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Crystallographic picture of the world

R V Galiulin

1. Introduction
F Dyson begins his paper on the stability of elementary
substances [1] with apologies for his proof being extremely
long, complicated and unattractive. It is necessary therefore
that someone else should treat the entire problem from a
different fresh viewpoint. The present paper is based on the
assumption that a substance achieves the minimum of its
energy by crystallization. This concept follows from reason-
ing of R Feynman [2]: if somewhere the atoms settled
themselves in such a way that their arrangement corre-
sponded to the lowest energy, then in another place the
atoms will assume a similar pattern. Recent advances in
geometry and crystallography [3, 4] permit one to make this
syllogism geometrically rigorous and extend it to any discrete
states of matter (quarks, neutrons, atoms, molecules, and
supergalaxies).

2. Delaunay gas
In 1924, the prominent Russian geometrician B Delaunay
(Delone) proposed an original technique for studying discrete
sets [5], later to become known as the Delaunay empty sphere

method. Consider a system of points (the Delaunay system [6,
7]) that satisfies two requirements:

(1) r-discreteness Ð there exists a shortest distance
between the points of the Delaunay system;

(2) R-homogeneity Ð the space is covered with spheres of
radiusR, described around all points of the Delaunay system.

In the general case, Delaunay systems may be regarded as
a model of ideal gas (Delaunay gas). If r � const for all points
of the system (i.e. the shortest distance between all points is
the same), then such Delaunay systems represent all arrange-
ments of centers of hard spheres in the packings of spheres.
Notwithstanding the generality of requirements, Delaunay
systems are very informative from the standpoint of mathe-
matics, and quite natural from the standpoint of physics. Let
us enumerate some general features of Delaunay systems.

Lemma 1. r4 2R.
Observe that the centers of atoms in most real atomic

structures form the Delaunay systems for which r5R.
Lemma 2. For the construction of a Dirichlet ±Vorono|̄

polyhedron of any point of the Delaunay system, sufficient
are the points of this system that fall within a sphere of radius
2R, described around this point, and the diameter of the
polyhedron does not exceed R.

Lemma 3. The Delaunay system is 2R-connected Ð that
is, any two points of the system can be connected with a
broken line whose vertices are the points of the system, and
each segment is not longer than 2R.

3. Delaunay condensate
Consider now a sphere that does not contain points of the
Delaunay system. We keep blowing this sphere up until it
touches some point of the Delaunay system. Increasing the
radius of the empty sphere in such a way that the points it has
touched remain on its surface, we finally get a 3D complex of
points of this system. A convex envelope spanned on such
points is known as a Delaunay polyhedron. All such
polyhedrons form a partition called the Delaunay triangula-
tion. The Delaunay triangulation is currently becoming one
of the main methods of computational geometry and
computational physics [8].

Lemma 4. For any Delaunay system located on a sphere,
the Delaunay triangulation is the edge net of the polyhedron
inscribed in the sphere.

Lemma 5. If theDelaunay triangulation for a finite system
of points on a 2D sphere is combinatorially regular (i.e. for
any two points there exists a combinatorially topological
transformation that converts these points one into the other
and the entire system into itself), then it is combinatorially
equivalent to one of the Platonic solids, Archimedean solids,
and two infinite sequences of prisms and antiprisms (Fig. 1).
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Lemma 6. The Delaunay triangulation of any orbit of
points on the Euclidean plane is combinatorially equivalent
to one of the Kepler nets Ð that is, one of the isogonally
regular nets composed from regular polygons.

The physical meaning of the Delaunay triangulation
derives from the fact that it contains all the most important
bonds in the atomic structures Ð amorphous and crystalline
[9]. Observe also that the radius r for atomic structures
(amorphous and crystalline) is calculated from experimental
data, and is restricted from above by the criterion of
Lemma 1. The Delaunay triangulation is unique, and its
edges do not exceed 2R in length. When a new point is added
to or removed from the Delaunay system, the triangulation
edge net only changes in the small neighborhood of this point.
This is the reason why triangulation becomes a powerful
method for studying discrete matter. It unambiguously
characterizes the topology of its links.

4. Ideal crystal
The physically acceptable rigorous definition of ideal crystal
is only possible today on the basis of Delaunay systems.

