
l� 0

Fl� p�Pl�cos yv� : �199�

First of all, we calculate the integral over the angle of velocity
(momentum) vector. We set the k0 direction as z axes and
express Pl�cos yv� through the angles y and yk 0v (this is the
angle between the velocity v and vector k0) according to the
well-known combination formula [30, p. 132]:

Pl�cos yv� �
Xl
m�ÿl

P
jmj
l �cos yk 0v�P jmjl �cos y� exp�imjv� : �200�

Integrals over azimuth angle jv do not vanish for the terms
with m � 0 only, and integration over d cos yk 0v is easy to
perform due to the d function. This results in
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:

�201�
We should note that the terms of the series with even l only
contribute to the radiation intensity. Integrating over djk 0

and substituting x � cos y, we find
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where
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:
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The case of a transparent (non-absorbing) medium
corresponds to the limit b! 0. If this happens in the
parameter region 0 < a < 1, then the integrals over dx in
Eqn (202) diverge. The physical origin of this divergence and
the way to regularize it are discussed in Section 3.2 in detail:
the region 0 < a < 1 should be omitted when integrating
Eqn (202). Actually, this can be done by multiplication of
the integrand byY�3k 0 2d 2 ÿ e�o� ÿ 6kk 0d 2� for a > 1 and by
Y�e�o� ÿ 3k 0 2d 2 ÿ o2

po
2
B=o

4 ÿ 6kk 0d 2� for a < 0, where
Y�z� is the unit step function:
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where
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Thus, expression (204) is reduced to the calculation of
integrals like� 1

0

x 2n dx

�x 2 � x 2
0 �2

�205�

for n � 0; 1; 2 . . ., which can be done within elementary
functions, i.e., the RTR can be completely calculated if the
particle anisotropy is known.

Let us consider the isotropic mono-energetic fast particle
distribution (normalized by one particle) in more detail:

F0 � 1

p 2
0

d�pÿ p0� ; Fl � 0 at l 6� 0 : �206�

We denote the RTR by this particle distribution as IR;sn;o . The
integration of Eqn (205) for n � 1; 2 yields
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If the spectral index n in Eqn (35) is arbitrary, then the
integrals in Eqn (207) can be expressed through special

functions. However, RTR is generated in the narrow
frequency range o � op, and the results depend weakly on
the shape of the inhomogeneity spectrum.Hence, we calculate
the spectrum for a particular case n � 2, which allows
integration in standard (elementary) functions. We accept
o � op everywhere except for e�o� and approximate loga-
rithms and arc tangents by the first terms of Taylor
expansions. This ensures an accuracy of order of 20%.

The RTR intensity takes the form
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pe4Q 2ns
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hDN 2ik0
�
v
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�4

F ; �208�

where the function F is defined by:
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The presence ofY functions in the integrand of Eqn (209)
restricts the integration region (differently for various
frequencies). The respective integration of Eqn (209) yields

F � F�a; b� � 3

4

o4
p
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B

�F1 � F2 � F3 � F4� ; �210�

where (the subscript n of the emission angle yn is further
omitted for the simplicity)
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The function F�a; b� has its limit at high frequency �o4op�
F�a; b� � eÿ2�o� ; �219�

that allows this expression to be merged with the transition
radiation spectra at high frequencies (when the spatial
dispersion is unessential) for any spectral index n (162):
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The spectrum (220) is correct for the frequency range
op 4o5op�opg=oB�1=2. The curvature of the fast particle
trajectory affects the TR spectrum [Eqn (47)] at even higher
frequencies [where F�a; b� � eÿ2 � 1].

Limiting cases. The intensity (220) can be simplified close
to the plasma frequency:
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v
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Let us analyze in more detail the function F�a; b� describing
RTR. Without magnetic field we have:

lim
b! 0

nsF�a; b� � F �a� ; �222�

where the function F �a� is defined by Eqn (189). According to
Eqns (211) ± (218), the magnetic field starts to affect the shape
of the function F�a; b� when b > 2� 31=2vT=c, that is

o2
B

o2
p

>
6� 31=2v 3T

v 2c
; �223�

and the magnetic field effect becomes most pronounced for
b4 1. The physical origin of the effect is the change of the
plasma dispersion in the presence of magnetic field under
condition (223).

Consider the function F�a; b� for o! op. The expansion
of the function F1 (211) for small a yields

F1 � b sin2 y
�
1

3
ÿ 1

2b
� 1

b 2
ÿ ln�1� b�

b 3

�

� 2�3 cos2 y� 1�
3

b 2

�
1

2b 2
� 3 ln�1� b�

b 4
ÿ 1

b 3�1� b� ÿ
2

b 3

�
:

�224�

For b5 1 this reads:

F�a; b� ! 1

18

v 4

v 4
T

: �225�

For b4 1 the respective asymptotic form depends on the
angle. If sin2 y is not too small, then

F�a; b� ! 1

18b
v 4

v 4T
sin2 y �226�

is b times less than function (225), and if sin2 y � 0, then

F�a; b� ! 1

9b 2

v 4

v 4
T

�227�

is b 2 times less than function (225).
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Without the magnetic field the peak of RTR spectrum
(compare with Section 3.2) is

�nsF�max �
v3c

v 4
T

: �228�

The presence of a magnetic field gives rise to a difference
in the ordinary and extraordinary wave generation due to the
difference in their refractive indices, which are equal to (for
oB=op 5 1):

n 2
s � 1ÿ o2

cs

o2
; o > ocs ; oco � op ;

�229�

ocx �
������������������
o2

p �
o2

B

4

r
� oB

2
:

Respectively, the resonant transition radiation of extraordin-
ary waves is suppressed strongly in comparison to the
radiation of ordinary waves if the cut-off frequency for
extraordinary waves ocx exceeds the frequency o3.

For ordinary waves at 2
���
3
p

vT=c < b5 1, we have

�noF�max �
v 2

v 2T

op

oB

�
c

vT

�1=2

; �230�

and at b4 1,

�noF�max �
�
v

vT

�5=2�op

oB

�1=2�
c

vT

�1=2

: �231�

Thus, the magnetic field suppresses the RTR intensity. The
intensity I R displays inverse proportionality to the magnetic
field IRmax / Bÿ1 (for b5 1), and then, for higher field b4 1
(when most of the RTR is polarized as ordinary mode) the
decrease occurs more slowly, IRmax / Bÿ1=2. This change is
provided by the shift of the RTR peak towards higher
frequencies for b4 1, where the refractive index no reaches
larger values. The functions nsF�a; b� are plotted in Fig. 9 for
s � o; x and a few values of the particle velocity and the
magnetic field.

Total energy of RTR. Let us calculate the total (integrated
over frequency) energy emitted by the resonant transition
mechanism. If the magnetic field is weak enough [namely,
b5 2� 31=2vT=c is fulfilled for ordinary waves, besides, the
condition oB=op 5 3�vT=v�2 is required for extraordinary
waves], then

I sn �
8p�nÿ 1�
45�n� 2�

e4Q 2hDN 2ik nÿ1
0

c 3m 2

�
v

op

�n�1
vc

v 2
T

�232�

for each normal mode �s � o; x�, which equals one half of
intensity (190) divided by 4p (the difference of 4p is connected
with the difference in normalization: Eqn (190) is normalized
to the full solid angle, while Eqn (232) is normalized to unity).
Naturally, the intensity I sn does not depend on the direction of
radiation for this case.

If b4 2� 31=2vT=c, the integration of the terms inF3 and
F4 proportional to �c=vT�1=2 contributes the bulk to the total
RTR intensity

I o
n � IB; tot Jo�b� ; �233�

where

IB; tot � p2�nÿ 1�
�n� 2�

1� cos2 y
23=2 � 31=4

e4Q 2hDN 2ik nÿ1
0

c 3m 2

�
�
v

op

�n�1�
c

vT

�1=2 op

oB
; �234�

Jo�b� � 4

b 2

� �1� b�9=4
9

ÿ �1� b�5=4
5

� 4

45

�
: �235�

The magnetic field affects the RTR of extraordinary
waves even more strongly, because besides modification of
the function F, it modifies the respective refractive index
(229). The function F is changed if b4 2� 31=2vT=c, while
the effect of magnetic field on the refractive index is essential
for g > 1, where

g � oB

3op

�
v

vT

�2

: �236�

For particles with low energy,

v < v� �
� ���

3
p

c

2vT

�1=2

vT ; �237�

the main effect is the modification of the functionF, the value
g reaches unity for an even stronger field. For this case we
have

I xn � IB; tot Jx1�g� ; �238�
where

Jx1�g� � 2

g 2

�1ÿ g�5=2
5

ÿ �1ÿ g�3=2
3

� 2

15
; g < 1 ;

2

15
; g > 1 :

8>>><>>>: �239�

For the condition v > v�, opposite to Eqn (237), the effect
ofmagnetic field onF can be entirely neglected (the respective
expressions are obtained in Section 3.2), while the modifica-
tion of the refractive index nx (229) in comparison to that in
isotropic plasma should be taken into account properly. The
result is

I x
n �

4p�nÿ 1�
9�n� 2�

e4Q 2hDN 2ik nÿ1
0

c 3m 2

�
v

op

�n�1 vc
v 2T

Jx2�g� ; �240�

where

Jx2�g� � 1

3

3p
16g 5=2

ÿ 3

8g 5=2
arctan

�����������
1ÿ g
g

s
ÿ 3

�����������
1ÿ g
p
8g 2

ÿ
�����������
1ÿ g
p

4g
�

�����������
1ÿ g

p
; g < 1 ;

3p
16g 5=2

; g > 1 :

8>>>>>>>><>>>>>>>>:
�241�

Functions Jo; x can be simplified for limiting cases. For
small field, we have

Jo�b� � 1

2

�
1� b

6

�
; b5 1 ; �242�

Jx1�g� � 1

2

�
1ÿ g

3

�
; g5 1 �243�

March, 2002 Transition radiation in media with random inhomogeneities 263



(note, both asymptotic forms are only correct if
b4 2� 31=2vT=c), and

Jx2�g� � 2

5

�
1ÿ 5g

14

�
; g5 1 : �244�

The degree of RTR polarization

P � I on ÿ I xn
I on � I xn

�245�

is obviously not large for this case (it is determined by the
major of two quantities b and g); the sense of polarization
corresponds to the ordinary mode.

For stronger magnetic field, we have

Jo�b� � 4b 1=4

9
; b4 1 ; �246�

Jx1�g� � 4

15g 2
; g > 1 ; v < v� ; �247�

Jx2�g� � p
16g 5=2

; g > 1 ; v > v� : �248�

Respectively, RTR is strongly polarized as o mode for g > 1
(independently of the b value).
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Figure 9. Spectra of resonant transition radiation of ordinary and extraordinary waves in plasma with vT=c � 0:0315. For fast particles (top panel) the

increase of the magnetic field suppresses the RTR of extraordinary waves first and then it provides a decrease (and shift) of the peak in the ordinary wave

spectrum. For slow particles (middle panel) the peaks are originally broader than for fast particles; the difference in the spectra of radiation of the two

normal modes is less prominent than before, while the suppression effect is somewhat stronger for extraordinary waves. The bottom panel displays the

dependence of the total (integrated over frequency) RTR intensity on the magnetic field strength for a `slow' (left) and `fast' (right) particle. I0 is the total

intensity without themagnetic field. For g < 1 the curves for o and xwaves follow each other in general (the degree of polarization is less than 50%), while

for g > 1 the emission intensity of extraordinary waves decreases rapidly and the radiation becomes fully (100%) polarized.
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Thus, the total energy of RTR for ordinary waves equals
I on � IB; tot=2 if 2

���
3
p

vT=c < b < 1 and
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if b > 1 �oB=op >
���
3
p

vT=v�; and for extraordinary waves it
equals I xn � IB; tot=2 if b > 2
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3
p

vT=c and g < 1, or
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I xn �
���
3
p

p2�nÿ 1�
4�n� 2�

e4Q 2hDN 2ik nÿ1
0

c 3m 2

�
�
v

op

�n�1�op

oB

�5=2
cv 3T
v 4

; v > v� �251�

if g > 1 �oB=op > 3v 2
T=v

2�. The total radiation energy of
both modes equals the sum of the respective expressions for
ordinary and extraordinary waves. The result is twice
Eqn (232) for a weak field, Eqn (234) for an intermediate
field, while the contribution of extraordinary waves is
negligible for a strong field (the contribution decreases with
increasing velocity if n < 3). So the radiation is strongly
polarized as o mode.

Figure 9 displays the dependence of the total energy of
RTR on the magnetic field (more precisely, oB=op) for both
fast and slow particles.

Natural plasma is non-uniform usually. Hence, if the
respective distribution function over the plasma frequency is
broader than the peak in the spectrum of RTR, then the peak
can be approximated by

IR; sn;o � I sn d�oÿ o�� ; �252�

where the frequency o� corresponds to the peak in the RTR
spectrum and is close to the local plasma frequency.

The role of anisotropy of the fast particle ensemble.
Consider how RTR changes if the fast particles are distrib-
uted anisotropically. We approximate the actual anisotropy
by the second Legendre polynomial, namely

F �p; m� � 1

p 2
0

d�pÿ p0�
�
1� AP2�m�

�
; �253�

where m � cos yv.
All the calculations are similar to the previous ones, while

the expressions for the RTR spectrum turn out to be rather
bulky. For simplicity, we restrict the consideration to RTR
integrated over frequency only.

For a weak magnetic field we have

I o; xn � I o; x�0�n

�
1ÿ A

4

�
; �254�

where I
o; x�0�
n is the total energy of RTR for the isotropic

particle distribution. Since, the distribution function (253) is

defined positively for ÿ1 < A < 2 only, then

I
s�0�
n

2
4 I sn 4

5I
s�0�
n

4
: �255�

Thus, the RTR intensity increases for flattened distributions
�A < 0�, and decreases for elongated ones �A > 0� in
comparison to an isotropic distribution.

This conclusion is also valid for a strong magnetic field,
while the exact expressions are different from the above.
Similar calculations can be performed to the end for more
complicated distribution functions (which are expressed with
Legendre polynomials of higher orders) as well.

RTR by an isotropic particle distribution with a power-law
spectrum over momentum. Let us consider RTR generated by
an isotropic distribution of charged particles with a power-
law dependence of the momentum (172). Many different
asymptotic forms arise depending on the parameters
involved, since the parameter b depends on the velocity of
the particle and the main integration interval over dx is
specified by the interrelation between spectral indices n and
x. The integration of Eqns (232), (249) ± (251) with the
spectrum (172) is easy to perform, so we give here the
respective results:
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P2 � 8p�nÿ 1��xÿ 1�
45�n� 2��xÿ nÿ 3�

e4Q 2hDN 2ik nÿ1
0

m 2c 3

�Ne

�
v0
op

�n�1
cv0
v 2
T

; v0 � x0c ; �257�

P3 � p�nÿ 1��xÿ 1�
3�n� 2�

�
8

15�n� 3ÿ x� �
p�1� cos2 y�
8�xÿ nÿ 2�

�

� e4Q 2hDN 2ik nÿ1
0

m 2c 3
x xÿ1
0

�Ne

�
c

op

�n�1
c 2

v 2T

�
op

oB

�
6� 31=2v 3T

c 3

�1=2�n�3ÿx
; �258�

P4 �
p2�nÿ 1��xÿ 1�G��xÿ 1�=2�G��nÿ x� 2�=2�

8� 21=231=4�n� 2�G��n� 1�=2�
� �1� cos2 y� e

4Q 2hDN 2ik nÿ1
0

m 2c 3

� x xÿ1
0 Ne

�
c

op

�n�1�
c

vT

�1=2 op

oB
; �259�

P5 �
p2�nÿ 1��xÿ 1�G��xÿ 1�=2�G��nÿ x� 2:5�=2�

9� 61=2�n� 2�G�n=2� 3=4�

� �1� cos2 y� e
4Q 2hDN 2ik nÿ1

0

m 2c 3

� x xÿ1
0 Ne

�
c

op

�n�1�op

oB

�1=2
c

vT
; �260�

March, 2002 Transition radiation in media with random inhomogeneities 265



P6 � p�nÿ 1��xÿ 1�
3�x�1ÿn�=2��n� 2�

�
8

5�n� 3ÿ x� �
p

4�x� 2ÿ n�
�

� e4Q 2hDN 2ik nÿ1
0

m 2c 3
x xÿ1
0 Ne

�
c

op

�n�1

�
�
op

oB

��n�3ÿx�=2�
c

vT

�xÿnÿ1
; �261�
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P8 � p2�nÿ 1��xÿ 1��1� cos2 y�
4� 21=231=4�n� 2��xÿ nÿ 2�

e4Q 2hDN 2ik nÿ1
0

m 2c 3

�Ne

�
v0
op

�n�1�
c

vT

�1=2 op

oB
: �263�

Table 1 is a guide to the asymptotic forms. A weak magnetic
field, oB=op < 3v 2

T=c
2, does not affect the radiation, so the

first line of the table describes the radiation of each transverse
eigen mode.

