
Abstract. The mutual influence of superconductivity and mag-
netism in F=S systems, i.e. systems of alternating ferromagnetic
(F) and superconducting (S) layers, is comprehensively re-
viewed. For systems with ferromagnetic metal (FM) layers, a
theory of the proximity effect in the dirty limit is constructed
based on the Usadel equations. For an FM=S bilayer and an

FM=S superlattice, a boundary-value problem involving finite
FM=S boundary transparency and the diffusion and wave
modes of quasi-particle motion is formulated; and the critical
temperature Tc is calculated as a function of FM- and S-layer
thicknesses. A detailed analysis of a large amount of experi-
mental data amply confirms the proposed theory. It is shown
that the superconducting state of an FM/S system is a super-
position of two pairing mechanisms, Bardin ±Cooper ± Schrief-
fer's in S layers and Larkin ±Ovchinnikov ± Fulde ± Ferrell's in
FM ones. The competition between ferromagnetic and antifer-
romagnetic spontaneous moment orientations in FM layers is
explored for the 0- and p-phase superconductivity in FM=S
systems. For FI=S structures, where FI is a ferromagnetic
insulator, a model for exchange interactions is proposed,
which, along with direct exchange inside FI layers, includes
indirect Ruderman ± Kittel ± Kasuya ± Yosida exchange be-
tween localized spins via S-layer conduction electrons. Within
this framework, possible mutual accommodation scenarios for
superconducting and magnetic order parameters are found, the
corresponding phase diagrams are plotted, and experimental
results are explained. The results of the theory of the Joseph-
son effect for S=F=S junctions are presented and the application
of the theory of spin-dependent transport to F=S=F junctions is
discussed. Application aspects of the subject are examined.
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1. Introduction

Superconductivity and ferromagnetism are antagonistic
phenomena and their coexistence in uniform materials
requires that special, difficultly realizable conditions be
fulfilled. This antagonism manifests itself first in the
relation of these phenomena to a magnetic field. A super-
conductor tends to expel a magnetic field (Meissner effect),
whereas a ferromagnet concentrates the force lines of the
field inside its volume (effect of magnetic induction). The
first explanation of the suppression of superconductivity via
ferromagnetic ordering in transition metals was given by
Ginzburg [1], who indicated that in these metals magnetic
induction exceeds the critical field (see also Zharkov's works
mentioned in Ref. [1]).

This antagonism is also understandable from the view-
point of the microscopic theory: attraction between electrons
creates Cooper pairs in a singlet state, whereas exchange
interaction, which produces ferromagnetism, tends to
arrange electron spins in parallel to one another. Therefore,
when the Zeeman energy of the electrons of a pair in an
exchange field I exceeds the coupling energy, whose measure
is the width of the superconducting gap D, the super-
conducting state is destroyed. The corresponding critical
field is Ic � D=mB, where mB is the Bohr magneton. In
contrast to the critical field Hc acting on the orbital states
of the electrons of a pair, the critical field Ic acts on electron
spins (spin degrees of freedom); therefore, the destruction of
superconductivity due to this field is called the paramagnetic
effect.

For the above reasons, the coexistence of the super-
conducting and ferromagnetic order parameters (OPs) is
unlikely in a uniform system, although it is easily achievable
in artificially prepared layered F=S systems consisting of
alternating ferromagnetic (F) and superconducting (S)
layers. Owing to the proximity effect, a superconducting
order parameter can be induced in the F layer; on the other
hand, the neighboring pair of F layers can interact with one
another via the S layer. Such systems exhibit rich physics,
which can be controlled by varying the thicknesses of the F
and S layers or by placing the F=S structure in an external
magnetic field.

The modern technologies of production of layered
structures, such as molecular-beam epitaxy, permit one to
apply layers of atomic thicknesses and study the properties
of such heterogeneous F=S systems as functions of the
thickness of the ferromagnetic �df� or superconducting �ds�
layer. Numerous experiments on the F=S structures
(junctions and superlattices) revealed nontrivial depen-
dences of the temperature of the superconducting transi-
tion Tc on the thickness of the ferromagnetic layer. Of
special interest is the study of multilayered F=S structures,
in which various types of magnetic order can arise in
F layers due to their indirect interaction via S layers.
Recently, logical elements of a new type (spin switches)
were suggested based on the interrelation between the
superconducting and magnetic OPs in three-layer F=S=F
and four-layer S=F=S=F structures. Thus, the general
theoretical interest in the problem of the mutual influence
of superconductivity and magnetism in F=S structures and
the rich experimental material and possible engineering
applications make the problem discussed quite topical.

2. The problem of coexistence
of superconductivity and ferromagnetism

2.1 The possibility of coexistence in uniform systems
The antagonism between the ferromagnetic and supercon-
ducting long-range orders in a uniform system can partly be
weakened due to a mutual accommodation of the magnetic
and superconducting subsystems. This accommodation is
reached due to the appearance of a nonuniform modulation
of the ferromagnetic OP and/or a state with a nonuniform
superconducting OP.

Let us imagine a situation where the magnetic order is
uniform in the normal phase of a metal but is nonuniform in
the superconducting phase. Consider the case where the
superconducting temperature Tc is higher than the tempera-
ture of magnetic ordering Tm, i.e., the magnetic phase arises
inside the superconducting state. In this situation, it may turn
out that the minimum energy corresponds to a superconduct-
ing state with a modulated magnetic structure, since the loss
in the exchange energy may be smaller than the gain in the
energy of condensation due to the retention of the super-
conducting state. The first who indicated such a possibility
were Anderson and Suhl [2] who analyzed the spatially
nonuniform spin susceptibility w�q� in a superconductor.
They supposed that ferromagnetism in a metal is established
due to the Ruderman ±Kittel ±Kasuya ±Yosida (RKKY)
indirect exchange interaction (see, e.g., Ref. [3]).

In the normal phase, the spin susceptibility of conduction
electrons wn�q� has a maximum at q � 0, which favors the
ferromagnetic state. Upon the transition into the super-
conducting state, ws�0� becomes zero at T � 0, since all the
electrons are coupled in singlet pairs. It was found that at
q 6� 0, ws�q� passes through a maximum whose position is
determined by the wave vector of the magnetic structure
modulation

Q0 � �a 2xs0�ÿ1=3 : �2:1�

Here, xs0 is the coherence length of a pure superconductor and
a is the magnetic correlation length, which is of the order of
interatomic distances. Anderson and Suhl [2] called this state
cryptoferromagnetic (CF). It is a result of a mutual adjust-
ment of two competing order parameters, i.e., superconduct-
ing and ferromagnetic, and it is realized in the range of
aÿ1 4Q0 4 xÿ1s0 . The modulated magnetic structure is one
of the forms of coexistence of superconductivity and magnet-
ism.

It turned out that in an isotropic superconductor a
transverse (helicoidal) magnetic structure can occur [4].
Magnetic anisotropy transforms the spiral structure into a
stripe-domain structure with an alternating orientation of
magnetizations. The realization of one or other of the
coexisting phases depends on the lengths xs0 and a and, for
dirty superconductors, also on the mean free path ls [5 ± 7].

Such combined phases with modulated magnetic struc-
tures were experimentally found in a number of compounds
such as ReRh4B4 andReMo6S8. In two representatives of this
class, namely, in ErRh4B4 and HoMo6S8, which are super-
conductors with Tcl � 8:7 K and 1.8 K, respectively, a
combined phase with coexisting superconductivity and a
modulated magnetic structure was revealed as the tempera-
ture decreased to Tm � 1:0 K and 0.74 K, respectively. As the
temperature decreases to Tc2 � 0:8 K and 0.7 K, respectively,
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the superconductivity disappears and the normal (ferromag-
netic) phase is restored. A detailed discussion of the properties
of these phases and a comparison with theoretical predictions
can be found in the comprehensive review by Buzdin et al. [7].
Note here that the theory of coexistence of phases with a
magnetic structure of the type of a lattice of domains agrees
well with experimental data for the reentrant magnetic
superconductor HoMo6S8. Thus, the possibility of coexis-
tence of superconductivity and (crypto) ferromagnetism in a
common volume was proved both theoretically and experi-
mentally, although this requires the fulfillment of fairly rigid
conditions.

In the last few years, numerous works have appeared,
both experimental (initiated by Ref. [8]) and theoretical (see,
e.g., Refs [9, 10]), devoted to the coexistence of ferromagnet-
ism and superconductivity in natural layered compounds
such as RuSr2GdCu2O8. In these compounds, Tm ' 132 K,
Tc ' 46 K, and the superconducting state arises against the
background of already existing magnetic order, in contrast to
the above considered case. It was experimentally shown [11,
12] that in this case a kind of antiferromagnetic ordering is
established in the system, namely, so-called canted antiferro-
magnetism arises.

As to the mutual accommodation of superconductivity
and magnetism, rare-earth boron-nickel carbides such as
HoNi2B2C and TmNi2B2C should also be noted. Because of
the alternation of ferromagnetic planesHo±CorTm±Cwith
superconducting layers Ni2B2, these compounds are natural
microscopic analogs of the F=S superlattices, which are
considered below. In boron-nickel carbides, interesting
phenomena, such as the transformation of a spiral magnetic
structure into a layered antiferromagnetic structure, are
observed after transition into the superconducting state, as
well as a clearly pronounced passage of the upper critical field
Hc2 through a minimum with decreasing temperature [13 ±
15].

2.2 Mechanisms of destruction of superconductivity
by localized magnetic moments and the Larkin ±
Ovchinnikov ± Fulde ± Ferrel state
Let us consider in more detail how the interaction of electrons
with the ferromagnetic OP affects the superconducting state.
In a metal in which two (superconducting and ferromagnetic)
OPs are competing, two groups of electron states should be
distinguished Ð collective (s) and localized (d) Ð that form
atomic magnetic moments. The interaction between them is
described by an sd exchange Hamiltonian

Hsd�r� �
X
j

Jsd�rÿ Rj��Sj � r� : �2:2�

Here, Sj is the operator of the localized spin located in a lattice
site, Jsd is the exchange integral, and r is a vector composed of
Pauli matrices. In the paramagnetic phase, the sd interaction
leads to electron scattering by localized spins, and in the
ferromagnetic phase, it produces magnetic biasing of elec-
trons. The latter can most easily be taken into account by
using the mean-field approximation, which reduces to the
transition from Eqn (2.2) to the Hamiltonian

Hsd � Is z ; I �
X
j

Jsd�rÿ Rj�hSz
j i : �2:3�

Here, I is the effective exchange field acting on the electron
spin from localized spins, and hSz

j i is the average (at a given

temperature) value of the spin projection onto the direction of
the spontaneous moment.

The effects of exchange scattering andmagnetic biasing of
electrons are described by two fundamental equations,
namely, the Abrikosov ±Gor'kov equation [16]

ln
Tc

Tcs
� C

�
1

2

�
ÿC

�
1

2
� gs
2pTc

�
�2:4�

and Baltensperger ± Sarma equation [17, 18]
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Tcs
� C

�
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2

�
ÿC

�
1

2
� i

I

2pTc

�
: �2:5�

Here, Tc and Tcs are the temperatures of the superconducting
transitions of the metal in the presence and in the absence of
an sd interaction, respectively, and C�x� is the digamma
function. Equation (2.4), which is valid for the paramagnetic
phase of the metal, describes the effects of scattering by
localized spins; the parameter gs specifies the damping of the
electron wave function due to this scattering. Equation (2.5),
which is valid for the ferromagnetic phase of the metal, takes
into account the effect of exchange splitting of the electron
energy level on the Tc temperature. These equations deter-
mine the implicit dependence of Tc on the parameters gs or I.
In both cases, Tc falls off rapidly and vanishes at gs � Tcs or
I � Tcs.

The numerical solution to Eqn (2.5) is shown in Fig. 1 by a
solid line in the interval between Tcs and Tt corresponding to
second-order phase transitions. In the interval of fields from
I � D0=2 to It ' 0:62D0, where dTc=dI � 1, curve (2.5) is
two-valued, which indicates the instability of the system and
the possibility of a first-order phase transition.

In this case, we should consider a more general equation
as compared to (2.5). An analysis [18] shows that, beginning
from the field It corresponding to the tricritical point
Tt � 0:56Tcs, the phase transition is first-order. The corre-
sponding (dashed) line terminates at the point Ip � D0=

���
2
p

,
which is called the Chandrasekhar ±Clogston paramagnetic
limit [19, 20]. Above this field, a ferromagnetic metal at T � 0
cannot remain a superconductor with a uniform OP. A
further analysis [21, 22] showed that in a narrow range of
fields (from It to Ic ' 0:76D0) exceeding the paramagnetic
limit, a new, Larkin ±Ovchinnikov ±Fulde ± Ferrel (LOFF)

Tcs

Tc

Tt

0 0.1 0.2 0.3 0.4 0.5 0.6 Ip

It

�Tt; It�

I=D0
Ic 0.8

BCS

LOFF

Normal phase

Figure 1.Tc as a function of the exchange field I in the ferromagneticmetal.

Solid lines Ð curves of second-order phase transitions; dashed line Ð

curve of first-order phase transitions.
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state arises. In this state, pairing of electrons that belong to
the exchange-split Fermi surface occurs; therefore, pairs are
formed from the jp"i; j ÿ p� k#i states, where k � I=�hvF.

Thus, in the LOFF state, the superconducting OP is
spatially nonuniform and, in the simplest case, depends on
the coordinate as follows:

D�r� � D0 exp�ikr� : �2:6�

Since the LOFF state is formed at I � D0, the wave vector of
the OP modulation

k � I

�hvF
� D0

�hvF
� 1

xs0
�2:7�

is determined by the inverse correlation length of the super-
conductor. The spin density in the LOFF state is modulated
with the same wave vector.

The electron scattering by nonmagnetic impurities pre-
vents the formation of pairs with a nonzero total momentum
[23 ± 25] and makes the superconducting state of the
Bardeen ±Cooper ± Schrieffer (BCS) type to be energetically
favorable. For this reason, the LOFF state apparently can
form only in sufficiently pure superconductors. In the phase
diagram shown in Fig. 1, the LOFF state is separated from
the superconducting state with the BCS type of pairing by the
line of first-order phase transitions, whereas the transition
from the LOFF phase into the normal phase occurs along the
line of second-order phase transitions [23]. The LOFF state in
a pure bulk superconductor, which can be realized in the
above-mentioned narrow region of exchange fields I, has not
been observed experimentally; however, the range of its
existence widens for the case of nonuniform structures such
as F=S junctions and F=S superlattices.Wewill see below that
this state plays a key role in the formation of the super-
conducting state in these structures.

2.3 Proximity effect and superconductivity
in layered F=S structures
The proximity effect [26] usually refers to a partial transfer of
superconducting properties to a normal metal (N) that is in
electrical contact with a superconductor (S). The origin of the
phenomenon is in the large spatial extension of the wave
function of Cooper pairs, which penetrates (to the extent of
the S=N boundary transparency) from the S into the N layer
at the distances comparable with coherence length. For this
reason, sharing of electron interactions responsible for the
superconducting transition in a nonuniform N=S system
occurs. Thus, the layered N=S structure on the whole
becomes superconducting, with a critical temperature Tc

that is smaller than the Tcs temperature of the superconduc-
tor. The magnitude of Tc depends to a significant extent on
the transparency of the N=S interface [27, 28], on the relation
between the thicknesses of the metal layers and the coherence
length, and on the relation between the parameters of the
electron structure and electron interaction of the contacting
metals [26 ± 28]. The experimental and theoretical investiga-
tions concerning the proximity effect in various N=S systems
have been comprehensively reflected in the review by Jin and
Ketterson [29].

We will consider layered systems with metallic ferromag-
netic layers �FM=S� and insulating ferromagnetic layers
�FI=S� (Fig. 2). The majority of experiments were performed
using FM=S systems [30 ± 60].

It may seem that the greater the thickness of the
ferromagnetic metallic layer df, the greater should be the
effect of suppression of superconductivity in such a system.
However, in experiments, a nonmonotonic and even oscillat-
ing dependence of Tc on df was frequently observed. More-
over, an analysis of experiments with FM=S systems indicates
a qualitatively different behavior of the dependence of the
critical temperature Tc on the thickness of ferromagnetic
interlayers df for the same FM=S structures. In particular, in
some experiments on Fe=V system [36] and Gd=Nb system
[37] the rapid initial decrease in Tc with increasing df is
replaced by the subsequent passage onto a plateau, but in
other experiments with the same systems [31, 40] the plateau is
preceded by an oscillating behavior of Tc�df�.

In the first theoretical works on FM/S systems [61, 62], the
possible oscillations of Tc occurring with increasing df were
ascribed to the appearance of p-phase superconductivity [63].
In the presence of several S layers separated by F layers, a
change in the phase of the OP can occur on going from layer
to layer. If the phase of the superconducting OP changes by p,
a change occurs in the sign of the OP; this type of super-
conductivity in multilayers is called p-phase superconductiv-
ity [63]. As was shown in Ref. [61], as the df changes, a
transition from 0-phase to p-phase superconductivity can
occur; in this case, a nonmonotonic variation ofTc depending
on df (oscillations) takes place. However, oscillations were
also observed in three-layer structures such as Fe=Nb=Fe [42,
45] and Fe=Pb=Fe [56], in which the p-phase superconductiv-
ity is impossible in principle. To explain this fact, a further
development of the theory was required.

For the FM=S superlattice, the authors of the pioneering
works [61, 62] formulated a boundary-value problem for the
pair amplitude (wave function of a Cooper pair) in a dirty
superconductor and calculated Tc as a function of df. Both a
monotonic fall-off of Tc and an oscillating dependence were
obtained. However, the boundary conditions used inRefs [61,
62] are valid only in the limit of a high transparency of the
ferromagnet±superconductor interface. In subsequent works
[64 ± 69], the boundary conditions for the boundary-value
problem were derived from the microscopic theory; they are
valid for any degree of transparency of the boundary. Based
on the solution of the more general equations of the

x
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y

z
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z

0 0 0

F/S S/F/S F/S/F

ÿdf ds
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0
L � df � ds

Figure 2.Multilayered F=S systems that have been studied in experiments:

bilayers, trilayers, and superlattices.
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boundary-value problem with allowance for the complex
nature of the diffusion coefficient, other types of the Tc�df�
behavior were also predicted, namely, reentrant and periodi-
cally reentrant superconductivity [64 ± 66, 68, 69]. The theory
of FM=S systems that was developed in Refs [61, 62] and in
subsequent works [64 ± 66, 68, 69] leads to a conclusion that
the superconductivity in FM=S systems is a combination of
BCS pairing in S layers and LOFF pairing in F layers. As was
shown, such a state leads to an oscillating Tc�df� dependence
in the case of the high transparency of the junction, whereas at
a low or moderate transparency, the Tc�df� dependence may
take on a smoothed monotonic form.

Let us now consider the problem of parameters that
characterize an FM=S heterostructure. The S layer is
characterized by two parameters with a dimensionality of
length: the coherence length xs and the mean free path ls. For
an FM layer, along with two analogous parameters xf and lf,
we should also introduce the spin-stiffness length af � vf=2I
(which determines the characteristic length of modulation of
the electron spin density in the ferromagnetic metal due to a
relative shift of the Fermi surface for electrons with different
spin orientations). To these parameters, two more geometric
lengths should also be added, namely, the thicknesses of the
superconducting �ds� and ferromagnetic �df� layers.

