
Abstract. Experimenters and, to some extent solid-state elec-
tronics specialists, will find in this paper a comprehensive review
and much original material in a relatively new area of physical
magnetoacoustics Ð acoustic birefringence (circular and line-
ar) in antiferromagnets Ð where effects quite extraordinary
from the viewpoint of nonmagnetic (and even ferromagnetic)
crystals are studied. The availability of the theory of these
effects, the possibility of controlling them with magnetic (B)
and electrical (E) fields, and the understanding of the role of
such factors as the crystal and magnetic structure, orientation
state, sample size, the direction and magnitude of B and E, etc.,
all this paves the way and indeed calls for intensive experimental
work and holds promise of new and exciting discoveries in solid-
state magnetoacoustics.

1. Introduction

In this article, we study a fairly new region of magnetoacous-
tics (antiferromagnetoacoustics, to be exact). Its main goal is
to attract the attention of experimenters in physics to the
possibility of discovering new effects in acoustics that have
been predicted theoretically for antiferromagnetic (AF)

crystals of different types. We not only review the numerous
data from the literature in this area of research but also
discuss the prediction of several new effects that are of interest
not only to physicists but also to specialists in solid-state
electronics. In discussing the problems, we define or refine
several concepts and terms characteristic of the acoustics of
antiferromagnets (and, generally, of optics).

The very title of the review needs explaining, since we use
the terms `acoustic birefringence,' although it is known that
three normal acoustic modes (for a given wave vector k) exist
in crystalline bodies in the general case [1]. However, from the
viewpoint of symmetry and the orientation of the antiferro-
magnetism vectorL, in the simplest case one can always select
a situation (the directions of the vectors k and L and the
magnetic and electric field B and E) in which the elastic wave
proves to be a superposition of only two modes. Thus the
third mode becomes separated and can be ignored. The first
two modes have different phase velocities corresponding to
different polarizations of the elastic displacement u, so that
their mixing results in effects that can be called, as in optics,
birefringence (BR) effects. Hence the title of the review.

Limiting our study to particular cases not only simplifies
the theory (as well as setting up an experiment). It also makes
it possible to follow the direct analogy to the corresponding
effects in optics and to establish the existence of effects that
make, in this sense, acoustics different from optics [2 ± 6].

Two macroscopic approaches can be used in describing
the acoustic properties of AF crystals [4 ± 7]. The first is a
purely symmetry approach, which begins with the elastic
constant tensor Ĉ � Cijkn; written on the basis of the
requirement of invariance with respect to the crystallochem-
ical symmetry group GF1

0 (GF is the space group, and 10 is
time inversion t! ÿt) with allowance for the contribution to
Ĉ provided by the magnetic variables, the vectors of
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antiferromagnetism L, magnetization M, and magnetic field
B. For centrally antisymmetric (CAS) antiferromagnets, one
must also allow for the contributions related to the electric
field E and the terms linear in wave vectors k and caused by
spatial dispersion of AF origin.

Symmetry analysis enables the establishment (prediction)
purely qualitatively of the very existence of the characteristic
AF effects (which are of interest to us) in acoustics and, in
particular, acoustic BR caused by antiferromagnetism. But
within this approach we can say nothing about the size of
these effects. We use it primarily in the symmetry classifica-
tion of the effects (Section 2).

In the second approach, we examine magnetoelastic
waves using the coupled equations of magnetoelastic
dynamics: the dynamical equations of elasticity theory and
the equations of motion of the spin (antiferromagnetic)
subsystem. This approach is more complicated and cumber-
some in the mathematical sense. However, it has the
advantage of providing the possibility of actually building a
quantitative theory of acoustic BR, since the equations
contain constants (elastic, magnetic, and magnetoelastic)
that can be found from other, independent, experiments. On
the basis of the coupled equations of magnetoelastic
dynamics we examine the effects in centrosymmetric anti-
ferromagnets (Section 3). On the other hand, in describing
acoustic BR in antiferromagnets with an antisymmetry center
(Section 4), we use purely a symmetry approach because of
insufficient experimental data on CAS antiferromagnets.

It would seem that, when dealing with the acoustics of
crystals, we should begin with the general theoretical
fundamentals of physical acoustics and introduce such
concepts as the Christoffel equations and tensors, character-
istic surfaces, etc. There are, however, many excellent
monographs and even textbooks where all these concepts
are discussed very thoroughly (e.g., see Refs [8 ± 10]). We
would like to mention the book by Sirotin and Shaskol'skaya
[8], where the topics are treated in full and yet simply. More
than that, the area of new (or little-known) acoustic effects
related to antiferromagnetism in some cases lies outside the
scope of the general theoretical fundamentals. Hence, we
chose a more direct and fast (from our viewpoint) way that
leads to the result, a way that follows from the equations of
dynamics and avoids the generally known concepts and
mathematical tools. Actually, we simply give a brief descrip-
tion of the acoustic BR phenomena caused by antiferromag-
netism, depending on the crystal system, the exchange
magnetic structure (EMS) 1 and the orientation state (the
direction of vector L) [7, 11]. Here, for the sake of
convenience, we determine only some concepts that are
often not defined precisely in acoustics (and in optics, for
that matter). This is true of acoustic activity, gyrotropy,
nonreciprocal phenomena, etc. Using these concepts, we
classify the effects (see Table 1 below) and assign abbrevia-
tions.

In the concluding section of this review, we list some
effects that are most interesting, we believe, from the view-
point of setting up experiments, specifying where possible the
substance and the conditions in which the effects are realized,
and sometimes even the expected values.

2. Symmetry classification of effects
and the main definitions

2.1 Antiferromagnetic (AF) contributions to the elastic
constant tensor
The symmetry approach is based on the invariant decomposi-
tion of the magnetic contribution 4Ĉ to the elastic constant
tensor eCijkn along the vectorsL,M, andB, and also, in the case
of CAS antiferromagnets, along the vectors E and k [5, 7].
Here, only the spatial dispersion of eCijkn that is linear in k is
taken into account. We separate this AF contribution DĈ
from the nonmagnetic contribution Ĉ, so that

eCab � Cab � DCab�L;M;B; k;E� : �1�

Here we have introduced the standard notation for the pairs
of indices ij � a and kn � b:

xx � 1; yy � 2; zz � 3; yz � zy � 4;

zx � xz � 5; xy � yx � 6 : �2�

We will employ, following Ref. [7], the Onsager relations

DCab�L;M;B; k;E� � DCba�ÿL;ÿM;ÿB;ÿk; E� : �3�

The `minus' in the arguments on the right-hand side indicates
that the corresponding vectors change sign under the
operation of time inversion 10. We denote such vectors by
the letter I. We see that only the vector E does not obey this
rule. In addition to magnetic vectors, the wave vector k also
belongs to the I type; in this sense, this vector k acts as
momentum.2 If we take equation (3) into account, the even
powers of I form a symmetric part (DĈ s) under the
permutation of a and b, while the odd powers of I form an
antisymmetric part (DĈ a) under such a permutation:
DC s

ab � DC s
ba; DC

a
ab � ÿDC a

ba (DCab � DC s
ab � DC a

ab). The
sought decomposition can schematically be represented as
follows:

DĈ s � �LL� � �LB� � �BB� � �Lk� � . . . ; �4�
DĈ a � �k� � �L� � �B� � �LBB� � �LE� � . . . �5�

To the right-hand sides of these equations, wemust add terms
with M similar to those with B, since the transformation
properties of the vectors M and B are identical. Thus, in the
final formulas wemust incorporate terms withM replacingB.
Of the schematically written terms in (4) and (5), we `decode'
the following two terms:

�LB� � fijknpqLpBq �from DC s
ab � DC s

ijkn� ; �6�

�LBB� � ibijknpqsLpBqBs �from DC a
ab � DC a

ijkn� : �7�

1 By exchange magnetic structure we, as is commonly done, mean the

magnetic order (mutual orientation) that sets in only because of the

exchange interaction of spins without allowance for magnetocrystalline

anisotropy, which determines the orientation of these spins in relation to

the crystallographic axes.

2 TheOnsager relations (theorem or symmetry principle) were first derived

for transport coefficients and then were generalized to the case of what is

known as generalized susceptibilities (linear response functions), to which

the elastic constants êC also belong. The first to carry out such general-

ization for magnetically polarized media was Vlasov [12]. (The principles

of such generalization are discussed, e.g., in Landau and Lifshitz's book

[13].) The Onsager relations follow from the invariance of the equations of

motion of microparticles under time inversion t! ÿt combined with a

change in sign of the macroscopic parameters of the I type determining the

state of the system (M,B,L, etc.) or processes (k). Amore general notation

and a thorough discussion of these relations can be found in the new book

[14] written with the help of the authors of the present review.
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(As usual, here and inwhat follows we adopt the common rule
of summation over repeated indices.) In the above formulas,
fijknpq and bijknpqs are real coefficients (generally speaking,
dependent on L 2 and the frequency o). Their explicit form
can be found from the requirement that these relations (with a
right-hand side presented in the parentheses) be invariant
with respect to elements of spatial crystallochemical symme-
try. It is sufficient to use the elements g��� entering the code
(� the minimum set of generators of the crystallochemical
symmetry group) of the corresponding EMS with allowance
for their parity (`+' stands for even elements and `ÿ', for odd
elements: g���L � �gL, etc.) [11, 15]. For collinear and
weakly (relativistically) noncollinear AF structures, which
are the only structures discussed in this review, the parity of
the element g precisely reflects its spatial nature: the type of
permutation of atoms caused by it.

The use of crystallochemical symmetry (with explicitly
specifying the `agents' L, B, etc. that break this symmetry)
instead of magnetic symmetry, i.e., the true symmetry of a
magnetic substance, is preferable in the sense that it makes it
possible to analytically study the behavior of the phenomena
of interest to us as depending not only on the EMS (its code)
but also on the orientation state (the direction of B, etc.).

The present review deals solely with centrosymmetric
(CS), in the crystallochemical sense, antiferromagnets,
which with allowance for AF order either remain centrally
symmetric or become centrally antisymmetric. For the first,
the symmetry center (spatial inversion) in the EMS code is an
even symmetry element 1���, while for the second, it is an odd
symmetry element 1�ÿ�. For the CS case, DĈ s does not
contain (Lk) terms, while for the CAS case, there are no
(LB) terms. These products transform in the same way with
respect both to 1 and to other crystallochemical symmetry
elements, with the result that their tensor factors have the
same form.

As for DĈ a, the term (k) is absent from it both for
centrosymmetric EMS and for centroantisymmetric EMS.
This term appears only in crystals whose symmetry contains
no spatial inversion 1 and is listed in (5) (and in Table 1) only
because it will be needed in our further discussion. Of the
remaining terms in DĈ a, for EMS with a symmetry center all
terms in (5) except (LE) may exist, while for the centrally
antisymmetric case only the terms (B) and (LE) remain. All
terms that are linear (and, generally, odd) inL except (LE) for
such EMSdisappear fromDĈ a (5) in view of the fact that, due
to the condition 1�ÿ�L � ÿL, they change sign, while the
tensor DC a

ab on the left-hand side remains invariant with
respect to 1�ÿ� (and to 1���). The invariance of (LE) follows
from the fact that sinceE is a polar vector, it changes sign (just
as L does): 1���E � ÿE.

Below, we limit ourselves to acoustically transparent
media, for which the tensor DCab is Hermitian [7]:

DC�ab � DCba : �8�

Since these functions are Fourier transforms (components of
the plane-wave expansion of exp�ik � rÿ iot�) of the real
linear response function, they possess the following property
[16]:

DC�ab�o; k;L; . . .� � DCab�ÿo;ÿk;L; . . .� : �9�

Finally, the Onsager relation (3) plays an important role
in the analysis of DCab.

Equations (3), (8), and (9) make it possible to draw certain
conclusions concerning the properties of the symmetric
[Eqn (4)] and antisymmetric [Eqn (5)] parts of the elastic
constant tensor DCab.

First, the hermiticity of (8) implies that the real and
imaginary parts of the tensor for an acoustically transparent
medium

DCab � DC 0ab � iDC 00ab �10�

coincide, respectively, with its symmetric and antisymmetric
parts (see Table 1).