It is important to note that highly polarized radiation
arises if the particles with v > �3op=oB�1=2vT �g > 1� con-
tribute the bulk to the integrals over momentum. For a
power-law distribution of particles (with v0 � vT) it requires
relatively hard spectra (small x), while the radiation is highly
polarized for any hardness of the particle spectrum if
v0 > �3op=oB�1=2vT.

The factor of RTR excess over standard (non-resonant)
transition radiation varies from c 2=v 2T in a weak magnetic
field to �c=vT��op=oB�1=2 in the strong field.

The magnetic field's influence on the plasma dispersion
considerably affects the properties of resonant transition
radiation. Indeed, a decrease of the peak and total RTR
intensity, and a shift and broadening of the peak occur. The
emission by an isotropic particle ensemble depends on the
emission direction, the degree of polarization can be rather
strong (up to 100%), and the sense of polarization corre-
sponds to o mode.

The equations found in Sections 2, 3 can be applied to
both laboratory experiments and astrophysical objects,
because all important physical effects are taken into account
(the averaging of the expressions in gradually non-uniform
plasma is trivial). It is important that the high intensity of the
radiation makes it competitive with respect to other generally
used mechanisms of non-thermal emission.

3.4 Absorption of transition radiation
Besides the emissivity, the absorption coefficient should be
calculated to apply any particular emission mechanism to
observations. Monograph [28] discusses stimulated TR and
derives some of its important general properties. In particu-
lar, stimulated TR does not arise if the medium's inhomo-
geneities have an isotropic distribution, and the TR intensity
is described by ultra-relativistic expressions. Reference [64]
considers stimulated TR generated when a dense flow of
particles is incident upon the sharp boundary of two media.

The study of stimulated emission is of primary interest at
those frequency ranges where the intensity of TR generated
by a single particle is large enough, because a rather large
optical depth may be achieved at these frequencies [65].

Let us apply the method of Einstein coefficients to deduce
the RTR growth (damping) rate. We use the standard
approach [28] with the proper account of strong frequency
dispersion, because the dispersion effects are very important
at the plasma frequency. We accept that Nk; s is the number
density of s-mode photons with wave-vector k and w s

p �k; k0�
is the probability of emitting a photon with momentum �hk by
a particle with momentum p when the particle is exchanging
the momentum �hk0 with the medium.

The particle momentum after emission of a single photon
is obviously pÿ �h�kÿ k0�. The probability w s

p �k; k0� is
connected with the intensity of spontaneous emission per
unit volume by the simple expression:

I sp �
�

�hos�k�w s
p �k; k0� dk0

dk

�2p�3

�
�

�hos�k�w s
p �k; k0� dk0

o2n 2
s d�ons�=do
�2p�3c 3 do dOk ; �264�

where ns is the refractive index of the respective mode.
The probability of stimulated emission and absorption are

proportional to Nk; sw
s
p �k; k0�. However, the emission is

produced by the particles with the momentum p (at the top
level), while the absorption is provided by the particles with
the momentum pÿ �h�kÿ k0� (at bottom level). Thus, the

Table 1.

Parameters Type of wave x < n� 3=2 n� 3=2 < x < n� 2 n� 2 < x < n� 5=2 n� 5=2 < x < n� 3 n� 3 < x
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o P5 P5 P5 � P8 P8 P8
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equation for the balance of the number of photons reads:

dNk;s

dt
� 2gk; sNk; s � Nk; s

�
w s
p �k; k0�� fp ÿ fpÿ�h�kÿk 0�� dk0 dp ;

�265�

where gk; s is the growth rate of the radiation field amplitude,
and fp is the distribution function of fast particles. Thus, the
growth rate can be written as

gk; s �
1

2

�2p�3c 3
o3n 2

s d�ons�=do
�

dI sp
do dOk dk

0 �kÿ k0� df
dp

dk0 dp :

�266�

The combination dI sp =do dOk dk
0 represents the spectral-

angular distribution of the intensity of spontaneous emission
per unit plasma volume, when the plasma loses the momen-
tum �hk0.

The use of a spherical coordinate system in the space of
momentum with the axis z along the external magnetic field B
is convenient for calculating df=dp. Substituting the expres-
sion for the gradient in spherical coordinates and assuming
the distribution function to be independent of the azimuth
angle, we find finally:

gk; s �
1

2

�2p�3c 3
o2n 2
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dI sp

do dOk dk
0
1

pv
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ÿ m
�
qf
qm

�
dk0 dp ; �267�

where m � cos yvB is the cosine of the angle between the
velocity of particle and the external magnetic field.

The TR absorption coefficient ko � g=vgr � g=c is calcu-
lated in Ref. [66] at high frequencies (in the ultra-relativistic
limiting case). Both electrons and protons contribute to it, so
that
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�268�
where Ncr, M are the number density and mass of relativistic
nuclei, and F �a; b; g; x� is the hypergeometric function. It can
be expanded at high frequencies into a series valid for x4 1:
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According to Eqns (268), (269), the radiation intensity [for the
optically thick regime �Lko 4 1�] is

Jo � Po

ko
/ o3 at 2n > x and / o2n�3ÿx at 2n < x :

�270�

Equation (268) shows that the contribution from the
electron component is important even if their number density

is less than the number density of relativistic nuclei. The
spectral behavior (270) differs in the general case from the
respective laws for synchrotron �J s

o / o2:5� and blackbody
�JT

o / o2� emissions. Estimates show that the optical thick-
ness of astrophysical objects, which is related to (standard)
transition radiation, is typically much less than unity.

Let us go back to the absorption of resonant transition
radiation. In the presence of magnetic field the value
dI sp =do dOk dk

0 is

dI sp
dodOk dk

0 �
4pe4q 2ns
m 2c 3

� �n� k0�2d�oÿ �kÿ k0�v�jdNj2k 0
�kÿ k0�4��e�o� ÿ 3�kÿ k0�2d 2ÿ �o2

po
2
B=o4� sin2 y�2� e 00 2

	 ;
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where y is the angle between the vector k0 and the magnetic
field. We should emphasize that the magnetic field produces
two effects at least: it modifies the spectrum of spontaneous
RTR through the variation of the plasma dispersion, and
provides the selected direction that is necessary to produce an
anisotropic distribution of fast electrons.

If the distribution of the particles is isotropic [note, the
distribution is normalized by d3p contrary to Eqn (172)],

f �p� � zÿ 3

4pp 3
0

Ne

�
p0
p

�z

; �272�

the angular derivative in Eqn (267) vanishes, and the RTR
growth rate reads:

gk; s �
z
2

�2p�3c 3
o2n 2

s d�ons�=do
�
4p f �p�p dp

v

�
I sn;o

dOp

4p
; �273�

where

I sn;o �
�

dI sp
do dOk dk

0 dk
0

is the spectral-angular distribution of RTR. The last integra-
tion in Eqn (273) has already been performed in the previous
sections for the power-law distribution (35) of density
inhomogeneities; it has the form (221). Substitution of
Eqns (221), (272) into Eqn (273) yields

gk; s � ÿ
z�2p�4�nÿ 1��zÿ 3�

3�n� 2�
e 6p zÿ3

0 Nek
nÿ1
0 hDN 2i

m 2on�4ns d�ons�=do

�
�
F�a; b� v

n dp

p zÿ1 : �274�

The RTR damping rate is expressed here as a single integral
from the function F�a; b� over momentum. The integration
cannot be performed within standard (elementary) functions
for a general case. Nevertheless, the integral is obviously
specified by the integration region p � mc, because the
integrand decreases more or less fast (with power laws) for
both p < mc and p > mc. Taking into account the asymptotic
forms of F�a; b� when v decreases, the integral is estimated as�

F�a; b� v
n dp

p zÿ1 � Fc�a; b� c n

�mc�zÿ2

� G
��nÿ z� 5�=2�G��zÿ 2�=2�

2G
��n� 3�=2� ; �275�
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where Fc�a; b� is defined as F�a; b� at v � c (the index `c' of
the function Fc�a; b� is hereafter omitted). Substitution of
Eqn (275) into Eqn (274) finally gives rise to

gk; s �
z�nÿ 1��zÿ 3�G��nÿ z� 5�=2�G��zÿ 2�=2�

6�n� 2�G��n� 3�=2�ns d�ons�=do e2Ne

mop

�
�
op

o

�n�4�
k0c

op

�nÿ1�
p0
mc

�zÿ3 hDN 2i
N 2

F�a; b� ; �276�

where the factor �op=o�n�4 can be omitted when RTR is
analyzed because the peak frequency is close to the plasma
frequency. The RTR damping rate can exceed the collisional
damping rate of the waves. For example, if N � 1010 cmÿ3,
T � 106 K (the parameters are typical for coronal loops at the
Sun), the collisional damping rate is

nei � 60
N

T 3=2
� 600 sÿ1 : �277�

The RTR damping rate for the same plasma parameters and�
k0c

op

�nÿ1 hDN 2i
N 2

� 10ÿ4 ; Ne

�
p0
mc

�zÿ3
� 103 cmÿ3 �278�

is

gs � 103 sÿ1 : �279�

3.5 Transition maser emission
Let us concentrate on stimulated (maser) resonant transition
radiation. Astrophysical plasma frequently contains mag-
netic structures. These structures (e.g. magnetic traps) may
give rise to anisotropic distributions of super-thermal
particles. The anisotropic distributions may be unstable with
respect to the generation of particular electromagnetic
mode(s) under appropriate conditions. Excitation of Lang-
muir waves by beams of non-thermal particles and cyclotron
(maser) instability of transverse waves in magnetized plasma
[67] are good examples of these instabilities. The conditions
providing the instability of resonant transition radiation and
the respective growth rates are of special interest here.

The absorption coefficient for an anisotropic particle
distribution can be calculated like the intensity of radiation
(Section 3.3) by means of expansion of the angular distribu-
tion over Legendre polynomials. However, if the real
anisotropy is approximated by the lowest Legendre poly-
nomials:

f �p; m� � f0�p�
�
1� A1�p�P1�m� � A2�p�P2�m�

�
; �280�

then the RTR amplification does not happen.
Indeed, the contribution of the flow-like term A1�p�P1�m�

is proportional to the factor kv=o, which is small at the peak
(at o � o3)

kv

o
� oB

op
: �281�

Hence, the weak flow anisotropy modeled by the first
Legendre polynomial (ÿ14A1 4 1 because the distribution
function must be positive) does not provide the instability.
The even part of the distribution function, A2�p�P2�m�, does
not contain any small factor. Nevertheless, the positive

contribution connected with the derivative over the angle is
less (by the absolute value) than the negative contribution
from the derivative over momentum. Thus, an anisotropy of
this kind is too weak to provide the instability of RTR.

Two model distribution functions are further analyzed to
find the anisotropy required for providing the instability. The
first one

f �p; m� / exp am ;
qf
qm
� af �282�

is not even, and it contains a flow component. The main
positive contribution is produced here by the term
�kv cos y�=o, while the main negative one is by the term
p qf=qp. Thus,

p
qf
qp
�
�
v�kÿ k0�B

oB
ÿ m
�
qf
qm
�
�
ÿz� a

v

c
ns cos y

�
f �p; m� :
�283�

At the RTR peak we have ns � oB=op. Since the region of
v � c contributes the bulk to the integral overmomentum, the
RTR instability is possible for

a >
z
ns
� zop

oB
: �284�

If z > 3, op=oB � 3 we have a > 10, hence most of the fast
electrons should be concentrated within a cone of angle less or
of the order of 25�. Expansion of the distribution function
(282) in Eqn (283) (i.e., after taking the derivative over m!) and
keeping the first term of the expansion provides an accuracy
of about 30%. Thus, the growth rate differs from Eqn (276)
by the replacement of the factor ÿz by ÿz� �v=c�ans cos y.
The largest amplification occurs along the magnetic field,
while the waves damp in the transverse direction.

Let us consider a distribution function even over m that
does not contain any contribution from the term vkB=oB.
The integration over angles yields

p
qf
qp
ÿ
�
v
k0B
oB
� m
�

qf
qm
! �ÿz� 1� f < 0 ; �285�

for any even distribution function if most of the particles
move transversely to the magnetic field, m5 1.

However, if the derivative qf=qm is large for m � 1, the
instability of RTR is possible. We assume the distribution
function to be independent of m for jmj < m1 and to decrease
linearly down to zero when jmj increases up to unity
� f �p; m� � Ne f �p� f �m��:

f �m� � 1

1� m1

1; jmj < m1 ;
1ÿ m
1ÿ m1

; m1 < jmj < 1 ;

8<: �286�

qf
qm
�

0 ; jmj < m1 ;

ÿ 1

1ÿ m 2
1

; m1 < jmj < 1 :

8<: �287�

The calculations cannot be performed analytically to the very
end for this case. Nevertheless, some simplifications can be
used in the peak region because k 0eff 4o=v. Since the
contribution to the integration over the angle yk 0B in
Eqns (267), (271) is small for terms proportional to
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cos2n yk 0B in comparison to the terms free from the factor
cos yk 0B in the numerator, the expansion of m over the angles
yk 0B and yk 0v reduces to

m � cos yk 0B cos yk 0v � sin yk 0B sin yk 0v cosfBv

�
�
1ÿ

�
o
k 0v

�2�1=2
cosfBv : �288�

The use of (288) yields�
dp d�o� k0v�

�
ÿz f �p; m� ÿ m
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�
f �p�p 2 dp
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�
ÿz� 2

�
1ÿ �o=k 0v�2 ÿ m 2

1

�1=2
p�1ÿ m 2

1 �
�
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Hence, the growth rate of the RTR instability takes the form
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Further calculations are very similar to those done in Section
3.3. The only difference is that now we may keep just the
largest terms (in the peak region), because the next terms
[without the factor �c=vT� 1=2�] would provide over-accuracy
of Eqn (290). Finally, we have

gs � �nÿ 1��zÿ 3��n� 3�p5e6NeN
2

33=2�nÿ z� 5��zÿ 2�m 3o5
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�
�
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�nÿ1 hDN 2i
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�
�1� cos2 yn�

�
ÿ
c=�2� 31=2vT�

�1=2
�aÿ b�3�a�aÿ b��1=4

�
ÿz� 2�1ÿ K 2 ÿ m 2

1 �1=2
p�1ÿ m 2

1 �
�
; �291�

where K � opvTe=oBc; a and b are defined by Eqn (215) with
v � c. The amplification along the fields is two times stronger
than that transverse to the field for this model. Note that for
m1 5 1 the last factor in brackets in Eqn (291) tends to
ÿz� 2=p < 0. The small difference between it and Eqn (285)
arises because the linear decrease is too slow to reach the
asymptotic form (285), while the two expressions are in good
qualitative agreement. The value in brackets reaches its
maximum ÿz� 1=pK at m 2

1 � 1ÿ 2K 2; the growth rate
decreases for both larger and smaller m1. Thus, the distribu-
tion function even over angle provides the instability if the
particles are lacking close to jmj � 1 in the region of the width
Dy � K. For other angles, f �m� can be an arbitrary slow-
varying function. Such a distribution can arise in magnetic
traps, which are typical for planetary and stellar magneto-
spheres.

Let us estimate the growth rate (291) and the required
parameters of the magnetic trap for ionospheric plasma. For
�k0c=op�nÿ1hDN 2i=N 2 � 10ÿ4, �p0=mc�zÿ3Ne � 10ÿ5 cmÿ3,
op=oB � 3, m 2

1 � 1ÿ 2K 2, op � 3� 107 sÿ1, vT=c � 10ÿ3

the growth rate is gs � 80 sÿ1. The ratio B=Bmax providing
the required shape of the distribution function f �m� is
B=Bmax � 2K 2 � 2� 10ÿ5.