Because of the strong depairing effect of the exchange
field �I4Tcs�, the superconductivity in such nonuniform
systems as FM=S structures can be retained if the condition
ds 4 df is fulfilled. The superconductingmetal is considered in
the dirty limit

ls < xs ; �2:8�

which corresponds to the conditions of the preparation of the
FM=S junction or the FM=S superlattice and facilitates the
theoretical description of the system, permitting one to use
the Usadel equations [70] instead of the more exact equations
by Gor'kov or Eilenberger [71].

In the FM layer, two cases should be considered
depending on the relationship between the af and lf lengths,
namely,

af < lf < xf �2Itf > 1� ; �2:9�
lf < af < xf �2Itf < 1� : �2:10�

Both cases correspond to the dirty limit, in the sense of the
character of the superconducting state, but differ in the degree
of atomic disorder leading to the wave �2Itf > 1� or diffusion
�2Itf < 1� types of motion of quasi-particles in the ferromag-
netic metal. Here, tf is the free-path time, so that lf � vftf,
where vf is the velocity of electrons at the Fermi surface in the
FM layer.

The interface in the FM=S junction is characterized by a
coefficient of transparency, which in the theory that is
described below [64 ± 66, 68, 69] can have an arbitrary value,
unlike the first works [61, 62] where the limit of high
transparency was considered. The introduced parameters ls,
xs, lf, xf, af, and the coefficient of transparency admit several
qualitatively different variants of the Tc�df� dependence,
which is the principal subject of experimental and theoretical
investigations.

Other interesting aspects of the problem of coexistence
and mutual adjustment of superconductivity and ferromag-
netism arise in ferromagnetic insulator ± superconductor
�FI=S� structures (see, e.g., review [72]). In particular, no

clarity exists so far as to the nature of internal fields that lead
to splitting of the BCS peak in the density of states of
aluminum quasi-particles in tunnel junctions such as
EuO=Al=Al2O3=Al [73], EuS=Al=Al2O3=Ag [74], and
Au=EuS=Al [75], where EuO and EuS are ferromagnetic
insulators. This splitting is observed as an excessive (as
compared to the Zeeman one) effect in the presence of an
external magnetic field and saturates as the field grows; in the
case of junctions with EuS [74, 75], the splitting of the BCS
peak takes place even in the zero field. As the magnetic field
increases further, a first-order phase transition to the normal
state occurs in the FI=S junctions [73 ± 75], although the
existing theory [76] predicts a second-order transition for
this range of fields.

A specific feature of the FI=S systems (as compared to the
above-discussed FM=S structures) is that the FI layers are
nontransparent for the conduction electrons of the S layers.
Therefore, the superconducting layers are subjected to the
action of only the exchange field of localized spins located at
the FI=S interfaces. From physical considerations, the
presence of an internal field that provides the splitting of the
BCS peak in the density of states of FI=S junctions and its
saturation in a magnetic field can be described by a nonuni-
formmagnetic ordering which is induced in the ferromagnetic
film by the superconducting substrate. In addition, the
anomalously weak suppression of superconductivity found
in Eu=V superlattices [77] can also be interpreted in terms of
the mutual adjustment of the superconductivity and magnet-
ism. Therefore, the problem of the mechanisms of intralayer
and interlayer exchange coupling in FI=S superlattices and
multilayers is a key point for the understanding of effects
related to the coexistence and mutual accommodation of two
competing types of long-range order. Such a mechanism
which ensures the long-range interaction between localized
spins belonging to the same FI=S boundary, as well as
between localized spins of neighboring FI=S boundaries in
superlattices, may serve the RKKY indirect exchange via the
conduction electrons of superconducting interlayers [78, 79].
The dependence of the RKKY exchange integral on the
distance between localized spins S�r� and S�r 0� is known [3]
to be determined by the spatial dispersion of spin suscept-
ibility w�r; r 0� of conduction electrons. The singlet Cooper
pairing of electrons in a superconductor leads to the
appearance of a long-range antiferromagnetic contribution
to the RKKY indirect exchange [2, 78 ± 80]. As a result, the
purely ferromagnetic ordering of localized spins of the FI=S
boundary related to the direct exchange over the FI film
becomes unstable with respect to the long-wavelength
modulation of the magnetic order. This leads, on the one
hand, to the retention of the short-range ferromagnetic order
in the arrangement of localized spins and to a not too large
loss in the exchange energy and, on the other hand, to an
effective averaging of spin polarization of conduction elec-
trons and the retention of superconducting pairing. In
addition, the appearance of the antiferromagnetic coupling
between neighboring FI layers through the superconducting
interlayers will shift the phases of these cryptoferromagnetic
structures by p, thereby establishing a three-dimensional
p-phase spin order over the entire FI=S superlattice.

The expected magnetically ordered phases that are
incommensurate with the period of the crystal lattice of the
FI and S layers originate from the competition between the
short-range direct ferromagnetic exchange of the localized
spins of the FI=S boundary and the long-range antiferromag-
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netic RKKY exchange between them through Cooper pairs
of the S layers. The phase diagrams of substances possessing
incommensurate phases are characterized by the existence of
a triple point, i.e., the Lifshitz point [81] at which all three
phases meet: initial, commensurate, and incommensurate.
The lattice parameter of the incommensurate phase increases
on approaching the Lifshitz point and becomes infinite at it.
The presence of an incommensurate phase in layered FI=S
structures may indicate the existence of such an interesting
feature as the Lifshitz point in their phase diagram.

The construction of a theory that would describe the
expected mutual adjustment of superconductivity and ferro-
magnetism in FI=S systems implies, first of all, the develop-
ment of the theory of indirect RKKY exchange in low-
dimensional superconductors. In particular, it is necessary
to know the dependence of the RKKY exchange integral on
not only the distances between localized spins S�r� and S�r 0�,
but also on their mutual arrangement with respect to the
boundaries of the superconducting layers. The antiferromag-
netic correlations between localized spins may be expected to
become stronger on approaching the surface of the super-
conductor or on decreasing its dimensionality. This is due to
the increase in the effective time of pair correlations of quasi-
particles near the reflecting boundary.

The structure of this review is as follows. In Section 3, we
describe the theory of FM=S junctions and superlattices for
the case of an arbitrary transparency of the boundaries, and
in Section 4, we analyze in detail the experiments based on the
theory developed. In Sections 5 and 6, we consider layered
systems consisting of superconducting and ferromagnetic
insulating layers (FI=S systems). There, the key point is the
study of the mutual accommodation of the superconducting
and magnetic order parameters, in particular, the appearance
of cryptoferromagnetism and antiferromagnetism in FI=S
superlattices. Separately, a F=S=F trilayer is considered and
the behavior ofTc depending on themutual orientation of the
magnetizations of the layers is analyzed. In view of its large
practical importance, this problem is considered for two
cases: when the ferromagnet is a metal (Section 3) and an
insulator (Section 6). In Section 7, we consider other proper-
ties of F=S systems, e.g., Josephson and tunnel currents
through F=S junctions.

Thus, the aim of this review is to report the state of the art
of the theory of F=S systems with metallic and insulating
ferromagnetic layers, in which the effects of the mutual
adjustment of the superconducting and magnetic OPs are
considered from a common viewpoint. Many predictions of
the theory are confirmed in experiments, the number of which
is growing rapidly.

3. Theory of FM/S systems consisting of
ferromagnetic metal and superconductor layers

3.1 The boundary-value problem for an FM=S junction
Consider a planar junction between a ferromagnetic metal
(FM) occupying the half-space z < 0 and a superconductor
(S) lying at z > 0. To determine the temperature of the
superconducting transition of such a nonuniform system, we
should use the Gor'kov equation [82] for the OP D�r�,

D�r� � V�r�TRe
X
o

0 �
H�r; r 0;o�D�r 0� dr 0 : �3:1�

Here,V�r� is the potential of the pairing interaction; summing
is performed over the Matsubara frequencies
on � �2n� 1�pT, where T is the temperature, and
n � 0;�1;�2; . . . (the prime at the sum sign denotes restric-
tion to theDebye frequencyoD). In addition, here and below,
�h � kB � mB � 1.

The kernel of integral equation (3.1) is determined by the
expression

H�r; r 0;o� � 
G"�r; r 0;o�G#�r; r 0;ÿo��imp
; �3:2�

where Ga � Ga�r; r 0;o� is the Green's function of an electron
with spin a �"; # in the normal phase of metal, and the
angular brackets denote averaging over impurities, since
below we consider the contacting metals in the dirty limit.

First, we consider the simplest variant of the theory, where
the OP D depends only on z and Eqn (3.1) takes the form

D�z� � V�z�TRe
X
o

0 �1
ÿ1

H�z; z 0;o�D�z 0� dz 0 ; �3:3�

where V�z > 0� � Vs, V�z < 0� � Vf,

H�z; z 0;o� �
�
d2qH�r; r 0;o� ;

and q � �rÿ r 0�? is the two-dimensional radius vector in the
plane of junction.

Averaging over nonmagnetic impurities in Eqn (3.2) is
performed using the Abrikosov ±Gor'kov diagrammatic
technique [82, 83]. It turns out that for an FM=S junction,
the two-particle correlator H is a solution to the integral
equation of the form

H�z; z 0;o� � K�z; z 0;o� �
�
K�z; z1;o�H�z1; z 0;o�

2pN�z1�t�z1� dz1 :

�3:4�

The kernel of this equation is expressed through the product
of averaged (over impurities) Green's functions for the
normal phase,

K�z; z 0;o� �
�

d2p

�2p�2 G"�p; z; z 0;o�G#�p; z; z 0;ÿo� : �3:5�

Here, Ga�p; z; z 0;o� is the Fourier transform of the Green's
function Ga�r; r 0;o� with respect to the variable q.

Integral equation (3.4) contains full information both on
the parameters of the electron structure and kinetic char-
acteristics of the metals being in contact and on the jumplike
variation of their magnitudes upon the passage through the
sharp FM=S interface. However, in the case where the
contacting FM and S metals are sufficiently dirty, it is
convenient to reduce the problem of solving integral equa-
tion (3.4) for the correlator H�z; z 0;o� to the solution of an
equivalent differential boundary-value problem. It is impor-
tant to note that the concept of a dirty limit, which for a
superconductor traditionally corresponds to the smallness of
the mean free path ls � vsts as compared to the coherence
length xs, is substantially modified for the case of a
ferromagnetic metal. The thing is that, as we have already
mentioned, there is a third characteristic scale in the
FM region, apart from lf and xf, namely the length of spin
stiffness af � vf=2I, which is responsible for the wave mode of
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motion of quasi-particles. Therefore, in an impurity ferro-
magnetic metal at lf; af < xf we should separately consider the
cases (2.9) lf < af �2Itf < 1� and (2.10) lf > af �2Itf > 1� (see
Refs [64 ± 66]).

The boundary-value problem obtained includes the
equation�

joj � iI�z� sgnoÿ 1

2
D�z� q2

qz 2

�
H�z; z 0;o�

� pN�z� d�zÿ z 0� ; �3:6�
in which the magnitude of the exchange field I�z� and the
diffusion coefficient D�z� have a step character: I�z < 0� � I,
I�z > 0� � 0,D�z < 0�� Df�I �, andD�z > 0�� Ds. Here, I is
the exchange field acting on the electron spins in the
ferromagnetic metal; Ds and Df�I � are the diffusion coeffi-
cients in the superconducting and ferromagnetic metals,
respectively; and Ds � vsls=3. The coefficient of diffusion in
the ferromagnet depends on the exchange field and is a
complex quantity [64 ± 66]:

Df�I � ' Df

1� i2Itf
; at 2Itf 5 1 ; �3:7�

Df�I � ' 3Df

1� i2Itf
; at 2Itf 4 1 ;

where Df � vf lf=3 is the usual coefficient of diffusion in the
FM layer. The complex diffusion coefficient Df�I � takes into
account the competition between the diffusion and wave
motions of the electron in the ferromagnetic metal. Finally,
N�z� in Eqn (3.6) is the density of states at the Fermi surface.

The differential equation (3.6) should be completed by
boundary conditions [64 ± 66] following from the same
integral equation (3.4):

Ds
qH�z; z 0;o�

qz

����
z��0
� Df�I � qH�z; z

0;o�
qz

����
z�ÿ0

� ssvsH��0; z 0;o� ÿ sf vfH�ÿ0; z 0;o�
4

; �3:8�

where ss; f are the parameters of the transparency of the
junction on the S and F side, respectively. These parameters
are expressed through the quantum-mechanical transparency
s of the barrier as follows:

ss; f �
�

s�xs; f�
1ÿ s�xs; f� xs; f

�
; �3:9�

where xs; f is the cosine of the angle between the direction of
the electron velocity and the normal to the boundary. The
parameters of the transparency ss; f thus defined can vary
within wide limits: 0 < ss; f <1.

The reduction of the integral boundary-value problem to
the differential problem in the dirty limit lf; s 5 xf; s proves to
be possible because the order parameter D�z� and the
correlator H�z; z 0;o� have a characteristic scale of spatial
changes xf; s that is much greater than lf; s, i.e., the range of the
kernel K�z; z 0;o�. It is for this reason that the asymptotically
smoothed (on scales of about xf; s) expressions lose terms that
rapidly oscillate at distances of atomic order or fall off
exponentially at distances of the order of the mean free path.

After solving the boundary-value problem (3.6), (3.8), we
find the kernel of the Gor'kov equation (3.3) that determines

the Tc temperature of the nonuniform FM=S system. Now, it
is suitable to introduce a function

F �z;o� � 1

pN�z�
�
H�z; z 0;o�D�z 0� dz 0 ; �3:10�

through which we express the superconducting OP

D�z� � 2l�z�pTRe
X
o>0

0
F �z;o� : �3:11�

Here, we introduced a dimensionless coupling constant
l�z� � V�z�N�z�. The F �z;o� function is known in the
literature as the anomalous Usadel function [70]. For this
function, the Usadel equation [70] was formulated, which is a
quasi-classical approximation of the Gor'kov equation (3.1)
for a dirty superconductor. Given the Usadel function, we
find the temperature of the transition from Eqn (3.11).

Using definition (3.10) and Eqns (3.6) and (3.8), we can
easily obtain equations for theUsadel function ato > 0 in the
superconducting and ferromagnetic regions of space [64 ± 66]�

oÿ 1

2
Ds

q2

qz 2

�
Fs�z;o� � Ds�z� ;�

o� iIÿ 1

2
Df�I � q2

qz 2

�
Ff�z;o� � Df�z�

8>>><>>>: �3:12�

with boundary conditions

4Ds

ssvs

qFf�z;o�
qz

����
z��0
� Fs��0;o� ÿ Ff�ÿ0;o� ;

4Df�I �
sf vf

qFf�z;o�
qz

����
z�ÿ0

� Fs��0;o� ÿ Ff�ÿ0;o� :

8>>>><>>>>: �3:13�

When deriving boundary conditions (3.13) fromEqn (3.8), we
took into account the condition of detailed balancing [27]

ssvs Ns � sf vf Nf ; �3:14�

which indicates the equal number of transitions from the
S layer into the FM layer and vice versa. The boundary
conditions (3.13), which relate the flux of the Usadel function
through the boundary with its jump at the FM=S interface,
generalize the corresponding conditions that were obtained
earlier [84] for dirty N=S contacts.

3.2 The superconducting transition temperature
of an FM=S junction
Now, we apply the above-formulated boundary-value pro-
blem (3.12), (3.13) to the calculation of the Tc temperature of
a planar FM=S junction between a ferromagnetic metal
occupying the region ÿdf < z < 0 and a superconductor
occupying the region 0 < z < ds. In addition to conditions
(3.13) for the FM=S boundary of the junction, we should also
write boundary conditions at free boundaries of the FM and
S layers in a form excluding any flux of the Usadel function
through these boundaries:

qFs�z;o�
qz

����
z�ds
� 0 ;

qFf�z;o�
qz

����
z�ÿdf

� 0 : �3:15�

We search for a solution to Eqn (3.12) in the single-mode
approximation, whose validity for ds 0xs was shown in
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Refs [66, 67, 85]:

Fs�z;o� � As cos ks�zÿ ds� ; Ff�z;o� � Af cos kf�z� df� :
�3:16�

This form of the solution takes into account conditions (3.15)
at free boundaries; the relation between the parameters ks and
kf is determined from boundary conditions. For simplicity,
we assume that lf � 0, so that in the FM region the OP
Df � 0. Then, from the set of equations (3.12), (3.13), and
(3.11) with allowance for (3.14) we obtain the following closed
set of equations in ks, kf and t � Tc=Tcs (Tcs is the temperature
of the superconducting transition for an isolated S layer):

ln t � C
�
1

2

�
ÿReC

�
1

2
� Dsk

2
s

4pTcst

�
; �3:17�

Dsks tan ksds � ssvs
4ÿ �ssvf nsf=Df�I �kf � cot kfdf ; �3:18�

k 2
f � ÿ

2iI

Df�I � � ÿ
2iI�1� 2iItf�

Df
: �3:19�

Equations (3.18) and (3.19) were obtained at 2Itf 9 1. At
2Itf 0 1,Df�I � is replaced by 3Df�I � in Eqns (3.18) and (3.19).

The first of these equations is an equation of the
Abrikosov ±Gor'kov type (2.4) for a superconductor with
magnetic impurities. The quantity Ds k

2
s plays the role of the

parameter of depairing due to the breaking ofCooper pairs by
the exchange field in the FM layer. The wave number ks,
which describes spatial changes in the pair amplitude across
the S layer, is determined from the transcendental equation
(3.18). Its right-hand side is a periodic function of the
thickness of the ferromagnetic layer df, which leads to an
oscillatory Tc�df� dependence. For convenience, we intro-
duced here the dimensionless quantity nsf � vsNs=vfNf [see
Eqn (3.14)]. The third equation defines the complex wave
number kf. Its real part specifies spatial oscillations of the
Usadel function in the FM layer; the imaginary part defines
their damping on moving from the boundary of the junction
deeper into the FM layer.

In the limit of the infinite transparency of the FM=S
boundary �ss; sf !1�, Eqn (3.18) is simplified to

NsDs ks tan ksds � ÿNfDf kf tan kf df : �3:20�
This equation for ks was obtained in Ref. [85] in the single-
mode approximation. The authors of Ref. [85] used the
boundary condition �z � 0�

Fs�z;o� � Ff�z;o� ; �3:21�
which, as is seen from the general equations (3.13), is valid
only in the limit of infinite transparency of the junction. This
theory [85] also used the relation k 2

f � ÿ2iI=Df instead of
Eqn (3.19), i.e., the complex nature of the diffusion coefficient
in the FM layer was ignored.

The various types of the Tc�df� dependences calculated by
formulas (3.17) ± (3.19) at various values of the parameters of
the theory are given in Fig. 3. It follows from this figure that at
small values of ss and 2Itf < 1, the critical temperature first
rapidly falls off with increasing df, then passes onto a plateau
(Fig. 3a). With increasing transparency of the FM=S
boundary, a deep minimum is developed in the Tc�df�
dependence, which may lead to reentrant superconductivity
(Fig. 3b). At 2Itf > 1, the Usadel function and the Tc�df�
dependence oscillate with a period of the order of the spin-

stiffness length af. The oscillations damp at df > lf; Ff�z;o�
becomes zero on moving away from the FM=S boundary and
Tc becomes constant, as is shown in Fig. 3c. Note that at
sufficiently large values of the parameters ss and 2Itf the
superconductivity of the FM=S junction has a periodically
reentrant character (Fig. 3d).