Take a point in an arbitrary Delaunay system and
connect it with all other points in this system. Such a
construction is known as the global star of the given point
in the given Delaunay system. Generally, the global stars for
different points in the same Delaunay system are different.
The Delaunay system is referred to as regular (an ideal
crystal) if the global Delaunay stars of all its points are
congruent. In other words, each point of the system is
surrounded by all other points of the system in the same
way. From the condition of an equal surrounding of all the

points it follows that for any two points there exists a
transformation that converts the first point into the second,
and the entire system into itself. The total set of such
transformations constitutes a group known as the Fedorov
(spatial) crystallographic group. Geometrically, the Fedorov
group is defined as the discrete group with a finite
fundamental domain [10]. (The fundamental domain of a
group denotes that portion of space that does not contain
points equivalent with respect to the group transformations,
but any point of the space is equivalent to the point from
this population.) There are 219 such abstractly different
groups [11] or 230 Fedorov groups counting the enantio-
morphic pairs. The principal unitary representations of
Fedorov groups can be found in Ref. [12].

In this way, the ideal crystal is said to be any arrangement
of atoms or finite groups of atoms that are equivalent with
respect to a Fedorov group. The crystal is defined in terms of
the Fedorov group. Notice that the Fedorov groups are
n-dimensional and exist in all constant curvature spaces [13].

From the standpoint of conservation laws [14], crystal-
lographic symmetry corresponds to atomic indistinguishabil-
ity. It is in crystal and only in crystal that atoms can be
absolutely indistinguishable.

5. Local theory of crystal growth
The above definition of ideal crystal, however, does not
explain the reasons for its nucleation and growth, because
there are no natural causes by which every atom could control
the atoms that surround it all the way to infinity. Because of
this, the local definition of regularity was formulated in the
spirit of Feynman's reasoning [3, 15].
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Figure 1. Regular and semiregular isogons.
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Stogrin's theorem. If each point of theDelaunay system on
the Euclidean plane is equally surrounded by other points of
the system in the circle of radius 4R, then such a Delaunay
system is regular, i.e. it constitutes an ideal two-dimensional
Euclidean crystal.

This local theorem was reproved by L Danzer in a
different formulation, which is better suited for studying the
processes of condensation of matter [16].

Danzer's theorem. If the Delaunay system can be uniquely
reconstructed from a finite number of points and a finite
number of conditions imposed on their extensions, then such
a system is an ideal crystal.

From the Danzer theorem it follows that the statement
that quasi-crystals such as Penrose tilings are not an artefact
but experimental reality is equivalent to the statement that it
is possible to measure exactly the diagonal of a square.
However, quasi-crystals may also be regarded as ideal
crystals in the Lobachevsky space [17].

6. How large is the gap between chaos and order?
In the world there are only two practically unattainable states
of matter: chaos (Delaunay gas) and ideal crystal (a regular
Delaunay system). All other states of discrete and homo-
geneousmatter can be regarded as intermediate between these
two. If the substance acquires such an amount of energy that
is capable of destroying it, then it moves towards chaos,
otherwise it will spend its energy on ordering. Ideal (or long-
range) order, however, can only be attained in crystals.
``Crystals are death'', Ð declared E S Fedorov, the founder
of contemporary crystallography [18], and this idea agrees
with Feynman's reasoning [2].

Now let us see how large is the gap between ideal crystal
and chaos in the case of the Euclidean plane. From the
arguments developed above it follows that if every particle
of discrete homogeneous matter is equally surrounded in a
circle of radius 4R, then we get an ideal crystal. As the radius
of this surrounding decreases, we start getting twinsÐ that is,
Delaunay systems whose extension from the selected finite
point set is not unique. When the radius of equal surrounding
becomes smaller than 2R, we get the Delaunay systems where
the islands of similar environment reduce to one dimension,
which leads to chaos. In this way, by the criterion of similar
environment (note, however, that other criteria are also
possible), the gap between chaos and ideal crystal is not
greater than 2R.

Since it is not possible to give a rigorous description of
chaos, crystals are used as a kind of reference for describing
other states of matter. In particular, there is hope to describe
the structure of liquids as Delaunay systems in which small
displacements of particles alter the topology of Delaunay
triangulation.

In 1988, M I Stogrin [19] proved that there exist regular
partitions of an Euclidean plane with planigons in which the
centers of action of these planigons form chaotic systems.
Shtogrin's result has not yet been interpreted either by
mathematicians or by physicists.

7. Topological regularity
In 1916, A V Shubnikov formulated the following problem
[20]. Let similar atoms on the plane have equal finite number
of bonds with one another. What is the number of possible
different two-dimensional crystal structures? It turned out
that there are just 11 combinatorially different types, and
each of these types can be represented by Kepler's net [21].