Asymptotic behavior as o! 0 for a centrosymmetric
EMS. What is important is the asymptotic behavior of
DC s

ab�o; k; . . .� and DC a
ab�o; k; . . .� as o! 0 and k! 0. At

first, we focus on CS antiferromagnets, which have no spatial
dispersion [terms of the (Lk) type are absent from Eqns (4)
and (5)]. We will discuss the asymptotic behavior of the CAS
case later in Section 4. For the CS case, we use the property (9)
and immediately find that

DC s
ab�o;L; . . .� � DC s

ab�ÿo;L; . . .� ; �11�

DC a
ab�o;L; . . .� � ÿDC a

ab�ÿo;L; . . .� : �12�

Hence, the DC s
ab are even functions ofo and contribute to the

static values DCab�0;L; . . .�. But if we turn to DC a
ab, we see

that they are odd functions of o, and

DC a
ab�o;L; . . .� ! 0 as o! 0 : �13�

This is a very important property of dynamic elastic
constants, which will be used later.

Using symmetry considerations, we can find the form
(finite components or equal components) of the elastic
constant tensor eCab including the AF contributions (4) and
(5), in terms of which we can write the stress tensor

tij � eCijknekn ; �14�

Table 1. Classification of effects in the crystal acoustics of acoustically
transparent antiferromagnets: DCab � DC s

ab � DC a
ab � � DC 0ab � iDC 00ab.

Symmetric (real) tensor
DC s

ab � DC 0ab (no gyrotropy)
Antisymmetric (imaginary) tensor
DC a

ab � iDC 00ab (gyrotropy)

Linear birefringence (LBR) Circular birefringence (CBR)

Reciprocal LBR effects: Reciprocal CBR effects:

CC (B �M � L � 0),
elastic anisotropy;

Natural CBR of (k) type ì
no CC CS

AF of (LL) type {CS, CAS};
AF-M of (LB) type {CS}

Nonreciprocal LBR effects:
AF of (Lk) type {CAS}

Nonreciprocal CBR effects:
M of types (B) and (M)
{CS, CAS};
AF of (L) type {CS};
AF-M2 of (LBB) type {CS};
AF-E of (LE) type {CAS}

Notation: CC, crystallochemical; AF, antiferromagnetic; M, magnetic;
AF-M, antiferromagneticëmagnetic; AF-M2, antiferromagneticëdou-
bly magnetic; AFëE, antiferromagneticëelectric. The abbreviations in
braces indicate to what EMS, centrally symmetric (CS) or centrally
antisymmetric (CAS), the corresponding effect belongs.
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where

ekn � 1

2

�
quk
qxn
� qun
qxk

�
�15�

is the elastic strain tensor (x1 � x, x2 � y, x3 � z). Note that
a symmetry-invariant expression for the tensor tij (14) can be
derived directly, without finding the eCab.

To find the normal acoustic waves, one is forced to solve
the elastic-dynamics system of equations [1]

r�ui � qtij
qxj

�16�

(the dots stand for time derivatives). The very procedure of
solving the system of linear equations (16) combined with (14)
will not be considered here. Instead, we will focus on
describing and discussing the results.

2.2 Main concepts
and classification of birefringence (BR) effects
Now we will define several concepts necessary for describing
AF effects in acoustics and set up a table based on them.
Almost all of these concepts can be introduced in optics: one
must only replace the tensor eCab with the permittivity tensor
~eij � eij �4eij �L;M;B; k�. It must be stressed, however, that
in optics, too, the definition of these concepts is not always
sufficiently rigorous and unique, especially in connectionwith
antiferromagnetism.

We begin with the concept of gyrotropy, or a gyrotropic
medium [16 ± 18]. The most lucid (but formal) definition is the
following. In a gyrotropic medium the tensor eCab (in
acoustics) or ~eij (in optics) proves to be nonsymmetric:eCab 6� eCba (or ~eij 6� ~eji), so that gyrotropy is determined by
the presence in these tensors of antisymmetric terms of type
(5) that are imaginary for a transparent medium. A
characteristic feature of gyrotropic media is the presence of
acoustic (or optical) activity in them. Actually, gyrotropy and
activity may be regarded as synonyms.

Let us now examine specific physical phenomena. Note
that gyrotropy is the reason for circular birefringence (CBR)
of waves. What we have just said does not depend on the
nature of gyrotropy, i.e., CBR may be related to any term in
DĈ a (5). In textbooks devoted to nonantiferromagnetic
crystals, the natural gyrotropy (activity) that occurs in
crystals without a symmetry center is usually stressed. (The
term (k) in DĈ a (5) represents such gyrotropy.) In antiferro-
magnets, the gyrotropic terms are usually augmented by
terms of the (L) and (LBB) types in the CS case and of the
(LE) type in the CAS case. The first of these is also the source
of `natural' (spontaneous, to be exact) gyrotropy, but already
related to antiferromagnetism, while the terms (LBB) and
(LE) bring to life entirely new gyrotropic AF effects induced
by B or E.

The symmetric part of the elastic constants, DC s
ab, is

responsible for linear BR (or LBR), i.e., the difference in
phase velocities of the natural waves with a given wave vector
k and different linear polarizations. Here, to the usual LBR
effects occurring in a nonantiferromagnetic medium (both in
acoustics and in optics) and, as a rule, quadratic in B (orM),
AF terms incorporating the vector L are added. These are the
terms (LB) for EMS with a symmetry center and (Lk) for the
CAS case.

Below, we will see how specific and unusual the effects
generated by the above AF terms in DĈ are.

Now let us define another concept, nonreciprocity, or
nonreciprocal effects, first introduced for antiferromagnets
in optics by Brown et al. [19]. These effects change their
magnitude or even sign when the direction of the wave vector
k changes to the opposite.Here, it is assumed that all the other
vectors (L, B, M, and E) remain the same.

Gyrotropic effects corresponding to all terms in DĈ a (5) ,
with the exception of (k), prove to be nonreciprocal. Among
the terms in DĈ s (4), however, only (Lk) produces a
nonreciprocal effect. Note that in this case the effect is
nonreciprocal but nongyrotropic.

The above facts and the corresponding classification of
BR effects are listed in Table 1. (We note once more that a
similar table can be set up for the AF part of the permittivity
tensor, Dê � Dê s � Dê a.) To a great extent, the effects and the
corresponding concepts are introduced here in a formal
manner. Their physical meaning will be revealed gradually,
as we examine the specific effects of acoustic BR correspond-
ing to the separate term in expansions (4) and (5). Here, we
will only note that the presence in DCab of symmetric [from
(4)] and antisymmetric [from (5)] terms leads to superposition
of linear and circular BR. (The term superposition does not
mean that the LBR and CBR effects are additive. Possibly, it
would be more correct to speak of a mixing of the effects.)
Here the nonmagnetic part Cab in (1), i.e., eCab at
L � B �M � 0, which is totally symmetric (in crystals with
a center of crystallochemical symmetry, which is the type of
crystal considered here), may also lead to linear BR. Since this
nonmagnetic contribution of linear BR is of a crystallochem-
ical nature related to the anisotropy of the elastic constants
Cab, it is usually much larger than the magnetic contributions
mentioned earlier. And if these magnetic contributions are
only additions to the first (instead of being a new independent
effect of an antiferromagnetic nature), the magnetic part of
linear BR is usually ignored in comparison to the crystal-
lochemical part.

2.3 Nonreciprocal effects
The concept of nonreciprocity is comparatively new and, to
our knowledge, so far has not been discussed in monographs
(and the more so in textbooks) on acoustics or optics. Hence,
before we even begin to discuss the AF effects of interest, it
would be wise to clarify it via well-known examples (it does
not matter whether they are from optics or acoustics) by
comparing CBR related to natural gyrotropy [the term of
type (k) in (5)] to that related to magnetic gyrotropy [the term
of type (B) in (5)]. The first effect is reciprocal in the sense that
from the viewpoint of an observer looking along vector k the
sign of the angleY of rotation of the polarization plane is not
reversed when the direction of k is changed to the opposite (a
reciprocal effect). At the same time, from the viewpoint of the
laboratory coordinate system, the reversal of the sign of k
changes the sign of the rotation angleY to the opposite.What
we have is that the resulting rotation angle for a wave that has
traveled in the direct and reverse directions is zero:
Y�k� �Y�ÿk� � 0.

The situation is different for magnetic BR (the Faraday
effect). Here, the sign of Y is determined by the sign of the
field B, so that when k is reversed without reversal of B, the
sign of Y in the of coordinate system linked to k is reversed
(nonreciprocal effect), while remaining unchanged in the
laboratory coordinates system. Hence, with a wave traveling
there and back, the Faraday angle doubles:
Y�k� �Y�ÿk� � 2Y [18].
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This constitutes the main difference between natural CBR
(a reciprocal effect) and magnetic CBR (a nonreciprocal
effect). Reasoning along similar lines, we see that the other
magnetic contributions to CBR [of types (L), (LBB), and (LE)
in (5)] of AF origin prove to be nonreciprocal.

Here, we should mention the term of type (Lk) in the
symmetric part of 4Ĉ [Eqn (4)], which is the only one
generating a nonreciprocal LBR effect. We repeat once
more: nonreciprocal but nongyrotropic (it belongs to the
symmetric part of 4Ĉ). The nonreciprocity here consists in
the following: the reversal of the sign of k changes the
contribution of this term to the refractive index (in optics) or
to the elastic constants (in acoustics) and hence to the phase
velocity of the waves. We stress this fact because Brown et al.
[19], who were the first to point out the possibility of such
effects occurring in antiferromagnets, for a reason unknown
to us called them `gyrotropic or nonreciprocal.' (Possibly the
first, incorrect, term emerged because of the linear spatial
dispersion of the tensor 4eij.) Following the authors of Ref.
[19], this term (gyrotropic or nonreciprocal) has been
automatically repeated in many papers devoted to optical
properties of CAS antiferromagnets. One of the authors
(E A T) of the present review was also unable to avoid this
`sin' in his book [7]. Not having the space to list the numerous
papers that would corroborate what we have just said, we
would like to mention (in addition to Ref. [7]) two reviews,
one by Gehring [20] and the other by Pisarev [21], where the
necessary citations are given.

We compiled Table 1 with the view of removing this
misunderstanding and to clarify the use of other terms and
concepts as applied to antiferromagnets.

First, we note that in the papers justmentioned (Refs [19 ±
21]), which deal with optics, the study of the (Lk) effects (and
also (LE) effects) was done on the basis of magnetic groups,
due towhich the vectorL did not appear in them explicitly. To
our knowledge, a sufficiently clear and consistent exposition
of how this is achieved does not exist in the literature.3Neither
will we study this problem in this review; instead, we limit our
approach to that based on crystallochemical symmetry. Not
only is the latter sufficient for our purposes, but it is more
informative than the magnetic approach (as mentioned
earlier). Hence, we base our reasoning on the crystallochem-
ical approach and on the acoustics of antiferromagnets
(which is the topic of the present review). This is all the more
necessary because, despite its advantages, it is insufficiently
utilized, especially in the Western publications.

2.4 Spontaneous AF effect of CBR in crystals with
different EMS
We begin our study of specific AF effects with antiferro-
magnets with a CS EMS. The first is the spontaneous AF
effect of CBR linear in L. According to Table 1, this is a
gyrotropic nonreciprocal effect. What the nonreciprocity
amounts to was discussed in Section 2.3 in connection with
the ordinary Faraday effect [term (B) in equation (5)]. Only
here there is the vector L instead ofB. We study consecutively
orthorhombic, tetragonal, and rhombohedral (trigonal)

crystals and other uniaxial antiferromagnets with an even
principal symmetry axis Nz � Nz���.

The condition (common for all crystal systems) for the
existence of a term of type (L) in DC a

ab (5) states that the
corresponding EMS and the orientation state must allow for
weak Dzyaloshinski ferromagnetism, defined as follows [11,
15, 22]:

Mi � dijLj ; �17�

where the coefficients dij are found from the requirement that
(17) be invariant with respect to the symmetry elements that
enter into the code of the corresponding EMS. The require-
ment that the EMS be centrally symmetric (1 � 1���) is the
principal condition among all of these conditions.