Physically, the nature of the Tc�df� oscillations in the case
of an FM=S junction at 2Itf > 1 can easily be understood
(Fig. 4). The condition of the absence of a flux of LOFF pairs
through the external boundary (ferromagnet ± vacuum) leads
to the fixation of an antinode of the pair amplitude at this
boundary, which, in turn, leads, with increasing thickness of
the FM layer, to oscillations of the jump of the pair amplitude
at the FM=S boundary. Each time when a node of the pair
amplitude of LOFF turns out at the FM=S boundary
(Fig. 4a), the jump and the related flux of Cooper pairs from
the S into the FM layer become maximum. Since the Cooper
pairs, when penetrating into the FM layer, are immediately
destroyed by the strong exchange field, minima appear in the
Tc�df� dependence at these thicknesses of the FM layer or
even complete suppression of superconductivity occurs. If an
antinode of the LOFF amplitude occurs at the FM=S
boundary (Fig. 4b), the flux of Cooper pairs through the
S=FM boundary becomes minimum. With such thicknesses
of the FM layer, maxima will arise in the Tc�df� dependence.
When the thickness of the ferromagnetic layer becomes
greater than the depth of penetration of paired quasi-
particles, the quantum coupling between its boundaries
becomes destroyed, the flux of pairs through the S=FM
boundary becomes constant, and the Tc�df� function passes
onto a plateau (Fig. 4c). As the concentration of nonmagnetic
impurities in the FM layers increases, the wave mode motion

ss � 1

2Itf � 3

t

0.6

0.4

0.2

0

0.8

c

0

t

0.6

0.4

0.2

0

0.8

dss � 3

2Itf � 7

1.0 1.0

2 4 6 8 10

df=af

2 4 6 8 10

df=af

1.0
t

0.6

0.4

0.2

0

0.8

0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

1.0
t

0.6

0.4

0.2

0

0.8

bss � 5

2Itf � 0:7

a

ss � 0:5
2Itf � 0:3

Figure 3. Reduced transition temperature t � Tc=Tcs as a function of the

reduced thickness of the FM layer df=af for two-layer FM=S systems in

terms of the 1D theory �qf � 0�. Here, ls � 0:25xs0, ds � 0:625xs0, and
nsf � Nsvs=Nfvf � 1; the values of the parameters ss and 2Itf are given in

the figure taken from Ref. [65]: (a) passage onto a plateau; (b) reentrant

superconductivity; (c) oscillations; and (d) periodically reentrant super-

conductivity.
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of quasi-particles, which is inherent in pure ferromagnet with
2Itf > 1 will be replaced by diffusion mode at 2Itf < 1. The
momentum k of the pairs becomes a bad quantum number in
this case, and the oscillations of the LOFF pair amplitude
become strongly damped and cease to ensure the coherent
coupling between the two boundaries of the FM layer
(Fig. 4c). In this case, the Tc�df� dependence takes on a
smooth monotonic character.

On the other hand, in experiment, both for two-layered
and multilayered FM=S structures, frequently only one local
minimum in theTc�df� dependence is observed. The reason, in
our opinion, is the fact that the above theory [61, 62, 64 ± 66]
is, strictly speaking, applicable only to such FM/S systems
where the FM layers are quasi-one-dimensional ferromag-
nets. In this case, the spatial variations of the pair amplitude
along the FM=S boundaries can be neglected. However, the
realistic FM=S systems, such as Fe=V or Gd=Nb that were
analyzed in the above-mentioned experiments, are three-
dimensional (3D). Therefore, the pair correlations induced
by the S layers in the FM layers (to the extent of the
transparency of the interfaces) should also have a
3D character and should be described by a three-dimensional
coherent momentum k of pairs in correspondence with the
LOFF theory [21, 22] for isotropic ferromagnetic super-
conductors. Therefore, below, we give a generalization of
the above-described approach allowing for spatial variations
of the pair amplitude in three dimensions.

3.3 3D LOFF state in an FM=S junction
Indeed, in order that a theory of the proximity effect be
adequate to the layered nature of FM=S structures, it should
take into account spatial changes in the pair amplitude not
only across the FM and S layers, but also along the plane of
the FM=S interfaces. This requires, in contrast to the

approaches used in Refs [61, 62] and [64 ± 66], the solution
of the three-dimensional (3D) rather than one-dimensional
(1D) boundary-value problem for the pair amplitude F�r�.
The specific feature of the LOFF state with a nonzero
coherent 3D momentum of pairs k is such that the pair
amplitude in the FM layer is a periodic function of
coordinates. This means [21, 22] that the LOFF pairs form a
lattice with dimensions of the unit cell of about af � vf=2I,
and their wave function satisfies the Bloch theorem. There-
fore, the pair momentum k in reality is a quasi-momentum
defined to an accuracy of the reciprocal lattice vector K,
whose absolute value is of the order of 2p=af. Thus, the
allowance for the competition between the 1D and 3D LOFF
states is equivalent to the choice of the type (1D or 3D) of the
lattice of LOFF pairs at a given thickness of the FM layer by
the minimization of the free energy of the FM=S system. In
turn, this procedure is equivalent to the allowance, along with
normal processes retaining the transverse pair momentum q
(qs � qf � 0, 1D case), also for the Umklapp processes
(qs � 0, qf � K 6� 0, 3D case), in which the transverse quasi-
momentum of the LOFF pairs is not conserved upon crossing
the FM=S interface. This resembles the situation with the
reflection of an electron from the surface of a crystal, which
can be multichannel in view of the nonconservation of the
transverse component of the quasi-momentum [86].

It may be expected that the appearance, along with the
known 1D states, of new, 3D LOFF states with an F �r�
function sinusoidally modulated in the plane of the FM=S
interface will lead to an increase in the period of its
oscillations across the FM layers. When the period is greater
than the penetration depth of Cooper pairs into the FM layer,
the coherent coupling between its boundaries will be broken,
and the oscillations of the Tc�df� function will be hardly
discernible. Therefore, we believe that the competition
between the old (1D) and new (3D) LOFF states should
substantially modify the above-considered picture of the
nonmonotonic behavior of the critical temperature in FM=S
structures.

Taking into account the translational invariance of the
FM=S system in the plane of the interface xy, Eqns (3.12) and
(3.13) can be generalized, by writing them for the two-
dimensional Fourier transform of the Usadel function
F �q; z;o�, where q is the two-dimensional wave vector
describing spatial changes along the FM=S boundary [68, 69]:�

o� iI� 1

2
Df�I �

�
q 2
f ÿ

q2

qz 2

��
Ff�qf; z;o� � Df�qf; z� ;�

o� 1

2
Ds

�
q 2
s ÿ

q2

qz 2

��
Fs�qs; z;o� � Ds�qs; z� :

8>>><>>>: �3:22�

The boundary conditions at the interface z � 0 corresponding
to Eqn (3.22) then have the form

4Ds

ssvs

qFs�qs; z;o�
qz

����
z��0
� 4Df�I �

sf vf

qFf�qf; z;o�
qz

����
z�ÿ0

� Fs�qs; z;o� ÿ Ff�qf; z;o� : �3:23�
These equations should be solved simultaneously with the
self-consistency equations

Ds�qs; z� � 2lspTRe
X
o>0

0
Fs�qs; z;o� ;

Df�qf; z� � 2lfpTRe
X
o>0

0
Ff�qf; z;o� :

8>><>>: �3:24�
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Figure 4.Mechanism of oscillations of Tc of the two-layer FM=S junction

as a function of the thickness of the FM layer df (schematic). Solid lines

show the variation of pair amplitude F �q; z�. The absence of a flux of pairs
through the external boundaries leads to the fixation of antinodes of

F �q; z� at them. Vertical arrows show the magnitude of the jump of pair

amplitude at the boundary (3.13): (a)maximum jump inF �q; z�, maximum

flux of BCS pairs from the S layer into the FM layer, and minimum Tc

(strong pair-breaking effect); (b) minimum jump in F �q; z�, minimum flux

of BCS pairs from the S layer into the FM layer, maximumTc (weak pair-

breaking effect); and (c) constant flux of BCS pairs from the S layer into

the FM layer (passage of Tc onto a plateau).
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Thus, we obtain the following set of equations for
determining the reduced temperature of the superconducting
transition t [68, 69]:

ln t � C
�
1

2

�
ÿReC

�
1

2
�Ds

k 2
s � q 2

s

4pTcst

�
; �3:25�

Ds ks tan ksds � ssvs
4ÿ �ssvf nsf=Df�I �kf � cot kfdf ; �3:26�

k 2
f � q 2

f � ÿ
2iI

Df�I � � ÿ
2iI�1� 2i Itf�

Df
: �3:27�

We see that it is only the equation for ks that remained
unaltered, whereas in the equations for t and kf, the
substitutions k 2

s ! k 2
s � q 2

s and k 2
f ! k 2

f � q 2
f have been

made. The possible noncoincidence of qs and qf is due to the
fact that the quasi-momentum qf is defined to an accuracy of
the vector K of the reciprocal lattice of LOFF states, as was
noted above. From the condition of the minimum of free
energy [maximum of Tc�df�], it follows that qs is strictly equal
to zero. This is not surprising, since in the case of the BCS
pairing with a zero total momentum in the S layer the pair
amplitude Fs�r;o� should have a constant sign. At the same
time, in the FM layer pairing occurs according to the LOFF
mechanism, with a nonzero three-dimensional coherent
momentum of pairs k � �qf; kf� and oscillating pair ampli-
tude Ff�r;o�. It follows from Eqns (3.25) ± (3.27) that the
magnitude of the 2D component of the momentum of the
LOFF pairs qf (remaining arbitrary) should be determined by
optimization, i.e., from the condition of the maximum of Tc.
It follows from boundary conditions (3.23) that the left-hand
side of Eqn (3.26), which defines the pair-breaking parameter
Ds k

2
s in Eqn (3.25) for Tc, is proportional to the flux of

Cooper pairs from the S layer into the FM layer. In this case,
the resonance denominator of the right-hand side of
Eqn (3.26), which is inversely proportional to the jump of
the pair amplitude at the FM=S boundary, periodically
changes the magnitude of this flux of pairs with increasing
thickness of the FM layer at the expense of the function
cot kfdf. However, in contrast to the previously obtained (in
Section 3.2 [64 ± 66]) 1D solutions with qf � 0, the appearance
of 3D solutions with real qf 6� 0 strongly decreases Re kf,
according to Eqn (3.27). This leads to an increase in the period
of oscillations of the pair amplitudeF �q; z;o� along the z axis,
which can become greater than the depth of penetration of
pairs into the FM layer �Im kf > Re kf�, and the coherent
coupling between the two boundaries of the FM layer will
break. As a result, the observability of oscillations in Tc�df�
(except for, maybe, the first peak) will strongly decrease.

Figure 5 displays the Tc�df� dependences optimized with
respect to the magnitude of qf with allowance for the
competition between the 1D and 3D LOFF states for
different values of the main parameters of the theory. In
principle, all qualitatively different variants of the behavior of
Tc�df� are possible, from themonotonic fall-off (up to zero) to
the reentrant superconductivity and subsequent passing onto
a plateau, both nonmonotonic (through a single spike) [42]
and gradual [37]. The periodically reentrant superconductiv-
ity (Fig. 5c) predicted by the 1D theory [64 ± 66] [see
Eqns (3.17) ± (3.19)] shown by dashed lines is almost
completely overlapped by the monotonically falling
3D curve. The only spike in Tc�df�, as in the experiment [42]
on the Fe=Nb=Fe trilayer, is due to the cascade of alternating
phase transitions 3D± 1D± 3D. The top panels of Fig. 5a ± d

show the dependence of the magnitude of the two-dimen-
sional wave vector qf on df. The phase diagram Tc�df�
displayed possesses an interesting feature in the form of
triple Lifshitz points (intersections of solid and dashed
lines), where three phases meet, i.e., two superconducting (a
commensurate 1D phase with qf � 0 and an incommensurate
3D phase with qf 6� 0) and a normal phase. Note that the
regions of existence of reentrant superconductivity predicted
earlier [64 ± 66] for the 1D case are restricted in the 3D case to
a very narrow range of parameter values. This explains why
this phenomenon up to now has not been revealed experi-
mentally in realistic FM=S systems. (Recently, a preliminary
communication appeared on the observation of this effect in
Fe=V=Fe trilayers [60].)

3.4 p-Phase magnetism and superconductivity
in FM=S superlattices
It should be noted that the theories of the proximity effect [61,
62, 64 ± 66] for FM=S superlattices absolutely do not take into
account the back influence of superconductivity on the
ferromagnetism of the FM layers. At the same time, it was
shown by one of us [78, 79] (see also Section 5) that in the case
of analogous FI=S structures the long-range RKKY
exchange between neighboring FI layers through S interlayers
leads to a layered antiferromagnetic superconducting state
(AFS). In the AFS state, the phases of the magnetic OP in
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neighboring FI layers are shifted by p, which substantially
weakens the depairing action of the paramagnetic effect of the
exchange field for S layers and increases Tc. It should be
expected that such a mutual adjustment of the superconduct-
ing and magnetic order parameters leading to a quantum
coupling between the interfaces and to the realization of
p-phase magnetism should also take place in FM=S super-
lattices.

Consider an FM=S superlattice formed by alternating
(along the z axis) FM layers of thickness df and S layers of
thickness ds. To study the mutual adjustment of the compet-
ing BCS and LOFF types of pairing, on the one hand, and
magnetism, on the other hand, it is convenient to choose the
unit cell of the FM=S superlattice in the form of an
S=FM=S=FM sequence of layers. This choice permits one to
take into account the possible change of the phases of the
superconducting andmagnetic OPs upon the passage through
the FM or S layers, respectively. For simplicity, we will
consider the 1D case, where the OP and the pair amplitude
depend only on z. A generalization on the 3D case is
performed in the same manner as was made in Section 3.3.
The boundary-value problem for the Usadel function
F �z;o; I � will be described by differential equations (3.12),
respectively, in the S layers occupying the regions
ÿ�df � ds� < z < ÿdf and 0 < z < ds, and in FM layers
located in the regions ÿdf < z < 0 and ds < z < �df � ds�.
The boundary conditions at the central interface z � 0 of the
unit cell have the form (3.13). At other boundaries of the unit
cell, i.e., z � ds;ÿdf; �df � ds�;ÿ�df � ds�, relationships ana-
logous to (3.13) completed by periodicity conditions

F �z� L;o; I � � exp�if�F ÿz;o; exp�iw� I � �3:28�

will be satisfied. Here L � df � ds is the superlattice para-
meter, and f and w are the phases of the superconducting and
magnetic OPs, respectively. The periodicity conditions (3.28)
permit us to take into account two important effects. First,
they allow for the competition between 0-phase and p-phase
types of superconductivity, which also was considered in the
previous proximity theories [61, 62, 64 ± 66]. Second, they
include the interaction of localized moments of neighboring
FM layers through the superconducting S interlayers. Below,
we show that, apart from the known competition between the
0-phase and p-phase superconductivity, competition between
the 0-phase and p-phase types of magnetism also exists in
FM=S superlattices. This leads to a new classification of states
of such an FM/S system. We will seek solutions to the
boundary-value problem (3.12), (3.13) for the central FM=S
junction of the unit cell in the form

Fs�z;o� � A�o� cos
�
ks

�
zÿ ds

2

��
� C�o� sin

�
ks

�
zÿ ds

2

��
;

0 < z < ds ;

Ff�z;o� � B cos

�
kf

�
z� df

2

��
�D sin

�
kf

�
z� df

2

��
;

ÿdf < z < 0 ;

8>>>>>><>>>>>>:
�3:29�

where the coefficients A�o�, B, C�o�, and D are independent
of z. The solutions for two outer S and FM layers entering
into the S=FM=S=FM unit cell are analogous to (3.29) with
allowance for the condition of periodicity (3.28). The
minimization of the free energy of the unit cell with respect
to the phases of the superconducting �f� and magnetic �w�

OPs leads to the possible realization of four different states
(Fig. 6)

�1� 00-phase �f � 0; w � 0�; �2� p0-phase �f � p; w � 0�;
�3� 0p-phase �f � 0; w � p�; �4� pp-phase �f � p; w � p�:

�3:30�

In the 00 state, we have C�o� � D � 0, i.e., the pair
amplitudes are even functions with respect to the centers of
the S and FM layers; in the p0 phase, the pair amplitude in the
FM layer becomes odd. In the two new states, i.e., 0p, where
D � 0 and B 6� 0, and pp, where, on the contrary, B � 0 and
D 6� 0, the coefficients A�o� and C�o� are nonzero, i.e., the
pair amplitude in the S layer does not possess evenness. An
admixture of sine solutions to the cosine ones in the first of the
expressions (3.29) reflects the partial compensation of the
paramagnetic effect of the exchange field I for the S layers in
the AFS state with an antiparallel orientation of the
magnetizations in the neighboring FM layers.

The first two states 00 and p0 were studied in Refs [61, 62,
64 ± 66] (see below), where it was implicitly assumed that
w � 0, which corresponded to the ferromagnetic state (FS) of
the superlattice with a parallel orientation of the magnetiza-
tions of all FM layers. In the limit of large thicknesses of
S layers �ds 4 xs�, this assumption is correct, since the mutual

D

0ÿdf ÿ ds df � ds

z

z

z

z

00

p0

0p

pp

Figure 6.Four possible states of the FM=S superlattice. Horizontal arrows

show the unit cell of the superlattice. Solid lines show the behavior of the

superconducting order parameter (OP) D�z� in the S layers. In the FM

layers, thick solid arrows show the direction of magnetizations, which

plays the role of the magnetic OP.
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orientation of the magnetizations of the neighboring
FM layers is unimportant until the indirect RKKY exchange
through the S layers is exponentially small. However, for
superlattices with thicknesses ds close to critical �d c

s � xs�,
greater Tc appear to be characteristic of the p-phase (with
respect to magnetism) 0p and pp LOFF states rather than 0-
phase 00 and p0 states, respectively. Below, we will show that
the superconducting state of the superlattice is a result of
competition of four different LOFF states: 00, 0p, p0, and pp.