Let us discuss the most important outcome of the study of
the absorption of resonant transition radiation in magnetic
field. The RTR absorption coefficient can exceed the
absorption coefficient provided by thermal electrons close to
the plasma frequency.

Anisotropic distributions of fast electrons can provide
instability of RTR. The respective exponential growth of this
(maser) RTR can give rise to a large brightness temperature of
the generated radio emission, like other coherent mechan-
isms, i.e., cyclotron maser and plasma mechanisms. The
mechanisms have widely been applied for the interpretation
of various kinds of radio emission from the Sun, planets and
stars; mainly, for the emission revealing fast temporal
variability like millisecond solar radio spikes [67].

The basic properties of maser RTR, which can be tested
observationally, are

Ð maser RTR does not produce any harmonic emission:
only emission close to the local plasma frequency can be
amplified;

Ð the waves are amplified along the external magnetic
field preferentially;

Ð theRTR instability is insensitive to details of the energy
spectrum of electrons in the 1 MeV region. Hence, the maser
RTR can or cannot be accompanied by soft gamma-ray
emission, contrary to cyclotron maser emission.

The comparison of maser RTR with other coherent
mechanisms. The plasma mechanism produces waves around
op and 2op (and at the third harmonic, but very seldom).
Cyclotronmaser emission arises around the lowest harmonics
of cyclotron frequency; non-integer `harmonic' ratios are
possible [68 ± 71]. Then, according to Ref. [67] cyclotron
maser emission cannot be accompanied by soft gamma-ray
emission and must be accompanied by hard X-ray emission
[i.e., the number of fast electrons with Ekin > �0:5ÿ1� MeV
should be small enough].

Presently, the important role of cyclotron maser and
plasma mechanism for solar corona and planetary magneto-
spheres has reliably been proved. The possible role of the
transition maser emission is still absolutely unstudied.

4. Polarization bremsstrahlung

This section considers a limiting case of transition radiation,
where density inhomogeneities are related to the thermal
fluctuations in the medium. This radiation mechanism is
referred to as polarization bremsstrahlung (the terms
`transition bremsstrahlung' and `dynamic bremsstrahlung'
are also used in the literature for the very same emission
process), since the dynamic polarizability of themedium is the
primary physical reason for the electromagnetic wave gen-
eration in this case. The theory of this problem (see Refs [59,
72 ± 76], monographs [28, 5], and references there) uses two
different approaches to describe the emission. The first of
them, the macroscopic treatment, is based on the methods of
macroscopic electrodynamics. First, currents and charges
induced by the fast particles moving in the medium are
calculated and then radiation fields are found from the
Maxwell equations. The second approach, microscopic,
describes movement and emission of an individual back-
ground electron by methods of quantum or classical
mechanics. The result obtained is summed over all electrons
and averaged over the electron distribution in the medium.
Obviously, the second approach has wider range of applic-
ability because it starts with an elementary particle interac-
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tion. However, such calculations are too expensive mathema-
tically, so they are worth using only when the first method
fails. Accordingly, monograph [5] uses the microscopic
method to describe the emission of only the simplest
interacting systems (collisions of a particle with one atom,
atom with atom etc.), while the classical approach is used for
most of the cases.

Section 4.1 applies the microscopic approach to find the
spectrum of polarization bremsstrahlung in equilibrium
isotropic plasma. The general expression for the intensity
of polarization bremsstrahlung (PB) in the plasma is
obtained taking into account the interaction between
particles and collective plasma excitations. The emission
spectrum is specified by the correlation function of the
plasma density. Inelastic processes associated with excita-
tion of single plasma electrons are shown to contribute the
bulk to the emission in the frequency range o > c=d (where
d is the Debye radius in the plasma). At lower frequencies
three main processes make a comparable contribution to
PB: scattering of the fast particle field by Debye spheres (the
proper transition bremsstrahlung), emission by individual
excited electrons, and emission by electrons with simulta-
neous plasmon excitation. The two latter processes are
analogous to ionization and polarization losses of a fast
particle in plasma.

Section 4.2 studies the PB spectrum in the vicinity of a
resonant singularity, i.e., when the radiation frequency is
approaching the plasma frequency.

Section 4.3 considers PB in a medium in the frequency
range c=v0

���������
e�o�p

< 1, where the Vavilov ±Cherenkov effect
takes place. In this frequency range, the PB intensity is found
to rise by one ± two orders of magnitude in comparison with
the frequency range c=v0

���������
e�o�p

> 1. This increase can be
interpreted as a result of the scattering of Cherenkov quanta
by the electron shells of atoms. In this case, PB can be
observed in spite of the Vavilov ±Cherenkov radiation being
more powerful, since the PB is emitted largely outside the
Cherenkov cone.

The next three sections study the influence of the external
magnetic field on PB. Section 4.4 considers a weak magnetic
field that does not affect the spectrum of thermal plasma
fluctuations, while provides differences in the dispersion of
emitted normal waves related to weak plasma gyrotropy [82],
which results in the generation of polarized radiation. The
degree of polarization is determined here by themagnetic field
strength.

Section 4.5 deals with a stronger magnetic field [77]:
oBe 4ope (where ope is the electron plasma frequency,
oBe � eB=mc is the electron gyrofrequency). The considered
magnetic field has a substantial effect on the correlation
function of plasma density fluctuations, while it is not strong
enough to suppress the motion of particles transverse to the
magnetic field completely.

Finally, Section 4.6 discusses ultra-strong magnetic field,
where the motion of all charged particles in the plasma is one-
dimensional.

4.1 Microscopic theory of the polarization bremsstrahlung
by fast particles in equilibrium plasma
This section offers the theory of PB in non-degenerate plasma
based on the tight similarity with the theory of electromag-
netic wave scattering in a plasma [79]. The general treatment
accounts for both the interaction of plasma particles and
various types of plasma excitations.

Let us first deduce a general expression for the PB
intensity in a plasma. The radiation field of non-relativistic
charged particles at a distanceR is described by the expression

En�R; t� � e

cR

�
n� �n� _b �����

t 0
;

�292�
t 0 � tÿ jRj

c
; n � R

R
; _b � _v

c
:

Herewe use the perturbation theory assuming that the plasma
electron followed an unperturbed trajectory r�t� before
collision to find the acceleration of the electron by the fast
particle field EQ:

_b�t� � e

mc
EQ
ÿ
r�t�; t� : �293�

The field of radiation by all electrons is

En�R; t� � e

cR

�
dr

�
dvFe�r; v; t�

�
n� �n� _b �����

t 0
; �294�

where Fe �
P

a d
�
rÿ ra�t�

�
d
�
vÿ va�t�

�
is the microscopic

phase density, and

ne�r; t� �
X
a

d
�
rÿ ra�t�

� � � dvFe�r; v; t� �295�

is the microscopic number density of plasma electrons. The
radiation intensity can be expressed with the use of the
Poynting vector for the field (294). To obtain the spectral
density of radiation, we expand the radiation field into the
Fourier integral over time, which provides the intensity of a
monochromatic radiation component at frequency o:

In;o � cr 20N

4p2T

�
dk0 dk00 do0 do00

� �EQ
k 0;o 0 � EQ

k 00 ;o 00 ÿ �n � EQ
k 0;o 0 ��n � EQ

k 00 ;o 00 �
�

� S�kÿ k0;oÿ o0; kÿ k00;oÿ o00�; T!1 : �296�
Here, k � �o=c�n�1ÿ o2

p=o
2�1=2, n is the unit vector, N is the

mean electron number density, r0 � e2=mc 2, T is the total
time of fast particle motion,

S�k1;o1; k2;o2� �
�
ne�k1;o1�n �e �k2;o2�

N

�
�297�

is the correlation function of the electron density, ne is defined
by Eqn (295), and the averaging is performed over the plasma
electron distribution function.

Let us consider a classical equilibrium plasma composed
of electrons with the number density ne and ions with the
number density ni � ne=Z. The number density ne�r; t� in
Eqn (295) can be written as a sum

ne � N� n1e ; hn1ei � 0 : �298�

The calculation of n1e�r; t� has repeatedly been performed in
the literature [78, 79], so we use the well-known result [79].
Then calculating the function S�k1;o1; k2;o2� according to
Eqn (297), we find

S�k1;o1; k2;o2� � �2p�
3

V
d�k1 ÿ k2�d�o1 ÿ o2�S�k1;o1� ;

�299�
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where V is the volume of plasma. The dependence on the
differences in arguments appeared since the plasma is
assumed to be statistically uniform and stationary. The
function S�k1;o1� is given by the expression [79]:

S�k1;o1� � 2p
k1

����1ÿ Ge�k1;o1�
e�k1;o1�

����2 fe�o1

k1

�
� 2pZ

k1

����Ge�k1;o1�
e�k1;o1�

����2 fi�o1

k1

�
; �300�

Here, fe; i �
ÿ ���

p
p hve; ii

�ÿ1
exp
ÿÿv 2=hve; ii2� is the one-dimen-

sional Maxwell distribution function, e � 1� Ge is the
plasma dielectric permeability. Expression (300), being the
integrand in Eqn (296), provides a pole singularity when
e�k1;o1� ! 0. The integral (296) can be expressed as a sum of
two terms. The first of them is defined as integration over all
the range of variables k0, o0, k00, o00 except for the poles. The
second term is defined as a contribution of pole points. Let us
denote them as I �1� and I �2�. The first term allows for fe; i to
perform the transition hve; ii ! 0, i.e., fe; i � d�v� and
�k1

���
p
p hvei�ÿ1 exp�ÿo2

1=k
2
1 hvei2� � d�o1�. This corresponds

to neglecting the Doppler shift in the frequency of radiation
generated by an electron with velocity hvei, hvei=c5 1. The
electric field of the fast particle with a velocity vQ � c is given
by

E
Q
k;o �

4piQ

�2p�3
kÿ vQ�kvQ�=c 2

k 2 ÿ �o2=c 2��1ÿ o2
p=o2� d�oÿ kvQ� : �301�

Substituting Eqns (300) and (299) into Eqn (296) and carrying
out the passage hve; ii ! 0, we obtain the final expression for
the radiation intensity

I �1�n;o �
4cr 20NQ 2
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ÿ1

d2w
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�
nk0 ÿ nvQo

c 2

�2�

�
�
w 2 � o2
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g 2
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��ÿ2
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� �kÿ k0�4d 4�

1� �kÿ k0�2d 2
�2 � Z�

1� �kÿ k0�2d 2
�2� ; �302�

�k0�z � o=vQ, n � k=k, k0? � v, g � �1ÿ �vQ�2=c 2�ÿ1=2 is the
Lorentz factor of the fast particle, and d is the Debye radius.
Let us now consider the contribution of the pole term to
Eqn (300). In the pole we have Re e�k1;o1� ! 0,
ReGe�k1;o1� ! ÿ1. Let us use the formula

1

jej2 � p�Im e�ÿ1 1
p

Im e

jIm ej2 � jRe ej2 !
Im e5 1
Re e!0

p�Im e�ÿ1d�Re e� :

�303�
Then
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:

Thus, we obtain finally:

S�k1;o1� � pk 2
1 d

2
�
d�oÿ op� � d�o� op�

�
; jk1j < 1

d
:

�305�

The second term in Eqn (300) has a factor
fi�o1=k1�=Im e�k1;o1�, so it is exponentially small in compar-
ison with the first term because hvii5 hvei. The physical
nature of the pole is the presence of plasmons. Indeed,
expression (296) [with Eqn (305) substituted in it] describes
the radiation of transverse quanta generated by background
electrons when their collective excitation, plasmon, arises (or
disappears). The condition k1 < 1=d is associated with the
fact that the momentum of a plasmon can not exceed �h=d.

The total radiation intensity can be expressed as a sum of
three terms. Two of them are determined by Eqn (302) and
describe the emission of plasma electrons interacting with
each other [the first term in braces in Eqn (302)] and with
plasma ions [the second term in Eqn (302)]. The third term is
obtained by substituting Eqn (305) into Eqn (296) and
accounts for the contribution of the pole of the dielectric
permeability. The radiation intensity can be divided into three
terms because there are a few ways to transfer the momentum
of fast particle to the plasma during radiation: (1) single
plasma electrons receive the momentum; (2) momentum is
transferred to a group of electrons surrounding an ion (to the
Debye sphere), (3) plasma excitation (plasmon) receives the
momentum. Other channels of momentum transfer, for
example, to ion-acoustic waves, can be neglected because
they contain the respective small parameter �me=mi�2.

Integrating expressions (302) and (296) with the use of
Eqn (305) is possible in a general form. Nevertheless, we
consider various restricted frequency regions, which simpli-
fies the calculations and provides convenient asymptotic
forms. For each component of the total radiation
Io � I

�1�el
o � I

�1�ion
o � I

�2�
o we obtain the following expressions.

(a) Single electron contribution (inelastic component):

op < o <
c

d
; I �1�elo � 16

3
r 20Q

2N ln
mcd

�h
;

�306�
c

d
< o <

mc 2

�h
; I �1�elo � 16

3
r 20Q

2N ln
mc 2

�ho
�����������������������������
1=g 2 � o2

p=o2
q :

A decrease of the radiation intensity of single electrons at low
frequencies is related to the screening effects. The range of
small values of transferred momentum is responsible for the
emission at low frequencies, while the momentum less than
�h=d is gained by a group of electrons rather than a single
electron in a plasma, which leads to an increase of the effective
mass of the electron and to a decrease of the radiation
intensity.

(b) Electrons surrounding an ion (proper polarization
bremsstrahlung, elastic contribution). The spectrum is stu-
died in detail in Ref. [28], where analytical expressions for
different frequency ranges are given. The entire spectrum is
shown in Fig. 10; for op < o < c=d we have

I �1�iono � 16

3
�
e�o�� 3=2 Zr 20Q

2N ln
c

opd
: �307�

(c) The component associated with plasmons:

op < o <
c

d
; I �2�o � 8

3
r 20Q

2N ;

c

d
< o <

c

d
g 2 ; I �2�o � 8

3
r 20Q

2N

�
c

od

�2

; �308�

o >
c

d
g 2 ; I �2�o � 0 :
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The intensity of the component I
�2�
o associated with plasmons

becomes zero because the wavelength of the plasmon cannot
be less than d. The three components of the radiation intensity
are plotted in Fig. 10.

At low frequencies �op < o < c=d� either the ion compo-
nent �Z > 3� or the electron and ion components �Z � 1ÿ3�
can contribute the bulk to the emission. The contribution of
the plasmon component is a few (8 ± 10) times less. For higher
frequencies �o4 c=d� the radiation intensity is determined by
(inelastic) single electron excitations, the contributions of ion
(elastic) and plasmon components are unessential. Figure 10
displays the entire (sum over all contribution) intensity of PB
for Z � 1 and Z4 1. For electrons, PB dominates the
Bethe ±Heitler radiation in the frequency range, where the
density effect occurs, op < o < opg, and up to o � mc 2=�h
for heavy fast particles (ions and nuclei).

4.2 Resonant polarization bremsstrahlung
Let us consider the effect similar to the resonant transition
radiation but provided by thermal fluctuations of back-
ground plasma, i.e., resonant polarization bremsstrahlung
[80].