2.4.1 Orthorhombic antiferromagnet with an EMS
1(+)2x(ë)2y (+). Orthoferrites and orthochromites with the
space group D16

2h � Pbnm usually have such an EMS [15, 23].
An example well known among specialists in magnetic
materials is the orthoferrite YFeO3 (with the NeÂ el point
TN � 643 K). Here, we limit ourselves to a single orientation
state that realizes itself in orthoferrites,

Lk2x�ÿ�kX and MkBk2z�ÿ�kZ ; �18�

for two directions of the wave vector: (a) kkZ and (b) kkX.
(a) LkX and kkMkBkZ. A characteristic feature of

orthorhombic crystals is that even in the absence of magnet-
ism (L �M � B � 0) LBR of crystallochemical origin can
arise in them. And we are forced to study this LBR first, since
the CBR of antiferromagnetic origin we are interested in
manifests itself against the background of this LBR. For a
wave propagating along the Z axis, Eqn (16) gives two
transverse acoustic modes with polarizations (directions of
the elastic displacement vector u), wave numbers k, and phase
velocities specified by the following formulas [5, 7]:

u1kX ; k1 � o
v1
� o

�
r
C55

�1=2

;

u2kY ; k2 � o
v2
� o

�
r
C44

�1=2

: �19�

There is also, of course, a longitudinal wave

u3kkkZ ; k3 � o
v3
� o

�
r
C33

�1=2

: �20�

The LBR effect considered here amounts to the following.
If we take any two of these three modes, we see that the waves
in such a pair have different polarizations and, hence,
different wave numbers and velocities. The effect manifests
itself in experiments in the following. If we introduce into the
sample a wave with a displacement u that does not coincide
with any of the above normal modes but can be represented as
the sum of two of these modes, say, u � u1 � u2, then at the
exit the component waves will have different phases (due to
the different velocities). Consequently, the polarization of the
resulting wave will generally be elliptic (since u1 ? u2), which
means that the tip of the vector u describes an ellipse. The
ellipticity (the axial ratio a=b) is determined, as we will see
below, by the product Dkd (the phase difference), where
Dk � k1 ÿ k2, and d is the distance traveled by the wave, and

3 Some material referring to this problem can be found in the above-cited

monograph by Sirotin and Shaskol'skaya [8] (Section 76). In particular,

they state that the ordinary Onsager relations of type (3), which we use

here, may prove to be invalid when applied to magnetically ordered

crystals. Note, however, that such a statement is based on the approach

that uses magnetic symmetry.
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by the boundary conditions for the impinging wave. Under
certain conditions the polarization may even be circular
(a=b � 1). This phenomenon has an analog in optics, where
it is known as the Cotton ±Mouton (or Voigt) effect (see Ref.
[24], vol. 2).

The difference from optics is that in optics both waves in
the pair are usually transverse waves (in any case, in amedium
without spatial dispersion), while in acoustics one component
can be transverse (e.g., u1) and the other, longitudinal (u3).
(Of course, in acoustics there may be a case where the
impinging wave is a superposition of all three modes, but we
have agreed not to examine such complicated cases.)

One must bear in mind that in an antiferromagnet terms
of AF origin of the types (LL) and (LB) may also contribute
to LBR; these terms are small compared to the differences of
the diagonal components of the elastic constant tensor (e.g.,
C44 ÿ C55), which determine the crystallochemical LBR, and
we agreed to ignore this AF contribution, allowing only for
the terms (L) in (5) that introduce a new quality, i.e.,
gyrotropy and the corresponding CBR.

For the situation considered here, these antisymmetric
terms invariant with respect to the symmetry elements 1���,
2x�ÿ�, and 2y��� that determine the EMS code have the form

DC a
54 � ÿDC a

45 � iDC � i�rLLx � rMMz � rBBz� : �21�

Here, for the sake of completeness, we also allowed for purely
magnetic terms with M and B. According to (13), the
constants r... must vanish as o! 0. The total components
of the stress tensor (14), which determine the waves with kkZ
(here, one of the indices on tij and eij must be z) are

txz � 2C55exz � 2C a
54eyz ; tyz � 2C44eyz � 2C a

45exz : �22�

Thus, if we allow for (22), the waves (19) mix and produce
a different pair of normal modes. Here, the natural wave
numbers k1 and k2 change (and so do the velocities v1 and v2),
but these changes are small (quadratic in parameter r) and we
again ignore them. The main effect consists in the change in
the polarization of the new normal modes. Instead of u1kX
and u2kY, we now have�

ux
uy

�
2

�
�
uy

ux

�
1

� i
DC

C44 ÿ C55
� iA : �23�

This expression was arrived at by solving equations (16) with
allowance for (22) and (21) and for the fact that A is small:

jAj5 1 : �24�
Here, both modes are transverse, but for one of them, ux is
ahead of uy in phase by p=2 while for the other, ux lags behind
uy in phase by p=2. The linear polarization becomes elliptical,
with the tip of the vector u traversing these ellipses in opposite
directions (Fig. 1a).

If we assume that the boundary condition is u�0�kX, then,
using the polarization relations (23), we easily find that the
polarization vector of the linearly polarized wave impinging
on the sample undergoes a rotation (more precisely, themajor
axis of the ellipse undergoes that rotation) by an angle

Y�d� � A sin�Dkd� �25�

[approximately, with allowance for condition (24)], which
means that we have CBR against the background of LBR

(Dk � k1 ÿ k2). The ellipticity in this case is

a

b
� 2A sin2

�
Dkd
2

�
; �26�

where A is taken from (23), and DC is given by (21).
Note that in contrast to the case of purely circular acoustic

activity (see below), where the angleY increases linearly with
d, here this angle is an oscillating function of the distance d the
wave traveled through the sample. The same can be said of the
ellipticity. The angle Y is at its maximum at
Dkd � �2p� 1��p=2� (with p an integer), while the ellipticity
is at its maximum at Dkd � �2p� 1�p. In Eqns (25) and (26)
the first factors (A) are related to acoustic activity of AF
origin, while the second factors are related to the LBR of
crystallochemical origin.

(b) kkLkX and MkBkZ. In this case, the acoustic activity
is related to antisymmetric elastic constants of the form

DC a
16 � ÿDC a

61 � i�rLLx � rMMz � rBBz� � iDC : �27�

[Generally speaking, here the constants r differ from those in
(21).] These constants mix the former transverse wave with

u2kY ; k2 � o
v2
� o

�
r
C66

�1=2

�28�

and the former longitudinal wave with

u1kkkX ; k1 � o
v1
� o

�
r
C11

�1=2

; �29�

producing two elliptical modes whose ellipse planes contain
the vector kkLkX and are perpendicular to the field BkZ
(Fig. 1b). The polarization relations again have the form (23),
only now Amust be replaced by

A � DC
C66 ÿ C11

�30�

with DC taken from (27). As in the previous case, the
polarization vector of the linearly polarized wave impinging
on the sample undergoes a rotation and the wave acquires
ellipticity. However, now the plane of rotation and the ellipse
lie in the same plane XY (the planar effect of CBR and
ellipticity).

Suppose that at the entrance to the sample (x � 0) the
wave had a longitudinal linear polarization, so that its
amplitude ux�0� � u0. Then the rotation angle Y and the
ellipticity Y at the point of exit (x � d ) are again given by

Y

Xu1

u2

a bY

Xu1

u2

Figure 1. Normal elliptical acoustic modes corresponding to gyrotropic

mixing: (a) two transverse modes with u1jjX and u2jjY for kjjZ (normal to

the plane of the figure); and (b) a longitudinal mode with u1 k X and a

transverse mode with u2 k Y for k k X.
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formulas of the form (25) and (26), where one must use A
given by (30) instead of (23) and replace Dk with
Dk � k1 ÿ k2 from (28) and (29).

The above implies that after the wave has traveled a
distance x � d in the sample, the elastic displacements
acquire a transverse component,

uy�d; t� � 2u0A sin

�
Dkd
2

�
cos

�
k1 � k2

2
ÿ ot

�
: �31�

A longitudinal wave impinging on the plate partially trans-
forms into a transverse wave. It can also be demonstrated that
an impingingwave that is transverse with ukY acquires, due to
AF acoustic activity, a longitudinal displacement with ukX.

2.4.2 Tetragonal antiferromagnet with an EMS
1(+)4z(ë)2d (+). The fluorides of transition metals CoF2,
MnF2, FeF2, and NiF2 have such an EMS. Their NeÂ el points
are, respectively TN � 37:7, 72.0, 78.0, and 73.2 K. These
compounds have a crystallochemical structure of the rutile
type [7] with theD14

4h symmetry, and the magnetic ions occupy
the positions 2a [25]. The first three compounds are easy-axis
(EA)withLk42zkZ, and the fourth one is easy-plane (EP) with
L ? Z [15, 26].

We begin with the EP state, which exhibits weak
ferromagnetism (17) and, hence, linear terms of the (L) type
in DC a, which we are discussing in the current section.
Assume that

LkYk2y�ÿ� ; MkBkXk2x�ÿ� : �32�

Here, 2x�ÿ� and 2y�ÿ� are odd twofold axes directed along
the edges of the basis square. Their odd character follows
from the well-known equality 4z�ÿ� � 2d��� � 2�ÿ�. With
LkY, the weakly ferromagnetic moment (17) would be
directed along the X axis [15], while with LkX, the vector M
would be parallel to the Y axis. Both orientation states are of
equal status, so we may consider one of them. As in the
previous case, we first consider two particular cases for the
direction of the wave vector k: (a) kkMkB, and (b) kkL. One
must bear in mind, however, that here the coordinate axes are
chosen differently: comparison of (18) and (32) shows that the
coordinate system for the second case is obtained from that of
the first through a cyclic permutation

x! y! z! x : �33�
After we have established this fact, we can easily understand
how the results of the present case can be obtained from those
of the previous (Section 2.4.1), provided that we allow for
(33). The elastic constants also change correspondingly:

DC54 � DCxzyz ! DCyxzx � DC65

(and, of course, Lx ! Ly, etc.). One must also bear in mind
that, for a tetragonal crystal, we have C55 � C44.

The final results are as follows:
(a) kkBkX. Two transverse waves (with u1kY and u2kZ)

mix and produce two elliptically polarized waves; the ellipses
are elongated along the given axes and their plane is normal to
kkX (cf. Fig. 1a) [with allowance for (33)]. By changing the
coordinate axes via (33), we also obtain polarization relations
from (23), the rotation angleY is obtained from (25), and the
ellipticity from (26) (provided, of course, that the boundary
conditions u�0�kX are replaced by u�0�kY).

(b) kkLkY. In this case, the transverse wave with u1kkkY
mixes with the longitudinal wave with u2kZ, similar to the
result of Section 2.4.1(b) (cf. Fig. 1b). The reader can easily
write the corresponding formulas.

2.4.3 Uniaxial EP antiferromagnets with an even principal
symmetry axis with an EMS 1(+)Nz(+)2x (ë) (N=3, 4, 6).
For all uniaxial antiferromagnets with an even principal axis
Nz � 3; 4; 6, the components tzz, txz, and tyz of the tensor tij,
which determine the acoustic waves with kkZ considered here
(having the state with L ? Z in mind), assume the following
form [7]:

tzz � C33ezz � 2irL�Lxezx � Lyeyz� ;
tzx � 2C44ezx ÿ irLLxezz; tyz � 2C44eyz ÿ irLLyezz : �34�

Indeed, these expressions are invariant not only under
rotations through angles corresponding to the specified axes
Nz; there is also isotropy in the basal plane for a rotation
through any angle about the Z axis (this is still true when we
allow in (34) for the terms withM, which, incidentally, are not
written down here for the sake of brevity). And, of course,
there is invariance under the axis 2x�ÿ� common for all three
cases. What we have makes it possible to select (without loss
of generality) the X and Z axes in such a way that XkB and
YkL (Fig. 2). Here, we assume thatL ? B for all directions of
B in the XY plane (any angle jB). In this system of
coordinates, the antisymmetric constants

DC a
34 � ÿDC a

43 � iDC � i�rLL� rMM� rBB�

that we will need (with kkZ) are also independent of jB.

As a result, equation (16) yields three normal modes:

k1 � o
v1
� o

�
r
C44

�1=2

� kt ; u1kX ; �35�

k2 � kt ; �ux�2 � 0 ;

�
uz
uy

�
2

� i
DC

C44 ÿ C33
� iA;

k3 � o
v3
� o

�
r
C33

�1=2

� kl ; �ux�3 � 0 ;

�
uy

uz

�
2

� iA :

�36�

Z 3

Y

X

B

M

L

jB

dj

dj

2

Figure 2. Selection of the coordinate axes in the XY plane: the X axis is

parallel to the fieldB, whichmakes an anglejB with the twofold symmetry

axis 2�ÿ�; dj is the angle of rotation of the vectors L andM under elastic

strain (see footnote 6 in this review).
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The first wave is transverse; it splits off from the other two
waves, and the vector L has no effect on the velocity of this
wave. Nevertheless, the wave has well-defined polarization,
since always u1kX ? L, and the direction of u1 changes with
the variation of the direction of L caused by B.