Calculations for the reduced temperature of the super-
conducting transition of the superlattice t yield the conven-
tional equation (3.17). The pair-breaking parameterDs k

2
s is a

solution to other transcendental equations [its own for each of
the four phases (3.30)]. For the 00 phase, this equation has the
form

Ds k
00
s tan

k 00
s ds
2
� ssvs

4ÿ �ssvf nsf=Df�I �kf � cot �kfdf=2� :
�3:31�

This equation differs from the analogous equation (3.18) for
the FM=S junction only in the natural substitutions
df ! df=2, ds ! ds=2 following from the symmetry of the
problem. The complex wave number kf, as before, is defined
by Eqn (3.19). To calculate Tc in the 0p state, Eqn (3.31)
should be supplemented by an expression that relates k 0p

s to
k 00
s :

�k 0p
s �2 ÿ 2Re

�
k 00
s tan

k 00
s ds
2

�
k 0p
s cot �k 0p

s ds�

�
����k 00

s tan
k 00
s ds
2

����2 : �3:32�

The pair-breaking factor in the p0 state can be found from
Eqn (3.31) by substituting k p0

s for k 00
s in the left-hand side and

ÿ tan �kfdf=2� for cot �kfdf=2� in its right-hand side. The
equation that relates k p0

s with k pp
s is obtained from (3.32) if

we substitute k p0
s for k 00

s and k pp
s for k 0p

s in it.
The set of phase diagrams t�ds� for the superlattices at

various values of df and a reasonable choice of the other
parameters of the theory is given in Fig. 7. As was expected, in
the region of thicknesses ds smaller than a certain threshold
value d p

s , the AFS states 0p and pp (curves B and D) with an
antiparallel orientation of the magnetizations of neighbor-
ing FM layers are energetically more favorable compared to
the known FS states 00 and p0 (curves A and C ). For the
FM=S superlattices, the threshold thickness dp

s below which
p-phase (in magnetism) states are realized depends on the
magnitude of the other parameters of the theory and
changes between 0:6xs0 and 0:85xs0. It is important that
the critical thickness of superconducting layers d c

s at which
Tc becomes zero is always smaller for the AFS states than
for the FS states, i.e., d c

s �AFS� < d c
s �FS�, where d c

s �AFS� �
minfd c

s �0p�; d c
s �pp�g, and d c

s �FS� � minfd c
s �00�; d c

s �p0�g.
Thus, for the superlattices with d c

s �AFS� < ds < d p
s , the

superconductivity will have a purely AFS nature. It is seen
from Fig. 7 that, with the indicated set of the parameters of
the theory, this range of thicknesses is sufficiently wide and
can exceed 0:3xs0. In addition, for certain thicknesses ds from
this range, the difference between the critical temperatures
Tc�AFS�ÿTc�FS� may be quite substantial. Note also the
competition between the AFS 0p and pp states themselves
(curves B and D in Fig. 7) at different thicknesses of the

FM layers df. This competition indicates that the nature of
oscillations inTc�df� at ds < d p

s is related to a cascade of phase
transition 0p ± pp ± 0p between the newAFSLOFF states (see
Fig. 8).

As the thickness of the S layers increases, the gain due to
the partial compensation of the paramagnetic effect of the
exchange field in the AFS state decreases, and at ds > d p

s

becomes negligible. In this case, the symmetric FS solutions
00 and p0, which lead to smaller fluxes of Cooper pairs
through the S=FM interfaces, possess a slightly greater
critical temperature than the 0p and pp LOFF states.
However, the difference between Tc�AFS� and Tc�FS� in the
range of thicknesses ds > d p

s is quite insignificant and can
hardly be observed experimentally. Most probably, the
FM=S superlattice in the range of thicknesses ds > d p

s is
effectively quasi-two-dimensional in the magnetic aspect,
i.e., it breaks up into a system of S=FM=S sandwiches, in
which no correlation between the phases of the magnetic OP
in neighboring FM layers exists. At the same time, the 0- or
p-type matching between the phases of the superconducting
OP in neighboring S layers is retained in this case. This should
lead to a nonmonotonic behavior of Tc�df� at ds > d p

s due to
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the transitions between the 00 and p0 states, as was shown in
Refs [61, 62, 64 ± 66] for FM=S superlattices.

Thus, an analysis of Fig. 7 shows that, at ds < d p
s , it is the

AFS states 0p and pp that are dominating, whereas at
ds > d p

s , 00 and p0 FS states are realized. Let us consider
these cases separately.

As was noted above, of most physical interest in Fig. 7 is
the range of thicknesses ds where the critical temperatures of
all four LOFF states differ most strongly. Therefore, to
analyze the t�df� dependences, we chose superlattices with
the same parameters as in Fig. 7, with a thickness of the S layer
ds � 0:52xs0 corresponding to this range. Figure 8a displays
curves corresponding to all four possible LOFF states. It is
seen from this figure that the curvesB andD corresponding to
the AFS states 0p and pp go much higher than the 00 and p0
FS states (curves A and C ) with the reentrant superconduc-
tivity. Consequently, the appearance of new AFS LOFF
states prevents the premature suppression of superconductiv-
ity and substantially increases the area of superconducting
regions in the phase diagrams in Figs 7 and 8. Note that at a
given choice of the parameters of the theory (2Itf 5 1,
ds < xs0), the appearance of 3D states virtually does not
affect the t�ds� and t�df� phase diagrams.

The simplest structure admitting competition of the 0-
phase and p-phase magnetism and of the 0-phase and p-phase
superconductivity in the same sample is a four-layer structure
S=FM=S=FM whose phase diagrams are analogous to those
shown in Figs 7 and 8a for superlattices. The simultaneous
study of the Tc�ds� phase diagrams given in Fig. 7 and of the

Tc�df� diagrams shown in Fig. 8a permits one to optimize the
choice of the parameters of this four-layer system, making it
possible to control its superconducting and magnetic proper-
ties, e.g., using a weak external magnetic field. In order to
reorient the magnetizations of the FM layers from the
antiferromagnetic into the ferromagnetic arrangement, mag-
netic fields H are required which are greater than their
coercive field Hcoer. Such fields (Hcoer � 10ÿ100 Oe, see,
e.g., Ref. [89]) are too weak to substantially change the
phase diagrams of S=FM=S=FM structures, which possess
simultaneously two channels of recording information,
namely, on the superconducting current and on the magnetic
order. In particular, as follows from Fig. 8a, if we select the
working point of the system immediately below the curve D
[e.g., t � 0:3, df � 0:45af (solid triangle)], the effect of a field
H>Hcoer will transform the system from the AFS(pp) state
directly into the ferromagnetic normal (FN) state, making the
superconducting current resistive. Switching off of this field
restores the system into the initial AFS state. In this regime,
the four-layer S=FM=S=FM system works as a device with a
100% negative magnetoresistance. This resembles the model
of a `spin switch' based on FM=S=FM trilayers suggested in
Refs [90, 91] (see the next section of this paper).

In particular, if we fix the orientation of themagnetization
of the outer layer FM 0, e.g., due to pinning in the junction
with a magnetic insulator, then by the application of a fieldH
(which is greater than the upper critical field Hc2) of the
opposite orientation, we can obtain the transition of the four-
layer structure from the AFS into the antiferromagnetic
normal (AFN) state. In this case, we have a change in only
information recorded in the superconducting current,
whereas the information recorded in the mutual orientation
of the magnetizations of the FM layers is retained. Note that,
choosing the position of the working point with respect to the
curve of the superconducting transition Tc�df� in Fig. 8, we
can always achieve the necessary magnitude of the Hc2 field
by making it smaller than the fieldHp required to lift pinning.
An additional transition AFN!FN in the S=FM=S=FM
system arises under the effect of a field H > Hp. A system
prepared in this way can have three different states Ð AFS,
FN, and AFNÐ differing in the information recorded in the
magnetic order and in the superconducting current.

On the other hand, in accordance with the theory of
second-order phase transitions, that state is realized under
given conditions that possesses a lower free energy (a greater
critical temperature). Therefore, if we chose the working
point below the curve C (t � 0:25, df � 0:45af, solid square
in Fig. 8a), then the action of a fieldH of a proper magnitude
and direction leads to a transition AFS�pp� ! FS�p0�, which
changes magnetic information and, at the same time, retains
information recorded in the superconducting current. As the
field strength increases to a value exceedingHc2 in the FS�p0�
state, the S=FM=S=FM structure passes into the FN state. By
applying fields of opposite orientations and exceeding Hc2

and then Hp in magnitude, we obtain a chain of transitions
AFS�pp� ! AFN! FN, as was described above. The
switching off of external fields again returns the system into
the initial state AFS�pp�. Such a S=FM=S=FM superlattice
already has themaximumnumber of logically different states,
i.e., four ( AFS, FS, FN, and AFN).

Thus, FM=S superlattices can serve as the component
base for the development of microelectronic devices of a
fundamentally new type, which combines advantages of the
superconducting and magnetic channels of recording infor-
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mation in a single sample. We emphasize that these channels
can be separately controlled by an external field. Note that the
p-phase magnetism manifests itself most vividly in a quite
narrow interval of the theory parameters. In particular, it is
extremely sensitive to the parameters 2Itf and nsf. For
example, at 2Itf 4 0:1 and nsf of the order of unity or
smaller, the difference

��t�AFS� ÿ t�FS��� becomes less than
0.02, i.e., the p-magnetic and 0-magnetic states of the FM=S
superlattice become virtually indistinguishable.

We established above that at large thicknesses of S layers,
when ds > d p

s , the 00 and p0 FS states are dominant. As is
shown in Fig. 9, the behavior of Tc�df� in the simplest
1D version of the theory admits a wide spectrum of
nonmonotonic dependences, from a single spike (Fig. 9a) to
periodically reentrant superconductivity (Fig. 9d). However,
in contrast to the FM=S junctions (see Fig. 3), these
dependences arise as a result of competition between the 00
and p0 states. The mechanism of the nonmonotonic behavior
of Tc depending on df is related to oscillations of the flux of
Cooper pairs at S=FM interfaces owing to the pinning of
antinodes or nodes of the pair amplitude in the centers of the
FM interlayers (see analogous discussion in Section 3.2).

In comparison with the above-considered case where
ds < d p

s , note that the appearance, along with the 1D states,
of 3DLOFF states at ds > d p

s dramatically changes theTc�df�
phase diagram of FM=S superlattices (Fig. 10). Here, thin
dashed and dotted lines show the 00-phase and p0-phase
1D solutions that were considered above (see Fig. 9). The
thick solid lines show the results of the optimization of the
Tc�df� dependence, which are due to a complex competition of
1D and 3D solutions for both 00- and p0-phase LOFF states.

As follows from Fig. 10c, at certain values of the
parameters of the superlattice, the behavior of the Tc�df�
function indeed reveals a single spike of the critical tempera-
ture caused by the 3D�00�ÿ1D�p0�ÿ3D�p0� cascade of
transitions. At lower values of ss and 2Itf, the amplitude of
the spike strongly decreases, and the Tc�df� dependence after
a monotonic fall-off directly passes onto a plateau (Fig. 10a).
In addition, we also predict some new variants of the
nonmonotonic behavior of Tc�df� that are characteristic of
only superlattices, such as the reentrant superconductivity in
the form of an isolated 1Dÿ3D�p0� peak (Fig. 10b) and the
oscillatory approaching of Tc to zero as a result of
3D�00�ÿ1D�p0�ÿ3D�p0� transitions (Fig. 10d). The points
of the phase transitions at which the period of the
2D modulation of the pair amplitude along FM=S bound-
aries tends to infinity �qf � 0� correspond to Lifshitz triple
points. Thus, even the seemingly simple (as in Fig. 10a)
behavior of Tc�df� observed in many experiments can lead to
nontrivial physics of FM=S systems, consisting in a combined
(BCS�LOFF) character of superconductivity and competi-
tion of 1D and 3D LOFF states in FM layers.

The one-dimensional LOFF states with vividly pro-
nounced oscillations of Tc�df� shown in Fig. 10c by thin
dashed lines could be realized in pure form, e.g., in FM=S
structures in which the FM layers are quasi-one-dimensional
ferromagnets with conducting threads oriented perpendicular
to the interface. Another possibility for the realization of only
1D LOFF states is provided by the replacement of FM layers
by quasi-one-dimensional ferromagnetic bridges (whiskers).
In these cases, the appearance of 3D states with spatial
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Figure 10. Phase diagrams of the FM=S superlattices at ls=xs0 � 0:25 for

various values of the parameters of the 3D theory. The main designations

are the same as in Fig. 5. Thin dashed lines correspond to pure 1D

00-phase solutions; dotted lines correspond to p0-phase solutions. The

regions of existence of optimized 00-phase and p0-phase states are

separated by vertical dash-dot lines.
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changes in the pair amplitude along FM=S boundaries can be
neglected.

It is important to note that both for bilayers and super-
lattices, the appearance of new 3D LOFF states along with
1D states prevents the premature vanishing of Tc with
increasing df and increases the area of the superconducting
regions in the phase diagrams in Figs 5 and 10.Moreover, it is
the competition between the 1D and 3D states, leading to the
multicritical behavior of the phase diagrams, that is respon-
sible for the nonmonotonic behavior of Tc�df� at some
thicknesses of F layers and for the absence of oscillations at
greater df.

3.5 Three-layer FM=S=FM system
We specially consider this particular case in view of the
prospects for practical applications of the principle of
modification of the superconducting state in such a trilayer
depending on the mutual orientation of the magnetizations in
ferromagnetic layers.

To find the critical temperature in a FM=S=FM trilayer,
we can use Eqns (3.17) and (3.19), and we should replace the
quantity ds by ds=2 inEqn (3.18): in a two-layer FM=S system,
the S layer is coupled with only one FM layer, whereas in a
FM=S=FM system it is coupled with two layers.

Note that Figs 7 and 8a are also suitable for analyzing
Tc�ds� and Tc�df� phase diagrams of three-layer FM=S=FM
structures in which the p-phase superconductivity is impos-
sible in principle. To make this, it is sufficient to remove the
curves C (p0) and D (pp) from these figures and replace df by
2df. In particular, Fig. 8b with the reentrant superconductiv-
ity represents the Tc�df� phase diagram for FM=S=FM
trilayers.

It follows from Fig. 8b that with our choice of the
parameters of the theory, it is possible to organize control-
ling the superconductivity of the FM=S=FM trilayers and
superlattices with the help of a weak external magnetic field.
However, as we saw above, the FM=S superlattices offer a
significantly greater number of logically different variants for
recording information as compared to the FM=S=FM
trilayers.

Thus, the FM=S=FM trilayers that were earlier discussed
in Refs [90, 91] represent a particular case of the above-
described theory of superlattices. Moreover, it was assumed
in the cited works that the AFS state has a greater Tc than the
FS state at any thickness ds of the S layer, although the
estimates of the Tc�ds� were only performed in the Cooper
limit �ds 5 xs�. We showed above that the AFS state is
dominating only while ds is smaller than a certain threshold
value d p

s (see Fig. 7). In the opposite case, the FS state has a
higher critical temperature. Recall that, in our case,
ds 5 d c

s � 0:4xs0 > xs � 0:3xs0
Nevertheless, for the first time the idea of the development

of similar switches of current with two possible states was
suggested just for FM=S=FM trilayers by Buzdin, Vedyaev,
and Ryzhanova [90] and Tagirov [91]. In these papers, the
direction of the magnetization in one of the FM layers was
fixed due to the magnetic coupling with one more external
F layer, i.e., in fact a four-layer system F=FM=S=FM was
suggested. A weak external magnetic field Hcoer < H < Hp

transformed the system from the AFS into the FN state.
To close the consideration of switches of superconducting

current, note some earlier works devoted to similar devices
with a single channel of recording based on the transition
from the superconducting into the normal state. In Ref. [92],

an experimental model of a device based on an FM=I=S
system was suggested, in which the superconductivity was
suppressed due tomagnetic fringe fields arising because of the
special geometry of the switch. A three-layer F 0=F 00=S device
in which a weak magnetic field changed the direction of the
magnetization in a sufficiently thin internal F 00 layer, was
theoretically investigated in Ref. [93]. Upon the change in the
mutual ordering of the magnetizations M 0 and M 00 from the
antiparallel to the parallel arrangement, the device passed
from the S into the N state.

So far, we have investigated F=S multilayers with
particular phase relationships between two neighboring
F layers w � 0; p [see relations (3.28) and (3.30)]. In Ref. [94],
the authors investigated the interaction between supercon-
ducting and magnetic OPs for the case where the angle w
between the magnetizations of two neighboring F layers was
arbitrary. For the FM=S=FM system in the case of a dirty
superconductor, the Usadel equations were solved using
simplified boundary conditions corresponding to a high
transparency of the boundaries. When the ratio of the
conductivities of the metals in the normal state ss; f is small
�g � sf=ss 5 1�, the boundary-value problem leads to the
following equation for Tc:

ln
Tc

Tcs
� C

�
1

2

�
ÿReC

�
1

2
� d �

ds

Tcs

Tc

�
1� i cos

w
2

��
; �3:33�

where d � is a characteristic length written as

d � � gDs

4pTcs

������
I

Df

r
:

In the particular cases of w � 0 (parallel orientation of
magnetizations) and w � p (antiparallel orientation), we
have from Eqn (3.33) the previously obtained result [90]: Tc

is higher for the antiferromagnetic orientation. A numerical
solution to Eqn (3.33) shows that at intermediate w the critical
temperature gradually passes from one limit to another, so
that Tc�0� < Tc�w� < Tc�p�. Another result following from
Eqn (3.33) is the determination of the critical thickness d c

s at
which the superconductivity disappears �Tc � 0�:

d c
s

d �
� exp

�
ÿC

�
1

2

�
�Re ln

�
1� i cos

w
2

��
: �3:34�

According to this formula, d c
s gradually decreases as the angle

increases, i.e., at the antiferromagnetic orientation the super-
conductivity is more stable with respect to the pair-breaking
effect due to the proximity of the FM layer.

In another case, where g � 1, superconductivity is
retained only at small thicknesses df. Investigation [94]
shows that, in this case as well, the antiferromagnetic
orientation is energetically more favorable.

The same conclusion follows from the consideration of
other systems, e.g., FM=S superlattices with atomic layers
[94]. As an example of such a system, the layered super-
conducting ruthenate RuSr2GdCu2O8 can be taken, in which
the magnetic phase transition occurs at Tm � 130ÿ140 K,
and the superconducting transition, at Tc � 30ÿ40 K. We
can assume that in such compounds the CuO layers are
responsible for superconductivity, while in the Gd layers a
ferromagnetic ordering occurs in such a manner that the
magnetizations of neighboring layers are antiparallel. Thus,
this ruthenate could be considered as an example of an atomic
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superlattice with a p-phase superconductivity and p-phase
magnetism (see, e.g., Ref. [95] and references therein).
However, recent neutron diffraction investigations [12]
showed that the antiferromagnetic ordering in this com-
pound occurs in all three directions. It is possible that the
atomic FM=S superlattice is also realized in other ruthenates
with a greater number of ruthenium layers.

3.6 Further development of the theory
So far, when studying the problem of the interaction of the
superconducting state with the type of magnetic ordering
between ferromagnetic layers, we ignored the exchange
coupling between the surface atoms of the FM layers
through the conduction electrons of the S layer. To the full
extent, this problem will be considered in Section 5, in
connection with the study of FI=S structures consisting of
layers of a ferromagnetic insulator and a superconductor. In
that section, we will consider in detail the problem of indirect
interaction of localized spins through the conduction elec-
trons in the superconductor on the basis of fundamental
investigations [78, 80, 87].

Returning to the problem of magnetic ordering in FM=S
structures, we note that the mechanism of the establishment
of any magnetic order here is of purely correlation
character. The type of magnetic order is determined by the
minimization of the free energy of the entire FM=S
structure. Thus, for a FM=S=FM trilayer, as we saw, the
antiferromagnetic orientation of the magnetizations of
neighboring FM layers proves to be energetically more
favorable than the ferromagnetic orientation. Such an
approach should be supplemented by the introduction of
the indirect interaction of FM layers through the conduc-
tion electrons of the S layer.