Akopyan and Tsytovich [81] studied polarization brems-
strahlung (PB) for two limiting cases of high and low
frequencies. For high frequencies op 5o5opv=vT the PB
intensity is

I po �
16

3
I0eÿ3=2

�
ln
vop

vTo
ÿ 1

2

�
; I0 � e2Q 2e2i ni

vm 2c 3
; �309�

where Q is the fast particle charge, e and m are the electron
charge and mass, and ei and ni are the ion charge and number
density in a plasma. This expression is obtained by standard
methods of the theory of emission in media (see, for example,
Ref. [28]) neglecting the spatial dispersion in the photon
Green functions. Evidently, Eqn (309) approaches infinity if
the frequency formally approaches the plasma frequency
o! op. Therefore, paper [81] considered as a special case
the range of low frequencies �oÿ op�=op5 v 2T=v

2, where the
spatial dispersion must be taken into account in the Green
functions but one can assume that o � op. The following
expression was obtained for the PB intensity:

I p
o �

2

27
I0e 1=2

�
v

vT

�4

: �310�

Monographs [28, 5] present the same result but with a
numerical coefficient of 2 instead of 2=27. However, the

more recent monograph (see Ref. [5, pp. 57 ± 60]) indicates
that Eqn (309) is valid in wider range �oÿ op�=op 4 v 2

T=v
2,

and particularly at frequencies �oÿ op�=op � v 2
T=v

2, where
both Eqns (309) and (310) are comparable in value. This value
was declared to give the correct estimate of the radiation
intensity in order of magnitude

Imax � I0

�
v

vT

�3

: �311�

The increase of PB intensity near the plasma frequency was
referred to as resonant polarization bremsstrahlung (RPB)
[5]. Note that the effect was estimated using extrapolation of
the correct asymptotic forms outside the region of their
applicability, while proper joint account of temporal and
spatial dispersion in the photon Green functions was not
performed.

The calculations of PB spectra valid for any frequencies
op 4o5opv=vT, carried out below, show that a true value
of RPB in the maximum is about c=vT times higher than the
estimate (311) [5], and that the asymptotic form (309) is valid
only for o > 2op.

Let us consider the emission generated near the plasma
frequency, where the phase velocities of transverse waves are
much larger than the speed of light vph 4 c, so, v=vph 5 1 for
any particle. Hence, the use of a longitudinal Green function
alone (non-relativistic approximation) is sufficient to calcu-
late RPB. The dielectric permeability in the Green function
has to involve the spatial dispersion e�o; k� �
e�o� ÿ 3k 2d 2 � ie 00. Then the RPB intensity can be expressed
in a form similar to Eqn (180):

I pn;o �
8pZ 2e4Q 2e 1=2

m 2c 3

�
�
k 0 2 dk 0

�n� k0�2d�oÿ �kÿ k0�v�jdNj2k 0 dj d cos#

�kÿ k0�4��e�o� ÿ 3�kÿ k0�2d 2
�2 � e 00 2

	 ;

�312�
where

jdNj2k �
ni

�2p�3�1� k 2d 2�2 : �313�

To simplify the integration of Eqn (312), we apply an
approximation for the equilibrium fluctuation spectrum
(313), namely, we assume jdNj2k 0 � ni=�2p�3 if k 0 < dÿ1 and
jdNj2k 0 � 0 if k 0 > dÿ1. Here, d � vT=op is the Debye radius,
Z � ei=e; the imaginary part of the dielectric permeability e 00

is kept to regularize the divergence when integrating
Eqn (312). Note that for the frequencies considered we have
e�o�5 1 and k5 k 0min � op=v < k 0. This allows us to neglect
k in comparison with k0 everywhere excluding the resonant
denominator. It is convenient further to integrate Eqn (312)
over angles of vector n, which provides the energy emitted
into the full solid angle

I po �
32p3Z 2e4Q 2e 1=2

vm 2c 3

� 1=d

o=v

dk 0

k 0
jdNj2k 0

�
� 1

ÿ1

sin2 # d cos#�
e�o� � 6kk 0d 2 cos#ÿ 3k 0 2d 2

�2 � e 00 2
: �314�

Here, we also integrated over the azimuth angle:�
dj . . . � 2p, while # is the angle between vector k0 and

Io Io

Io

I
�1�ion
o Z � 2; 3

Z4 1

Z � 1

I
�1�el
o Z � 2; 3

I
�2�
o

oop c=d g2c=d

oÿ2

Figure 10. Spectrum of polarization bremsstrahlung Io and the respective

components for various charges Z of the background nucleus.
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particle velocity v. Expanding into the simplest fractions and
integrating over the angle results in:

I po �
32p3Z 2e4Q 2e 1=2

vm 2c 3

� 1=d

o=v

dk 0

k 0
jdNj2k 0

J#
36k 2k 0 2d 4

; �315�

where J# is defined by Eqn (183), which reduces to Eqn (185)
like in Section 3.2. Substituting Eqn (185) into Eqn (315) and
introducing the dimensionless variable m � k 0v=o, we can
express the RPB spectrum as

I po �
16

3
I0F �a� ; F �a� � e 1=2

9

�
v

od

�4 �mmax

1

dm
m

Y�a 2 ÿ 1�
�m 2 ÿ a�2 ;

�316�

where mmax � vop=vTo. Integrating in Eqn (316) is carried
out using standard functions:

F �a� � e 1=2
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ln
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�317�
Here, o1; 2 are defined by Eqn (188), and

o3; 4 � 2op

�
1� 3� 30:5vT

4c

�
: �318�

Note the sharp changes of the slope at frequencies o1; 2 in the
spectrum are associated with the physical nature of the
process considered (radiation properties change abruptly
when the system parameters overcome Cherenkov's thresh-
old), whereas changes at frequencies o3; 4 correspond to the
approximation used for jdNj2k 0 . However, the latter is
unimportant for the RPB effect considered here.

Let us discuss the results obtained. The properties of
function (317) near frequency op are close to those of
function (189), i.e., the results display only a weak depen-
dence on the spectral index of inhomogeneities, which
supports the assumption made in Section 3.2. At high
frequencies op 5o5opv=vT, the calculated RPB spectrum
(316), (317) turns into the asymptotic form (309). However,
formula (309) is correct for o > 2op only, rather than for
�oÿ op�=op > v 2

T=v
2 as was declared earlier [5]. The reason

is the specific shape of the spectrum of thermal fluctuation in
the plasma, which remains flat up to small scales of about d,
hence the contribution of the upper limit in integral (316) is
important. At low frequencies,o! op, we obtain Eqn (310).

But in the spectral peak, a � 1, we have

Ipmax � I0
v 3c

v 4
T

�319�

unlike estimate (311). Figure 11 displays the shape of RPB
peak calculated by Eqn (317).

The total RPB energy emitted at all the frequencies is

I ptot �
8

27
I0op

vc

v 2T
: �320�

This result is larger than the power of standard PB (without
the peak) by a factor of vc=v 2T, and c=vT times larger than the
estimate of the RPB effect in Ref. [5].

4.3 Polarization bremsstrahlung by fast particles
in the presence of the Vavilov ±Cherenkov effect
Let us consider one more resonant effect arising in the
frequency range where the condition of the Vavilov ±
Cherenkov radiation for transverse waves is fulfilled. This
section proves the two channels of emission (Vavilov ±
Cherenkov and polarization bremsstrahlung) to interact
with each other, which results in a substantial (1 ± 2 orders
of magnitude) increase of PB intensity. Though the PB is
emitted simultaneously with the more powerful Vavilov ±
Cherenkov radiation, both mechanisms can easily be sepa-
rated in experiment because the PB has broader angular
distribution. Since the Vavilov ± Cherenkov emission of
transverse waves does not occur in isotropic plasma, this
section considers an atomicmedium. The results obtained can
be generalized to the Vavilov ± Cherenkov effect in a
magnetized plasma (see Section 2.4.) taking into account the
optical anisotropy of the medium.

One of the Feynman diagrams corresponding to polariza-
tion bremsstrahlung is shown in Fig. 1b. Passing from the
state j pii to the state j pfi, a fast particle emits a virtual
quantum with momentum �q; q0�, which affects an atomic

1.6

1.2

0.8

0.4

0

Io � 10ÿ5

1.000 1.002 1.004 1.006 1.008 1.010 1.012

o=op

Figure 11. Spectrum of resonant polarization bremsstrahlung (solid line).

The dashed line is the spectrum composed of asymptotic forms (309), (310)

given in Ref. [5, p. 57].\
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electron providing emission of a photon. The final state of the
atomic electron jnfi may either coincide with the initial one
jnii (proper elastic emission) or belong to an excited atom
state (inelastic process). The intensity of the elastic polariza-
tion bremsstrahlung Io, corresponding to the process shown
in Fig. 1b, is described by the expression:

Io � 16

3
nZ 2r 20Q

2

�
mo2

e2
a�o�

�2
ln

cg
oR

; o4
c

R
: �321�

Here, o is the frequency of the emitted quantum, n is the
number density of atoms, Z is the nucleus charge,
R � �h=Zme2 is the atom radius, r0 is the classical radius of
electron, Q, g are the charge and Lorentz factor of the fast
particle, and a�o� is atomic polarizability [not confuse with a
value a defined by Eqn (215)]. The intensity of inelastic
polarization bremsstrahlung is less than that of elastic by a
factor of Z ln�cg=oR�= ln�mcR=�h� and may be omitted for
atoms with high Z.

When deriving Eqn (321), the emission of an isolated
atom disturbed by a fast particle was calculated and the result
was multiplied by the number of atoms with the use of the
vacuum Green function of a photon. However, dielectric
permeability e�q;o� effect on both the virtual photon and
propagation of the produced quantum should be properly
taken into account in a medium. It is necessary if a large
number of atoms is located within a coherence length lc (it is
defined as the value inverse to the projection of wave vector q
of the virtual photon on the direction of particle velocity), i.e.,

nÿ1=3 5 lc ; �322�

where n is the number density of atoms in the medium. Note
that monograph [28] applies the dielectric permeability to the
range of high frequencieso4 Ia (Ia is the ionization potential
of the atoms), where

a�o� � e2

mo2
; e � 1ÿ o2

p

o2
: �323�

This leads to the replacement of ln�cg=oR� by ln�c=opR� in
Eqn (321). Meanwhile, of primary interest is the frequency
rangeo4 Ia because the radiation intensity increases at these
frequencies [a�o� is high when o approaches the intrinsic
frequencies of atoms] and e�o� differs strongly from unity in
this frequency range. Moreover, for e�o� > 1 Vavilov ±
Cherenkov radiation is generated besides polarization brems-
strahlung in the medium.

Let us analyze the expression for the radiation intensity Io
involving the Green function of a virtual photon explicitly
and taking into account the dielectric permeability [28]

Io � 8Z 2

3e 3=2
nr 20Q

2

�
mo2

e2
a�o�

�2
�
� 1=R 2

0

q 2
? dq

2
? d�ei ÿ ef ÿ o� def��q2 ÿ e�o�o2=c 2

��2 : �324�

Here, q? is the component of the vector q perpendicular to the
particle velocity v0; qk � o=v0, q2 � q 2

? � q 2
k ; e�o� is the

dielectric permeability of the system composed of non-
interacting atoms being in the ground state, and ei and ef are
the initial and final energy of the fast particle, respectively. In
the range of frequencies �v 20 =c 2�Re e�o� < 1 the integrand in

Eqn (324) has no singularity, so the integration is trivial:

Io � 16Z 2

3e 3=2
nr 20Q

2

�
mo2

e2
a�o�

�2
ln

c

oR
�
1ÿ e�o�v 2

0 =c
2
�1=2 :
�325�

(This coincides with Eqn (321) taking into account the
medium dielectric permeability.) For �v 20 =c 2�Re e�o� > 1, a
singularity appears in the integrand of Eqn (324). This
integral, denoted as I, has the form:

I �
� 1=R 2

0

q 2
? dq

2
?��q2? ÿ �o2=v 20 �

�
e�o�v 20 =c 2 ÿ 1

���2 ; o � ei ÿ ef :

�326�
This singularity is associated with the possible arrival of a
virtual photon onto the mass surface. As a result, if
�v 20 =c 2�Re e�o� > 1, the polarization bremsstrahlung can be
described as the output of two successive processes: genera-
tion of a Cherenkov quantum by a relativistic particle and
scattering of the quantum by an atomic shell (here, the
Cherenkov quantum exists over a length of about
� qÿ1k � v0=o).

Actually, the pole singularity in Eqn (326) can be
regularized by introducing the imaginary part of the energy
o of the virtual photon. The imaginary part is caused by both
the imaginary part of a dielectric permeability e 00

�e � e 0 � ie 00� and the imaginary parts (or finite lifetime in a
certain energy state) of the energy of the fast particle and
atomic electron in the ground state, due to the law of energy
conservation [d function in Eqn (324)]. The lifetime of a fast
particle t is determined by the collisions between the particle
and background atoms as well as by the emission of
Cherenkov quanta:

tÿ1 � sv0n�
�
Q 2

�hc

�
1ÿ c 2

v 20 e 0�o�
�
do ; �327�

where s is the cross-section of collision between the particle
and atom. The atomic electron lifetime in the ground state can
be regarded as infinitely large. The imaginary part of the
dielectric permeability is

e 00�o� � 4pne2

me

X1
k� 0

f 2
0koG0k

�o2 ÿ o2
0k�2 � o2G 2

0k

; �328�

where f0k is the oscillator force of atom transition with
frequency o0k and bandwidth G0k. Thus, the total energy
bandwidth G in the pole denominator in Eqn (326) is
determined by the expression

G�o� � tÿ1 � oe 00�o� : �329�

Let us calculate integral (326) excluding the pole singularity
by introducing G:
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The first term in Eqn (330) is caused by the pole singularity,
the second, by the rest of the range of integration. Obviously,
the first term in Eqn (330) describes the intensity of
polarization bremsstrahlung related to the Cherenkov part
of the fast particle field, while the second does it for the quasi-
stationary electromagnetic field of the particle. For
�v 20 =c 2�e 0�o� > 1 and G5o the first term dominates [recall
that it disappears altogether for �v 20 =c 2�e 0�o� < 1] and the
respective radiation intensity can be expressed as

I �1�o � 8pZ 2

3
nr 20

�
mo2

e2
a�o�

�2
l�ho

� �oQ
2=�hc��1ÿ c 2=v 20 e

0�
G

v 2
0

c 2
: �331�

The second term gives a result similar to Eqn (325):

I �2�o � 16Z 2
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�2

� G 2v 2
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o2c 2

�ÿ1=4)
: �332�

Equation (331) can be interpreted as follows. The term
8p=3nr 20 l is the number of atoms in the cylinder with the
base sTh and the height l � c=oe 0 1=2 (sTh is the Thompson
cross-section), the factor �mo2a�o�=e2�2 allows for the
difference between polarizability of an atomic shell and free
electrons. Their product determines the total effective number
of electrons, scattering Cherenkov quanta, taking into
account the electron bonds in atoms and the coherent nature
of quantum scattering by the entire atomic shells. The term
�ho is the energy of the scattered (and emitted) quantum, the
value oQ 2�1ÿ c 2=v 20 e

0�=�hcG is the ratio of the probability of
emitting a Cherenkov quantum to the total probability of
decay of the state of the emitting fast particle. Apparently, the
last term cannot be higher than unity.

Let us compare the two components (331) and (332) of
polarization bremsstrahlung:

I
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o

I
�2�
o

� pe 0v 2
0o
�
1ÿ c 2=v 2

0 e
0�o��

2Gc 2 ln
��v0=oR���e 0v 20 =c 2 ÿ 1�2 � G 2v 2

0 =o
2c 2
�ÿ1=4	 :
�333�

The pole contribution I
�1�
o existing only in the range of

parameters �v 2
0 =c

2�e 0�o� > 1� predominates if the resonance
nature of the process is pronounced clearly

o
G
>

2c 2 ln
��v0=oR���e 0v 2

0 =c
2 ÿ 1�2 � G 2v 20 =o

2c 2
�ÿ1=4	

pe 0v 2
0

�
1ÿ c 2=v 20 e 0�o�

� :

�334�
Figure 12 displays the dependences describing both

considered contributions to polarization bremsstrahlung for
the particular case:

e�o� � 1ÿ 5G
oÿ o0 � iG=2

: �335�

The pole contribution reaches the peak when the real part of
the dielectric permeability has its maximum. Standard PB
reaches its maximum at the threshold of the Vavilov ±
Cherenkov radiation. For the medium described by

Eqn (335), the spectral intensity of the pole contribution
dominates in the limited frequency range, whereas the total
PB energy (integrated over all frequencies) is determined by
the standard contribution I �2�.