The second wave, which coincides with the first when
L � 0, mixes with the former longitudinal wave, and the two
produce two elliptically polarized waves, a quasi-transverse
and a quasi-longitudinal, similar to those depicted in Fig. 1b.
The variations in k2 and k3 (and the corresponding velocities)
caused by the presence of antiferromagnetism are small
quantities proportional to A 2 and are ignored in (36).

Similar to the previous cases [for orthorhombic crystals
and for tetragonal crystals with an odd axis 4z�ÿ�], in which
the normal waves are polarized along ellipses that contain the
vector k, here also there are planar effects of ellipticity and
rotation of the polarization vector of the wave that was
linearly polarized before entering the sample. And again
these effects are approximately described by formulas (25)
and (26). What distinguishes the last case with Nz��� in the
EMS code is the presence of the above-mentioned isotropy:
all the above formulas are valid for an arbitrary direction of
L ? B in the basal plane. In orthorhombic and tetragonal
(with 4z�ÿ�) antiferromagnets, the corresponding formulas
referred to well-defined states. The fact that there is basic
anisotropy substantially complicates the problem of analyz-
ing more general orientation states. More than that, the
results strongly depend on the adopted model (e.g., if we
impose the conditions M � L � 0 and M 2 � L2 � const or
L2 � const [15, 27]); the anisotropy of the g factor may also
play an important role [28]. For the sake of simplicity and
brevity, we do not examine these cases here.

2.5 Acoustic AF activity quadratic in magnetic field
Note that in DĈ a (5), in addition to (L), there are terms of the
(LBB) type related to antiferromagnetism and also leading to
CBR. The corresponding effect is unusual if only for the fact
that it is quadratic in B. Incidentally, for symmetry reasons,
this effect also exists if B is replaced by an electric field E.

Here, we study the example of the EMS 1���4z�ÿ�2d���
(CoF2 and the like), the orientation state LkZ (EA), and the
field B ? Z. The wave vector k is parallel to the Z axis. This
situation is especially favorable for observing the (LBB) [or
(LEE)] effect, since here it manifests itself in pure form,
without any admixture of the AF mechanism of CBR, the
(L) effect, and LBR effects.4

In the case at hand (B ? L k Z and k k Z) the (LBB) effect
is due to the following contribution to the elastic constants:

DC a
54 � ÿDC a

45 � iDC � 2ibLzBxBy : �37�
This contribution leads to circularly polarized normal modes
with elastic displacements

u� � ux � iuy �38�
and wave numbers

k� � o
v?

�
1� b

C44
LzBxBy

� �
v2? �

C44

r

�
: �39�

For the angle of quasi-Faraday rotation over a path of
length d, we have the following:

Y�d� � 1

2
�kÿ ÿ k��d � 1

2

�
b
C44

�
o
v?

LzB
2
?d sin 2jB : �40�

As in optics, where a similar effect has been discovered by
Kharchenko et al. [31], it depends on the direction ofB? in the
basal plane. (Incidentally, note that at jB � 45�, when the
effect is at its maximum, the phase transition mentioned in
footnote 4 is absent, which means that in this case all
disturbances associated with this transition that reduce the
purity of the effect are also absent.)

We would like to note the uniqueness of the situation: in
addition to the fact that the effect is quadratic in B, it is
important that this field is not parallel to k (as is the case with
ordinary magneto-optic BR) but perpendicular to it, B ? k.

As mentioned earlier, the field B can be replaced in this
case by an electric field, E. More than that, symmetry allows
for another possibility, namely, the replacement of the
product BxBy by the shear strain exy. It is such a strain that
causes piezomagnetism (e.g., see Appendix 1 in Ref. [7]).

In other situations with both the 1���4z�ÿ�2d��� struc-
ture and with EMS in other antiferromagnets with a
symmetry center, the (LBB) effect is supplemented by the
(L) effect or by LBR of crystallochemical (or AF) origin or by
both effects simultaneously. For example, take the (simpler)
case where there are no terms of the (L) type but there is LBR
caused by the crystallochemical anisotropy of the elastic
constants. We examine the EMS 1���2x�ÿ�2y��� with the
orientation state LkY in which there is no weak antiferro-
magnetism (17) and no terms of the (L) type in DĈ a. Suppose
that again kkLkY and B ? Y. In this case, the components ti j
present in the wave equations (16) are

txy � 2C66exy � 2DC a
64eyz ; tyz � 2C44eyz � 2DC a

46exy ;

where DC a
46 � ÿDC a

64 � iDC � ibLyBxBz. Then, the wave
solutions of equations (16) produce two specific modes with

k1 � o
�

r
C66

�1=2

; k2 � o
�

r
C44

�1=2

�41�
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�
ux
uz

�
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� i
DC

C66 ÿ C44
� iA : �42�

In the expressions for k1;2, we again ignore, due to their
smallness, the terms proportional to DC2.

Formulas (41) and (42) are the standard expressions that
determine elliptical BR; they lead to formulas of the form (25)
and (26) for the rotation angleY and the ellipticity a=b. What
makes them so special is the constant A in (42), which is now
proportional to LB2. Here, we have CBR (quadratic in B)
against the background of LBR of crystallochemical origin.

2.6 Linear BR: AF contributions of the types (LL) and
(LB) in the easy-axis state
Below we discuss effects related to the symmetric terms in
DC s

ab (4) that are proportional to the products LiLk andLiBk.
Generally speaking, from the symmetry viewpoint, the terms
of the LiLk type do not differ from the terms of typeMiMk or
BiBk and in this sense they are not specifically antiferromag-

4 Note, however, that if B ? LkZ, in some cases (both for the EMS in

question and for 1���3z���2x�ÿ�) there is a phase transition consisting in

a gradual rotation of L with the emergence of an L? component [29, 30],

which, of course, may violate the purity of the effects of interest to us if B?
is sufficiently large.
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netic terms. Nevertheless, as in optics (see Ref. [7]), these
terms must be allowed for together with LiBk if only for the
fact that the contributions of all these terms to BR have
proved to be nonadditive.

In relation to uniaxial crystals (tetrahedral, rhombohe-
dral, and hexagonal), the most interesting is transverse sound
propagating along the principal symmetry axis, which is
usually adopted as the Z axis.

What is important in this situation for the case where kkZ,
which is examined below, is that the LBR is completely of AF
origin, while in other cases it is only a correction to crystal-
lochemical BR caused by the anisotropy of the elastic
properties of the crystal (a factor mentioned earlier in the
present review). Here, we will deal with LBR in longitudinal
(Bkk) and transverse (B ? k) fields.

2.6.1 The 1(+)4z(ë)2d(+) structure and k || B || L ||Z. In this
case, to which CoF2 and other EA fluorides belong, the elastic
constants (1) acquire the following AF terms:

DC s
44 � DC s

55 � f L2
z ; DC s

45 � DC s
54 � bLzBz : �43�

Combining (43) with equations (16), we arrive at two
transverse normal modes whose wave numbers and phase
velocities are

k1;2 � o
v1;2
' k

�
1� bLzBz

2C 044

�
;

k � o
�

r
C 044

�1=2

; C 044 � C44 � f L2
z ; �44�

with the polarization vectors directed along the diagonals of
the basal square:

u1k�110� ; u2k�110�
��
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uy
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� 1

�
: �45�

The linear BR is characterized by the difference of the
velocities or wave vectors of these two modes:

Dv
v
� ÿDk

k
� b

C 044
LzBz : �46�

A transverse acoustic wave impinging on themediumwith
an arbitrary polarization of the vibrations u can be decom-
posed into two normal modes, (44) and (45). Due to the
difference in their velocities, the phases of these component
waves at the exit from the medium prove to be different,
which transforms the resulting wave into an elliptically
polarized wave. The phase difference depends on the length
of the path traveled by the waves, z � d, and on the magnetic
field Bz (in terms of Dk). Hence, the amplitude at the exit with
selection of the projection of vibrations u on a fixed direction
proves to be an oscillating function of the distance d or the
fieldBz (a periodic function if b andLz are independent ofBz).

For instance, let u�0�k�100�. Then at the exit the amplitude
of the vibrations in this direction is

u�d;Bz� � u�0�
���� cos�Dkd

2

�����; �47�

where Dk is defined by formula (46). (A more general case is
discussed in Ref. [6].)

This effect linearly depends on Lz (Dk is proportional to
Lz), which, apparently, opens the possibility of direct
`audiovision' of AF domains that differ in the sign of Lz.
The latter is of special interest for researchers studying the
domain structure of antiferromagnets that are opaque to
light, when the similar effect in optics cannot be used.

2.6.2 Linear BR in hematite at T<TM. Consider the EA state
with L k Z in hematite (a-Fe2O3). This state occurs at
T < TM � 260K (the Morin point). We assume that again
kkZ. In this case, the AF effects of CBR of the (L) and (LBB)
types are absent. However, there are LBR effects of the types
(LL) and (LB) similar to those for the 1���4z�ÿ�2d���
structure (Section 2.6.1). In contrast to that case (BkZ), the
configuration with the field B ? Z proves to be more
interesting. Here [7],

DC44 � a1L2
z � b1BxLz ;

DC55 � a1L2
z ÿ b1BxLz ;

DC s
45 � DC s

54 � b1ByLz �48�

and, instead of (44) and (45), we have

k1;2 � o
v1;2
' k

�
1� b1

LzB?
2C 044

�
; �49��
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B? � Bx
� tan

jB

2
; �50�

where again jB is the azimuthal angle of B? measured from
the axis Xk2�ÿ�, and C 044 � C44 � a1L2

z . Note that here we
ignored the small admixture of longitudinal vibrations uz,
which manifest themselves in the approximation quadratic
in b1.

In the absence of L (and also at B? � 0), there would be
transverse waves with u ? Z degenerate in polarization. The
field B? (in the presence of Lz 6� 0) lifts this degeneracy. As a
result, two linearly polarized waves with different phase
velocities emerge. Depending on the value of jB, the
polarization vectors u1 ? u2 may point in all possible
directions. What this means is that a linearly polarized wave
impinging on the sample becomes an elliptically polarized
wave at the exit, with a varying ellipticity Ð from straight
lines to a circle. Below, we discuss this problem in greater
detail for the two structures mentioned earlier,
1���4z�ÿ�2d��� and 1���3z���2x�ÿ�.

2.6.3 Ellipticity and rotation of the polarization vector caused
by LBR. Here, we determine the ellipticity a=b and the
rotation of the polarization vector Y caused by AF effects
of the types (LL) and (LB) when these two phenomena are not
masked by other effects, as is the case when kkLkZ in EA
states corresponding to formulas (44), (45) and (49), (50) for
the 1���4z�ÿ�2d��� and 1���3z���2x�ÿ� EMS, provided
that BkZ and B ? Z, respectively. The first case is realizable
in CoF2 and other fluorides; and the second, in hematite at
temperatures below the Morin point (T < TM�LkZ�).

To this end, we begin by describing in greater detail the
normal vibrations

ux�z; t� � ux�0� cos �k1zÿ ot� ;
uZ�z; t� � uZ�0� cos �k2zÿ ot� �51�
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corresponding to the natural wave numbers k1;2 for
1��� 4z�ÿ� 2d��� (44) and for 1��� 3z��� 2x�ÿ� (49). These
normal vibrations are related to the components ux and uy
(when the axis Xk2x�ÿ�

�
) through the linear relationships

ux � ux cos g� uy sin g ; uZ � ÿux sin g� uy cos g ; �52�

which can be found by solving the system of equations (16) for
the cases in question. Here, g � p=4 for the tetragonal case
and g � �npÿ jB�=2 (where n assumes integral values) for the
trigonal case. The new axes n and g (along which the elastic
displacements for the normal modes are polarized) are
rotated (about the Z axis) with respect to the axes X k 2 and
Y ? 2 through the above angles g (Fig. 3). We note once more
that here we are dealing with an EA state (L k Z).

