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Electronic conductivity
of icosahedral quasi-crystals

Yu Kh Vekilov

Quasi-crystals are characterized by aperiodical atomic long-
range order and the rotation symmetry that is forbidden
for periodical structures (the existence of the 5-, 8-, 10-, and
12-fold axes of rotation). The former feature distinguishes
quasi-crystals from amorphous objects (glasses), while the
latter distinguishes them from crystals and incommensurate
structures. Quasi-crystals are usually alloys of metallic
elements, but their properties are different from those of

crystalline and amorphous metallic phases. Like metals,
quasi-crystals bear a finite electron contribution to their
heat capacity, but this contribution is approximately one
order ofmagnitude smaller than that defined in the nearly free
electron approximation (pseudogap and, accordingly, low
density of states N�EF� at the Fermi level).

However, the low density of states at the Fermi level does
not explain the abnormally small low-temperature electric
conductivity of quasi-crystals. The electrical resistivity of
quasi-crystals decreases with increasing temperature, and it
increases with increasing structural order and annealing of
defects. The resistivity ratio R � r�4:2 K�=r�300 K� for the
majority of stable quasi-crystals is several units, but for the
icosahedral alloy i-Al ± Pd ±Re, whose perfect samples have
r�4:2 K�5 1 O cm, the ratio R may be as high as 200 and
even higher, depending on the perfectness of the specimen.

The conductivity of quasi-crystals is represented as
s � s�0� � Ds�T �, where s�0� is the conductivity at zero
temperature, which depends on structural disorder, and
Ds�T � is the temperature-dependent component which may
also depend on structural disorder. Almost all quasi-crystals
exhibit a power-law temperature dependence Ds�T � � T b,
where the exponent b usually varies within the interval
1=

���
3
p

4b4 1:5 in the range from ultralow temperatures to
700 ± 1000 K. Linear dependence is usually observed at high
temperatures. A reasonable explanation of the power-law
temperature dependence of conductivity and its value at
T � 0 K was proposed by Burkov et al. [1], who used the
model of a Fermi surface with a large number of electron and
hole pockets.

Recent experiments with perfect quasi-crystals of i-Al ±
Pd ±Re have shown that at T4 10 K the conductivity can
obey the Mott law

s � s0 exp
�
ÿ
�
T0

T

�1=4 �
;

which describes hopping conduction with variable jump
length. This implies that the sample occurs in the insulator
state (Fermi glass), when the density of states at the Fermi
level is finite, but the electron states are localized. Electron
localization plays an important role in the low-temperature
electron transport in amorphous alloys, granulated metallic
films, and doped semiconductors. For these systems, electron
localization is the consequence of disorder in the system (the
Anderson localization).

Localization of electrons in a quasi-crystal differs in its
nature from appropriate localization in standard disordered
systems. The alloy i-Al ± Pd ±Re is a well-ordered quasi-
crystal, and the improvement of structural order leads to an
increase in its resistivity. Localization in quasi-crystal is a
consequence of interference (phase coherence) of the electron
states, and thus is associated with the symmetry and structure
of the object: themore perfect thematerial, themore localized
its electrons. While in the case of conventional Anderson
localization the electron states are localized because the phase
coherence of extended wave functions is destroyed by
disorder, the main cause of localization in quasi-crystals is
the phase coherence of wave functions.

This can be proved by treating the quasi-crystal as the
structural limit of the sequential of rational periodical
approximants (crystal analogs) with increasing lattice per-
iod. The volume of the Brillouin zone decreases with
increasing order of the approximant, because the lattice
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period increases. Accordingly, in the quasi-crystalline limit
the volume of the Brillouin zone becomes infinitesimal. Using
the conventional method of the construction of Fermi surface
[2], we see that the Fermi surface in the quasi-crystalline limit
becomes multiply connected, and has many electron and hole
pockets (valleys). Accordingly, in the atomically ordered pure
quasi-crystal the electron states become localized, since the
condition of strong localization: k i

F l � 1 is satisfied for the
electron in each ith valley. Therefore, each pocket (valley) is
the counterpart of the center of localization in the conven-
tional disordered system. This analogy gives a straightfor-
ward explanation of the variable hopping conductivity in a
perfect quasi-crystal at low temperatures, and allows it to be
described in the context of the model of a multivalley Fermi
surface.