Thus, the emergence of two-dimensional crystal does not
depend on the length of bonds between the atoms and the
angles between these bonds Ð it is only necessary that the
same number of bonds should join at each node of the net.
After that these bonds and angles, without breaking, will
rearrange in such a way that the nodes of the net form a
regular Delaunay system. Consequently, it follows that the
values of metric parameters do not play any significant role
in the formation of 2D crystals. In the case of three-
dimensional space, this question remains open.

8. Orbifolds
The exact representation of the independent domain of the
Fedorov group consists in that the equivalent points of
boundaries `are glued' together. In this way in the topology
we get compact locally Euclidean manifolds (orbifolds) [22,
23]. Such `gluing' may also have physical meaning: the
independent domain can be glued together along the
boundary points in such a way that all available chemical
bonds are compensated. Such an orbifold may be taken for
the model of nanocrystal. Free atomsmay also be regarded as
compact manifolds.

The relaxation of enormous stresses may take place
through the disintegration of the crystal structure into
nanocrystals [24]. Such a crystal decay into nanocrystals
may be triggered by decreasing temperature or by increasing
pressure. The structure may disintegrate into separate
nanocrystals (zero-dimensional decay), into separate linear
chains of nanocrystals (one-dimensional decay), or into
separate layers (two-dimensional decay). The decomposition
of crystal into the hierarchy of blocks (whereby each block
further disintegrates into smaller blocks, so that all blocks
together make a fractal) is also the conversion of its structure
into the nanocrystalline state. As the crystal grows, the
nanocrystal (an individual neutral atom or group of atoms
forming the independent structural domain) breaks the self-
closed bonds and the corresponding bonds on the surface of
the seed, and smoothly integrates into the crystal structure.

The charge of the orbifold is neutral, which, together with
its very small size (one or several independent domains),
facilitates the `omnipresence' (in Vernadsky's sense) of such
formations. Fine dispersion minerals apparently exist in the
form of orbifolds. As the size of the orbifold reaches a certain
threshold, however, the orbifold can no longer close on itself,
and starts to form aggregates (not necessarily crystals).

9. Non-Euclidean structures
The fact that crystals favor the Lobachevskian geometry is
vividly demonstrated by saddle-shaped dolomite crystals
(Fig. 2). Their surface may be regarded as a portion of the
Lobachevsky plane. All this plane, however, cannot be fitted
into the Euclidean space without stress [25] which transforms
this construction into dolomite dust, namely, a very natural
phase state of the dolomite mineral.

The first purely spherical crystal is fullerene C60, a two-
dimensional spherical diamond (graphite is a two-dimensional
Euclidean diamond) [26]. Since the constant curvature
spaces, which alone can host the crystal growth, are locally
Euclidean, the crystal can grow to a certain size (different
for various species) according to its internal geometry. As
the crystal grows further, internal stresses develop in it
because of the nonuniformity of the real space (as follows
from general relativity) or because its internal geometry is
non-Euclidean.
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The crystal relieves these stresses by producing imperfec-
tions through twinning, slipping, inclusion of foreign atoms,
helical dislocations, edge dislocations, disintegration into
blocks, and even bending the space [27]. Perfect diamond
crystals are always highly stressed. For the same reason, their
structure always contains atoms of nitrogen.

Observe also that the growth zones in crystal are regarded
as its defects. However, a theory of finite zonal crystal was
constructed on the basis of Riemann geometry [28].

10. Fractals
Some believe that only crystals with defects may exhibit
fractal properties [29]. However, since the choice of bound-
aries of the fundamental domain of Fedorov groups (with the
exception of Coxter groups) is not unique, fractal-type
boundaries are also possible. In other words, ideal crystal
can be built from the particles with fractal boundaries. In the
quest for new approaches to high-temperature superconduc-
tivity, the motion of an electron in crystal was described by
the simplest nonlinear equation with the periodicity feature
[30, 31].Attractors (points of attraction) in this motion are the
points of a one-dimensional lattice (Fig. 3). On the complex
plane, the nodes of this lattice are the integer points of the real
axis. To visualize this motion, all the points that pertain to the
same Dirichlet region of the node of one-dimensional lattice
are painted with the same color that does not change as the
point moves along. This gives us a dumbbell-shaped fractal

pattern. This pattern will be reproduced when appropriate
magnification is applied to any point on the boundary
between the colors. This property of fractals is known as
scale invariance. In the middle of each dumbbell we have the
region of chaos Ð domains, where no information in
principle can be gained with any experimental methods.