Now let us compare the increase of the standard PB
(contribution I �2�) with the qualitatively similar resonant PB
considered in Section 4.2. In both cases, the physical reason
for the increase of PB intensity is the Vavilov ±Cherenkov
generation of intrinsic modes in the medium: plasma waves in
Section 4.2 or transverse ones in this section. It is important to
emphasize that the magnitude of the increase of PB intensity
is considerably different in these two cases: the increase of the
intensity shown in Fig. 12 is about 20%, while for RPB it is a
few orders of magnitude. This difference can be accounted for
by a different structure of the dependence of the integrands on
the transferred momentum (this is a result of the difference in
the dispersion laws for potential and transverse eigen modes).
In this section, the spatial dispersion is unessential, so the
account of the frequency dependence of the dielectric
permeability, e�o�, is sufficient, which results in the logarith-
mic dependence on frequency at the resonance. For RPB the
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Figure 12. Pole (a) and standard (b) components of polarization brems-

strahlung for various velocities of fast particle �v0=c � 0:6; 0:8; 0:999�. The
plot (b) also displays the real part of the dielectric permeability (335) for

o0=G � 100. The larger the value e 0�o� the stronger the pole contribution
I �1� exceeds the standard contribution I �2�. The standard contribution has

its maximum at the Cherenkov threshold.\
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resonance nature of the process is more pronounced because
the dielectric permeability, e�o; q�, depends on the transferred
momentum and the result of integration is described by the
power-law functions.

Note the radiation intensity (331) coincides with the
intensity of scattering of pre-emitted Cherenkov quanta.
Indeed, the number of Cherenkov quanta NVC generated
per unit time, per unit frequency, and per unit solid angle, is
expressed as

NVC
o; y �

Q 2

2p�hc

�
1ÿ c 2

v 20 e
0�o�

�
d
�
cos yÿ c

v0e 0 1=2

�
; �336�

where y is the angle between the wave vector of the Cherenkov
quantum and the particle velocity v0. For the lifetime 1=G of
the system in a certain state, NVC

o =G photons are emitted
(recall the polarization of the Vavilov ±Cherenkov radiation
is such that the electric field vector belongs to the plane of v0
and the direction of radiation). The differential cross-section
of scattering of the quantum by the atomic shell depends on
the frequency and propagation direction; it is equal to

d2s
do 0 dO

� 3

8p
sTh

�
mo2

e2
a�o�

�2
d�oÿ o 0� sin2 w ; �337�

where w is the angle between the electric field vector of the
incident quantum and the direction of scattering:

sin2 w � 1ÿ sin2 y cos2 #ÿ cos2 y sin2 # cos2�jÿ f�

� 1

2
sin 2y sin 2# cos�jÿ f� : �338�

Here, # is the angle between the direction of the scattered
quantum and fast particle velocity, and j and f are azimuth
angles.

The probability of scattering w of the Cherenkov
quantum equals

dw

do dO
� c

e 0 1=2
n

d2s
do dO

: �339�

The number of secondary scattered quanta No is

No �
�

dw

do dO

NVC
o 0; y

G
do 0 sin# sin y dy d# dj df : �340�

The respective intensity (340) of scattered radiation
Io � �hoNo coincides with formula (331). Note the angular
distribution of the scattered quanta is almost isotropic and
specified mainly by the angular dependence of the cross-
section. The structure of expression (340) is identical to the
case of bremsstrahlung by a relativistic particle on an excited
atom [83]. This is not an accidental coincidence: the Feynman
diagrams of bremsstrahlung with de-excitation and polariza-
tion bremsstrahlung are equivalent in topology; in both cases,
a virtual photon can arrive at the mass surface. When the
lifetime of the fast particle energy state is governed by the
emission only, we have

o
G
� o
�Q 2=�hc� � �1ÿ c 2=v 2

0 e
0� do �

�hc

Q 2
� 137 �341�

and I
�1�
o is two orders of magnitude higher than the standard

polarization radiation.

Let us discuss now the physical interpretation of the
emission under study. It represents the influence of the
Vavilov ±Cherenkov effect on polarization bremsstrahlung,
while this is not a linear superposition of these two effects.
The extra contribution I

�1�
o to polarization bremsstrahlung is

caused by the scattering of Cherenkov quanta by atomic
shells, while the effect described by Eqn (332) for I

�2�
o arises

due to atomic shell excitation by the quasi-stationary field of
the fast particle. According to estimate (333), the contribution
stimulated by the Vavilov ±Cherenkov effect can dominate in
many cases.

Furthermore, we should compare I
�1�
o with the spectral

densities of other emission mechanisms, namely, the Vavi-
lov ±Cherenkov effect and bremsstrahlung, to evaluate the
possibility to observe the effect experimentally.

The intensity of the Vavilov ±Cherenkov radiation
exceeds I

�1�
o since the latter is the effect of higher order of

smallness in respect to the electron charge

I
�1�
o

IVCo
� o

G
sThnl5 1 : �342�

However, Cherenkov quanta with frequency o propagate
only at the angle cos y � c=v0e 0 1=2 to the fast particle velocity,
while polarization bremsstrahlung has a broad angular
distribution �1� cos2 #� close to isotropic and, in particular,
it exists well outside theCherenkov cone. Indeed, polarization
bremsstrahlung results from the scattering of Cherenkov
quanta by non-relativistic electrons of atomic shells. The
cross-section of scattering is known to be weakly anisotropic
for this case.

The ratio of pole contribution I �1� to standard brems-
strahlung obeying the Bethe ±Heitler equation can be much
larger than unity:

I
�1�
o

IBHo
� p

��mo2=e2�a�o��2o�1ÿ c 2=v 20 e
0�

2Ge 0 ln�mv 2
0 =�ho� : �343�

However, the standard bremsstrahlung contains a pole
contribution if the condition for the Vavilov ±Cherenkov
effect is fulfilled as well as PB. The contribution (that can be
interpreted as Compton scattering of Cherenkov quanta by
the fast particle) is yet to be calculated.

Thus, the pole contribution to emission (PB considered
above and, possibly, a similar contribution to standard
bremsstrahlung) is concluded to dominate all other emission
mechanisms outside the Cherenkov cone in some frequency
ranges, and it can easily be observed in this range of angles.

The considered contribution to PB is nonzero for the same
frequencies, where the condition of the Vavilov ±Cherenkov
effect is fulfilled because this contribution is associated with
elastic scattering of Cherenkov photons by background
atoms without changing frequency. Obviously, inelastic
processes (Raman-like scattering) related either to atom
excitation or de-excitation or to emission or absorption of
intrinsic (collective) excitation of the medium (plasmon,
magnon, phonon, etc.) are possible as well. For example,
Section 4.1 alongwith the elastic contribution I

�1�ion
o considers

the emission accompanied by excitation (driving out) of a
single electron I

�1�el
o and emission with simultaneous plasmon

emission or absorption I
�2�
o .

Obviously, inelastic contributions are modified as well as
elastic ones when the condition for the Vavilov ±Cherenkov
effect is fulfilled. It is important that these contributions can
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be essential at those frequencies where the Vavilov ±Cher-
enkov condition is not fulfilled, since the respective elemen-
tary processes go with changing frequency.

4.4 Polarization of transition bremsstrahlung
in a weak magnetic field
The calculation of PB in the presence of a magnetic field can
be carried out according to the same algorithm as the
calculation of transition radiation in a gyrotropic plasma
(see Section 2.4). However, we should take into account some
important differences between PB and transition radiation.
Firstly, there is no high directivity of PB along the fast particle
velocity [5], so the small-angle approximation is incorrect
even for ultra-relativistic particles. For the same reason, the
longitudinal field of the fast particle should be taken into
account together with its transverse field. Secondly, most of
the plasma fluctuation energy corresponds to scales of about
the electron Debye radius d. Hence, in the most interesting
frequency range

op 5o < o
c

vT
�344�

the transferred momentum ~k ' dÿ1 (when emitting a photon)
is much larger than the wave number of the emitted quantum
~k4 k � 2p=l. The inverse inequality is valid for transition
radiation.

The energy emitted per normal mode by a particle for the
entire time of its motion in a plasma can still be expressed in
the form (88). The spectrum of equilibrium thermal fluctua-
tions has the form (313), while the electric field EQ can be
expressed by the particle current j using the longitudinal and
transverse Green functions:

E
Q
o; k �

4pi
o

�X
s

�j � a�s�as
n 2 ÿ n 2

s
ÿ �j � k�k
k iei j k j

�
;

�345�
j � jo; k �

Qv

�2p�3 d�oÿ kv� ;

where as �s � �1� are the vectors of polarization for ordinary
and extraordinary waves, and ns are the respective refractive
indices, ns � kc=os.

Taking into account these relations, the PB intensity of
the mode j can be expressed as

Ij; n;o � 8pe4Q 2

m 2c 3o2

�
jdNj2kÿk 0 jA�j;k 0 � Fk 0 j2d�oÿ k0 � v� dk 0 ;

�346�

where A a
j; k� waba

b
j;k� �1=v���1ÿ n 2

j �a a
j;k � n 2

j �KK � aj; k�Ka�,
v � o2

p=o
2, KK � k=k,

Fk �
X
s

�j � a�s�as
n 2
s ÿ n 2

ÿ �j � k�k
k iei j k j

: �347�

We consider a weakly gyrotropic plasma, where all the values
depending on the magnetic field can be expanded into series.
The exact form of the expansion of the vector of polarization
and the refractive indices of normal modes depends on the
relation between u 1=2 � oBe=o and cos a, where a is the angle
between the wave vector andmagnetic field.We focus on case
(96), where the magnetic field influence on emission is
especially strong. When expanding the functions depending
on k0 into series, we also use approximation (96) since the

integral over the angles in the range cos a4 u 1=2 contributes
little to the polarization of radiation.

With the accuracy of the first order with respect to the
small parameter u 1=2= cos a, the refractive indices and polar-
ization vectors of normal modes can be expressed as

n 2
j � 1ÿ vÿ1ÿ ju 1=2j cos aj� ; �348�

aj � a0j? ÿ j
u 1=2 sin2 a
4j cos aj a0ÿj? ÿ ivu 1=2 KK sin a ; �349�

where

a0j? � 2ÿ1=2
�
x̂ÿ ijŷ sgn �cos a�� ; �350�

and x̂, ŷ are the unit main vectors of the polarization ellipse

x̂ � B� KK
jB� KKj ; ŷ � KK� x̂ : �351�

Substituting Eqns (348), (349) into Eqn (346), we can
integrate the obtained expression within the range (344). As
a result, we obtain

Ij; n;o � I �0�n;o � DIj; n;o ; �352�

where

I �0�n;o � J0
1� cos2 y

2

�
lnDÿ 2

�
�353�

is the half of the radiation intensity in isotropic plasma, while
the additional term DIj; n;o depends on the wave type

DIj; n;o � J0 ju
1=2

 �
�1� cos2 y�j cos aj

� sin2 a
4v 2j cos aj

��ŷ � v�2 ÿ �x̂ � v�2�
� sgn �cos a� 2

1=2 sin a
v

�ŷ � v� cos y
�
�lnDÿ 2�

� cos yj cos aj
1� o2=o2

pg2

!
: �354�

Equations (353), (354) use the following designations

J0 � zNe4Q 2

2pm 2c 4
; D � c 2

d 2o2�o2
p=o2 � gÿ2� ; �355�

where y is the angle between the wave vector and particle
velocity.

The last term in Eqn (354) without the large factor
�lnDÿ 2� is related to the correction arising from the
expansion of the transverse Green function in the series.
Later on, this term is discarded, which actually corresponds
to the use of the Green function for isotropic plasma in
Eqn (345).

For a bound source of radiation with the characteristic
size L, the Fourier phases of the density fluctuations dNk1 ,
dNk2 are statistically independent if jk1 ÿ k2j4Lÿ1. When
radiating in the direction n the normal waves with wave
vectors ko, ke, spatial harmonics of the spectrum of density
inhomogeneities with the wave vectors

~k � v � ko � vÿ o ; ~k � v � ke � vÿ o �356�
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are involved in the scattering process. If the direction of
radiation satisfies the condition of strong Faraday rotation,

j cos yjjko ÿ kej4Lÿ1 ; �357�

then the phase difference between the normal waves is a
random value, so the radiation is polarized circularly (within
the first approximation over u 1=2=j cos aj). The degree of
polarization in a given direction is

Pn;o � I1 ÿ Iÿ1
I1 � Iÿ1

� ÿu 1=2

 
j cos aj � 1

1� cos2 y

�
�

sin2 a
4v 2j cos aj

��ŷ � v�2 ÿ �x̂ � v�2�
� sgn �cos a� 2

1=2 sin a
v

�ŷ � v� cos y
�!

: �358�

Note, Pn;o has no azimuth symmetry with respect to B.
This is due entirely to the approximation used for the steady
rectilinear motion of the particle. Therefore, azimuth asym-
metry of the polarization can be observed experimentally if
the typical size of the plasma is much less than the particle
gyro-radius.

When the inequality opposite to Eqn (357) is fulfilled, the
phase difference between complex amplitudes of normal
waves is a well-defined value

Df � sgn �cos a��2cÿ p� ; �359�

wherec is the angle between the projections of vectors v andB
on the plane transverse to the wave-vector, and the angle is
counted from the projection of B in the anti-clockwise
direction. In other words, the radiation is almost completely
linearly [up to the terms of order of u 1=2=j cos aj, �lnD�ÿ1,
Lj cos yjjk1 ÿ kÿ1j�] polarized.

If the length of the Faraday rotation is much larger than
the source sizes, the polarization of radiation is linear up to
terms of order of u 1=2=j cos aj like in isotropic plasma, the
degree of polarization is

Pn;o � cos2 y : �360�
The emission produced by an ensemble of particlesmay be

of interest too. As an example, let us consider the emission by
mono-energetic electrons with an isotropic velocity distribu-
tion. In this case, the polarization is circular for any quasi-
longitudinal �j cos aj4 u 1=2� direction of the emission. When
averaging Eqn (358) over velocity directions, the contribution
of sign-alternating terms vanishes and the polarization of
radiation receives the form

P � ÿ2u 1=2j cos aj : �361�

Like for transition radiation, the polarization corresponds to
predominant emission of extraordinary waves but with
somewhat higher degree of polarization [cf. Eqn (99)].

4.5 Effect of an external magnetic field
on the spectra of polarization bremsstrahlung
Let us consider the case when the fast particle velocity is
parallel to the external constant uniform magnetic field since
effect of the field B0 on the radiation spectrum is largest
within such geometry (disturbed background electrons move

transversely to the field). The field is assumed to be strong
enough to affect the spectrum of plasma density fluctuations.
The radiation is calculated in the range of frequencieso4oB

when the field influence on the dispersion of transverse waves
is small.

In amagnetized plasma, the function S�k1;o1� considered
in Section 4.1 has the form [79]

S�k1;o1� � 2
���
p
p ����1ÿHe
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����2 X1
l�ÿ1

exp�ÿk 2
1?r

2
e�Il�k 2
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2
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�ÿ��oÿ loB�=k1khvei

�2	
k1khvei

� 2
���
p
p

Z

����He

eL

����2 exp�ÿ o2
1

k 2
1 hvii2

�
; �362�

where eL � 1�He is the longitudinal dielectric permeability
of the magnetized plasma, oB is the electron cyclotron
frequency, re � hvei=oB; k1?, k1k are the components of
vector k1 across and along the magnetic field, and Il�x� is
themodified Bessel function. In expression (362) we neglected
the influence of the field B0 on ion motion (partially
magnetized plasma) and the transverse types of oscillations
in the magnetized plasma. The longitudinal dielectric recep-
tivityHe of the magnetized plasma is [79]

He�k;o� � 1

k 2d 2

�
1ÿ

X1
l�ÿ1

exp�ÿk 2
?r

2
e� Il�k 2

?r
2
e�

� o
oÿ loB

�
2xl exp�ÿx 2

l �
� xl

0

exp� p 2� dp

� ip 1=2xl exp�ÿx 2
l �
��
; xl � oÿ loB

kkhvei : �363�

When substituting Eqns (362), (299) into integral (296), the
integral cannot be calculated within standard functions,
however the integral can be estimated for the strong
magnetic field limit �re 5 d�.

When this condition is fulfilled, the space-charge cloud
screening every ion takes a form stretched along the field with
a size of � re in the transverse direction. The intensity of ion
contribution to the spectrum decreases by �re=d�4 times at
low frequencies [this is associated with the �re=d�2 times
decrease of the transverse (with respect to the magnetic
field) plasma polarizability, the square of the polarizability
determining the radiation intensity],

I �1�iono �
�
re
d

�4
16

3
Zr 20Q

2N ln
c

reop
; oB 5o <

c

re
;

�364�
while at o > c=re, the intensity falls exponentially with
increasing frequency.