For an FM=N=FM system consisting of two ferromag-
netic layers separated by a normal metal, the indirect FM±
FM interaction has the character of a modified RKKY
interaction [96]. For FM=S=FM system, an investigation
was performed for the zero temperature using numerical
methods [97]. Recently [98], the problem was considered for
finite temperatures analytically, using the method of func-
tional integration, with the following assumptions: (1) the
indirect interaction between FM layers exists when the
superconductor that separates them is in the normal state;
(2) superconductivity is not suppressed because of the
proximity effects involving ferromagnetic layers; and (3) the
boundary of the FM=S junction is smooth. The second
condition requires that the ferromagnetic layer be a weak
ferromagnet. For the model in which

Tm 4Tc ; JsdhSzi5 2pTc ; df 4 ds ; pFds 4 1 ;

�3:35�

where pF is the Fermi momentum for the S metal, the
following asymptotic for the indirect interaction between
FM layers was obtained:

Heff � J 2
sdN�0�

cos 2pFds

�2pFds�2
exp

�
ÿ ds
xs

�
; T! 0 ;

exp

�
ÿ ds
lT

�
; T � Tc :

8>>>><>>>>: �3:36�

Thus, the magnitude Heff is controlled by the coherence
length xs at low temperatures and by the thermal length

lT � vs=pTc in the vicinity of Tc (including the region of
T > Tc). The oscillations of the effective interaction have a
period of p=pF, as for the RKKY interaction, but they fall off
with distance by the law��pFds�ÿ2 rather than��pFds�ÿ3, as
is the case for the indirect interaction between localized
moments. It is important that near Tc no drastic changes in
Heff occurs, and formula (3.36) at T � Tc agrees with the
calculations [96] for the FM=N=FM system. Such oscillations
in the FM=N=FM system have already been observed
experimentally [99]. For the experimental observation of
oscillations in the FM=S=FM systems, structures consisting
of high-temperature superconductors and magnets with
colossal magnetoresistance were suggested [98].

When studying the interaction of magnetic and super-
conducting states in FM=S systems, we assumed that the state
of an isolated FM layer is ferromagnetic. At the same time, it
was shown yet in earlier investigations [2] that the minimum
of energy of the system in a uniform superconductor is
associated with a cryptoferromagnetic (CF) phase with a
spatial modulation of the magnetic moment. The loss in the
exchange energy (in the case of the positive sign of the
exchange integral) is compensated by the formation of the
superconducting state in such a way that, at least under the
condition that the period of the CF structure is much smaller
than the size of Cooper pairs �Qÿ10 5 xs�, the CFS phase
proves to be stable, and the paramagnetic effect is weakened
because of the averaging of spin polarization over distances of
the order of the coherence length xs.

In a nonuniform superconductor (FM=S junction), the
cryptoferromagnetic state in the FM layer also proves to be
stable. Recently, a detailed investigation of the possibility of
the existence of such a state in the FM=S junction was
performed under the conditions corresponding to the experi-
ment, namely, for the casewhere the following inequalities are
satisfied:

ls 5 xs ; df 5 af ; Itf 0 1 �3:37�

which means that there is a dirty superconductor and a thin
sufficiently pure ferromagnetic layer. The last condition in
Eqn (3.37) implies that we cannot use the Usadel equations
for the FM layer, as for the S layer, but should write the
Eilenberger equations [71].

The corresponding boundary-value problem with the
Usadel equations for the superconductor and the Eilenber-
ger equations for the ferromagnet was solved in Ref. [100],
where the free energy of such a junction was calculated as a
function of the modulation wave vector q. On the assumption
that q is small, an expansion of the energy in powers of q was
obtained. The zero coefficient at q 2 (and the positive sign of
the coefficient at q 4) determines the boundary between the
CF and F phases. An analysis shows that the appearance of
the CF phase is favored by the small magnitude of the
exchange integral J and the small thickness of the FM layer
(at a sufficiently large exchange field I ). Naturally, crypto-
ferromagnetism should arise not only in the junction but also
in the lattice, including the p-phase magnetic ordering. This
phenomenon will be studied in detail in Section 5, in which we
will consider layered systems consisting of insulating mag-
netic and superconducting layers on the basis of the works
performed by one of us [78, 79].

We now turn our attention to works [101, 102], in which
some features in the density of states in a ferromagnetic metal
being in contact with a superconductor have been studied.
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The Usadel function for the FM layer is an oscillating and
damped function of the distance from the FM=S interface:

Ff�z;o� � D�����������������
D2 � o 2

p exp koz �z < 0� ; �3:38�

where

ko �
���������������������
2�o� iI �

D

r
; Re ko > 0 :

Since the normal Green's function Gf and the anomalous
function Ff for the Usadel equations are linked by the known
relation G 2

f � Ff
eFf � 1, we can easily obtain the expression

for the density of states in the F layer [101]

N"�z;o� � Nf ReGf�o�

� Nf Re

����������������������������������������������������������������������������
1ÿ D2

D2 ÿ o 2
exp 2z�1� i�

������������
I� o
D

r" #vuut : �3:39�

The density of states N#�z;o� of electrons with the opposite
spin is obtained from Eqn (3.29) by the substitution I! ÿI.
The expression Nf�z;o� � N" �N# determines the local
density of states in the ferromagnetic metal.

It is seen from Eqn (3.39) that Nf�z;o� strongly changes
on moving away from the F=S boundary within several units
of coherence length xf �

�����������
D=2I

p
; the character of this

dependence is determined by the magnitude of the frequency
o. At a fixed distance z, Nf�z;o� nonmonotonically depends
on energy; namely, a sharp peak appears at energies Ef � I.
This peak remains quite marked at distances jzj4 xf. Thus, at
the above energies the proximity effect becomes long-range.

In Ref. [102], Koshina and Krivoruchko solved a kind of
the inverse problem of the effect of a ferromagnetic layer on
the density of single-particle states of a superconducting
metal. The density of states Ns�o� proved to be spin-
polarized, as is the case in the ferromagnetic metal. This is
due to the proximity effect on the ferromagnet side. Usually,
Ns�o� has an ordinary BCS singularity at o � �D0�T �, but
the height of the corresponding peaks decreases with
increasing I. In addition, there is another singularity, which
is due to the presence of a true gap Ds�T � in the system.

4. FM=S systems: a review of experimental
data, a comparison of theory and experiment

4.1 A brief review of experiments
The experimental study of the proximity effect in artificially
produced systems consisting of layers of ferromagnetic and
superconducting metals stems to the pioneering work of
Hauser, Theuerer, and Werthamer [30]. To prepare two-
layer FM=Pb sandwiches, they used the method of rf
sputtering (rfS). Beginning from the 1980s, numerous new
works began appearing [31 ± 60].

Figure 2 schematically displays the multilayer structures
that have been studied in experiments. The description of the
experimental procedure of preparation of multilayer FM=S
systems can be found both in the cited works and in the
excellent review by Jin and Ketterson [29]. To prepare
FM interlayers, Fe, Co, Gd, and Ni were used, i.e., metals
whose Curie temperatures Tm are much greater than the

superconducting transition temperatures of the metals Nb,
Pb, and V used for the preparation of S layers.

The main results of experiments on the investigation of
multilayer FM=S systems are given in Table 1. Table 2 lists
analogous results for the cases where one of the metals was
replaced by an alloy and where concentration dependences
were mainly studied.

Among all possible experimental parameters and depen-
dences (Tables 1 and 2), the dependence of the critical
temperature of the multilayer FM=S system on the thickness
df of the FM layer and on the thickness ds of the S layer
appears to be of most interest. Experiments show a suffi-
ciently large variety of Tc�df� dependences at a fixed ds,
including quite unexpected (at first glance) nonmonotonic
dependences and the phenomenon of reentrant superconduc-
tivity. Figure 11 shows the main types of experimental
dependences of the critical temperature Tc on the thickness
of the FM layer. Several experimental dependences of the
critical temperature are reproduced in Figs 12 ± 14. TheTc�ds�
dependence, on the contrary, has a completely expected
character: it monotonically falls off with decreasing ds
(Figs 12c and 14b).

The various aspects of the dependences of the critical
temperature on the layer thicknesses will be discussed in more
detail in the next sections; here, we only consider some other

Tc

Tc

Tc

df df

a b

c d

e f

1

2

Figure 11. Types of dependences of the critical temperature Tc on the

thickness of the FM layer df observed in experiments on multilayer FM=S
systems (schematic): (a) rapid fall-off to zero; (b) rapid initial fall-off with

subsequent monotonic passage onto a plateau; (c) passage onto a plateau

via a local minimum (two variants); (d) monotonic decrease with a sharp

drop; (e) oscillations (two or more local minima); and (f) reentrant

superconductivity.
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parameters of the FM=S systems, both those listed in Tables 1
and 2 and omitted from them.

Because of the effect of various technological, metallurgi-
cal, and chemical factors that act upon the preparation of
FM=S systems, the multilayer systems, even when having the
same constituents can strongly differ in their properties.
Following the review [29], we enumerate some of them:

Ð mutual diffusion and noticeable solubility, resulting in
the appearance of an intermediate layer between the S and
F metals and a deterioration of the boundary quality. In this
sense, better properties are characteristic of the FM=S
multilayers based on Nb and rare-earth F metals. The latter
virtually do not mix with Nb; therefore, very pure Nb=FM
junctions with a sharp boundary can be grown on their basis
[40]. The same may be said of the boundary between Pb and
Fe [30, 51, 56], in contrast to, e.g., systems based on Nb and
Fe, which are well soluble in one another. The quality of the
transition layer in such multilayer systems depends on the
method of preparation [51];

Ð the appearance of an oxide interlayer and the problem
of the irreversibility (dependence of the critical temperature
Tc on the order in which the layers are sputtered);

Ð the possibility of an electrochemical reaction between
the constituents of layered structures and the effects of
annealing;

Ð the dependence of the critical temperature on the
substrate material; the following materials were used: glass
[30]; sapphire [30 ± 32, 37, 46, 47]; silicon [39 ± 41, 44, 48, 54,
55, 58, 59]; Al2O3 [42, 45, 50 ± 52, 56, 57]; MgO [49]; quartz
glass [30, 43].

In addition to the superconducting properties of the
FM=S systems [i.e., the critical temperature Tc and parallel
�Hc2k� and perpendicular �Hc2?� upper critical fields],
magnetic properties of the FM layers (such as the magnetiza-
tion M and the Curie temperature Tm) were studied in much
detail. To this end, magneto-optical Kerr effect (MOKE),
ferromagnetic resonance (FMR), and SQUIDmagnetometry
were employed. For example, it was found inRef. [52] that the
effective magnetization in the Fe layer decreases upon the
transition of the Nb layer into the superconducting state (see
also Ref. [100]). In Ref. [37], it was shown using the magneto-
optical Kerr effect that in Nb=Gd=Nb trilayers the Curie
temperature of the FM interlayer decreased on decreasing its
thickness: it was 255Kat df � 34A

�
, 220Kat df � 25 A

�
, 140K

at df � 20 A
�
, and no ferromagnetic ordering was observed at

df 9 15 A
�
. The existence of a critical thickness d m

f of the
FM layer was also observed in other FM=S systems (see
Tables 1 and 2). In particular, it was shown in Ref. [36] for the
V=FM systems that the magnetization M of FM layers
decreases linearly with decreasing thickness df and vanishes
at d m

f .
Naturally, the above theory (Section 3) is applicable only

to multilayer systems with df > d m
f . Therefore, e.g., no sharp

drop of the Tc�df� curve of the type shown in Fig. 11d can be
obtained in terms of this theory, since it is most frequently
associated just with the transition of the FM layer to the
ferromagnetic state at df � d m

f (see, e.g., the paper devoted to
the Nb=Fe superlattice [49] and the corresponding drop at
d m
Fe � 16 A

�
).

A contribution to the formation of the transition layer at
the S=FM boundary also comes from the mismatch of the
lattice parameters of the contacting metals (from 2 to 18%),
depending on the mutual orientation of their crystallographic
axes. As is shown by crystallographic investigations, this
effect manifests itself over a distance of about 1 ± 3 atomic
planes (ap) on each side of the interface [36, 37, 47, 57]. In
Ref. [44], the choice of the system Fe=V1ÿxFex is caused not
only by the fact that it is convenient to trace the change in the
magnitude of the effective magnetic moment per Fe atom
depending on x (see Table 2), but also by the fact that these
metals yield minimum disordering at the boundary, comple-
tely vanishing within two atomic planes on each side of the
boundary, since the difference in the lattice parameters for
these pure metals does not exceed 5%.

Measurements of the perpendicular and parallel critical
magnetic fields give additional information on the coherence
length in the system. Sufficiently thick FM interlayers cannot
ensure coherent coupling of S layers (see discussion of Fig. 4).
Over the entire temperature range, such FM=S samples
behave as two-dimensional superconducting slabs with a
well-known 2D temperature dependence of Hc2k:

Hc2k�T � � Hc2k�0�
��������������
1ÿ T

Tc

r
: �4:1�

In this case, they say of a decoupled character of super-
conductivity. In systems with thinner FM layers, the super-
conductivity at T9Tc has a coupled character: the S layers
are coupled with one another, and the superlattice behaves as
a massive superconductor, which is described by the 3D
dependence ofHc2k

Hc2k�T � � Hc2k�0�
�
1ÿ T

Tc

�
: �4:2�

dNb � 400 A
�
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Figure 12. Experimental dependences of the critical temperature Tc on the

thickness of the FM layer �df� and S layer �ds�. The various symbols

correspond to different samples and measurement techniques. (a) Non-

monotonic Tc�df� dependence for the three-layer Fe=Nb=Fe system [42];

the dashed line was drawn by the authors of Ref. [42] as a guide for the eye.

(b), (c) Two dependences for the Fe=V0:34Fe0:66 superlattice [44]:

(b) passage onto a plateau in the Tc�df� dependence; (c) typical Tc�ds�
dependence (solid line corresponds to a fit [44] based on the theory of Ref.

[61, 62]).
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It was in just this case that a 3D ± 2D crossover with respect to
Hc2k�T � was observed with decreasing T=Tc in many works
[31, 35, 39, 41, 42, 48, 57]. Note that the temperature
dependence of Hc2? mainly obeys the `three-dimensional'
relationship

Hc2?�T � � Hc2?�0�
�
1ÿ T

Tc

�
: �4:3�

The value of Hc2?�0� found in experiments permits one to
estimate the Ginzburg ±Landau (GL) coherence length xGL

in terms of the Ginzburg ±Landau theory:

xGL�0� �
����������������������

f0

2pHc2?�0�

s
�4:4�

(where f0 is the quantum of the magnetic flux) and find the
important parameter of the proximity-effect theory, i.e., the
coherence length xs,

xs �
2xGL�0�

p
: �4:5�

On the other hand, xs can be estimated from ls found from
the resistance of the S layers in the normal phase. In the dirty
limit, this relation looks as follows:

xs �
�

�hDs

2pkBTcs

�1=2

�
�
lsxs0
3:4

�1=2

: �4:6�

Note that an additional complexity in the interpretation
of experimental results comes from the dependence of the
parameters of even isolated film on its thickness. For
example, it was shown in Ref. [58] that, as the thickness of
Nb films changes from 560 to 1500 A

�
, the critical temperature

Tcs changes from 5.8 to 8.5 K, remaining smaller than the
critical temperature of the massive sample T bulk

c � 9:2 K.
Experiments on measurements of the resistance in such a
system [57] show that as ds changes from 100 to 460 A

�
, the

coherence length xs changes from 50 to 80 A
�
; close estimates

follow from measurements of the critical field Hc2k:
xs � 57:7ÿ66 A

�
. At the same time, measurements of Hc2? at

ds � 400ÿ460 A
�

gave xs � 116ÿ133 A
�
. These data once

more emphasize the degree of anisotropy of the system
studied.

To conclude this section, we note works [54, 55] whose
results have not been included in the tables. In these works,
the role of a ferromagnet in the Nb=F superlattice was played
by spin glass Cu1ÿxMnx (at x � 0:7ÿ4:5% and 7.5%). In
Ref. [55], Tc�df� dependences of the type shown in Fig. 11a
and curve 2 in Fig. 11c were observed.

4.2 Dependence of the critical temperature
on the thickness of FM and S layers
and other parameters of the theory
For the interpretation of experimental data on the Tc�df� and
Tc�ds� dependences, the Buzdin ±Radovi�c theory [61, 62] was
mainly used (see, e.g., Refs [36, 37, 39, 40, 46, 48, 49, 51, 55 ±
57]). Recall that the nonmonotonicity of Tc�df� in this theory
arises as a consequence of the competition between the
superconductivities of 0 and p types, which takes place in
superlattices. However, the nonmonotonicity was also
observed experimentally in FM=S=FM trilayers, for which
the p-phase superconductivity is impossible in principle. In
addition, the values of the adjustable parameters often do not

agree with the known characteristics of the metals studied
(see, e.g., Ref. [56]); therefore, below, we will use the more
general formulas given in Section 3 for the description of
experiments.

According to the theory developed in Section 3, the
following parameters of the system should be specified:
ls=xs0, the reduced mean free path in a dirty superconductor
[or xs=xs0; for the relation between them, see Eqn (4.6)]; ss, the
transparency of the S=FM boundary [see also (3.9) and
(3.14)]; the parameter 2Itf (� lf=af), which simultaneously
takes into account the magnitude of the exchange splitting
and the degree of contamination of the FM layer; the
parameter nsf � vsNs=vfNf [see (3.14)]; and the characteristic
spin-stiffness length af (see its definition in Section 2.3).

The investigation of changes in the behavior of the t�df=af�
curve under the effect of a change in only one parameter of the
theory with other parameters being fixed was performed for
the 1D theory of the proximity effect in Refs [64 ± 67] and for
the 3D version of the theory in Ref. [68]. Here, note only that
the general rise in the t�df=af� curve can be due to an increase
in one of the following parameters: nsf, ds, or 2Itf (the latter, in
the case of 2Itf > 1). A similar effect is observed upon a
decrease in one of the following parameters: ss, ls (or xs), or
2Itf (the latter, if 2Itf < 1�). A successive changeover of
virtually all types of the t�df=af� dependences can be
observed, i.e., from that shown in Fig. 11a to that given in
Fig. 11f. Recall that the existence of an additional degree of
freedom in the 3D version of the theory �qf 6� 0� also leads to
a general rise in the curve and to smoothing of the oscillations
(only the first local maximum is retained).

The various t�df� dependences at reasonable values of the
parameters of the theory are given in Figs 3, 5, and 7 ± 10. The
corresponding qf�df� curves for the 3D version of the theory
are given in Figs 5 and 10. Aswas noted in Section 3, the shape
of the curves is very sensitive to the magnitudes of the
parameters of the theory and the relationships between
them. Note that the regions of existence of reentrant super-
conductivity predicted for the 1D case [64 ± 66] are restricted
in the 3D theory to a very narrow range of parameters. Thus,
virtually all the various types of experimental dependences
are qualitatively reproduced by the theory suggested.