Let us assume that the elastic displacement at the
entrance, u0, makes an angle j0 with the x axis (see Fig. 3),
so that ux � u0 cosj0 and uZ � u0 sinj0. Then, the tip of the
vector of the resulting displacement u�z; t� � ux � uZ at the
exit (z � d) describes an ellipse. The major axis of the ellipse
makes an angle d with the x axis, and this angle can be found
using the formula

tan 2d � tan 2j0 cos�Dkd� ; �53�

while the semiaxes are given by the formulas

r21;2 �
1

2
u20

h
1� ÿ1ÿ sin2 2j0 sin

2�Dkd��1=2i ; �54�

where Dk � k1 ÿ k2. The axial ratio is the ellipticity:

a

b
� r2

r1
�
����1ÿ

ÿ
1ÿ sin2 2j0 sin

2�Dkd��1=2
sin 2j0 sin�Dkd�

���� : �55�

Let us use formulas (53) ± (55) in specific cases.
(1) If at the entrance the wave is polarized along vibrations

belonging to one of the normal modes, u0kx �j0 � 0� or u0kZ
�j0 � p=2�, at the exit it remains linearly polarized, retaining
its former direction of polarization.

(2) Now let u0 be directed along the bisector of the angle
between x and Z. In this case the polarization becomes

elliptical, so that

r1 � u0

���� cos�Dkd
2

����� ; r2 � u0

���� sin�Dkd
2

����� : �56�

The major axis of the ellipse is directed along the bisector
(d � j0 � p=4), and the ellipticity is

a

b
� r2

r1
�
���� tan�Dkd

2

����� : �57�

Here, we have an interesting special case mentioned
earlier, precisely, when the polarization of the transmitted
wave becomes circular. Indeed, at

jDkdj � �2n� 1� p
2
�n are integral numbers� �58�

we find, from (56) and (57), that r1 � r2 � u0=
���
2
p

and
a=b � 1.

(3) Now we turn to the general case where a linearly
polarized wave enters the sample at an arbitrary angle j0,
travels a distance d, and exits the sample still remaining
linearly polarized. How can this be and what will be the
angle Y�d� (see Fig. 3) at the exit? Formulas (53) ± (55)
provide the following answer: the condition

jDkd j � �2n� 1�p �59�
must bemet, with the rotation angle obeying the condition (to
within p)

Y�d � � ÿ2j0 : �60�
(4) Another interesting specific case directly follows from

condition (60). This is the possibility of rotation of the
polarization plane through an angle Y � �p=2 (to within p)
if the angle at the entrance is j0 � �p=4. Of course, one must
not forget that, first of all, condition (59) must be met, which
results in the same situation as the particular case with (56).

The most intriguing of the above effects is the transforma-
tion of linear polarization into circular polarization and the
rotation of the linear polarization vector (with respect to the
polarization of the incident wave u0) through an angle �p=2.
Such effects are related, respectively, to conditions (58) and
(59), which can be achieved by selecting proper values of the
field strength B and the thickness d. This is possible if (at least
in order of magnitude)

Dkd � 2pd
L

�
bLB
C 044

�
� 1 ; �61�

whereL is the sound's wavelength. To check the possibility of
this condition being valid, we must estimate the phenomen-
ological parameter b, which is possible if we adopt an
approach based on the coupled equation of magnetoelastic
dynamics. This is the topic of Section 3.

3. Description of BR based on the coupled
equations of magnetoelastic dynamics
(centrosymmetric EMS)

3.1 Thermodynamic potential and equations of motion
To examine the coupled equations of magnetoelastic
dynamics, we must write the expression for the thermody-
namic potential density F, which incorporates three terms:
the magnetic (Fm), the elastic (Fe), and the magnetoelastic

Y

X

Z

Y

u�d�

u0

j0
d

g

x

Figure 3. Selection of the coordinate axes in the XY in the description of

LBR of the types (LL) and (LB): Xk2x�ÿ�, Yk2y�ÿ�, the n and g axes are

directed along the displacements ux and uZ for normal acoustic modes;

u0 � u�0� specifies the direction at the entrance (z � 0), which makes an

angle j0 with the x axis; u�d� is the displacement at the exit (z � d), which

makes an angle d with the x axis; and g is the angle between the x and X

axes.
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(Fme), i.e.,

F � Fm � Fe � Fme :

Limiting ourselves to the lowest-order terms in magnetic and
elastic variables and taking into account the fact that F is
invariant with respect to the crystallochemical group GF1

0

(see below), we obtain

Fm � 1

2
Em2 � 1

2
Kal

2
x �

1

2
Kcl

2
z

ÿds�lx mz � lz mx�ÿ da�lx mz ÿ lz mx�ÿ 2M0m � B ; �62�

Fe � 1

2
Ci jkn ei j ekn ; �63�

Fme � Bi jkn li lj ekn �Pi jkn mi lj ekn : �64�
Here, we have introduced the relative values of the vectors of
magnetization m �M=2M0 and antiferromagnetism
l � L=2M0. If we adopt the model of equal-modulus sub-
lattice magnetizations, thenM2

1 �M2
2 �M2

0, whereM0 is the
nominal constant magnetization vector. This implies that

m � l � 0; m2 � l 2 � 1: �65�

In equation (62), the potential Fm is written in explicit
form, which can be used for all EMSs discussed above. The
general formula (62) corresponds to the 1���2x�ÿ�2y���
EMS of an orthorhombic crystal (structure G). For other
orthorhombic EMSs, A and C [23], Fm can be found by a
cyclic permutation of the coordinate axes. In particular, for
the permutation (33) we have the potentialFm for EMS of the
A type.5 The particular cases of potential (62) include the
magnetic potentials for uniaxial antiferromagnets if we set
Ka � Kc � K, and da � 0 for the 1���4z�ÿ�2d��� EMS or
ds � 0 for the 1���Nz���2x�ÿ� �N � 3; 4; 6� EMS. The
constants in Fm (62) have the following meaning: E is the
exchange interaction (homogeneous exchange), nonhomoge-
neous exchange is characterized by the terms with the
derivatives q l=qxi and qm=qxi (we ignore these terms because
they are small for the wavelengths of interest to us), the
constants K represent the magnetic anisotropy, and ds and da
reflect the symmetric and antisymmetric Dzyaloshinski
interaction responsible for weak ferromagnetism (17).

The elastic (63) and magnetoelastic (64) parts of F are
written in general form for an arbitrary EMS with two
sublattices. Their explicit form for the EMS of interest to us
can be found in textbooks on the theory of elasticity and
magnetism (e.g., see the book by Belov et al. [33] and the
reviews in Refs [34, 35]). The first term in Fme (64) reflects the
(antiferro)magnetoelastic interaction, and the second term is
responsible for piezomagnetism (ormagnetostriction linear in
m). In equations (62) and (64), we discarded the small terms
quadratic in m, with the exception of the term in (62)
responsible for exchange interaction.

A remark concerning magnetoelastic interaction is in
order. Expressions (62) and (64) are written in a coordinate
system linked to the axes of the crystal. However, under
acoustic strains these axes experience local rotations deter-

mined by the antisymmetric tensor

oi j � 1

2

�
qui
qxj
ÿ quj
qxi

�
� ÿoji : �66�

The so-called rotation-invariant theory of magnetoelastic
phenomena requires that this fact be taken into account [36,
37]. The simplest variant of this theory (and the very idea of
such a theory) was first introduced by Vlasov (see Ref. [36])
and amounts to the following. In Fm and Fme one must go
from the local coordinate system to the laboratory coordinate
system via the local rotation transformation

li ! li ÿ oi j lj ; mi ! mi ÿ oi j mj : �67�

Here, Fm acquires magnetoelastic terms proportional to
oi j ekn and oi jokn and Fme acquires the terms li lj okn and
li mj okn. What is characteristic here is that no new constants
of the theory emerge in the process. Most often the matter
boils down to renormalizing the constants that already exist
in (62) ± (64), with the corrections being so small that we
ignore them here. Note, however, that there are cases where
the corrections of the rotation-invariant theory must,
probably, be taken into account (see Ref. [35]).

We mention here one more nonreciprocal effect related to
the presence in the thermodynamic potential of this theory of
terms with oi j. The effect consists in changing the velocity of
the wave (due to the antisymmetry ofoi j) when the directions
in which the wave propagation and its polarization are
interchanged. For instance, if the geometry of the experiment
kkZ and ukX is replaced with kkX and ukZ, the relative
velocity difference for these two geometries is Dv=v �
B44=C44 � 10ÿ3 ± 10ÿ4 (MnF2), which is an extremely small
quantity. The effect has been corroborated by Melcher's
experiments [34]. Of course, this type of nonreciprocity
differs from that related to the term (Lk) in DĈ s (4), which
has been discussed earlier and will be discussed in greater
detail in Section 4.3.

The stress tensor ti j is defined differently in the rotation-
invariant theory. It is calculated in terms of the thermo-
dynamic potential (with allowance for terms containing oi j

and the fact that qui=qxj � ei j�oij) in the following manner
[35]:

ti j � qF
q�qui=qxj� �

1

2

�
qF
qei j
� qF
qoi j

�
: �68�

The tensor tij is nonsymmetric because oij is antisymmetric.
After we have found ti j, we can use the former equations

(16) of elastic dynamics. The latter prove to be coupled
(because of the magnetoelastic interaction) with the equa-
tions of magnetic (spin) dynamics, so that one is forced to
solve them simultaneously.

In the Landau ±Lifshitz variant, these equations (without
allowance for dissipation) have the form

_M � g
�
M� qF

qM
� L� qF

qL

�
;

_L � g
�
M� qF

qL
� L� qF

qM

�
;

�69�

where g � gjej�h=2mc is the gyromagnetic ratio.
Note that here the parameter g is a scalar quantity, so that

it would seem that Eqns (69) are invalid if g is a tensor that

5 The 1���2x���2y�ÿ� EMS. Lanthanum cuprate La2CuO4 has such a

structure and an orientation state withLkZ in fieldsB � By > 30 kG (see

Ref. [32] and Appendix 2 in Ref. [7]).
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takes into account the anisotropy. In Ref. [28] it was shown
that this is not the case. If we replace the sublattice
magnetizations by the spin densities S1;2 � ÿM1;2=g, instead
of (69) we obtain a system of equations in terms of the sum
and the difference of the spin densities, l � S1 � S2 and
m � S1 ÿ S2, where g is not present explicitly. Equations
(69) written in terms of l and m contain the gyromagnetic
ratio only in the Zeeman energy, where, as it has been
established, the anisotropy of the tensor ĝ can be taken into
account. What we just said is true for ferromagnetism, too.

Of course, other types of equations of magnetic dynamics
(due to the limits of applicability of the Landau ±Lifshitz
equations) can also be used (e.g., see Ref. [28]). However, for
our purposes the Landau ±Lifshitz equations are quite
sufficient. Incidentally, the relationships in (65) follow from
(69) as constants of motion.

After these facts have been established, the procedure is as
follows. The Landau ±Lifshitz equations are used to find the
dynamical components Dl and Dm caused by acoustic strains
eij and oij as functions of frequency o, field B, etc.
Substituting these values Dl, Dm / eij;oi j into (68) and
using (15) and (66), we find the stress tensor ti j expressed in
terms of the derivatives qui=qxk. Plugging this tensor into
equations (16) yields a system of homogeneous linear
equations for the elastic displacements u. The solution of
this system in the form u / exp�ik � rÿ iot� determines the
natural wave numbers and polarizations (amplitude ratios) at
the given frequency o for the sought normal modes.

The reader must bear in mind the following. Generally,
the coupling coefficients in the relationships for Dm, Dl / ei j,
oi j found from equations (69) have resonant denominators of
the type o2 ÿ o2

AFMR, in view of which the coupling
coefficients grow without limit near oAFMR, the antiferro-
magnetic resonance frequency. This means that, strictly
speaking, the normal modes are magnetoacoustic waves (the
literature devoted to the study of such waves is vast). We,
however, will proceed differently and examine fairly low
frequencies, such that

o2 5o2
AFMR : �70�

Then, the term o2 in the resonance denominator can be
ignored in comparison to o2

AFMR. This approximation does
not mean that we are using the quasi-static approach
(equilibrium coupling between magnetic and elastic vibra-
tions), since the coupling coefficients retain terms linear in
frequencyo thanks to the presence of the first time derivatives
on the right-hand sides of equations (69). Such an approx-
imation ensures a finite value of the terms in DĈ a (5) and the
corresponding CBR effect and the validity of the rule (13)
obtained earlier.