The intensity of (inelastic) radiation produced by single
electrons decreases by a factor of ln�mcre=�h�= ln�mcd=�h� in
the range op < o < c=re because a momentum higher than
�h=re is required to detach an electron [i.e., the decrease is
much weaker than for the `ion' contribution, so for
Z�re=d�4 5 1 the electron contribution dominates at all
frequencies o4oB]. The effective range of the transferred
momenta responsible for the emission by single electrons
becomes narrower under these conditions, which results in a
logarithmic decrease of the intensity. The intensity remains
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unchanged at higher frequencies. Figure 13 displays the
overview of the spectrum. The arrows indicate the directions
as the spectrum changes with increases of the field B0. The
contribution of the longitudinal oscillations (plasmons) to the
emission is a few percent. It should be noted that for re 5 dwe
have op < oB, so in the vicinity of oB (and, possibly near its
lowest harmonics) the cyclotron emission and absorption
may be rather essential.

4.6 Polarization bremsstrahlung
in a strong magnetic field
As was stressed in Section 4.1, polarization bremsstrahlung is
caused by the scattering of the quasi-stationary field of a fast
particle by background particles into electromagnetic waves.
This section considers this process in an ultra-strongmagnetic
field oB 4 gc=d, when both thermal plasma electrons and
relativistic electrons �g4 1�move strictly along the magnetic
field lines [84]. So, the emission is one dimensional in nature.
Here, the emission is strongly suppressed because it is caused
by the longitudinal field of the ultra-relativistic particle,
which is g 2 times weaker than traverse one. This approxima-
tion can be used if the frequency of radiation satisfies the
condition o5oB=g. We accept o4op as well.

In this range of frequencies the plasma is a highly
gyrotropic medium; the plasma intrinsic modes are the
ordinary wave and slow extraordinary wave [62]. The
expression for refractive indices and polarization vectors are
given in Section 2.4, where transition radiation in gyrotropic
plasma is considered. It is important that the polarization of
each eigen mode is almost linear if their directions of
propagation are not too close to the magnetic field direc-
tion. In the ordinary wave the electric fields vector lies in the
plane �k;B�, while in the slow extraordinary wave this vector
is perpendicular to the plane. Since the electric current has
only one component here, the ordinary waves are generated
much more effectively than extraordinary waves (in agree-
ment with the results of Section 2.4, see Fig. 6). Hence, in this
section we give the formulae for PB of ordinary waves only.

The radiation spectrum is calculated in a similar way as in
Section 4.1 with only one exception. The acceleration in
Eqn (292) and the field of relativistic particle (301) have only
one component parallel to the particle velocity and magnetic
field. The calculation details are published inRef. [84], we give
the final result only. At high frequencieso > 2g 2c=dwe have:

Io�#� � 2r 20Q
2niZ

2

g 2

�
c

od

�4
sin2 #�1� g 2 sin2 #��
1ÿ �v=c� cos#�2 : �365�

Strictly speaking, Eqn (365) was obtained within the `quasi-
transverse' approximation, when condition (128) is fulfilled,
i.e. Eqn (365) is valid for the angles

y >
�
2o
oB

�1=2

: �366�

However, since there is no sharp directivity along the
magnetic field for the emission (365) (see Fig. 14a), the
approximation used is adequate for this case. For high
energies g4 1, the radiation intensity (365) integrated over
all angles does not depend on energy explicitly:

Io � 8

3
r 20Q

2niZ
2

�
c

od

�4

: �367�

If we compare Eqn (367) with the intensity of standard
bremsstrahlung in the high magnetic field

IBHo � 8r 20Q
2niZ

2

3g 2
; o >

2g 2c
d

; �368�

we find that the polarization mechanism is negligible in
comparison with standard bremsstrahlung in the range of
high frequencies o > 2g 2c=d.

Io

I
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o

I
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Figure 13. Influence of magnetic field on components of polarization

bremsstrahlung.
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bremsstrahlung in the presence of a very strong magnetic field. The PB
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slight at low frequencies. c=vT � 102 is accepted for plotting the spectra.

PB dominates to the left on the line SÿS corresponding to Eqn (375), the

usual bremsstrahlung dominates to the right.
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At frequencies c=d5o5 2g 2c=d and op 5o5 c=d we
have, respectively:

Io�#� � 2r 20Q
2niZ

2

g 4
c 2

o2d 2

sin2 #

1ÿ �v=c� cos# ; �369�

Io�#� � 4r 20Q
2niZ

2

g 2
sin2 #

1� g 2 sin2 #
: �370�

Equation (370) shows transition bremsstrahlung to depend
weakly on the angle at relatively low frequencies
op 5o5 c=d in the range gÿ1 < # < p=2, while for small
angles it approaches zero as sin2 # (see Fig. 14a).

Integrating Eqns (369) and (370) over the full solid angle,
yields the respective spectral intensities:

Io � 4r 20Q
2niZ

2

g 4

�
c

od

�2

�ln 2gÿ 1� ; �371�

Io � 8r 20Q
2niZ

2

g 4
: �372�

In the same frequency ranges the intensity of standard
bremsstrahlung is expressed as
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Comparing formulae (371), (372) and (373), (374), we can
conclude that polarization bremsstrahlung dominates in the
plasma in the presence of a strong magnetic field if

o < o� �
���
g
p

c

d
; �375�

and the frequencyo� belongs to the range c=d5o5 2g 2c=d.
Figure 14b displays the polarization bremsstrahlung and
standard bremsstrahlung for various energies of the relativis-
tic particle, the line SÿS corresponding to Eqn (375) divides
the regions, where one or other contribution predominates. In
the rangeop 5o5 c=d, where the length of the emitted wave
l4 d, the polarization bremsstrahlung always dominates in
the strong magnetic field because thermal plasma electrons
producing dynamic polarizability emit coherently when
scattering virtual photons, which results in the maximal
intensity of radiation. As to interference between standard
and polarization bremsstrahlung, it is unimportant because
of the different frequency and energy dependences in the
respective equations.

To finalize, we note that the total bremsstrahlung of a fast
particle in plasma depends substantially on the radiating
frequency and particle energy in the presence of a strong
magnetic field. In the range o4 2g 2c=d the emission is
provided by the standard bremsstrahlung mechanism, which
has the largest intensity in this range. The polarization
bremsstrahlung dominates at low frequencies (375); its
intensity reaches the maximal value in the range
op 5o5 c=d. The maximal PB level (372) in this range of
frequencies is g 2 times less than that of standard bremsstrah-
lung (368) at high frequencies o4 2g 2c=d.

In conclusion we recall that PB consists of three different
contributions I

�1�ion
o , I

�1�el
o , I

�2�
o according to the results of

Section 4.1. In an isotropic medium without a magnetic field,
the first contribution isZ times larger than the others and, so,
it dominates for Z4 1. For this reason (as well as for
simplicity) this section considers the contribution I

�1�ion
o

only. However, Section 4.5 proves that the magnetic field
affects these contributions differently. For example, the
electron contribution I

�1�el
o dominates under the conditions

considered in Section 4.5. The contributions I
�1�el
o and I

�2�
o

have not been considered yet in the literature in the presence
of the ultra-strong magnetic field discussed in this section.

5. Astrophysical applications of the theory
of transition radiation

The theory of transition radiation is a rather broad field of
physics today [28]. The respective experimental data, which
have been obtained for the past decades, agree excellently
with the TR theory for both a single boundary and periodic
media [4, 10, 85 ± 89]. Furthermore, coherent TR generated
by bunches of ultra-relativistic electrons passing through a
metallic foil has been observed in the far infrared range [90] as
well as in the X-ray range [91].

While TR is a rather general effect and the theory is pretty
simple and nice, the effect has not been widely applied in
astrophysics (and, generally, for natural conditions) yet.

Probably, the first attempt to apply the TR theory in
astrophysics was done in Ref. [92]. That paper employed the
formulae valid for a single boundary to calculate TR
generated by high-energy charged particles interacting with
cosmic dust in the interstellar medium. The calculated TR
intensity (with the use of independent data on the amount of
cosmic dust and the flux of cosmic rays) was shown to agree
with the observed intensity of the diffuse galactic soft X-ray
emission. However, later papers [93, 94] noted the size of a
single dust grain to be about three orders of magnitude less
than the TR formation zone. Thus, the intensity of X-ray TR
is about 0.1% of the observed value.

Transition radiation by relativistic nuclei on random
plasma inhomogeneities was applied to account for low-
frequency excess in radio spectra of some radio galaxies at
decametric wavelengths [66]. Large values of the background
number density N � 102 cmÿ3 of the emitting plasma were
found to be required for the theory to fit observations. The
lobes of radio galaxies are known to be much more tenuous,
N � 10ÿ2ÿ10ÿ3 cmÿ3, so a sufficient TR level could only
have been provided by denser nuclei of the radio galaxies.
However, the spatial resolution is too low in the decametric
range to specify where the decametric radiation originates
(i.e., from the nucleus or lobes). TR could contribute to the
infrared excess observed in some active galactic nuclei [95], as
well as to continuummillimeter radiation from stars when the
synchrotron mechanism fails [96].

Some quantitative estimates of transition radiation in
natural conditions have already been done in the review.
For example, the effect of TR suppression by a magnetic field
is evaluated at the end of Section 2.2, and by scattering at the
end of Section 2.3.

Resonant transition radiation has been discovered and
calculated properly just recently [57, 63]; consequently this
effect has not been widely used for applications (in spite of its
high intensity). Below we discuss the generation of TR and
RTR in cosmic plasmas in more detail.
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5.1 Generation of transition radiation
in the interstellar medium
The diffuse galactic radio emission is known to have a
power-law distribution from a few MHz to a few GHz and
to be produced by electrons of cosmic rays propagating in
galactic magnetic field due to the synchrotron mechanism
[97]. Hence, the synchrotron radiation carries information
about the relativistic electrons and the magnetic field.
However, the radiation originates and propagates in the
interstellar medium (ISM) that affects the radiation proper-
ties. When the frequency of observation decreases, the
Faraday effect starts to depolarize the radiation. Then,
free ± free absorption and the density effect (Razin ±Tsyto-
vich effect) become essential at lower frequencies. Thus, the
(low-frequency) synchrotron radiation carries information
on the ISM itself (its number density, temperature, spatial
distribution etc.).

From this point of view, the analysis of the galactic radio
emission at very low frequencies, f4 3 MHz, where the
spectrum is qualitatively different from that at high frequen-
cies [98], is of primary interest. We should emphasize that the
radiation intensity drops by more than two orders of
magnitude when the frequency decreases ten times only, and
no shape of energetic spectrum of relativistic electrons can
account for this low-frequency cutoff.

It is very important that less intensive emission mechan-
isms can contribute to the total spectrum at low frequencies
where the synchrotron emission is exponentially small. The
mechanisms are Compton emission by relativistic electrons
on small-scale fields [32, 99, 100] that is suppressed by the
density effect but less effectively than synchrotron emission,
and transition radiation on density fluctuations that is not
suppressed by the thermal plasma at all.

To obtain the transition radiation level we use the modern
data on the electron density inhomogeneities in the disc
derived from the analysis of radio source scintillations in the
ISM. The spectrum of inhomogeneities jdNj2k is found to fit a
power-law for most of the lines of sight [101]:

jdNj2k � C 2
N kÿa ;

2p
l0
< k <

2p
l1
; �376�

where l1 � c=fp � 107 cm, l0 5 1014 cm,

a � n� 2 � 11

3
� 0:3 ; �377�

and fp is the plasma frequency. On average over the disc with
thickness L � 1 kpc and radius R � 20 kpc the value C 2

N is
[101]

C 2
N � 10ÿ3:5 mÿ20=3 : �378�

A region of enhanced scattering with C 2
N � 1 mÿ20=3 is

situated �4� 2� kpc from the galactic center, while some
clumps reveal much higher scattering with the largest value
C 2

N � 105 mÿ20=3 in NG6334 at 1.7 kpc from the Sun.
For the Kolmogorov spectrum (376) and the minimal

value of C 2
N (378) we find

hDN 2i � �1ÿ3� � 10ÿ10 cmÿ6 �379�

on scales l < 2pc=oB � �2ÿ3� � 109 cm responsible for
transition radiation generation. With �N � 0:025 cmÿ3 [101]

we have

hDN 2i
N 2

� �2ÿ5� � 10ÿ7 : �380�

The output spectrum of transition radiation depends strongly
on the actual distribution of the mean electron density over
the emitting volume (see Section 3). We calculate the
spectrum for two limiting models of the distribution. The
first one assumes that the plasma frequencies fp are
distributed uniformly in the range fp � �2:0� 0:5� kHz.
Further, we accept hDN 2i=N 2 � 3� 10ÿ7 and n �
aÿ 2 � 1:7 [101]. Here, resonant transition radiation (Sec-
tion 3) is generated at the lowest frequencies f � fp, while
usual transition radiation (Section 2) is generated at higher
frequencies by relativistic particles. The respective contribu-
tion is the curve tr1 in Fig. 15a. The spectrum has the
frequency dependence Ptr1 / f ÿ1:1 at f4 fp.

The second model (the curve tr2 in Fig. 15b) uses the
distribution of the mean electron density derived from the
relation between the emission measure and dispersion
measure in the ISM [102]:

F � fp� �
0:5 f 0:5p0

f 1:5p

; fp0 < fp < fpm ' 20 kHz ; �381�

where F � fp� is the filling factor of the regions with plasma
frequency fp in the warm ISM, and fp0 is the typical value of
the ISM plasma frequency fp0 � 2 kHz. Averaging the
transition radiation spectrum with distribution function
(381) gives:

P tr2 � 0:5 ~Ktr
e2

c
Neop0

hDN 2i
N 2

c 2

v 2T

�
k0c

op0

�nÿ1�o�
o

�nÿ1:5
;

�382�
where o� � 2p f� � o2

p=oB (actually, a smaller factor can
enter Eqn (382) instead of c 2=v 2T due to the magnetic field
effect, see Section 3); the ratio of TR (382) to synchrotron
emission at the frequency o� is

P tr2

P s
' 3� 10ÿ3

c 2

v 2T

hDN 2i
N 2

�
k0c

op0

�nÿ1:5�o�
op0

�xÿn�1:5
: �383�

Transition radiation (382) provides a nearly flat spectrum
(with spectral index 0.2) similar to the free ± free emission.
Note that the transition radiation (382) exceeds the free ± free
radiation of warm ISM if hDN 2i=N 2 > 10ÿ9. It is important
that if the level of density inhomogeneities were larger than
3� 10ÿ7 (and the distribution function (381) is correct for
local ISM), or n < 1:6ÿ1:7, or fpm 4 20 kHz, the intensity of
transition radiation would exceed the measured intensity at
0.1 ± 0.2 MHz. Thus, the value

hDN 2i
N 2

� 3� 10ÿ7 �384�

is the upper limit for the small scale density fluctuation level in
the local ISM if distribution (381) is correct.

Finally, Fig. 15c shows the expected intensity of ultra-low-
frequency background galactic radiation reduced by free-free
absorption in the galactic disc. The two theoretical curves
reflect the two considered models for the distribution of the
thermal electron density. Transition radiation clearly dom-
inates any other emission mechanism at f < 50 kHz. Thus,
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observations of the galactic transition radiation at these
extremely low frequencies would provide us with averaged

characteristics of the small-scale structure of the local
interstellar medium.

So far, the lowest frequency observations, f �
0:13ÿ2:6 MHz, of the background radio emission of the
Galaxy were performed by the satellite IMP-6 [103] 30 years
ago. Recent observations performed by theWIND spacecraft
at f > 0:2MHz [104, 105] agree well (within a factor of 2) with
older ones [103, 106, 107].

All the observations cited have been made from Earth
orbit, where the interference level (of solar and terrestrial
origin) is rather large. Hence, it is exceedingly difficult to
observe at low frequencies. The study of the low-frequency
background radiation of the Galaxy can be promoted
substantially by a spacecraft like CASSINI [108] traveling
far from the Sun and Earth. Particularly, such missions can
contribute significantly to observations of transition radia-
tion generated in the local interstellar (and/or interplanetary)
medium.