When comparing theoretical and experimental Tc�df�s��
dependences, many parameters are, as a rule, either given (ds
or df, xs0, Tcs) or can be found from independent measure-
ments (xs, ls, nsf, 2Itf), or, finally, can be determined using a
fitting procedure. The parameter nsf is determined by the
band structure of the contacting metals and cannot take on
arbitrary values; however, estimates of it lead to a sufficiently
wide scatter in values. On the one hand, we can roughly
estimate this parameter within the simple model of nearly free
electrons [89]; according to this model, nsf � v 2s =v 2f , and this
ratio can be calculated for S=FM pairs used in known
experiments. Then, in this simple model, the value of nsf lies
between 0.73 �Nb=Co� and 1.36 �V=Gd�; therefore, we used
the value nsf � 1 when constructing phase diagrams in
Section 3. On the other hand [30, 89], when estimating the
ratio of the density of states at the Fermi surface Ns=Nf, we
can use the ratio gs=gf of the (known from experiment)
coefficients of electron heat capacities in the normal phase.
The ratio of the Fermi velocities vs=vf for real metals can be
obtained from experiments or (and) from band structure
calculations (see, e.g., Refs [105 ± 108]). In this model, the
value of nsf lies between 0.18 �Pb=Fe� to 10.4 �Nb=Gd�. Such
a wide scatter in values tells us that this parameter can be used
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as an adjustable one. The boundary transparency ss and the
parameter 2Itf, which can vary between very wide limits, also
should be used as adjustable parameters. As we saw above,
the quality of the S=FM boundary and the presence of the
transition layer depend not only on the nature of the
contacting metals but also on the technique of the prepara-
tion of multilayers.

If we say of the t�ds� dependence, we should note the
importance of the critical value of the S-layer thickness d c

s .
At given df and ds < d c

s , no superconductivity arises in the
FM=S system. The critical thickness d c

f of the FM layer can
be determined as a thickness at which the superconductivity
is destroyed at a given ds. Our analysis shows that the d c

s �df�
dependence may be strongly nonmonotonic, representing a
nearly mirror reflection of the t�df� dependence: the
minimum in t corresponds to the maximum of d c

s and vice
versa. This is sufficiently evident: at a fixed df, the FM=S
system with thicker S layers has a greater reduced
temperature t.

At finite ds and df, the critical thicknesses d
c
s and d c

f of a
two-layer FM=S contact at 2Itf < 1 are linked by a transcen-
dental equation such as Eqn (3.18) [or (3.26)]:

Dsk
c
s tan k

c
s d

c
s � ssvs

�
4ÿ ssvfnsf cot kfd c

f

Df�I �kf

�ÿ1
: �4:7�

Here, the complex wave vector k c
s can be found from

Eqn (3.17) [or (3.25)] under the condition that t! 0, which
yields the expression

j k c
s j2 �

1

2gx 2
s

; �4:8�

where kf is specified by the known equation (3.19), and
g � 1:781 is the Euler constant.

Note that for finite df, we cannot use the estimates of the
parameters ss and nsf that follows from expression (4.7) as
df !1 (see discussion of Fig. 14).

4.3 Comparison of the theory and experiment
As was noted in Section 3.4, to analyze the behavior of the
Tc�df� function in the region of S-layer thicknesses ds > d p

s ,
where the FM=S superlattice is magnetically quasi-two-
dimensional, it is sufficient to use simpler 00 and p0 solutions
of the 3D proximity-effect theory [68, 69] that does not take
into account p magnetic states (0p and pp AFS states]). The
thing is that the overwhelming majority of available experi-
ments on FM=S multilayers were performed at thicknesses
ds 4 d p

s , in which case the AFS states have a slightly smaller
critical temperature than the FS states have. Of special
interest, from the viewpoint of the comparison of the theory
with experiment, are the nonmonotonic Tc�df� dependences
that permit us to obtain the maximum information on the
FM=S structures under study.

Gd=Nb superlattice. In Figure 13, the theoretical results
obtained in preceding sections are compared with the
experimental behavior of Tc�df� for the Gd=Nb superlattice
[40]. It is seen in the figure that the dependence shown
corresponds to curve 1 in Fig. 11c, i.e., to the 3D theory
with 2Itf > 1.

In Figure 13a, the Tc�df� dependence [109] was fitted for
samples with thicker Nb layers (dNb � 600 A

�
) and only two

parameters were varied, namely, 2Itf and ss. The spin-
stiffness length af was determined from the position of the

maximum (af � d max
f =p for 2Itf > 1), and the parameter nsf

was estimated within the model of free electrons. The
parameters of the curve are given in the figure.

The theoretical curve in Fig. 13b for the superlattice with
thinner Nb layers was obtained by simply substituting these
parameters and experimental values dNb � 500 A

�
and

xs � 130 A
�
into the formulas (3.23) ± (3.25) with allowance

for the p-phase superconducting states that can arise in the
superlattice (see Section 3.4). In this case, the asymptotic
theoretical value corresponding to the passage ofTc�df !1�
onto a plateau coincided with the value of the critical
temperature known from experiment, i.e., Tc � 6:1 K.

We emphasize that, using the Buzdin ±Radovi�c theory
[61, 62], Jiang et al. [40] obtained only a partial qualitative
agreement with experimental data (see the dashed line in
Fig. 13a), and for samples with dNb � 500 A

�
, in which the

position of the local minimum of Tc proved to be higher than
the asymptotic value (Fig. 13b), the Buzdin ±Radovi�c theory
[61, 62] cannot give even a qualitatively satisfactory descrip-
tion.

It is seen from Fig. 13 that the description of the
nonmonotonic Tc�df� dependence in the Gd=Nb superlattice
in terms of the 3D(00) ± 1D(p0) ± 3D(p0) cascade of phase
transitions through Lifshitz triple points (in which the 2D
momentum of pairs qf ! 0) yields quite satisfactory agree-
ment with experiments [40]. In addition, in contrast to the
Buzdin ±Radovi�c theory [61, 62], our approach makes it
possible to obtain realistic data on the transparency coeffi-
cient ss of the S=FM interface and the parameter 2Itf � lf=af
that is responsible for the relationship between the diffusion
and wave modes of motion of quasi-particles in the strong
exchange field of ferromagnetic layers.

Fe=Pb=Fe trilayers. Experimental Tc�df� and Tc�ds�
dependences for the Fe=Pb=Fe trilayer were obtained in
Ref. [56]. Here, we give the results of fitting our 1D and
3D theories of the proximity effect to these data.

Figure 14a presents the Tc�df� dependences. Two theore-
tical curves are reproduced according to Ref. [56]. These are
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Figure 13. Fitting of the 3D theory of the proximity effect [68, 69] to

experimental data on the Gd=Nb superlattice [40]. The known experi-

mental values are given above the curves. The dashed line in Fig. 13a

represents the best result of fitting using the theory of Refs [61, 62]. The

parameters of the theoretical curve (solid line) are as follows: 2Itf � 5:60,
ss � 0:527, nsf � 1:15, af � 5:34 A

�
.
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the results of fitting using the Buzdin ±Radovi�c theory [61, 62]
(thin dotted line) and the 1D theory (dashed line). The
parameters of the latter are given in the figure.

The thin solid line lying above the experimental points
represents the result of the solution to the equations of the
3D theory for the sameparameters thatwere found inRef. [56]
for the 1D case. This means that the parameters found as a
result of fitting of the 1D theory [56] are not suitable when 3D
LOFF states are realized in this system.

In our opinion, the experimental points in this figure fall
onto a dependence of the `passage onto a plateau through a
minimum' type (curve 2 in Fig. 11c) rather than onto an
oscillatory dependence. As we saw when analyzing the types
of the Tc�df� dependences, this corresponds to the 3D theory
of the proximity effect with 2Itf < 1. The thick solid line in
Fig. 14a just represents the result of fitting of the 3D theory
with corresponding parameters. It is seen from the compar-
ison of the parameters of fitting for the 1D and 3D versions of
the theory that the greatest differences are observed for the

values of the transparency ss, which questions the conclusion
of the authors of Ref. [56] on the low transparency of the
Fe=Pb boundary.

Figure 14b shows the dependences of the critical tempera-
ture of the trilayer on the thickness of the Pb interlayer at
dFe � 30 A

�
. The dependences were calculated for the same

values of the parameters that are shown in Fig. 14a. It is seen
from the figure that both the 1D and 3D theories satisfactorily
agree with the experimental points.

The inset in Fig. 14b depicts the dependence of the critical
thickness of the Pb layer d c

s on the thickness of theFe layer dFe
calculated by the general formulas (4.7) and (4.8). The
horizontal dash-dot line in the inset corresponds to the
approximation df !1 used in Ref. [56] to obtain the
relationship between ss and nsf [in contrast to (4.8), the wave
vector k c

s was assumed to be purely real]. It is seen from
Fig. 14a and the inset in Fig. 14b that the obtained
nonmonotonicity of d c

s �df� is an almost mirror reflection of
the nonmonotonicity of Tc�df�.

General conclusions. It is seen from the above tables that a
large number of FM=S systems with various combinations of
FM and S metals, which formed various n-layered structures,
have been investigated experimentally. In the majority of
works, the dependences of the critical temperature on the
thickness of FM and S interlayers were studied. The type of
the Tc�df� dependence is determined not only by the nature of
the contacting metals but also, to a significant extent, by the
technique of fabrication of FM=S structures. This indicates
the extreme importance of taking into account, in the theory
developed, the finite transparency of the S=FM boundary
(parameter ss), along with parameter 2Itf, for the description
of various forms of the Tc�df� dependence in layered FM=S
systems.

The 3D theory of the proximity effect yields virtually all
types of Tc�df� behavior observed experimentally. Above, we
compared the theory with experiment for Gd=Nb and
Fe=Pb=Fe structures. Analogous agreement of the results of
fitting in the 3D theory was also obtained for other sets of
experimental data: for the dependences with a monotonic
passage onto a plateau (see the curve given in Fig. 11b) for the
V=Fe0:66V0:34 superlattices [44]; for the dependences with a
monotonic decrease to zero (Fig. 11a); for the dependence
with a single local maximum (curve 1 in Fig. 11c) for
Fe=Nb=Fe trilayers; for the dependence with a single falloff
of the curve (Fig. 11d) but only for the ferromagnetic region
of thicknesses dFe > d m

f for Fe=Nb superlattices [49] (these
figures are not given here).

At present, the oscillatory dependences with two minima
(such as the curve in Fig. 11e), obtained for the V=Co [53] and
Nb=Co [53, 59] superlattices, cannot be explained by the
competition between 3D and 1D states. The presence of such
dependences characteristic of the 1D version of the theory
(Fig. 9c) for the S=Co superlattices indicates that a one-
dimensional LOFF lattice with qf � 0 is realized in Co layers
(see Section 3.3), apparently because of the anisotropy of
these layers.

All the results of this paper were obtained on the
assumption of a sharp (on the atomic level) FM=S bound-
ary, with a ferromagnetic ordering even in very thin F layers.
It is obvious that in realistic FM=S systems used in
experiments the situation is much more complicated. Some-
times, because of the mutual solubility of the FM and
S metals, but sometimes for purely technological reasons,
the FM=S boundary turns out to be diffuse; therefore, the thin
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Figure 14. Fitting of the theory to experimental data for the three-layered

Fe=Pb=Fe system [56] (different symbols correspond to different samples

and measurement methods). The two fits are taken from Ref. [56]: the

dashed line, the theory of Refs [61, 62]; and the dotted line, the 1D theory.

The curve calculated using the 3D theory (at the values of the parameters

used for the latter fit) is shown by the thin solid line. Fitting using the

3D theory [68, 69] is given by the thick solid line. The fitting parameters

and the known experimental values are given in Fig. 14a. (a) Tc�df�
dependence; (b)Tc�ds�. In the inset, the critical thickness of the S layer d c

s is

given as a function of the thickness df of the FM layer (see discussion in the

main text).
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layers of ferromagnet can become paramagnetic or even
nonmagnetic. In principle, the FM=S model investigated can
easily be extended for a case including a thin nonmagnetic
interlayer between the FM and S layers or a case where a
paramagnet ± ferromagnet transition occurs after the FM-
layer thickness reaches a certain critical value. Physically, it is,
however, clear that if the penetration depth is substantially
greater than the typical thickness of nonferromagnetic
interlayers d m

f � 5ÿ12 A
�
, then the oscillations of the flux of

Cooper pairs through such a diffuse S=FM boundary will be
retained. The effect of buffer interlayers at sufficiently large
thicknesses of FM layers can roughly be taken into account
using the simple renormalization of the exchange field I or the
constant of electron-electron interaction ls.

In Refs [103, 104], when considering the boundary-value
problem for an FM/S contact, the authors took into account
the spin ± orbit coupling (see also Ref. [66]). This coupling
leads to the appearance in the Usadel equation for a
ferromagnetic metal of an additional term ��1=tso�Ff�z;o�,
where tso is the electron relaxation time due to the spin ± orbit
coupling. Numerical analysis shows that all features in the
critical temperature Tc of the junction become smooth as
1=tso grows. This fact should be taken into account when
interpreting experimental results.

In many experimental works, various dependences ofHc2

were investigated. Of special interest is the 2D ± 3D crossover
observed in the temperature dependence of Hc2k. The
dependence of the crossover occurrence on the thickness of
the FM layer was investigated in Ref. [110] based on another
variant of the proximity-effect theory developed in Ref. [111].
As was shown in Ref. [112], this approach is equivalent to the
Buzdin ±Radovi�c theory [61, 62]. The theory that was
suggested in this paper in Section 3 can also be extended to
the case of the presence of an external magnetic field.

5. Theory of FI=S systems consisting
of layers of a ferromagnetic insulator
and a superconductor

5.1 Indirect exchange of localized spins
in a dirty superconductor
In contrast to the above-considered FM=S systems, the
superconducting layers in FI=S systems do not interact with
one another, if the separating layers of the ferromagnetic
insulator are sufficiently thick to neglect electron tunneling
through them. At the same time, the localized spins of surface
atomic layers of the ferromagnet interact with one another via
the conduction electrons of the superconducting metal. This
indirect interaction of the RKKY type provides coupling
between various ferromagnetic layers. Since this long-range
interaction has an antiferromagnetic character, the ferromag-
netic orientation of themagnetic moments of one FI layer can
be distorted by the RKKY interaction, which finally can
result in a cryptoferromagnetic state at a sufficiently strong
indirect interaction as compared to the direct exchange
interaction in FI layers.

At the same time, there is an inverse influence of the
magnetic order on superconductivity due to the pair-breaking
paramagnetic effect in the subsurface layer. Since electrons do
not penetrate deep into the FI layer, only the monoatomic
surface layer of the ferromagnet is involved and the related
effect should not depend on the thickness of the FI layer, in
contrast to the FM=S systems. Below, we will study the

mutual influence of ferromagnetism and superconductivity
in FI=S junctions and FI=S superlattices, but first we will
discuss the problem ofRKKY interaction in superconductors
[80, 78, 87].

The dependence of the RKKY exchange integral on the
distance between the localized spinsSi andSj is determined by
the spatial dispersion of the spin susceptibility of conduction
electrons w�r; r 0�. The Hamiltonian of indirect exchange has
the form

Hex � ÿ 1

8
J 2
sd

X
i j

w�ri; rj�Si � Sj ; �5:1�

where Jsd is the sd exchange integral. In the normal phase, the
spatial dependence of the susceptibility wn�r; r 0� has the form
of Friedel oscillations, and the integral over the entire space
from this susceptibility yields the uniform Pauli susceptibility.

It was shown in Ref. [80] that in a dirty superconductor
the spin polarization wn�r; r 0� corresponding to the normal
phase is compensated by a long-range additional term of
antiferromagnetic sign. This additional contribution to the
RKKY exchange arises as a consequence of exclusion of the
contribution of paired electrons from the uniform spin
polarization. A superconducting contribution to the suscept-
ibility, dws�r; r 0�, can be written as

dws�r; r 0� � w�r; r 0� ÿ wn�r; r 0� � ÿ2T
X
o

Ls�r; r 0;o� : �5:2�

For an infinite dirty superconductor, the two-particle
correlator in the hydrodynamic limit, i.e., at distances
R � jrÿ r 0j exceeding the mean free path l, is described by
the expression [78, 80, 87]

Ls�r; r 0;o� � N�0�D2

2DsR�o 2 � D2� exp
�
ÿ R

xo

�
;

�5:3�

xo �
�����������������������������

Ds

2�o 2 � D2�1=2
s

;

where xo is the range of the correlator Ls�r; r 0;o�, which
depends on the frequency o. Since the uniform spin polariza-
tion in the superconductor should vanish at T � 0, the sum
rule for Ls�r; r 0;o� should be satisfied. In the case of a
uniform superconductor with a coordinate-independent OP
D and density of states N�0�, this sum rule has the form�

dr 0 Ls�r; r 0;o� � pN�0� D2

�o 2 � D2�3=2
: �5:4�

Note that Eqn (5.4) is a fundamental relation and can be
derived in a general way, e.g., by analogy with the derivation
of the sum rule for the kernel of the Gor'kov equation
suggested by de Gennes [26].

To find the long-range part of the RKKY exchange in the
case of superconductors restricted in space by the surface s, it
is convenient to represent Ls�r; r 0;o� as a solution to the
boundary-value problem.Using Fourier analysis, it can easily
be shown that expression (5.3) is the solution to the
differential equation of diffusion type�

2
�����������������
o 2 � D2

p
ÿDsHH 2

r

�
Ls�r; r 0;o�

� 2pN�0� D2

o 2 � D2
d�rÿ r 0� : �5:5�

February, 2002 Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures 133



The boundary conditions for this equation can be found by
integrating (5.5) with respect to dr using the sum rule (5.4) and
can be written in the form

DsnHHr Ls�r; r 0;o�
���
s
� 0 ; �5:6�

where n is the normal to the superconductor±vacuum
(insulator) interface. Physically, Eqn (5.6) corresponds to
the absence of a flux of Cooper pairs through the super-
conductor surface.

Solving Eqn (5.5) simultaneously with (5.6) on the
assumption that the density of states N�0� and the parameter
D are constant and vanish jumpwise only at the surface of the
superconductor s, we can obtain the coordinate dependence
of the correlator Ls�r; r 0;o� for all practically interesting
geometries. Here, we consider a superconducting half-space
and a superconducting slab.

In the case of the superconducting half-space z; z 05 0, we
have [78, 87]

Ls�r; r 0;o� � pN�0�D2

o 2 � D2

�
dq?
�2p�2

exp
�
iq?�qÿ q 0��
Dsk

� �expÿÿkjzÿ z 0j�� exp
�ÿk�z� z 0��	 ; �5:7�

where k 2 � q2? � xÿ2o , and q? � qxi� qyj; q � xi� yj. Note
that a pair of spins on the surface of the superconductor
(z � z 0 � 0) interacts twice as strongly as in the bulk at
z � z 0 > x, where formula (5.3) is valid for Ls�r; r 0;o�.
Thus, the elastic reflection of Cooper pairs from the surface
of the superconductor leads to a kind of constructive
interference, which occurs because of the increase in the
effective time of pair correlations near the boundary.