With the quasi-equilibrium approach, one must set

_M � _L � 0 ; �71�

in equations (69), but the CBR effect in this case vanishes. The
physics of this is that the acoustic activity is related to the
precession of magnetic moments, which, of course, vanishes
at o � 0.

3.2 Piezomagnetism and LBR in CoF2

As noted earlier, the theory based on magnetoelastic
dynamics makes possible a quantitative description of the
magnetoacoustic phenomena of interest to us by expressing,

in particular, the phenomenological parameters of the
symmetry theory [e.g., b in (36)] in terms of the magnetic,
elastic, and magnetoelastic parameters determined through
studies of other independent phenomena.

3.2.1 Estimating the parameter b. To demonstrate the validity
of the above statement, we first study a situation in which the
antisymmetric contribution (5) to DĈ is zero. According to
Section 2.6.1, this happens for the 1���4z�ÿ�2d��� EMS in
the state with LkZ for, say CoF2. Here, we can express the
above-mentioned constant b in (46), which determines the
LBR, in terms of known parameters. The situation occurs not
only in the low-frequency range (70).We do, however, use the
quasi-static approximation (13).

As a result, the earlier procedure of calculating the LBRof
the (LB) type leads us in the current case where kkBkLkZ to
the following relationship:

Dk
k
� 2B44E
�EKÿ d 2

s �C44
WBz � ÿD : �72�

Here, W is the parameter that determines the piezomagnetic
effect (Borovik-Romanov [39])

Mx � 2Wexy � 2W

C44
txz ;

where [6]

W ' ÿ 2M0

ÿ
B44ds �P44K

�
EKÿ d 2

s

: �73�

Formulas (72) and (73) are approximate, since the conditions

B5Hs f �
�������
EK
p

ÿ jdsj � 105 Oe �for CoF2� �74�

and K5B44 have been included. The complete formulas are
given in Ref. [6], which, among other things, allow for all
contributions to the energy that are related to the tensor oi j.

From the experiment involving CoF2 [39] it was found
that jW j=C44 � 2� 10ÿ9 Gÿ1. The following parameters in
expressions (72) and (73) are known [40] (in erg cmÿ3):
E � 1:4� 109, K � 3:8� 107, ds � 1:7� 108, C44 � 1012,
and, finally, 2M0 � 103 G. Thus, to estimate D by formula
(72), we should know the magnetoelastic constant B44. As a
rough approximation it can be assumed [6] that the contribu-
tion to piezomagnetism determined by the constantW of (73)
is evenly divided between the magnetostriction constant B44

and the piezomagnetism constant P44. Then, formula (73)
yields B44 � ÿ1:4� 108 erg cmÿ3.

Now, if we compare (72) with the phenomenological
formula (46) obtained earlier, we find the ratio
jD=Bzj � 3� 10ÿ5 kGÿ1 and then the sought constant

b �
����DBz

���� C44

2M0
� 30 : �75�

3.2.2 Oscillations of the transmitted sound in the EA state.Due
to the dependence of Dk on the field Bz, the amplitude of the
wave at the exit from the samplemust oscillate asBz increases.
According to (47), the oscillation period DB is determined by
the equation

Dk�B� DB� ÿ Dk�B� � 2p
d
; �76�
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which yields

DB �
�
D
B

�ÿ1 L
d
: �77�

There is reason to speak about oscillations if DB is at least
several times smaller than the fieldsB in which the experiment
is conducted:

DB5B : �78�

According to (77) and (78), the samples must be so thick that
d4QL=Bz (where Q � jD=Bzjÿ1 is independent of Bz in
accordance with (72) for the field strengths considered here,
i.e., Bz 5Hsf), which corresponds to large values of Bz

[obeying, however, condition (74)], and the frequencies o
must be sufficiently high. In the case at hand, at frequencies in
the vicinity of o � 109 sÿ1 and a velocity v � 105 cm sÿ1 and
with equation (77) combined with the fact that
Q � 3� 104 kG, inequality (78) corresponds to the condi-
tion d4 2 mm even for fields as strong as B � 10 kG. In this
respect, CoF2 is not a very suitable object for observing the
oscillations in question, since this requires very thick samples
(transparent to microwave sound).

3.3 Effects of mixed (L) and (LL, LB) type for the
1(+)3z(+)2x(ë) EMS
3.3.1 LBR of AF nature in an EP state.The interest in this case
lies in the fact that the AF CBR [the (L)-type effect] is
superimposed on LBR of the same AF nature [the effect of
the (LL, LB) type]. An important factor here is the ratio of
these two effects, so it is advisable to begin with the coupled
equations of magnetoelastic dynamics, which provide this
ratio [5, 7]. More than that, an experiment has been carried
out that reflects this situation (forMnCO3 and FeBO3), and a
quantitative interpretation of it is desirable.

In centrosymmetric antiferromagnets (which we have
been studying so far) that are in the easy-plane state
(L ? 3zkZ), when there is a strong field BkX ? LkY
(B0103 G for hematite), LBR is related to the AF terms
(LL) and (LB) in DĈ s (4). We examine this effect in the
absence of CBR, i.e., at DĈ a � 0. Suppose that again kkZ.

In the adopted system of coordinates (see Fig. 2) with the
azimuthal angle jB for B � B? at low frequencies
o5oAFMR � of (of is the frequency of the quasi-ferromag-
netic branch of AFMR, see below), the elastic constants DĈ,
including DĈ a for the time being, have the form

DC s
55 � DC55 � ÿB14l

4
y U cos2 3jB ;

DC s
44 � DC44 � ÿB14l

4
y U sin2 3jB ;

DC s
54 �

1

2
B14l

4
y U sin6 jB ;

DC a
54 � i

�
o

4gHE

�
~P74l

3
y U sin 3jB � iDC : �79�

Here ly ' l0 � 1,

U � 4B14
HE

M0H
2
f

�80�

is what is known as the exchange enhancement factor of
magnetoelastic interaction [35, 41], HE � E=4M0 is the

exchange field, and

H 2
f �

o2
f

g2
� B�B�HD� � 2HEHD ; �81�

with HD the effective field, which includes the basic aniso-
tropy (usually very small) and magnetostrictive strain
(magnetoelastic gap) [34]. The presence of the coefficient U
in the symmetric components DCab plays an important role in
determining the size of the effects in question. In fields
B � 100 ± 1000 Oe, the coefficient U reaches, according to
formula (80), values in the 103ÿ104 range (for a-Fe2O3 and
FeBO3).6

Note that, according to the formula for DĈ a in (79), there
is no exchange enhancement, since the field HE in the
numerator (in U) cancels out with the same field in the
denominator. The reason for this is that the AF correction
DĈ a emerges because the vectorM precesses with a frequency
o and thus leaves the XY plane, a situation also hindered by
the exchange field HE. We also note that in the case at hand
DĈ a is related to piezomagnetism and weak ferromagnetism.
Accordingly, the constant

eP74 � Pzxyz ÿHDM0 ; �82�

where the field HD emerges due to the terms with oi j in the
thermodynamic potential of the rotation-invariant theory.

In view of what we have said, it is advisable to first study
LBR, assumingDC a

54 small compared to the componentsDĈ s

in (79). Here, we again can use Fig. 3, in which we should now
set X k B and Y k L. The emerging normal transverse modes
are polarized along the axes

x � X cos gÿ Y sin g ; Z � X sin g� Y cos g ;

which are rotated aboutZwith respect to theX andY axes by
the angle g � �pn=2� ÿ 3j (n is an integer) and, hence, by the
angle jx � �pn=2� ÿ 2jB with respect to the twofold symme-
try axis 2�ÿ�. The corresponding phase velocities for these
modes are

vx � o
kx
�
�
Cx

r

�1=2

; vZ � o
kZ
�
�
CZ

r

�1=2

� v ; �83�

where Cx � C44 ÿ B14U and CZ � C44. We repeat: in this
approximation (DĈ a � 0) the normal modes are linearly
polarized with the above directions of polarization (n and g)
and phase velocities (vx and vZ).

6 The coefficients U appear in the magnetoacoustics of EP antiferro-

magnets because the acoustic strains eij (exz and eyz in the given case for

kkZ) act on the system (M;L) through the antiferromagnetism vector

jLj � 2M0 (the first term inF (67)) and tend to rotate the system (vectorL)

in the easy plane XY, while the Zeeman energy ÿM � B, where

M �M0B=HE 5 2M0, hinders this rotation. As a result, the rotation

angle dj (see Fig. 2) is determined by the ratio of the magnetoelastic

energy B14eyz (or exz) to the Zeeman energy MB �M0B
2=HE, i.e., by

�B14HE=M0B
2�eyz�ezx�. It is the first factor (in parentheses) that gives the

order of magnitude of the enhancement factor U (80) if we ignore the

anisotropy in EP and the Dzyaloshinski field HD. If we allow for them,

B2 ! H 2
f . The rotation angle dj in EP antiferromagnets increases by a

factor ofHE=B in comparison, say, to a ferromagnet, where instead of the

small magnetizationM � w?Bwe have themagnetizationM0. It is the fact

that the numerator in (80) contains the factorHE (the exchange field) that

led to the term `exchange enhancement' [41].
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3.3.2 Allowance for the antisymmetric component DCa
54.Now,

let us assume that DC a
54 6� 0 in (79), which brings acoustic AF

activity into the picture. Solving Eqns (16) together with (68)
and allowing for (79), we arrive at elliptical BR with the
ellipses elongated along the n and g axes. The ellipticity is
determined by the polarization ratios�

uZ
ux

�
1

�
�
ux
uZ

�
2

� DC a
54

CZ ÿ Cx
� i

DC
CZ ÿ Cx

� iA ; �84�

where in the given case

A � oeP74 sin 3jB

2oEB14
; �85�

withoE � 2gHE the exchange frequency. Here, we again have
a superposition of CBR and LBR [corresponding to (84)].
Only now the LBR is related to antiferromagnetism (just as
the CBR is). Nevertheless, the estimate (85) shows that the
parameter determining the ellipticity, jAj, is much smaller
than unity. This fact has already been taken into account in
(84).

If one allows for the fact that A 6� 0, the velocities and
wave numbers of the normal modes change, of course.
However, these corrections prove to be quadratic in A, with
the result that we can ignore them and leave the approximate
expressions (83): v1 ' vx � �Cx=r�1=2 and v2 ' vZ �
�C44=r�1=2 � v. Here,

Dk
k
� k1 ÿ k

k
� ÿ v1 ÿ v

v
' UB14

2C44
: �86�

The approximate part of these relations allows for the fact
thatUB14=2C44 5 1.However, this is not always the case. For
instance, for hematite, according to the estimates made in
Ref. [6], at B � 1 kG we have Dk=k � B14U=2C44 � 20%.
But for fields B � 2 kG, in which saturation is reached (in the
sense that the domain structure ceases to exist), we already
have Dk=k � 10%.

Apparently, the simplest way to detect, in experiments, the
gyrotropic BR effect (AF activity) related toDC a

54 of (79) is to
proceed as follows. If the sound with kjjZ is polarized along
one of the axes, n or g (i.e., at an angle jx � �pn=2� ÿ 2jB to
the twofold symmetry axis 2�ÿ�), atDC a

54 � 0 the transmitted
wave has the same linear polarization with ujjn or g. At
DC a

54 6� 0, similar to the case represented by (26) and (25),
ellipticity emerges, and there is rotation of the polarization
plane (the major axis of the ellipse), with both determined by
the above formulas with the parameterA taken from (85) and
Dk taken from (86). The CBR effect (against the background
ofLBR) is strongly dependent on the anglejB: it disappears at
3jB � 0; �p and is at its maximum at 3jB � �p=2. More
than that, for the effect to be at its maximum, Dkd must be
either p=2 or p for the angle Y and the ellipticity a=b,
respectively.