11. Crystal-like model of the Universe
Astronomers have noted that spiral galaxies, down to minor
details, exhibit twofold rotation axes [32]. Had our world
been two-dimensional, this would imply that the centers of
galaxies in the Universe make up a regular system of points.
In the case of three-dimensional Euclidean space, all
admissible arrangements of twofold rotation axes are
known. However, if the twofold rotation axes of galaxies
correspond to one of the Fedorov groups in the Loba-
chevsky space, such regularity would be very hard to notice.
This regularity will seem to be simply a chaos. It is quite
possible therefore that the observable part of the Universe is
a fragment of crystal structure in the Lobachevsky space
[33]. Today there are already many publications devoted to
the crystal-like model of the Universe (see, for example,
Ref. [34]).

Observe now that neutrons in a neutron star also form
crystals. Carrying this analogy further, one may expect that
when a neutron star collapses (i.e. the neutrons are crushed
down) we get a crystal made up of quarksÐ a black hole. The
gravitational collapse of a black hole (as a crystal) apparently
leads to the Big Bang. This hypothesis may be related to the
anisotropy of the relict radiation, which may help us to define
the symmetry of the exploded crystal [35].
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Electronic conductivity
of icosahedral quasi-crystals

Yu Kh Vekilov

Quasi-crystals are characterized by aperiodical atomic long-
range order and the rotation symmetry that is forbidden
for periodical structures (the existence of the 5-, 8-, 10-, and
12-fold axes of rotation). The former feature distinguishes
quasi-crystals from amorphous objects (glasses), while the
latter distinguishes them from crystals and incommensurate
structures. Quasi-crystals are usually alloys of metallic
elements, but their properties are different from those of

crystalline and amorphous metallic phases. Like metals,
quasi-crystals bear a finite electron contribution to their
heat capacity, but this contribution is approximately one
order ofmagnitude smaller than that defined in the nearly free
electron approximation (pseudogap and, accordingly, low
density of states N�EF� at the Fermi level).

However, the low density of states at the Fermi level does
not explain the abnormally small low-temperature electric
conductivity of quasi-crystals. The electrical resistivity of
quasi-crystals decreases with increasing temperature, and it
increases with increasing structural order and annealing of
defects. The resistivity ratio R � r�4:2 K�=r�300 K� for the
majority of stable quasi-crystals is several units, but for the
icosahedral alloy i-Al ± Pd ±Re, whose perfect samples have
r�4:2 K�5 1 O cm, the ratio R may be as high as 200 and
even higher, depending on the perfectness of the specimen.

The conductivity of quasi-crystals is represented as
s � s�0� � Ds�T �, where s�0� is the conductivity at zero
temperature, which depends on structural disorder, and
Ds�T � is the temperature-dependent component which may
also depend on structural disorder. Almost all quasi-crystals
exhibit a power-law temperature dependence Ds�T � � T b,
where the exponent b usually varies within the interval
1=

���
3
p

4b4 1:5 in the range from ultralow temperatures to
700 ± 1000 K. Linear dependence is usually observed at high
temperatures. A reasonable explanation of the power-law
temperature dependence of conductivity and its value at
T � 0 K was proposed by Burkov et al. [1], who used the
model of a Fermi surface with a large number of electron and
hole pockets.

Recent experiments with perfect quasi-crystals of i-Al ±
Pd ±Re have shown that at T4 10 K the conductivity can
obey the Mott law

s � s0 exp
�
ÿ
�
T0

T

�1=4 �
;

which describes hopping conduction with variable jump
length. This implies that the sample occurs in the insulator
state (Fermi glass), when the density of states at the Fermi
level is finite, but the electron states are localized. Electron
localization plays an important role in the low-temperature
electron transport in amorphous alloys, granulated metallic
films, and doped semiconductors. For these systems, electron
localization is the consequence of disorder in the system (the
Anderson localization).

Localization of electrons in a quasi-crystal differs in its
nature from appropriate localization in standard disordered
systems. The alloy i-Al ± Pd ±Re is a well-ordered quasi-
crystal, and the improvement of structural order leads to an
increase in its resistivity. Localization in quasi-crystal is a
consequence of interference (phase coherence) of the electron
states, and thus is associated with the symmetry and structure
of the object: themore perfect thematerial, themore localized
its electrons. While in the case of conventional Anderson
localization the electron states are localized because the phase
coherence of extended wave functions is destroyed by
disorder, the main cause of localization in quasi-crystals is
the phase coherence of wave functions.

This can be proved by treating the quasi-crystal as the
structural limit of the sequential of rational periodical
approximants (crystal analogs) with increasing lattice per-
iod. The volume of the Brillouin zone decreases with
increasing order of the approximant, because the lattice
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