5.2 Estimate of transition radiation intensity
in the solar corona
Relativistic particles and magnetized turbulent plasma are
typical for most astrophysical objects. However, many
sources like radio galaxies and supernova remnants are
rather tenuous, so they produce transition radiation in a low
frequency range that is inaccessible to observations from the
Earth due to absorption in the interstellar medium and the
opacity of the Earth's atmosphere. Contrarily, the plasma
frequencies of the solar atmosphere belong to the frequency
range covered by the usual ground based radio telescopes.

Solar radio bursts are well known to reveal a prominent
variety. Both the difference in physical conditions at the
source and the different microscopic emission mechanisms
dominating in various events [109] provide the variety of solar
radio emission types. There is no doubt that bremsstrahlung,
gyro-synchrotron (both incoherent and coherent), and
plasma mechanisms are important for the production of
solar radio emission [67, 109]. The role of transition
radiation generated by fast particles in a plasma with random
inhomogeneities is still unclear, while there is ample observa-
tional and theoretical evidence for the presence of non-
thermal particles (particularly, relativistic) and turbulence in
flares (for details see Ref. [110]).

Modeling of flaring electromagnetic emission requires
taking into account that the primary energy release occurs in
arch-like magnetic structures, rather than in uniform plasma.
The legs of arch end in the dense photosphere, while the top of
arch is located in more rarefied corona (Fig. 16). Hence, the
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charged particles accelerated by the energy release propagate
in a medium with varying parameters (number density,
temperature, and magnetic field). Consequently, radio emis-
sion (R) originates at high (rarefied) levels of the magnetic
loop, while hard X-ray and gamma-ray radiation �X; g� are
generated (by bremsstrahlung) at the dense legs of the arch.

The intensity of transition radiation has been discussed to
be rather large close to the local plasma frequency. It is
important that the plasmamechanism based on the instability
of plasma waves and their consequent conversion into radio
waves can contribute to the very same frequency range. The
instability requires the fast particle distribution to be
anisotropic (say, beam-like or loss-cone). Transition radia-
tion can dominate (at the plasma frequency) if the fast
electrons are distributed more or less isotropically and the
conditions for plasmawave instability are not fulfilled. This is
probably the case for continuum decimetric and microwave
bursts of solar radio emission. The high frequency emission is,
no doubt, generated by gyro-synchrotron emission of ener-
getic electrons [109], while low-frequency emission can be
produced by the transition mechanism.

Section 5.1 uses independent data on the spectrum of the
ISM density inhomogeneities to calculate the transition
radiation generated in ISM. Unfortunately, data of this kind
are not available for the solar atmosphere (and for solar
flares, in particular). However, the interpretation of flare
radio emission can be improved being analyzed together with
hard X-ray and gamma-ray emission generated by the same
accelerated electrons. The analysis of these hard emissions
provides us with spectra and number densities of fast
particles, hence, the account of hard X-ray and gamma-ray
emissions is a must for the interpretation of radio data to be
consistent.

Relativistic electrons generate both transition and gyro-
synchrotron radio emission when they move in a magnetic
trap filled by turbulent background plasma. However, the
two mechanisms dominate in different frequency ranges,
namely, the high-frequency part (to the right of the spectral
peak) of observed spectrum is produced by the synchrotron
mechanism [109], while the low-frequency part (to the left of
the spectral minimum) is produced by transition radiation.
This separation happens because synchrotron radiation
decreases exponentially due to the plasma dispersion effect
[53] at the frequencies f < fR � 2f 2p =3fB, where fp and fB are
the plasma and gyro-frequencies of the electron, while it is
generated effectively at the frequencies (range I):

f > fR : �385�

If fp 4 fB, then transition radiation is produced at
fp < f < fR (range II), while it is suppressed by magnetic
field at higher frequencies (see Section 2.2).

Let us start with an oversimplified model assuming the
radio source to be uniform on average, so that resonant
transition radiation is unessential at frequencies f > fp. The
flux of (standard) transition radiation in range II can be
expressed as [110]

F tr
f � b� 106

fp
1 GHz

VNe�> 1 MeV�
1033

hDN 2i
N 2

�
fp
f

�x�1ÿn
sfu

�386�

(1 sfu � 10ÿ19 erg cmÿ2 sÿ1 Hzÿ1 is a solar flux unit), where
hDN 2i and n are the mean square and spectral index of

inhomogeneities on scales l0 � 2c=fp, N is the number
density of background electrons, and b�n; x�� 1 [for example
b�1:5; 3:5��3:3, b�1:7; 4� � 4:4].

The flux of transition radiation can exceed the synchro-
tron flux: the ratio of transition radiation at f � fp (but
outside the RTR peak!) to the peak of synchrotron radiation
(at f � fR) is

F tr

F s
� hDN

2i
N

�
fp
fB

�x
�387�

for an optically thin source. Estimate (387) can be larger than
unity for dense plasma fp 4 fB.

Microwave solar bursts frequently display spectra with
maxima and minima. We consider three solar flares observed
at gamma range Eg > 300 keV: 1980 June, 21; 1982 April, 02;
and 1982 July, 09. The flares lasted about one minute in both
radio and gamma ranges, so they are classified as impulsive
flares [111]. Differential energy spectra of accelerated elec-
trons are obtained with the use of the respective gamma-ray
spectra [112], the number density of the electrons is found
from cooperative analysis of microwave (gyro-synchrotron)
and gamma (bremsstrahlung) radiation.

1982 July, 09 flare. This flare produced both decimetric
and microwave radiation (Fig. 17) [113]. The real (gradually
non-uniform) loop is assumed for simplicity to consist of two
regions, dense legs and rarefied loop-top, which are assumed
to be uniform on average. Hence, gamma-ray emission is
generated in the lower source (loop legs), while radio emission
is produced in the upper source (loop top).

Let us obtain the parameters of radio source from the
microwave spectrum. We assume fp � 1 GHz that is less than
the frequency of the spectral minimum fmin � 3 GHz. The
peak of microwave emission at fmax � 9 GHz is due to the
Razin ±Tsytovich effect if B � 90 G. Hence, the instanta-
neous number of fast electrons should be

VNe�> 1 MeV� � 1032 ; �388�

to provide the observed flux of 700 sfu at the frequency fmax.
As could be expected the estimate (388) is one order of
magnitude less than the total (during the whole flare) number
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Figure 17. Radio spectra of three solar flares at the moments of the

respective temporal peaks.
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of accelerated electrons Ntot�> 1 MeV� � 1033 found from
the gamma-ray fluence. The spectral index of the energy
spectrum of electrons found from the slope of the high-
frequency microwave spectrum, x � 3:5, is in good quantita-
tive agreement with that found from gamma-ray data. Thus,
the high frequency radiation can be consistently interpreted in
terms of gyro-synchrotron emission from a uniform (on
average) source.

Let us apply the TR theory to the low-frequency
radiation. Substitution of Eqn (388), fp and the observed
flux 500 sfu at f � 1:5 GHz into Eqn (386) yields

hDN 2i
N 2

� 6� 10ÿ4 �389�

in scales l0 � 2c=fp.
The interpretation would be consistent if the radio

emission generated at the lower source did not exceed the
observed level. Assuming typical parameters B � 200 G,
N � 2� 1011 cmÿ3 we have fR � 20 GHz, so synchrotron
radiation from the lower source is unessential at these
frequencies. Transition radiation from the lower source is
less than the observed radio flux if

hDN 2i
N 2

< 4� 10ÿ4 : �390�

The same analysis of the two other flares (see Ref. [114] for
more details) shows that the low-frequency rise in the radio
spectra is due to transition radiation if

hDN 2i
N 2

� �1ÿ2� � 10ÿ3 : �391�

Thus, the cooperative use of the synchrotron and
transition mechanisms provides a consistent model of radio
emission generated during solar gamma flares (which are the
most powerful ones).

The majority of solar flares do not produce gamma
emission, while they produce hard X-ray emission. The low
frequency rise can also be treated as transition radiation in
this case providing a consistent interpretation [110].

Thus, the use of the theory of transition radiation is
concluded to give logically consistent results. However, the
obtained level of plasma inhomogeneities seems to be rather
large, hDN 2i=N 2 � 10ÿ4ÿ10ÿ2, while less than unity. We
should finally note that the estimates do not take into account
the real large-scale inhomogeneity of the radio source and
resonant transition radiation, which is more important for a
non-uniform source.

5.3 Resonant transition radiation in solar flares
Resonant transition radiation from a uniform source is a
narrow peak close to the plasma frequency. The actual shape
of the RTR spectrum depends primarily on the real large-
scale inhomogeneity of the medium producing this radiation.

Further calculations assume the distribution of the TR
source `over the plasma frequency' to obey a power-law at
some range of plasma frequencies

F �op� � �lÿ 1�o
lÿ1
p0

ol
p

; op > op0 ; �392�

where op0 is the lowest plasma frequency at the source.
Eight different formulae describe the RTR intensity of

ordinary and extraordinary waves depending on the ratio of

the dimensionless parameters oB=op and vT=c (where vT is
the thermal velocity of the background electron, c is the speed
of light) and on the interrelation between the spectral indices x
and n, see Section 3.3. The narrowness of the RTR peak
allows us to approximate the RTR spectral density for each of
the cases (256) ± (263) by

P �i�o � Pi d�oÿ op� ; 14 i4 8 : �393�

Integration of the intensity (393) with the distribution
function (392) over the volume of the source located at a
certain distance from the observer yields the flux of radio
emission:

Ff � 2pV
R 2

s

�
F �op�P �i�d�oÿ op� dop ; �394�

where V is the volume of the emission source, and Rs is the
distance between the Sun and the Earth.

The following relation between parameters is typically
correct for solar decimetric and microwave bursts:

vT

c
<

oB

op
<

�
vT
c

�1=2

: �395�

Here, if x < n� 2, then the RTR of ordinary waves is P5

(260); if x > n� 2:5, then it is P3 (258), and if
n� 2 < x < n� 2:5, then it is the sum of these two formulae.
Let us consider the case of P5 (260) in more detail.
Substitution of Eqn (260) into Eqn (394) yields

Ff � V

R 2
s

C5
e2

c
�1� cos2 y�

�
fpx

xÿ1
0 Ne

hDN 2i
N 2

�
k0c

op

�nÿ1

�
�
op

oB

�1=2
c

vT

�
op0

op

�l

d�oÿ op� dop ; �396�

where

C5�
p2�lÿ 1��nÿ 1��xÿ 1�G��xÿ 1�=2�G��nÿ x� 2:5�=2�

36� 61=2�n� 2�G�n=2� 3=4� :

�397�

We should emphasize that the output of the integration
(396) is specified bywhether and how the parameters involved
hDN 2i, k0, oB depend on the plasma frequency op. If each of
the parameters depends on the plasma frequency (if any) by a
power-law, the integration in Eqn (396) yields

Ff � C5
e2fp0
R 2

s c
�1� cos2 y�x xÿ1

0 VNe
hDN 2i
N 2

�
k0c

op0

�nÿ1

�
�
op0

oB

�1=2
c

vT

�
op0

o

�a

: �398�

The spectral index a is specified by partial power-laws. For
example, if

hDN 2i
N 2

� const ;
k0c

op
� const ;

op

oB
� const ; �399�

then

a � lÿ 1 ; �400�
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if

hDN 2i
N 2

� const ; k0 � const �op� ; oB � const �op� ;
�401�

then

a � l� nÿ 2:5 �402�

etc. Further, we omit for simplicity the index `0' inop0 and use
the notation op. Substituting the well-known fundamental
constants and the distance between the Sun and the Earth,
Rs � 1:49� 1013 cm, into Eqn (398), we obtain the RTR flux
from a non-uniform source (in solar flux units):

Ff � 3:45� 105C5�1� cos2 y� fp
1 GHz

x xÿ1
0

VNe

1033
�

�
�
k0c

op

�nÿ1 hDN 2i
N 2

�
op

oB

�1=2
c

vT

�
op

o

�a

sfu : �403�

Expression (403) is correct [with the condition (395)] for
rather hard spectra of fast electrons, x < n� 2. For softer
spectra, n� 2:5 < x < n� 3, the use of RTR intensity P3

(258) yields (for ordinary waves)

Ff � 3:45� 105C3
fp

1 GHz
x xÿ1
0

VNe

1033

�
k0c

op

�nÿ1 hDN 2i
N 2

� c 2

v 2T

�
op

oB

�
6� 31=2v 3T

c 3

�1=2�n�3ÿx�op

o

�a

sfu ; �404�

where

C3 � p�lÿ 1��nÿ 1��xÿ 1�
12�n� 2�

�
�

8

15�n� 3ÿ x� �
p�1� cos2 y�
8�xÿ nÿ 2�

�
: �405�

For the intermediate case, n� 2 < x < n� 2:5, the flux is
described by the sumof expressions (403) and (404). TheRTR
is polarized as the ordinary mode (see Section 3.3) and the
degree of polarization can be as high as 100%.

Moreover, solar flares frequently produce even softer
electron distributions:

x > n� 3 : �406�

Indeed, the hard X-ray spectra (closely related to the
spectrum of fast electrons injected into the loop) of solar
flares are typically

FE / EÿgX ; 3 < gX < 7 �407�

The respective energy spectra of the fast non-relativistic
electrons accumulated inside the magnetic loop obey power-
laws as well [115, 116]:

N�E � / EÿxE ; 2:5 < xE < 8 : �408�

The spectral index x in the distribution over momentum (172)
is defined in the non-relativistic region by xE by the relation

x � 2xE ÿ 1 > 4 : �409�

So, (406) is fulfilled for the Kolmogorov spectrum of
turbulence for x > 4:7.

For this case (and oB=op < �vT=c�1=2), the transition
radiation of each of the normal modes is described by the
formula P2 (257). For the total flux (the sum of the two
modes), we find similarly to Eqns (403), (404) (the total
radiation is weakly polarized for this case):

Ff � 3:45� 105C2
fp

1GHz

�
k0c

op

�nÿ1 hDN 2i
N 2

x n�2
0

� VNe�> x0�
1033

c 2

v 2
T

�
fp
f

�a

sfu ; �410�

where

C2 � 4p�lÿ 1��nÿ 1��xÿ 1�
45�n� 2��xÿ nÿ 3� : �411�

Since the gradual source non-uniformity (392) does not
affect the high-frequency (gyro-synchrotron) part of the radio
spectrum substantially (see Section 5.2), let us concentrate on
the estimate of resonant transition radiation.

We assume:

l � n � 1:5 ; x � 3:5 ; �412�

fp � 1GHz; VNe�> 1MeV� � 1032 ;

�
op

oB

�1=2
c

vT
� 102 ;

�413�
k0 � op

c
; cos2 y � 0:5 : �414�

Then, Eqn (403) yields the RTR flux:

Ff � 3� 106
hDN 2i
N 2

�
fp
f

�a

sfu : �415�

Hence, the RTR intensity is equal to 100 sfu at 1 GHz
[with the parameters (412) ± (414)], if there are plasma density
inhomogeneities with the level

hDN 2i
N 2

� 3� 10ÿ5 �416�

on scales l < l0 � 2pc=op (if fp � 1 GHz then l � 30 cm).
Steeper (softer) spectra of fast electrons require the use of

Eqn (404) for the RTR intensity. For

l � 2 ; n � 1:7 ; x � 4:5 �417�

and the same values of parameters (413), (414), (416),
Eqn (404) yields

Ff � 5000 sfu : �418�

This flux exceeds the flux (415) by more than an order of
magnitude; hence, the inhomogeneity level (416) can provide
radio emission with a flux in excess of 1000 sfu. This increase
is due mainly to the enhanced number of non-relativistic fast
electrons for the softer distribution with the same number of
particles with Ekin > 1 MeV (413).

The RTR flux depends on many parameters, which could
have seemed to give rise to significant uncertainty of the
respective interpretation. However, detailed diagnostics
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based on gyro-synchrotron, hard X-ray and gamma emis-
sions usually provides a lot of parameters (the number of fast
electrons, their spectrum, the magnetic field etc.). On top of
this, soft X-ray and/or millimeter-wave emissions allow one
to evaluate the temperature and the number density of the
medium.