3.3.3 Transmitted-sound oscillations in B in the EP state. Since
experiments have been carried out for the situation examined
here, i.e., for the 1���3z���2x�ÿ� structure and the state with
LjjY, B jjM jjX, and k jjZ (see Ref. [42] for MnCO3 and Ref.
[43] for FeBO3), we will focus on the power oscillations of the
transmitted sound related to the dependence of Dk on B.
Bearing in mind that in the given case, according to (86), (80),
and (81), the Dk-vs.-B dependence is nonlinear, it is con-
venient to write the oscillation period DB from (76) in the

form

DB � 2p
d

�
qDk
qB

�ÿ1
; �87�

where DB must still satisfy condition (78). The above small
effects of ellipticity and CBR related to DC a

54 can be ignored.
Suppose that at the entrance (at z � 0) into a plate of

thickness d the incident wave is linearly polarized, has an
amplitude u0, and a polarization vector umaking an angle j0

with the n axis. It can be shown (see Ref. [6]) that at the exit
from the plate (z � d) the intensities of the wave with the same
polarization as at the entrance (Il) and of the transversely
polarized wave at an angle j0 � p=2 (It) are given by the
following formulas:

It

u20
� sin2 2j0 sin

2

�
Dkd
2

�
;

Il

u20
� 1ÿ It

u20
: �88�

Clearly, the oscillations are related to the factor sin2�Dkd=2�.
Condition (78), which specifies that the oscillations are

exhibited with sufficient clarity, can be written as the
condition imposed on the thickness d of the sample:

d4
LC44

2B14U
; �89�

where, as the reader will recall, L is the sound wavelength.
Note that, for a rough estimate, condition (89) is written in the
approximation in which HD � 0 inH2

f of (81).
Let us estimate d for FeBO3 using (89). Suppose that

n � o=2p �200 MHz,B � 400 G,C44�9:2� 1011 erg cmÿ3,
B14 � 14� 106 erg cmÿ3, M0 � 500 G, HE � 2:9� 106 G,
HD � 105 G, and v � 4:6� 105 cm sÿ1 (the temperature is
77 K and we use formula (80) for U [43, 44]). Condition (89)
yields d4 0:4 mm.

Let us briefly discuss the experiment conducted with
FeBO3 in Korolyuk's laboratory in the Ukraine (see Refs
[43, 44]). The above value B � 400 G corresponds to the
middle of the interval of field strengths used in that
experiment. The thickness of the sample used, 1.2 mm,
clearly does not agree very well with condition (89). Inciden-
tally, in lower fields, e.g., B � 100 G, the situation is better,
since (89) yields d4 0:1 mm, but the researchers found that in
these lower fields the agreement between the experimental
results and those produced by formula (88) for It (which they
were verifying) was the worst.

According to Mitsa|̄ et al. [44], the essence of the
discrepancy between experiment (Ref. [43]) and theory
(Ref. [44]) probably lies in the method by which the samples
are mounted. In this method an additional magnetic aniso-
tropy is induced in the basal plane XY, and this anisotropy is
nonuniform over the sample thickness z. Bearing all this in
mind, Mitsa|̄ et al. [44] were able to describe the experiment.
In analyzing the experimental data, it is probably necessary to
allow for the real crystal structure of the samples (their block
nature) [45].

The situation with a-Fe2O3 proved to be somewhat
more favorable. Using the Appendix to Ref. [46], which
gives the values of the necessary parameters taken from the
original papers (room temperature), e.g., C44�8:5�1011 G,
2B14 � 27� 106 erg cmÿ3, HE � 9:2� 106 Oe, HD �
22� 103 Oe, and M0�870G at o=2p�200MHz and the
field strength B � 2000 G, we find for d in (89) that

d4 0:2 mm :
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Hence, in fields B that are sufficiently high for saturation to
set in, condition (89) is satisfied sufficiently well already for a
sample d � 2 mm thick.

As far as we know, an experimental study of oscillations in
B of the transmitted sound intensity for hematite has yet to be
conducted.

Gakel' [42] was the first to experimentally detect the
oscillations of the amplitude of sound transmitted through
anAF plate made ofMnCO3 (TN � 37K) as a function of the
field B ? 3 k Z. Theoretical investigations made it possible
for one of the present authors (E A T) [6] to quantitatively
describe this experiment.

Figure 4 depicts the experimental and theoretical Il�H�
curve for a geometry corresponding to formula (88).
(Unfortunately, the angle j0 was not specified in Ref. [42]).
The theoretical curve was built with the help of two fitting
parameters, one of which wasHD (81). In the estimates (89) of
d given above for FeBO3 and a-Fe2O3, it was assumed that
HD � 0. Bearing in mind future studies of the effect in FeBO3

and especially in a-Fe2O3, one should, of course, allow for the
fact that HD 6� 0 in the quantitative description of the
experiment. Incidentally, the value of this quantity is known
for these materials from other AFMR measurements. We
repeat: the most favorable situation for such experiments
probably involves a-Fe2O3. The experiments can be con-
ducted at room temperature and involve single-crystal plates
1 to 2 mm thick in fields of 2 to 10 kOe at frequencies in the
100 to 200 MHz range.

3.3.4 The EA state. The above EP state with L ? Z at B ? Z
is realized in hematite at temperatures higher than the
Morin point (T > T

M
), so that we need only examine, in

terms of the coupled equations (16) of magnetoelastic
dynamics with allowance for (61) and (69), the EA state
with LkZ. Suppose that again B ? Z and kkZ. This has
been done within the symmetry approach in Section 2.6.2,
so that now the problem reduces to finding the phenomen-
ological constants a1 and b1 in (48) and (49). To this end, we
use equations (69), as we did in Section 3.2.1 for CoF2, to
express the magnetic dynamical variables Dli and Dmj in
terms of the elastic variables ei j and oi j and then to exclude
the former from equations (16) and (68). We then compare
the renormalized elastic constants eC44, eC55, and eC45

obtained in this way to (48) and thus find the constants a1
and b1. Here, we adopt the following approximations for

frequencies and fields:

o5oAFMR � gH0 ;

BHD 5H 2
0 � HA�2HE �HA� ÿH 2

D : �90�
The introduced effective field H0 determines the AFMR
frequency as B! 0 in the situation at hand. As a result, for
the sought constants we obtain

ÿa1 � HE
~B
2

44

M 3
0H

2
0

; b1 � 4
HEHD

~B44B14

M 2
0H

4
0

; �91�

where ~B44 � B44 �HAM0=2 is the magnetoelastic constant
renormalized because of local rotations oi j which lead, with
allowance for (67), to an energy term related to magnetic
anisotropy, Ka � Kc � 2M0HA, that is added to Fm (62).
[Here one must bear in mind the cyclic permutation of
coordinates (33).] In this calculation, we also allowed for the
fact that

Lz ' 2M0

�
1ÿ 1

2
�l 2? �m2

?�
�
� 2M0 ;

where

l? � L?
2M0

� BHD

H 2
0

and m? � M?
2M0

� BHA

H 2
0

�92�

are the relative projections of the AF and ferromagnetic
vectors onto the basal plane [47]. These are small quantities,
but their emergence in a fieldB ? Z points to the beginning of
a phase transition of the type of rotation of L about this field.

Using explicit formulas (91) for the constants a1 and b1
and condition (61) at b � b1, we can estimate the distance
z � d over which one can observe the circular polarization in
hematite atT < TM and the rotation of the polarization plane
by p=2 [for which a condition of type (61) must be met]; both
phenomena have been described in Section 2.6.3. Assuming,
following Refs [47, 46], that HA � 0:54 kOe, HD � 30 kOe,
H0 � 63 kOe, HE � 4:51� 106 Oe, M0 � 870 G, ~B44 �
B44 � 26:5� 106 erg cmÿ3, and 2B14 � 27� 106 erg cmÿ3,
we obtain

d � 3� 1012

nB
; �93�

where, according to (90), the values of the field Bmust satisfy
the inequality B5 132 kG. Equation (93) shows that achiev-
ing circular polarization in a sample with d � 3 mm requires
the use of high frequencies n � 109 Hz and sufficiently high
fields B � 10 kG, while at higher frequencies (n � 1010 Hz)
the field strength can be reduced to B � 1 kG.

In conclusion of this section, we will briefly touch on an
AF effect predicted in Ref. [6] that manifests itself in the
acoustics of crystals with a threefold symmetry axis and, in
particular, with rhombohedral symmetry, such as FeBO3 and
a-Fe2O3. The thing is that in such crystals an acoustic beam
sent along the axis 3 experiences, in the absence of antiferro-
magnetism, what is known as conical refraction (e.g., see
Section 56 in Ref. [8]): the beam intensity is evenly distributed
over a circular cone whose axis is the specified symmetry axis.
What antiferromagnetism does here is that in the EP state
conical refraction is transformed into bilinear refraction:
instead of being conical, the beam splits into two beams

I e
x
p
t

0.50 1.0 1.5 2.0 2.5 H, kOe

b

I e
x
p
t

0.50 1.0 1.5 2.0 2.5 H, kOe

a

Figure 4. Intensity Il�H� of the transmitted sound: (a) the experimental

curve according to Ref. [42] and (b) the theoretical curve corresponding to

formula (88).
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corresponding to two radial (group) velocities for two normal
acoustic modes with phase velocities given by Eqn (83) with
kk3kZ. The latter are only projections of the radial velocities
onto theZ axis. The divergence angle of these beams depends
on the magnetic field strength, and for hematite may vary
from 10� to 16� (in fields B in the 5 to 200 kG range).

4. Centroantisymmetric EMS:
effects of the (LE) and (Lk) types

4.1 How to write the invariant AF contributions to the
elastic constants?
As noted in Section 2.1, themagnetic symmetry group of CAS
antiferromagnets possesses anti-inversion 1 0 � 1 � 10, where
(as the reader will recall) 10 is the time reversal operation:
t! ÿt. From the viewpoint of crystal symmetry elements,
this means in the EMS code the inversion 1 is an odd element,
1�ÿ�. This suggests that in the AF parts DĈ s (4) and DĈ a (5)
of all the linear-in-L (and generally odd) terms, the only
invariant terms are (Lk) in DĈ s and (LE) in DĈ a, which
determine the effects characteristic precisely of CAS anti-
ferromagnets. Some analogs of these terms were first
predicted and studied in optics (see Refs [19 ± 21]). As the
data listed in Table 1 and Section 2.1 imply, the effects of both
types are nonreciprocal, with (Lk) belonging to nongyrotro-
pic phenomena, and (LE), to gyrotropic phenomena.

What is interesting here is that a peculiar analog of the
effect of the (LE) type has been predicted in kinetics [48]. This
is a nonlinear (quadratic in current J) antiferromagnetic-
electric Hall effect (the field E? / LJ 2 is transverse to the
current) caused by antiferromagnetism (the vector L) and can
exist in the absence of a magnetic field (B).

The effects in antiferromagnetoacoustics discussed below
are related to the AF contributions to the elastic constants of
the form

DC a
ab � iDC 00ab � iaabkn�o�LkEn ; �94�

DC s
ab � DC 0ab � babkn�o�Lkkn ; �95�

which are determined from the criterion of invariance under
crystallochemical symmetry transformations. Formulas (3),
(8), and (9) (Onsager relations, hermiticity, and the require-
ment that the observables be real) imply that in the present
case the tensors â�o� and b̂�o� we are interested in are, as
functions of o, odd in o and vanish as o! 0. Their form is
again determined from the requirement that (94) and (95) be
invariant under transformations of the crystallochemical
group, the elements present in the EMS code. For instance,
for Cr2O3 (the space group R3c � D6

3d), this is
1�ÿ�3z���2x�ÿ� (e.g., see the fairly recent paper [49] concern-
ing the symmetry description of Cr2O3 based on the crystal-
lochemical approach). The procedure of directly establishing
the form of the tensors â and b̂ is extremely cumbersome
(tensors of rank six); however, one can use tables that exist in
the literature. For the terms Lkkn in DC s

ab, they are similar to
those for the terms of type LkBn for EMS with a symmetry
center 1��� (except for 1, which have the same code)
described in Sections 2.6 and 3.3. One should simply replace
B with k.

As for the terms of type �LE� inDĈ a (5), they can be found
by using the following simple approach. Their form (in
symmetry) coincides with that obtained from terms linear in

the components of the vectorM if in them theMi are replaced
by

ME
i � li j kLj Ek ; �96�

i.e., by the relation that determines the magnetoelectric effect
(e.g., see Chapter 2 in Ref. [7]). This does not mean, however,
that the effects of the (LE) type (which are of interest to us) are
directly related to the magnetization (96) caused by the
electric field E. In addition to this trivial channel for which
the magnetoelectric effect is responsible, the contribution to
DĈ a obtained in this manner,

DC a
ab � iaM

ab j k Lj Ek ; �97�
generally contains an independent effect (94) (the LE
channel), which coincides with that just mentioned only in
symmetry and whose specific mechanisms can be found only
from the microscopic theory of this phenomenon. 7

Below, when discussing the effects of both types, (LE) and
(Lk), we present (without going into details) the correspond-
ing terms in DĈ a and DĈ s for specific trigonal (Cr2O3) and
tetragonal (trirutiles Fe2TeO6, etc.) antiferromagnets of
interest to us (discussions about their magnetic structure can
be found, for instance, in Refs [51, 49]).