In the model of a multicomponent Fermi surface with a
practically infinite number of valleys, all the electrons in the
pure ordered quasi-crystal must be localized at zero tempera-
ture. At a finite temperature, the electron scattering from one
valley to the next one is possible not only through thermal
excitation, but also through tunneling. At low temperatures,
the processes with a low transfer of momentum are more
likely: in real space this corresponds to jumps to long
distances (the feasibility of conduction with a variable jump
length). Following the Mott procedure, one can find the
optimal jump length R by calculating the maximum prob-
ability of the jump: exp �ÿ2aR� exp �ÿDE=kBT �, where
1=a � x is the localization length of the wave function, and
the excitation energy is DE � 1=R 3N�EF�. Whence directly
follows the Mott law s � s0 exp �ÿ�T=T0�1=4� with the
characteristic temperature T0 � 1=x 3N�EF�. The Mott law
does not hold when R < x and T0 < T. In the case of a quasi-
crystal, however, it is always possible to find a state for which
T0 < T, although R > x. Indeed, the object with a multi-
component Fermi surface has a hierarchy of localization
lengths x. Therefore, T0 may change from one specimen to
another depending on the previous history of the specimen.

Such a mesoscopic situation is typical for both quasi-
crystals and for conventional disordered systems near the
metal ± insulator transition. In the regime of localization the
wave functions are exponentially damped, and they are
extended from the `metal' side of the transition. Near the
transition point the localization length shows a power-law
increase (diverges), and becomes greater than any of the
characteristic dimensions of the system, and so the calculated
eigenstates do not directly reflect any kind of localization. At
the metal ± dielectric transition point itself there is no
characteristic length scale, the eigenvalues exhibit fractal
features, and the wave functions are `critical' (showing a
power-law decrease with the distance).

For the 3D Anderson model it was found that the strong
fluctuations of the amplitude of the wave function exhibit the
multifractal features at all length scales, and the singularity of
the spectrum does not depend on the size of the system [3, 4].
The same is typical of the quasi-crystal. The analysis
performed in Refs [5, 6] in the tight-binding approximation
using the method of level statistics revealed that the electron
spectrum of the 3D icosahedral crystal contains a singular
part, has a nonzeromeasure of allowed gaps, and themajority
of wave functions are critical. In contrast to the Anderson
localization, the localization of electrons in quasi-crystals is
unstable with respect to small perturbations: phasons,
substitution disorder, magnetic field; moreover, the states
are more strongly localized in the middle of the band rather

than on its edges, as is the case with the Anderson localization
[6]. Because of this, increasing temperature and introducing
defects may induce the transition of a quasi-crystal into
metallic state, the object occurs on the `metallic' side of the
metal ± insulator transition, the electron states are smeared
out due to the inelastic scattering, and the number of pockets
on the Fermi surface is effectively reduced. The Fermi surface
will contain a finite number of pockets (whose size is
determined by the uncertainty relation), and tunneling
becomes unlikely. The conductivity with variable hopping
conductivity mechanism no longer works, and dominating
are the processes of the intervalley and intravalley scattering,
which determine the power-law temperature dependence of
conductivity, and the value of residual conductivity. At
T > u=a � yD, where u is the sound velocity, and a is the
interatomic distance, the intervalley electron ± phonon scat-
tering becomes efficient and leads to the linear temperature
dependence of conductivity at high temperatures [7].

In this way, even though the Bloch theorem does not
apply to quasi-crystals, it is possible to explain their
conductivity in the framework of conventional electronic
theory of solids using the multivalley Fermi surface mode.
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