For a superconducting slab of thickness ds, i.e., when
04 z; z 04 ds (with ds 4 l), we obtain [78, 87]

Ls�r; r 0;o� � 2pN�0�D2

o 2 � D2

�
dq?
�2p�2

exp
�
iq?�qÿ q 0��

Ds k sinh kds

� cosh�kz� cosh�k�z 0 ÿ ds�
� �5:8�

at z < z 0. If, on the contrary, z > z 0, the places of these
variables in Eqn (5.8) should be reversed. It can easily be
shown that in the case of a massive slab �ds > x�, the
antiferromagnetic coupling between localized spins at either
surface will be twice as strong as that in the bulk. As ds !1,
we obtain expression (5.7) for the half-space from Eqn (5. 8).
However, result (5.8) is most vividly illustrated by a quasi-
two-dimensional situation, when the film thickness ds is much
smaller than the coherence length x. In this case, the
interaction between the localized spins is virtually indepen-
dent of the variables z and z 0 and is determined only by the
projection of the radius vector R onto the plane z � 0, i.e., by
the magnitude of R? � jqÿ q 0j:

Ls�r; r 0;o� � N�0�D2

Ds ds�o 2 � D2� K0

�
R?
xo

�
: �5:9�

In this case, as follows from the MacDonald function
asymptotes

K0

�
R?
xo

�
� ln

xo
R?

; R? < xo ;

K0

�
R?
xo

�
�
�
xo
R?

�1=2

exp

�
ÿR?

xo

�
; R? > xo ;

a power-type fall-off of the RKKY potential with increasing
spacing between the localized spins becomes slow as com-
pared to the three-dimensional case (5.3), and their anti-
ferromagnetic correlations over distances R?4x become
stronger.

Thus, the antiferromagnetic correlations between loca-
lized spins, induced by the transition of the metal to the
superconducting state, become stronger on approaching the
surface of the massive dirty superconductor or with decreas-
ing the dimensionality of the sample. It can be shown by direct
integration that all the results obtained satisfy the sum rule
(5.4), which ensures the vanishing of the uniform spin
susceptibility ws�0� of the superconductor at T � 0. Further,
we investigate the interaction of the magnetic and super-
conducting states in FI=S junctions and FI=S superlattices.

5.2 FI=S multilayers at zero temperature.
Ground states
FI=S junctions.We first consider a planar junction consisting
of a thin ferromagnetic film occupying the regionÿdf < z < 0
with a superconducting slab occupying the region 0 < z < ds.
The subsystems of localized spins of the FI film and
conduction electrons of the S layer, which are coupled with
one another via the FI=S boundary can be described by the
Hamiltonian

H � HF �HS �HFS ; �5:10�

consisting of the Hamiltonians of the ferromagnet HF,
superconductorHS, and interactionHFS. Here,

HF � ÿJ
X
i; j

SiSj � K
X
j

�Sz
j �2 �5:11�

describes the direct exchange of neighboring spins of the
FI layer with allowance for the in-basal-plane anisotropy
�K > 0�, HS is the superconductor Hamiltonian of the
BCS model, and HFS is the Hamiltonian of the sd exchange
interaction of localized spins with conduction electrons of the
superconductor,

HFS � Jsd
2

X
j; a;b

0
c�a � j��Sj � rab�cb� j� ; �5:12�

where the prime at the sum over j means that summing is
performed only over localized spins located directly at the
boundary. The interaction HFS leads, on the one hand, to
splitting of the states of conduction electrons in the S layer by
the exchange field of the localized spins of the FI=S boundary
and, on the other hand, to the indirect exchange of the same
localized spins via electrons of the superconducting layer.

For certainty, we assume that the Curie temperatureTm is
above Tc and that at Tc < T < Tm the ferromagnetism of the
surface of the FI film is not disturbed by oscillations of the
normal part of the RKKY interaction. The latter assumption
means that the direct exchange at distances of about nearest-
neighbor spacings is stronger than the indirect exchange, i.e.,
J > N�0�J 2

sd. In fact, this implies that we can neglect the
contribution of the oscillating part, retaining only the short-
range ferromagnetic and long-range antiferromagnetic parts
of the exchange interaction, which are most important in the
problem under consideration. We assume that the FI layers
are so thin that the surface distortions of magnetic order due
to the proximity of the S layers will be transferred over the
entire thickness of the FI layer via the strong direct exchange.

134 Yu A Izyumov, Yu N Proshin, M G Khusainov Physics ±Uspekhi 45 (2)



Averaging Hamiltonian (5.10) over electron and spin
variables in the spirit of Ref. [7] and specifying the magnetic
order in the FI film in the form

hS�j i � hSx
j � iS

y
j i � S exp��iq?q� ; hSz

j i � 0 ; �5:13�
where q? � qxi� qy j, we obtain the following functional for
the surface density of free energy of the FI=S junction at
T � 0 [78]:

f � f 0
F � f 0

N � JS 2q 2
?
df
a
ÿ I�q?; 0; 0�

S 2

a 2

ÿ dsN�0�
2a 3

D2 ln
eD2

0

D2
; �5:14�

where f 0
F and f 0

N are the free energies per unit junction area for
the FI film and S layer in the normal phase, respectively. The
third term describes the loss in the energy of the direct
exchange because of the long-wavelength (q?a5 1) modula-
tion of the ferromagnetic order. The fourth term is the two-
dimensional Fourier transform of the superconducting
contribution dws�qÿ q 0; z; z 0� to the RKKY potential, which
is found by the substitution of Eqn (5.8) into Eqn (5.2), i.e.,

I�q?; z; z 0� � ÿ
a

2
N�0�J 2

sdpT

�
X
o

D2

o 2 � D 2

cosh �kz� cosh�k�z 0 ÿ ds�
�

Ds k sinh kds
: �5:15�

The term that is proportional to I�q?; 0; 0� in Eqn (5.14)
plays a double role. On the one hand, it describes long-range
magnetic correlations of the near-boundary (z � z 0 � 0)
localized spins via Cooper pairs of the superconductor; on
the other hand, it takes into account the suppression of the
order parameterD due to the paramagnetic effect. Finally, the
last term in Eqn (5.14) describes the gain in the energy of
condensation (see Ref. [23]) related to the transition of the
S layer to the superconducting state. Here, D0 � 1:76Tcs, and
we neglect the difference in the lattice parameters of the FI
and S layers (af � as � a).

In terms of the model (5.14), we investigate the mutual
accommodation of superconductivity and ferromagnetism in
the FI=S junction at T � 0. To find the magnetic configura-
tion corresponding to minimum free energy (5.14), we should
know the behavior of the quantity (5.15) as a function of q? at
z � z 0 � 0. After summing over the frequency o, the low-
temperature �pT5D� asymptotics of I�q?; 0; 0� for various
ranges of q? can be written in the form

I�q?; 0; 0� � ÿ
a

4ds
N�0�J 2

sd

�
�
1� pd 2

s

6x 2
s

ÿ p
4
q 2
?x

2
s �

2

3
q 4
?x

4
s � . . .

�
; q? <

1

xs
;

I�q?; 0; 0� � ÿ
p
ds

N�0�J 2
sd�q 2

?xs�ÿ2; xÿ1s < q? < dÿ1s ;

I�q?; 0; 0� � ÿ
p
xs

N�0�J 2
sd�q 2

?xs�ÿ1 ; dÿ1s < q? < lÿ1s ;

8>>>>>>>>>><>>>>>>>>>>:
�5:16�

where xs �
��������������
Ds=2D

p
is the coherence length of the super-

conductor.
The minimization of functional (5.14) with respect to D

and q? using the first of the expressions (5.16) for I�q?; 0; 0� at
q?x < 1 leads to the presence of three different ground states
or phases of the FI=S contact, whose realization depends on

the magnitudes of the parameters A and h (see Ref. [78]):

A � N�0�h 2px 2
s ds

JS 24a 2df
; h � SJsd

2

a

ds
: �5:17�

The parameter A has the sense of the ratio of the absolute
values of the antiferromagnetic and ferromagnetic molecular
fields (per each localized spin of the FI=S boundary)
corresponding to the RKKY exchange via the superconduct-
ing electrons of the S layer and via the direct exchange in the
FI layer, respectively. The quantity h is the average exchange
field acting on the conduction electrons from the localized
spins of the FI=S boundary.

If A < 1, the ferromagnetic ordering is stable with respect
to the long-wavelength modulation (a tendency to such a
modulation arises due to the RKKY exchange). If the
exchange field h is not too large, the superconductivity in the
S layer arises against the background of ferromagnetism in
the FI film, and they coexist (FS phase). In the FS phase, the
equilibrium values of the order parameter D and of the wave
vector of the magnetic structure Q? are determined by the
expressions

D2 ln
D0

D
� ph 2

12

�
ds
xs

�2

; Q? � 0 : �5:18�

The surface density of the free energy in this phase is equal to

fFS � f 0
F � f 0

N ÿ
dsN�0�
2a 3

�
D2 ÿ 2h2

�
1� pd 2

s

12x 2
s

��
: �5:19�

At A > 1, the ferromagnetic ordering is unstable with
respect to the long-wavelengthmodulation, and theminimum
of the free energy (5.14) is now associated with the
cryptoferromagnetic superconducting phase (CFS), whose
parameters D andQ? are determined from the self-consistent
conditions of equilibrium:

D2 ln
D0

D
� ph2

4

�
d 2
s

3x 2
s

� �Q?xs�
2

2A

�
;

�5:20�

Q? �
�
3p
16

�
1ÿ 1

A

��1=2
xÿ1s :

The density of the free energy in the CFS phase is determined
as follows:

fCFS � f 0
F � f 0

N ÿ
dsN�0�
2a 3

�
D2 ÿ 2h2

�
1� pd 2

s

12x 2
s

ÿ p
8
Q 2
?x

2
s

��
:

�5:21�
It follows from a comparison of the free energies (5.19)

and (5.21) that the transition from one ground state, FS, into
another ground state, CFS, occurs at A � 1 and is accom-
panied by a mutual adjustment of the superconducting and
magnetic order parameters. In this case, the vicinity
Aÿ 15A of the transition point corresponds to a large-
scale sinusoidal modulation of themagnetic order of localized
spins in the FI film. This modulation leads, on the one hand,
to a partial compensation of the paramagnetic effect and, on
the other hand, to a minimum loss in the energy of the direct
exchange, since Qÿ1? 4 xs 4 a.

On increasing the exchange field h, when the energy gain
connected with the energy of condensation is compensated by
the paramagnetic effect and by the loss in the energy of direct
exchange, the FI=S junction passes into a ferromagnetic

February, 2002 Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures 135



normal state FN with D � 0, Q? � 0, and free energy
fFN � f 0

F � f 0
N , and this transition can occur both from the

CFS and FS phase.
It follows from the above low-temperature analysis that

with an increase in the exchange field h and the corresponding
increase in the balance of the molecular fields A, the FI=S
junctions may behave in various ways. Two possible variants
of the dependence of the superconducting order parameter D
and the wave vectorQ? of themagnetic-structure modulation
on h are shown schematically in Fig. 15.

In the case of the FI=S contacts of the first type (Fig. 15a),
the magnitude of A remains less than unity up to a certain
critical value of the exchange field hc. The critical parameters
of the point (hc, Dc) of the first-order phase transition from
the FS to FN state are found from the equality of the free
energies of these phases and are given as follows:

hc ' D0���
2
p
�
1ÿ pd 2

s

12x 2
0

�
; Dc � D0

�
1ÿ pd 2

s

24x 2
0

�
; �5:22�

where x0 � �Ds=2D0�1=2 is the coherence length at T � 0 and
h � 0. The small corrections [of the order of �ds=x0�2] to the
result known for the uniform ferromagnet superconductor
[19, 20] hc � D0=

���
2
p

and Dc � D0 are due to the fact that the
exchange field that breaks Cooper pairs is generated by
localized spins that are located at the surface rather than in
the bulk of the sample.

For the FI=S junctions of the second type (Fig. 15b), the
ratio of the molecular fields A is less than unity only up to a
certain lower critical value of the exchange field, hc1. At
h � hc1 �< hc�, a second-order phase transition occurs,
which is accompanied by a steeper (as compared to the FS
phase) decrease in the superconducting OP D in the S layer (a
kind of kink) and by the appearance of a nonzero wave vector
Q? of the modulation of the ferromagnetic ordering in the
film. The parameters of the transition point (hc1, Dc1) as
determined from the equality of the free energies of these
phases are as follows:

hc1 � hc������
Ac

p
�
1� pd 2

s

48x 2
s

�
1ÿ 1

Ac

��
;

�5:23�
Dc1 � Dc

�
1� pd 2

s

24x 2
s

�
1ÿ 1

Ac

��
:

Here, Ac is the value of the parameterA at h � hc and D � Dc

(Ac > 1). As the exchange field increases further, a first-order
phase transition CFS!FN occurs at the point h � hc2. The
upper critical field hc2 and the corresponding values of OPDc2

and modulation wave vector Qc2 in the case where
Ac ÿ 15Ac are determined as follows:

hc2 � hc

"
1� p2

256

�
1ÿ 1

Ac

�2
#
;

Dc2 � Dc

�
1ÿ 3p2

256

�
1ÿ 1

Ac

��
; �5:24�

Qc2 �
�
3p
16

�
1ÿ 1

Ac

��1=2
xÿ1s :

It can be shown that in the case of FI=S junctions the
quantity Ac plays a role analogous to the role the Ginzburg ±
Landau parameter K plays in distinguishing type I and type II
superconductors. Indeed, the balance of the molecular fields,
which plays the key role in determining whether the junctions
are of type I or type II, may be expressed through Ac as

A � Ac

�
h

hc

�2 Dc

D
; Ac � N�0�h2cpx 2

s ds
JS 24a 2df

: �5:25�

It follows from these expressions that the FI=S junctions with
Ac < 1 refer to the first type and the junctions with Ac > 1
refer to the second type. In addition, the FI=S contacts with
Ac ÿ 15Ac are characterized by a wide range of coexistence
of ferromagnetism and superconductivity and a narrow range
of existence of the cryptoferromagnetic superconducting
phase, since the critical values hc1 and hc2 are close to hc in
this case. At Ac 4 1, the region occupied by the CFS phase
becomes substantially wider and the region corresponding to
the FS phase, on the contrary, substantially narrows, since in
this case hc1 5 hc 5 hc2 (see Ref. [78]).

FI=S superlattices. Now, we consider a superlattice
obtained by the alternation of layers of a ferromagnetic
insulator of thickness df and a superconductor of thickness
ds (as before, ds 5 xs). To study the mutual accommodation
of the superconducting and magnetic order parameters in
such a system, it is sufficient to investigate the density of the
free energy f � of a unit cell consisting of two magnetic
FI half-layers, ÿdf=2 < z < 0 and ds < z < ds � df=2, sepa-
rated by a superconducting interlayer S. The functional f � in
this case differs from Eqn (5.14) in that, apart from the term
I �q?; 0; 0�, it should include an analogous surface RKKY
exchange I �q?; ds; ds� of localized spins of the neighboring
ferromagnetic layer �z � z 0 � ds� between themselves, as well
as the RKKY exchange I �q?; 0; ds� between the localized
spins that refer to the magnetic surfaces z � 0 and z 0 � ds
separated by a superconducting interlayer.

We will seek magnetic order in the superlattice in the form

hS�j i � S exp
��i�q?q� qkz�

�
; hSz

j i � 0 ; �5:26�

where qk is the component of the wave vector parallel to the
superlattice axis. The translational invariance of the super-
lattice will result only in the multiplication by a constant
phase factor upon the transition from a given FI layer to a
neighboring layer, i.e.,

S��q; z� ds � df�

� � 
S��q; z�� exp��iqk�ds � df�
�
: �5:27�

D

D0
Dc

hc h
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Q?
Qc2

D

D0

Dc1
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hchc1 hc2 h

b

FS CFS FN

Figure 15. The superconducting order parameter D and wave vectorQ? of

the magnetic structure as a function of the exchange field h for FI=S
contacts: (a) contacts of the first type [withAc < 1 (Q? � 0)] and (b) of the

second type (with Ac > 1) [78].
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At the same time, we neglect the effects of electron tunneling
from one S layer into another through the magnetic
FI interlayer. Therefore, the phases of the superconducting
OPsD in neighboring S layers are not coupled and the p-phase
(in the sense of superconductivity) variant of the mutual
accommodation will not be considered here. Taking into
account that I �q?; ds; ds� � I �q?; 0; 0� and I �q?; ds; 0� �
I �q?; 0; ds�, we obtain for the density of the free energy f �

per unit cell of the superlattice [78]

f � � f 0
F � f 0

N � JS 2q 2
?
d

a
ÿ 2I �q?; 0; 0�

ÿ 2I �q?; 0; ds� cos�qkds� ÿ dsN�0�
2a 3

D2 ln
eD2

0

D2
; �5:28�

where I �q?; 0; ds� is determined from Eqn (5.8) and has
asymptotes similar to Eqn (5.16) for I �q?; 0; 0�. A difference
between them arises only for wave vectors q? comparable
with dÿ1s . Indeed, at q?ds 5 1, we obtain

I �q?; 0; ds� � I �q?; 0; 0� � pds
2x 3

s

N�0�
�
1ÿ q 2

?d
2
s

12
� q 4

?d
4
s

120

�
;

�5:29�
from which we see that the corrections to I �q?; 0; 0� are small
because of (and to the extent) of smallness of the ratio d 2

s =x
2
s .

In this case, the RKKY exchange between localized spins
belonging to differentmagnetic surfaces z � 0 and z 0 � ds has
the same order of magnitude as the RKKY exchange between
localized spins at each of these surfaces z � z 0 � 0 or
z � z 0 � ds. In the opposite limit, when q?ds 4 1, we have

I �q?; 0; ds� � 2I �q?; 0; 0� exp�ÿq?ds� ; �5:30�

i.e., the exchange coupling between magnetic surfaces
through a superconducting interlayer is exponentially small
as compared to the exchange between localized spins at each
of these surfaces (although, as before, ds 5 xs). This is due to a
significant averaging of the spin polarization of electrons in
the superconductor upon the strong modulation of the
ferromagnetic ordering in FI layers, for which reason the
RKKY exchange in this case is of purely surface nature.

The minimization of free energy (5.28) with respect to the
parameters D, q?, and qk using expression (5.29) for
I �q?; 0; ds� leads to two possible variants of the ground state
of the superlattice combining magnetic and superconducting
types of long-range order. The result turns out to depend on
the magnitude of A�c representing the ratio of antiferromag-
netic to ferromagnetic exchange. In superlattices for which
A�c < 1, at h < h�c superconductivity coexists with the anti-
ferromagnetic arrangement of the spontaneous moments of
neighboring layers (AFS phase). At h � h�c , a phase transition
occurs to the FN phase, in which all metallic layers are in the
normal state and the coherent coupling between FI layers is
broken. Thus, the FN phase in magnetic aspect behaves as a
2D ferromagnet.

In a superlattice for which A�c > 1, the AFS phase exists
up to fields h < h�c1. In fields h�c1 < h < h�c2, a CFS phase
arises, in which cryptoferromagnetism coexists with super-
conductivity and in which a coherent p coupling exists
between the spins of neighboring FI layers. At the point
h � h�c2, the system passes, via a first-order phase transition,
to the FN state, in which 2D ferromagnetism takes place. The
phase diagrams for FI=S superlattices topologically coincide

with those for FI=S junctions. They can be represented by
Fig. 15, where FS should be replaced by AFS and all critical
fields and parameters should be labeled by asterisks.