4.2 Antiferromagnetic-electric (AF-E) CBR effect in the
easy-axis state (L kZ)
We begin with the 1�ÿ�3z���2x�ÿ� and 1�ÿ�4z���2d�ÿ�
EMS with the even principal symmetry axes 3z��� and
4z���, respectively, in the EA state (LkZ). This corresponds
to the ground state of the oxide Cr2O3 (TN � 308 K) and the
trirutile Fe2TeO6 (TN � 210 K).

Let kjjEjjZ. Then the type (LE) contribution to the
relevant components of tensor ti j (14) is given by the
following relationships:

Dtzx � ÿDtxz � 2iaLzEzeyz ;

Dtyz � ÿDtzy � 2iaLzEzezx : �98�

The equations of motion (16) combined with (98) yield
circularly polarized waves with wave numbers and polariza-
tion ratios of the type

k2� � k20

�
1� a

C44
LzEz

�
;

�
ux
uy

�
�
� �i : �99�

7Here, we are dealingwith a situation where a general rule of the physics of

AF phenomena manifests itself in the given case. We call this rule the

independent-channel rule and formulate it as follows: if in statics there

exists a certain AF effect, i.e., an effect related to vector L (weak

ferromagnetism (17), magnetoelectric effect (96), piezomagnetism, etc.),

in kinetics, acoustics, and optics there always are, in addition to the trivial

effect directly related to the specified phenomenon, independent channels

(with independent constants) with the same symmetry. This was first

discovered in the spontaneous (AF) Hall effect when the experiment

described in Ref. [4] showed without doubt that in the Hall field, in

addition to contributions proportional to B and M, there is an indepen-

dent (and, as was found, principal) contribution proportional toL (despite

the relationship (17) between M and L). A similar situation exists in

magneto-optics. Krichevtsov et al. [50] found that the resulting Faraday

effect can be described only if one allows for three independent contribu-

tions:B,M andL. The rule, however,manifests itself most vividly inNMR

in the problem of the effect of E on the frequency spectrum. This effect

provided by the channel related to terms of type LiEj in a hyperfine field

yields results that differ dramatically from those provided by the trivial

channel directly throughME (96). The first (compared to the second) even

produces additional splitting of the NMR spectrum caused by E [49].
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The angle of the quasi-Faraday rotation (the antiferromag-
netic-electric effect) referred to one wavelength (z � L) is

jL �
1

2
�k� ÿ kÿ�L � p

a

C44
LzEz : �100�

We know of no attempts to detect this effect in experi-
ments, although an analog in optics has been observed by
Krichevtsov et al. [52].

4.3 Antiferromagnetic-electric effect in the easy-plane
state (L ?Z)

We now turn to the 1�ÿ�4z���2d�ÿ� EMS in the EP state
(L ? Z), and let E ? kkZ. Calculations for these two cases
(4z��� and 4z�ÿ�) produce somewhat different results.

For the 1�ÿ�4z���2d�ÿ� structure, we have formulas (99)
and (100) with the following substitution:

LzEz ! LxEx � LyEy : �101�

This situation refers to the trirutile Cr2TeO6 [51].
What we have just said is also true for the 1�ÿ�4z�ÿ�2d�ÿ�

structure, the only difference being that in (99) and (100)
instead of (101) we must introduce the substitution

LzEz ! LxEy � LyEx : �102�

It is important to note, however, that, in the real EP state to
which (99) with the substitution (101) and (102) corresponds,
the CBR effect mixes with an AFLBR effect of the (LL) type.
Only in the case of the EA state (LkZ) can formulas (99) and
(100) be used in the original (pure) form.

4.4 Nonreciprocal LBR effect
in the easy-axis state of Cr2O3

The authors of the present review know of no data from the
literature concerning the effects of spatial dispersion in
acoustics (the more so if these effects are of the AF origin).
Here, we give only one example of the possible effect of (Lk)
terms in DĈ s (4) on LBR in Cr2O3 in the ground state LkZ,
although there have been many discussions in optics concern-
ing this problem (e.g., see the reviews in Refs [21, 22] and the
book by one of the present authors [7]; in the latter, the
acoustic effects of the (Lk) type are also treated in greater
detail).

Let kkX. Here, the effect of the terms of type (Lk) on the
components txy and txz in the equations of elastic dynamics
(16) reduces to renormalizing the elastic constants,

C44 ! C44 ÿ b2Lzkx; C14 ! C44 � b1Lzkx ; �103�

where kx � k0sx, and k0 is the natural wave number of the
problem in the absence of the (Lk) effect (b1 � b2 � 0).

Fundamentally (and we believe only such an approach to
be proper here), the natural modes produced by the elastic
constants (103) are two transverse waves with polarization
vectors u1 ? u2 lying in the YZ plane. The velocities of these
waves and the angles that the vectors u1 and u2 make with the
Y and X axes depend on the C44-to-C14 ratio. Hence, the
renormalization (103) of these constants leads to a situation in
which the velocity and the angles change somewhat under
sign reversal of sx � kx=k. This constitutes the nonreciprocity
effect.

And yet, by introducing one more approximation (if only
to avoid complex formulas) we can see how this actually

happens. Precisely, let us put C14 � 0, bearing in mind that
C14 is much smaller than C44 and C66, which are other
constants of the problem (e.g., for a-Fe2O3, C14 is almost ten
times smaller than C44 and C66). In this approximation,
equations (16) produce the following normal modes:

k2x1 �
ro2

C66
for u1kY ;

k2x2 � k202

�
1� b2

C44
Lzk02sx

�
for u2kZ : �104�

In deriving (104), instead of jkxjwe took its value in the zeroth
approximation jkxj � k02 � �ro2=C44�1=2 and plugged it into
the small term b2Lzkx in equations (16) (as in (103)). Thus, in
these approximations, the nonreciprocitymanifests itself only
in one of the acoustic modes corresponding to kkX, the mode
with polarization ukZ, whose phase velocity

v�xz� � o
kx2

�105�

changes on sign reversal of sx.

5. Conclusion

Notwithstanding the considerable size of this review, the
authors, unfortunately, were unable to cover all the new and
interesting aspects of magnetoacoustics that appeared in the
last decade. Some of these aspects were only mentioned
briefly with reference to the original work. Among such
phenomena are, for instance, the transformation of conical
refraction (in the absence of antiferromagnetism) into
bilinear refraction (see the end of Section 3.3.4 and Ref. [6]).
The problem requires not only further experiments but also
theoretical research.

We did not mention, in connection with BR, the problem
of acoustooptic diffraction of AF origin; in particular, we
have not discussed a new mechanism of this diffraction
related to acoustic modulation of polarized light [53, 54].

We also found no place in this review for the peculiar
phenomena of acoustic BR near the antiferromagnetism±
ferromagnetism phase transition point [55], where exchange±
striction interaction plays a significant role and where, thanks
to the increase in magnetizationM, magnetoacoustic activity
manifests itself more vividly.

Finally, for understandable reasons (greater complexity
and almost total lack of corresponding research) we did not
study exchange ± noncollinear magnetic structures (com-
mensurable as well as noncommensurable). Still, one exam-
ple comes to mind immediately: a highly noncollinear
(`quadratic') structure characterized by an exchange doublet
whose components differ in chirality (neodymium cuprate is a
possible representative). The effect of chirality on BR has
been studied in Ref. [56], whose results we were unable to
present here.

And yet, despite all these gaps and the selective nature of
the material of our review taken from the existing original
work (with the addition of new results), the content of the
review envelopes a broad set of different AF effects in
acoustics corresponding to various crystal systems, exchange
magnetic structures, orientation states, and geometries of the
external magnetic and electric fields. As a result, even an
interested reader will find it not easy to find the principal and
most interesting topic for setting up a fairly simple, from our
theoretical viewpoint, experiment that would promise the
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discovery of a new effect. Therefore, we thought it proper to
give in this final section a subjective list of topics that merits,
in our belief, priority in experiments (we, of course, will in no
way be surprised if the attentive reader makes his or her own
list that may differ from ours). So, here is our choice.

(1) The spontaneousAF effect of acoustic activity (against
the background of LBR of crystallochemical nature) in the
orthoferrite YFeO3 in its ground state with LkXka and
MkBkZkc. The new effect, in comparison to optics, occurs
for a wave vector kkLkX, when the longitudinal and
transverse waves mix, so that there is polarization-plane
rotation (25) and ellipticity in the plane with the vector k
(`the planar Faraday effect and ellipticity'). Since here and in
what follows we mean effects that are linear in antiferromag-
netism vector, a thermal treatment that abolishes the equal
status of �L and ÿLmust be introduced.

(2) A similar planar Faraday effect and ellipticity in
hematite a-Fe2O3 at T > TM � 260 K in the situation where
M kX kB? and Y kL (see Fig. 2). The effect is isotropic (in
contrast to the previous case) in the sense that in fields
B? ? Z sufficiently high for overcoming basic anisotropy
and removing the domain structure (B?02 kG) and when
L ? B?, the size of the effect does not vary with the change in
the direction of B? (the angle jB) and is still determined by
formulas (25) and (26).

(3) Acoustic AF activity (circular BR) quadratic in B in
CoF2,MnF2 and the like (LkZ andB ? Z) at kkZ. (Note that
here, in contrast to the ordinary Faraday effect, the effect is
quadratic in B, with this field being perpendicular rather than
parallel to the wave vector k). The quasi-Faraday angle is
given by formula (40). There is an optical analog, which has
been detected experimentally. Theoretically, the effect also
exists when BxBy is replaced by ExEy or exy.

(4) Linear BR in CoF2, MnF2, etc. and also in hematite in
the easy-axis state (i.e., at T < TM). In both cases kkLkZ, but
the directions of the magnetic field are different: BkZ for
CoF2, etc., andB ? Z for a-Fe2O3. For different values of the
parameters and magnetic field strengths, the following
phenomena are possible: (a) transformation of a linearly
polarized wave into a circularly polarized wave, and (b) the
rotation of the polarization plane through 90� (or another
fixed angle) (see the end of Section 2).

(5) Acoustic activity in hematite at T > TM (L ? Z)
related to piezomagnetism [the term Pzxyz in (82)] and local
rotations in the rotation-invariant theory (the terms withHD

in (82)). The measured effects, the rotation angle Y and the
ellipticity, are again given by formulas (25) and (26) with A
taken from (85).

(6) Oscillations of the intensity of the transmitted sound as
a function of the magnetic field strengthB. (a) For FeBO3 it is
advisable to use another method (different from that used by
Korolyuk et al. [43]) of mounting the sample, so that to
minimize asmuch as possible the nonuniform and anisotropic
strains that constitute the instrumental factor. (b) For a-
Fe2O3 in the EP state (L ? Z). The desirable parameters are:
sample thickness d � 2 mm, field strength B � B?02 kG,
and sound frequency n � 100ÿ200 MHz.

(7) The antiferromagnetic-electric effect of acoustic CBR
in the situation where k k LkEkZ and the principal symmetry
axisNz is even. Examples are the rhombohedral crystal Cr2O3

with Nz � 3z��� and the tetragonal antiferromagnet trirutile
Fe2TeO6 with Nz � 4z���. The effect is caused by the electric
field E and exists in the absence of a magnetic field (B � 0).
However, a magnetic field is needed for thermal electromag-

netic treatment of the sample in order to remove the AF
domain structure (domains with �Lz). The size of the effect
(the quasi-Faraday rotation angle) is determined by equation
(100).

(8) The nonreciprocal effect of linear BR in Cr2O3 caused
by spatial dispersion related in a centroantisymmetric
antiferromagnet to the antiferromagnetism vector LkZ (the
terms of type (Lk) in the AF part DĈ s of elastic constants). A
fairly simple situation for an experiment: kkXk2x�ÿ� (the odd
twofold symmetry axis), and the polarization vector of elastic
displacements in the wave ukZ. The results are given by
formulas (104) and (105).

We repeat: the proposed list of effects has in view only the
beginning of research in the large and fairly new area of
antiferromagnetoacoustics. Further development of this
research is needed not only in experiments but also in theory
(especially on the basis of appropriate microscopic models).

The authors are grateful toM IKurkin and V VMen'she-
nin for fruitful discussions.
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