Thus, most of the parameters (op, oB, vT, VNe, x ) are
determined from independent observations, and only the level
of inhomogeneities hDN 2i=N 2 and the spectral indices l, n, a
remain undetermined. The value of a can properly be found
from the slope of the low-frequency part of the radio
spectrum (produced by transition radiation). Unfortunately,
there is no universal relationship between a, on the one hand,
and n and l, on the other; so their values remain uncertain.
Nevertheless, n and l are numbers of the order of unity, so the
lack of knowledge of their exact values does not result in any
considerable uncertainty in the level of small-scale density
inhomogeneities hDN 2i=N 2 inferred from the low-frequency
radio flux.

Let us consider, as an example, a radio burst recorded on
1991 December, 24 [117], which clearly produced the deci-
metric transition radiation [118]. Figure 18 displays the radio
spectra of this burst at successive times. Together with the
spectra, the available observational data are temporal profiles
and spectra of hard X-ray emission, soft X-ray emission,
temporal profiles of radio emission at frequencies 410, 606,
1415, 2695, 4880, 8800, 15400 MHz, as well as images of the
radio source at 333 and 1446 MHz.

The instantaneous number of emitting electrons
VNe�> 10 keV� obtained from hard X-ray emission at the
peak time is

VNe�> 10 keV� � 1038 ; �419�

when the hard X-ray spectral index is gX � 4. The respective
spectral indices (over energy and momentum) of non-

relativistic electrons trapped in the radio source are [119, 120]

xE � 3:5 ; x � 6 : �420�

The temperature of the plasma producing the observed
soft X-ray emission is

T � 7� 106 K �vT � 109 cm sÿ1� : �421�

Assuming the gyro-synchrotron mechanism to produce the
microwave emission of this burst, we find

fp � 6� 108 GHz �N � 4� 109 cmÿ3� ;
�422�

fB � 8� 107 GHz �B � 30 G� :

The high-frequency ( f � 8:8ÿ15:4GHz) spectral index at the
peak time is

a2 � 0:9 �423�

and it increases to 1.75 later on. The microwave flux, spectra,
and time profiles support the idea that both the hard X-ray
and microwave emissions are produced by the fast electrons
injected into the trap by a common source. However, the hard
X-ray emission at 25 ± 50 keV is bremsstrahlung produced by
low-energy electrons of Ekin � 50ÿ100 keV, while the
microwave radiation is produced by gyro-synchrotron emis-
sion of high-energy electrons with a typical energy in excess of
a few hundreds keV. The characteristic lifetime of the
accelerated electrons in a magnetic trap increases with
energy, which results in more smoothed time profiles of
microwave emission (say, at f � 4:88 GHz, see Fig. 19)
compared to the profiles of hard X-ray emission [119, 120].

The respective time profiles of decimetric radio emission
reveal a tight similarity with the time profiles of hard X-ray
emission, which indicates the dominant role of low-energy
electrons in the generation of the decimetric emission. The
correlation of these time profiles with the time profiles of
microwave radiation is rather significant as well (while, it is
weaker than between hard X-ray and decimetric emissions).
Hence, the decimetric emission is produced by the very same
fraction of fast electrons and in the very same magnetic loop
as the hard X-ray emission. However, according to Ref. [117],
the gyro-synchrotron mechanism cannot account for the
observed spectral shape in the decimetric range. In particu-
lar, the low-frequency spectral index ( f � 1415ÿ2695 MHz)

a1 � 3 �424�

is noticeably larger than the high-frequency one a2 (423).
Moreover, the gyro-synchrotron emission by electrons with
Ekin � 50ÿ100 keV (producing the decimetric emission) is
rather ineffective. Willson [117] suggests the decimetric
emission to be generated by the plasma mechanism. How-
ever, this would imply a much richer temporal fine structure
than is really observed, because the plasma mechanism is an
effect of kinetic instability, so the emission produced is not
proportional to the number of fast electrons.

The most straightforward interpretation of the decimetric
emission is provided by resonant transition radiation that is
generated effectively by low-energy electrons. Suppose the
dimensionless parameters (399) to be independent of the
plasma frequency, then the spectral index in distribution

18:34:00 UT
18:38:02 UT
18:38:14 UT
18:39:26 UT

103

F, sfu

102

101

100

102 103 104 f, MHz

Figure 18.Radio spectra of the 1991 December, 24 solar flare at successive

times (UT ìUniversal time).
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(392) is

l � a1 � 1 � 4 : �425�

Assume further the spectrum of plasma inhomogeneities to be
of Kolmogorov type:

n � 1:7 : �426�
The use of Eqns (419) ± (422), (425), (426),C2 � 0:15, and

x0�10 keV� � 0:2 yields the flux of the resonant transition
radiation (410) at fp � 600 MHz:

Ff � 0:7� 1010
hDN 2i
N 2

sfu ; �427�

where hDN 2i corresponds to the scales l < c=fp � 50 cm, so
that k0c=op � 1.

From the observed flux at f � 606 MHz,

F606 � 1300 sfu ; �428�

we find

hDN 2i
N 2

� 2� 10ÿ7 : �429�

Thus, the rather low level of the plasma density inhomogene-
ities (429) provides the observed decimetric radio emission of
the 1991December, 24 flare. The sharp cutoff of the spectrum
at f < 600 MHz can obviously be ascribed to a deviation of

the actual distribution of the source plasma from the model
one (392) at fp < 600 MHz.

The importance of studying small-scale turbulence in the
solar corona can hardly be overestimated, since it plays a key
role in fast particle kinetics in the loops [121], radio wave
scattering in the corona [122], the origin of anomalous plasma
kinetic coefficients [123a] (particularly, in current sheets and
shock waves [123b]) etc.

Finally it should be stressed that there are currently no
means to study these extremely small-scale medium inhomo-
geneities except for the proposed analysis of resonant
transition radiation. Note that the obtained level of the
(dimensionless) plasma density inhomogeneities (429) for
this particular flare is the same as in the interstellar medium
(where it has been found by analyzing the scintillations of
radio sources [101]).

5.4 Generation of resonant transition radiation
in the Earth's ionosphere
Let us consider resonant transition radiation generated in the
Earth's ionosphere. This problem is of particular interest
because the ionosphere is the closest cosmic plasma to the
Earth and therefore its properties are thoroughly studied.

The ionospheric plasma is known to be non-uniform with
altitude. The number density of background electrons has its
maximum in the F2 layer; the profile of the number density
can be approximated there by a parabolic function

N � Nm

�
1ÿ

�
1ÿ z

L

�2�
; �430�

where Nm is the peak (over the altitude) value of the electron
number density,L is the effective scale of the F2 layer, and the
coordinate z is counted from the level of N � 0. The plasma
frequency calculated for Nm is referred to as the ionospheric
critical frequency, fcr.

TheRTR intensity from a non-uniform source distributed
over the sky is given by the integration of RTR emissivity over
z and its averaging over the angles:

If �
��

P� f � dz
�
�
��

P� f � dz
dfp

dfp

�
�
�
P� f �F� fp� dfp ;

�431�
where

F �
�
dz

dfp

�
�432�

represents the distribution function of the ionospheric plasma
over plasma frequency.

The use of Eqn (430) yields for an ideal parabolic layer:

Fz � dz

dfp
� L fp

f 2cr

��������������������������
1ÿ � fp=fcr�2

q ; if fp < fcr ;

and Fz � 0 ; if fp > fcr : �433�

To average this function over the angles we take into
account large-scale random ionospheric inhomogeneities,
which are assumed to be distributed in accordance with the
gaussian law:

f� fp� � 1���
p
p

D fp
exp

�
ÿ� fp ÿ f0�2

D f 2p

�
; �434�
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where Dfp � �1=2� fphDN 2
t i1=2=N, hDN 2

t i1=2 is the rms magni-
tude of large-scale random inhomogeneities of the electron
number density, and f0 is the mean plasma frequency at the
level z.

The distribution function F� fp� is obviously the convolu-
tion of these two functions (433), (434):

F � L���
p
p

D fp f 2cr

� fcr

0

exp

�
ÿ� fp ÿ f0�2

D f 2p

�
f0 df0��������������������������

1ÿ � f0=fcr�2
q : �435�

For ionospheric conditionsoB=op >�vT=c�1=2, hence, the
RTR is strongly polarized as o mode. We assume x < n� 2:5
for definiteness, so the RTR is described by formula P5 (260).
Substitution of Eqns (260), (435) into Eqn (431) finally yields
the intensity of RTR generated in the Earth's ionosphere:

If � C�y�e2L���
p
p

cD fp
x xÿ1
0 Ne

hDN 2i
N 2

�
c

l0 f

�nÿ1�
f

fcr

�2�
f

fB

�1=2

� c

vT

� fcr

0

exp

�
ÿ� fÿ dfÿ f0�2

D f 2p

�
f0 df0��������������������������

1ÿ � f0=fcr�2
q ; �436�

where

C�y� � �1� cos2 y�

� p2�nÿ 1��xÿ 1�G��xÿ 1�=2�G��nÿ x� 2:5�=2�
36� 61=2�n� 2�G�n=2� 3=4� ; �437�

hDN 2i is the mean square of the small-scale density inhomo-
geneities at l < l0 (l0 � 100 m for this case), and d f � f 2B=fp is
the difference between the frequency of RTR peak and the
local plasma frequency. We should note that hDN 2i differs
from the value hDN 2

t i describing large-scale plasma inhomo-
geneities.

The RTR spectrum (436) could be measured by
standard multi-frequency observations using, for example,
the VDR-300 radio telescope operating in the frequency
range 4.5 ± 9.3 MHz [124]. However, it is easier to study the
dependence of RTR on the ionospheric critical frequency that
reveals considerable diurnal variation. Indeed, recording the
radio intensity at a single frequency during the night-to-day
passage [125] ensures observation of this dependence.

Figure 20 represents the theoretical dependence of the
RTR intensity generated at f � 5:6 MHz (the frequency is
relatively free from interference [126]) on the ionospheric
critical frequency fcr for the parameters typical for middle
latitudes [127]. The estimated values of the RTR intensity are
of the same order of magnitude as the background cosmic
radio emission at these frequencies, thus the RTR must
dominate at day time when the cosmic background is
screened by the ionosphere.

5.5 Further application of RTR to cosmic plasmas
The RTR intensity is so large that it should be produced at an
observable level any time when fast electrons move in a
plasma with small-scale inhomogeneities of the electron
number density.

Let us discuss some important cases when RTR can be
observed (or has been observed but has been interpreted
differently or is not interpreted at all).

Type II bursts. Solar and interplanetary type II bursts are
associated with shock waves traveling from the sun. Typi-
cally, an enhanced level of both plasma turbulence and
accelerated particles accompanies the shock front. Hence,

the RTR intensity from the shock region should be enhanced
as well. If the shock wave is strong enough (the compression
ratio is close to 4) the plasma densities in upstream and
downstream regions are four times different. Thus, the
characteristic frequencies of RTR peaks generated in these
two regions are two times different providing the `harmonic'
structure of radiation with the ratio of frequencies 1 :2.

Coronal mass ejections (CME) represent a prominent kind
of solar activity strongly affecting interplanetary medium,
geomagnetic phenomena etc. Paper [128] publishes radio
spectra of some restricted regions of a CME recorded on
1998 April, 20 at frequencies 164, 236.6, 327MHz and proves
the radio emission to be generated by mildly relativistic
electrons (0.5 ± 5 MeV) by synchrotron radiation affected by
the density effect (Razin ±Tsytovich effect).

Transition radiation (from the same spatial regions of the
CME) should dominate at lower frequencies where the
synchrotron emission is suppressed strongly. Transition
radiation might be discovered with the same frequency set
when analyzing denser regions of the CME. The contribution
of transition radiation can be discriminated as an excess of the
radio flux at the frequency 164 MHz.

Low-frequency terrestrial radio emission. Many kinds of
radio emission are known to originate in the auroral region of
the Earth's magnetosphere [129]. Long ago the intensity of
the emissions was found to correlate strongly with the flux of
fast auroral electrons [130, 131]. Some of these emissions are
fairly narrow-band and are concentrated within the range
between local plasma- and upper-hybrid frequencies [129].
RTR is the most intensive in the very same frequency range
and there can contribute the bulk of radiation. The mechan-
isms of broad-band auroral radiation, such as emission
associated with ionization of atmospheric particles or emis-
sion associated with charge exchange between protons and
atmospheric neutrals [72, 130, 132] are just particular cases of
the (inelastic) polarization bremsstrahlung analyzed in Sec-
tion 4.

Furthermore, RTR can be observed in experiments on
ionospheric modification by power radio signals [21, 133]
because both accelerated particles [134] and small-scale
plasma density inhomogeneities [135, 136] originate there.

Planetary radio emissions. All giant planets are radio
sources. They have a broad variety of kinds of radiation
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Figure 20. RTR generated in the Earth's magnetosphere versus the

ionospheric critical frequency for various values of large-scale plasma

density inhomogeneities. The parameters accepted are: L � 1:3� 107 cm,

f=fB � 4, c=vT � 2� 103, x xÿ1
0 NehDN 2i=N 2 � 4� 10ÿ7.
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[137] providing an ample field for the application of the TR
theory. For example, the broad-band spectrum of Jovian
radio emission displays a low-frequency rise [137, p. 43], and
the respective radiation is polarized strongly (up to 100%) in
the ordinarymode. Such radiation can easily be interpreted as
resonant transition radiation.

The outer heliospheric boundary produces drifting bursts
of radio emission ( f � 2ÿ3 kHz) [138]. Since a shock wave is
assumed to be located there (hence, the level of plasma
inhomogeneities should be enhanced) and the respective
plasma frequencies are of the order of f � 2ÿ3 kHz, the
contribution of RTR to the bursts can be rather essential.

Transition maser emission is the generation of electro-
magnetic waves due to transition instability (i.e., when the
coefficient of the transition absorption is negative, see Section
3.5). Section 3.5 evaluates the growth rate of the transition
instability for ionospheric plasma, while it is unclear yet if the
transition instability plays any role for the Earth's iono-
sphere.

The transition instability obviously requires an anisotro-
pic distribution of fast electrons to operate. For example,
solar and interplanetary type III bursts are produced by
beams of fast electrons [109]. The plasma mechanism of
radio emission is widely accepted for these bursts. Indeed,
fast electron beams generate plasma waves easily. The plasma
waves can further be converted into transverse waves due
either to coalescence processes (providing second harmonic
radio emission at twice the plasma frequency) or to scattering
of the plasma waves on either background particles or low-
frequency waves (providing fundamental plasma emission at
the plasma frequency).

Type III bursts frequently reveal such a harmonic
structure (with the ratio of frequencies 1 :2). However, the
plasma mechanism implies a weaker fundamental-to-harmo-
nic intensity ratio �I1=I2� than is actually observed. RTR
(normal or maser) could contribute to the generation of the
fundamental emission of type III bursts.

6. Conclusions

Transition radiation is an exceedingly general phenomenon
representing a broad branch of modern physics. A particular
case of the phenomenon, namely, transition radiation arising
under natural conditions, is discussed in detail in this paper.
Natural sources of electromagnetic radiation are rather
different from laboratory ones. For the latter case, the
parameters of both medium and fast particles can be under
control (for example, we can study the emission by mono-
energetic particles, or localize a single boundary, or arrange a
periodical medium etc.).

Astrophysical media (including interplanetary and iono-
spheric plasmas) are usually highly inhomogeneous. Gradual
large-scale non-uniformity and small-scale random inhomo-
geneities of the density and/or field typically coexist. The role
of a regular (large-scale) magnetic field is rather important;
fast particles have broad energy spectra and (frequently)
anisotropic angular distributions.

The theory of transition radiation generated by fast
particles in magnetized plasma with random density inhomo-
geneities presented in this article includes all the counted
physical effects. Hence, its application for the interpretation
of astrophysical radiation is correct and provides reliable
consistent results. Nevertheless, further development of the
theory is strongly required, e.g., in respect to processes of

wave absorption and scattering, the effect of large optical
depth, maser effects, as well as detailed models for cosmic
sources of transition radiation and their use in analyzing
observations.

In essence, the use of the theory of transition radiation has
just started and, no doubt, the field of its applicationwill grow
greatly in the near future.

The authors thank V L Ginzburg and the unknown
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radiation, as well as T Bastian, D Gary, W Kurth, and
Yu V Tokarev for the discussion of TR applications. This
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16356).
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