The critical points in the phase diagram of the FI=S
superlattice can be expressed through the parameters of the
system. Thus, we have

h�c � D0
x0
ds

���������
2

p
���
e
p

s
; D�c �

D0���
e
p :

The values of h�c1 and h�c2 for the case A
�
c ÿ 15A�c are

h�c1 � h�c
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s !
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and the modulation wave vector in the CFS phase is

Q �c2 �
1

ds

����������������������������
60

7

�
1ÿ 1

A�c

�s
:

As A�c ! 1, the cryptoferromagnetism region contracts to
point.

The very quantity A�c under these conditions is defined as

A�c �
2

3pe

�
ds
x0

�2

Ac ;

where Ac is the critical balance of molecular fields corre-
sponding to the junction [second formula in (5.25)].

The differences in the character of the mutual accommo-
dation of superconductivity andmagnetism in FI=S junctions
and FI=S superlattices are mainly due to the presence in the
last case (apart from the RKKY exchange between spins
along FI=S boundaries) of an antiferromagnetic exchange
between localized spins of neighboring FI layers via the
S interlayers. The very idea of the antiferromagnetic cou-
pling of two ferromagnetic insulators through a supercon-
ductor was first discussed by de Gennes [113].

5.3 FI=S multilayers at finite temperatures.
Multicritical points in phase diagrams
An elementary qualitative analysis of the possible variants of
coexistence andmutual accommodation of superconductivity
and ferromagnetism in FI=S junctions at finite temperatures
can be made on the basis of the Landau theory of phase
transitions. Within the framework of the self-consistent field
approximation, we define the magnetic order in the FI film in
the form (5.13), where hS i denotes the thermodynamic
average of the localized spin in a site with q. Then, for the
free energy per unit area of the junction near the critical
temperature we obtain the following functional [79]:

f � f 0
F � f 0

N � JhS i2q 2
?
df
a
ÿ I �q?; 0; 0� hS i

2

a 2

� ds
a 3

�
a0

D2

2
� b0

D 4

4
� g0

D6

6

�
; �5:31�

which formally differs from Eqn (5.14) at T � 0 in only the
replacement of the term responsible for the energy gain due to
the superconducting transition of the S layer by the Landau
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expansion in powers of D. The coefficients a0, b0, and g0 of
this expansion are known from the microscopic theory of
superconductivity [114]:

a0 � ÿ2N�0�
�
1ÿ T

Tcs

�
; b0 �

7z�3�N�0�
�2pTcs�2

;

�5:32�
g0 �

93z�5�N�0�
2�2pTcs�4

:

For further analysis, it is convenient, using the high-
temperature expansion of the RKKY potential (5.15) in
powers of D and q? (at D5 2pTcs, q?xs 5 1), to rewrite
functional (5.31) in the form

f � f 0
F � f 0

N � JhS i2q 2
?
df
a
� ds
a 3

�
a
D2

2
� b

D 4

4
� g

D6

6

�
:

�5:33�

Here, the renormalized coefficients a, b, and g are given by the
expressions

a � a0 � 2N�0�Z
�
h

ht

�2�
1ÿ b�q?xs�2 � g�q?xs�4

�
;

b � b0

"
1ÿ

�
h

ht

�2
#
; g � g0

"
1� p

�
h

ht

�2
#
;

h � IhS ia
2ds

; ht �
����������������
7z�3�
186z�5�

s
2pTcs ' 1:312Tcs ;

where xs is the coherence length atT � Tcs, and the numerical
values of the coefficients are as follows:

Z ' 0:367 ; b ' 0:963 ; g ' 0:955 ; p ' 1:303 :

The summands that are proportional to the product of h2

and D2 in the last term in Eqn (5.33) are responsible for the
coupling between the magnetic and superconducting OPs.

The minimization of functional (5.33) with respect to D
and q? results in three different states (see Ref. [79]):

(1) a ferromagnetic normal phase (FN) with D � q? � 0;
(2) a ferromagnetic superconducting phase (FS) with

D � D1, q? � 0, and A < 1 with

D2
1 �
ÿb�

��������������������
b 2 ÿ 4ga1

q
2g

; a1 � a0 � 2N�0�Z
�
h

ht

�2

;

(3) a cryptoferromagnetic superconducting phase (CFS)
with D � D2, q? � q0, and A > 1 with

D2
2 �
ÿb�

������������������
b 2 ÿ 4ga

q
2g

; q 2
0 �

�
1ÿ 1

A

�
b

2gx 2
s

:

The realization of each of these phases depends on the
magnitudes of three parameters: temperature T; exchange
field h produced by localized spins of the FI=S boundary and
acting on the conduction electrons of the superconductor;
and the ratio

A � p2N�0�h 2x 2
s ds

12JhS i2a 2df

�
D

2Tcs

�2

�5:34�

of the antiferromagnetic and ferromagnetic molecular fields.
Note that the smallness of the ratio of the amplitudes of the

antiferromagnetic and ferromagnetic polarizations in
Eqn (5.34) is compensated by the extremely large ratio of
their domains of existence x 2

s ds=a
2df. Therefore, the para-

meter A can be varied within wide limits. At A > 1, the
ferromagnetic state is unstable, and the long-wavelength
modulation arising at the FI=S boundary will be transferred
via the strong interatomic exchange J over the entire thickness
of the FI film. The loss in the energy of direct exchange in this
case proves to be smaller than the energy gain due to the
transition of the S layer to the superconducting state and a
decrease in the paramagnetic effect. The phase diagrams for
the two types of FI=S junctions are shown schematically in
Fig. 16.

The contacts of the first type (Fig. 16a) withAc < 1, where
Ac � A�h � hc;T � 0�, and hc is the critical exchange field,
admit the superconductivity coexistence with only a uniform
ferromagnetic ordering. The critical temperature Tc�h� at the
TcsÿTt line of second-order phase transitions is specified by
the equation a1 � 0. At the htÿhc line of first-order phase
transitions �b < 0�, the function T 0c �h� is determined from the
equation a1 � 3b 2=16g. When the exchange field h reaches its
critical value hc ' 1:74ht, the temperature T 0c tends to zero.
The magnitude of D1 corresponding to hc is Dc ' 1:11ht. It
can be seen that the balance of molecular fields A, which can
be conveniently represented in the form

A � Ac

�
h

ht

�2�D
Dc

�2

; Ac � p2N�0�h2cx 2
s ds

12JhS i2a 2df

�
Dc

2Tcs

�2

; �5:35�

remains less than unity whenmoving along the Tcsÿtÿhc line
of FS ±FN phase transitions, since Ac < 1. The coordinates
of the tricritical point t (h � ht,T � Tt) at which a changeover
of the phase-transition order occurs, are determined from the
simultaneous fulfillment of the conditions b � 0 and a1 � 0.
It is the existence of a tricritical point t that dictates the
necessity of retaining terms up to D6 in the expansion (5.33).
Note, however, that the phase diagrams and the magnitudes
of critical parameters obtained here and below in terms of the
Landau theory have only a qualitative nature because of the
neglect of the realistic temperature dependences of the
coefficients a, b, and g in the expansion (5.33).

A distinctive feature of the FI=S junctions of the second
type (Fig. 16b) with Ac > 1 is the existence of a Lifshitz point
Lp [81] in the line of first-order phase transitions. At this
point, three possible phases meet: FN, FS, and CFS. The
coordinates of the Lifshitz point (TL; hL) are determined from
the simultaneous fulfillment of the conditions a1 � 3b 2=16g

Tc

Tcs

Tt

ht hc h

FS

FN

a

t

Tc

T
c �h�

T 0c �h�

T
c2 �h�T

c1
�h�

Tcs

Tt

TL

hthc1 hc2hL h

FS

³FS

FN

b

t

Lp

Figure 16. (Tc; h) phase diagrams for the FI=S contacts of (a) the first type

and (b) second type. Solid lines show curves of second-order phase

transitions; the dashed lines correspond to first-order phase transitions

[79].
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and A � 1. The latter condition �A � 1� corresponds to the
period ofmodulation qÿ10 of themagnetic order in the FI layer
tending to infinity; this condition, along with the expression
for D1, determines the line of second-order phase transitions
Tc1�h�, which separates the commensurate (FS) and incom-
mensurate (CFS) superconducting magnetic phases. Note
that the Tc1�h� curve passes through a maximum, thus
ensuring the reentrant (FS ±CFS ±FS) behavior of the
system in a certain range of exchange fields between hc1 and
hL at a fixed temperature. Near the Lifshitz point, the Tc2�h�
curve of the first-order phase transitions separating the
ferromagnetic normal phase (FN) from the superconducting
phase (CFS) with a sinusoidally modulated magnetic order is
determined from the equality of the free energies of these
phases.

In the case of the FI=S superlattice, the analysis of the
corresponding free energy f � is performed as in the case of
the FI=S junctions, and the phase diagram �T; h� is topologi-
cally equivalent to that for the FI=S junction. Between these
diagrams, the same connection exists as was the case for
T � 0, namely, FS in Fig. 16 should be replaced byAFS. As in
the case of T � 0, the AFS and CFS states are three-
dimensional, and the FS states are two-dimensional, i.e., in
these states the coherence in the orientation of magnetic
moments of the FI layers is lost. A detailed discussion of the
multicritical points t and Lp in these diagrams is given in
Ref. [79].

Thus, the ratio of the antiferromagnetic and ferromag-
netic molecular fields Ac or A�c permits classification of the
FI=S systems into two types, similar to the Ginzburg ±
Landau parameter K serving to distinguish type I and type II
superconductors. The FI=S systems of the first type with Ac

and A�c < 1 admit the coexistence of the superconductivity in
S layers with only a uniform ferromagnetic ordering in
FI layers (Figs 15a, 16a). It follows from the phase diagrams
of the FI=S systems of the second type (Ac;A

�
c > 1, Figs 15b

and 16b) that under certain conditions changes in the
temperature T or in the exchange field h can result in the
appearance of a cascade of alternating magnetic and super-
conducting transitions, e.g., CFS!FS!FN for junctions
and CFS(2D ± 3D)!FS(3D)!FN(2D) for superlattices. A
similar chain of transitions arising under the effect of an
external magnetic field parallel to the plane of the FI=S
interface can explain the increase and subsequent saturation
of the exchange splitting of the BCS peak in the density of
states for quasi-particles of aluminum in EuO=Al junction
[73] and EuS=Al [74] junction. A further growth of magnetic
field results in a first-order phase transition to the normal
state, as was observed in these experiments.

Note also that the relatively weak suppression of
superconductivity in the EuO=V superlattice [77] can be
explained by the strong compensation of the exchange field
in the vanadium interlayers due to the p-phase matching of
the magnetic structures of localized spins of neighboring
FI layers in the AFS or CFS states. The existence of an
incommensurate magnetically ordered superconducting
phase of CFS type in the EuO=Al and EuS=Al contacts
and the possible existence of such a phase in the EuO=V
superlattices suggests the probable existence of a Lifshitz
point in them and, therefore, makes these systems attractive
candidates for further experimental investigation. A direct
observation of changes in the spin ordering in FI layers due
to the competition between superconductivity and ferro-
magnetism can be performed, e.g., by the method of

magnetic neutron scattering. To experimentally study
phase diagrams, we may use the circumstance that the
vicinities of multicritical points can be passed through by
varying the temperature T, as well as by changing the
magnitude of the exchange field h � I hS ia=2ds at the
expense of variation of the S-layer thicknesses ds or
fabrication of the wedge-shaped S layers.

6. FI=S systems with pure superconductors

6.1 Boundary conditions for a ferromagnetic insulator=
pure superconductor junction
In the preceding section, FI=S junctions and superlattices
were studied in the limiting case of dirty superconductors.
Here, we consider another limit Ð the case of a pure
superconductor. The most important element of the theory
is the derivation of boundary conditions at the FI=S junction.
This problem was solved in Refs [115, 116] in 1988. The
authors simulated the boundary as a high-energy barrier for
electrons in the superconducting metal. Many properties of
the sought boundary conditions proved to be determined by
the symmetry of the system. For a smooth, ideally reflecting
interface, the relationship between the incident and reflected
electron waves is given by the scattering matrix S that relates
the two-component spinors of a quasi-particle, representing
the incidentcin and scatteredcout waves with quasi-momenta
pin and pout: cout � Scin. Since we assume the reflection to be
ideal, the matrix should be unitary, i.e., SS� � S�S � 1. For
a magnetically active surface possessing a spontaneous
moment that is characterized by a unit vector l, S is a matrix
of dimension 2� 2 of the form S � s�m � r, where m � l.

The general form of the S matrix that agrees with the
conditions of unitarity is

S � exp

�
ÿ iylr

2

�
; �6:1�

where y is the angle of mixing of spin states in the reflected
wave. Indeed, let the spontaneous moment be directed along
the y axis and let the incident wave has spin directed along the
z axis (perpendicular to the interface) with a projection sz � 1
(state cin � "j i). Then, the reflected wave will represent a
superposition of spin states with both projections of spin:

cout � cos

�
y
2

�
"j i � sin

�
y
2

�
#j i : �6:2�

Thus, the spin of a quasi-particle upon reflection from a
magnetized interface is rotated by an angle y=2. This rotation
is a consequence of the tunnel penetration of a quasi-particle
into the ferromagnetic region, which is forbidden for it in the
classical model, and therefore represents a quantum effect.

The mixing angle y depends on the quasi-momentum pk,
which is conserved along the interface. If the Fermi surface is
considered to be spherical, then pk � pÿ �p � z�z. The matrix
S does not take into account the dynamic reorientation of the
spin of the quasi-particle upon its tunneling into the
ferromagnetic region, but only allows for the interaction of
the spin with the mean field acting on the quasi-particle in the
ferromagnet.

A model for the potential barrier at the FI=S boundary
was suggested inRef. [116]. It is assumed that the ferromagnet
is a semiconductor with a bandgap Eg and that it is this gap
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that controls the height of the barrier. The solution to the
SchroÈ dinger equation for an electron with such a potential
barrier permits one to calculate the scattering matrix S. It
proves to be dependent on two dimensionless parameters:

r �
�
2mEg

pF

�1=2

; l � h

Eg
;

wherem and pF are the mass and the Fermi momentum of an
electron in the metal, and h is the exchange field in the
ferromagnet that acts on its spin; it is also assumed that
l < 1. The matrix S also depends on the angle # between the
reflected electron and the z axis. Themixing angle is expressed
through the eigenvalues of the matrices S� and Sÿ as follows:

tan
y
2
� ÿ 2 ImS�S �ÿ
jS� � Sÿj2

:

Hence, for r4 1, we have y � �2l=r� cos#. Thus, under these
conditions, the angle y is small and proportional to the
exchange field h. Naturally, the mixing angle y should
depend in a complex manner on the angle #, which is
determined by the shape of the Fermi surface and orientation
of the crystal axes of the superconductor with respect to the
interface of the junction. In the available theoretical investi-
gations [115 ± 117], it is assumed for simplicity that the Fermi
surface is spherical and the mixing angle y is independent of
the angle # and is a certain parameter that characterizes the
interface.

The boundary conditions at the FI=S interface can be
formulated in terms of the matrix Green's functionbg �p;R;on� of the superconductor. Since the single-particle
Green's function is constructed of two eigenvectors of the
single-particle state, it is obvious that at the interface a
relation between its values for the quasi-momenta pin and
pout should exist. This relation has the following form [116]:

bg �pout;R0;on� � bS bg �pin;R0;on�bS� ; �6:3�

where R0 are the coordinates of the surface points and bS is a
matrix of dimension 4� 4 composed of the spin matrix S :

bS � S�p; l� 0

0 S��ÿp;ÿl�
� �

�
exp

�
ÿi y

2
�lr�

�
0

0 exp

�
ÿi y

2
�lr�tr

�
0BB@

1CCA : �6:4�

The lower element of the matrix bS corresponds to holes
reflected from the boundary, and the upper element is
associated with electrons that constitute a quasi-particle in
the superconductor.

The authors of Ref. [116] solved the problem of a system
consisting of a ferromagnetic insulator and superconductor
occupying a half-space. The use of boundary conditions in the
form (6.3) with Green's functions in the quasi-classical
approximation led to the following main results: the super-
conducting gap of the FI=S system decreases on approaching
the interface as soon as z is of the order of several coherence
lengths x0. On the other hand, the exchange field induced in
the superconductor rapidly falls off at the same distances,
which is a sufficiently obvious result.

The critical temperature Tc for a superconducting layer of
a finite thickness ds 5 x0 decreases with increasing parameter

r � x0
2ds

tan
y
2
; �6:5�

vanishing at r � rc ' 0:38. At small r5 1, we have

Tc

Tcs
� 1ÿ 7z�3�

3
r 2 � . . . �6:6�

Thus, the presence of a boundary with a ferromagnetic
insulator leads to pair breaking in the superconductor
because of the appearance of mixing of spin states in reflected
waves. Of most interest is a system in which there are
ferromagnetic layers of an arbitrary thickness on both sides
of the superconducting film. This situation was studied in
[117] for superconductors of singlet and triplet types.

6.2 FI=S=FI system with singlet superconductivity
Studying superconducting states in such a trilayer depending
on the mutual orientation of the magnetization vectors of
FI layers is of special interest in view of possible engineering
applications. In this section, we follow Ref. [117].

An inhomogeneous system consisting of two ferromag-
netic layers with a thin film of a superconducting metal
between them (Fig. 17) is described by a Green's functionbg �p;R;on� depending on the momentum p and coordinate R
of the quasi-particle. The matrix structure of this Green's
function is as follows:

bg �p;R;on� �
g�p;R;on� f �p;R;on�

f ��ÿp;R;on� g tr�ÿp;R;ÿon�

 !
; �6:7�
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Figure 17.FI=S=FI contact with a different orientation of the spontaneous
moments ll and lr for the left-hand and right-hand F layers [117].
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where the normal Green's function g is diagonal in spin and
the anomalous f (for singlet state) function has the form

f � fsis2 : �6:8�

For a pure superconductor in the quasi-classical approx-
imation, bg obeys the Eilenberger equation [71]�

iont3 ÿ bD�p;R;on�; bg �p;R;on�
�� ivFHHR g�p;R;on� � 0

�6:9�

with the following normalization:

bg 2�p;R;on� � ÿ1 : �6:10�

On the other hand, theOP bD is a solution to the self-consistent
equation

bD�p;R� � N�0�T
X
n

�
dO 0

4p
V�p; p 0� bf �p 0;R;on� ; �6:11�

where V�p; p 0� is the pairing potential, and the angle O
specifies integration over the Fermi surface.

To calculate the Green's function of the entire system, we
should solve the set of equations (6.9), (6.10) with boundary
conditions (6.3) for the left-hand and right-hand boundaries.
The momenta entering into the boundary conditions are
linked by the relation

pout � pin ÿ 2z�pin � z� : �6:12�

Themixing angle y that parametrizes the Smatrix will further
be considered as a phenomenological parameter independent
of the momenta pin and pout.

Under conditions where ds 5 x0, the solution to equation
(6.9) can be found using the substitution

bg �p;R;on� � bg0�p;on� �
�
zÿ ds

2

� bg1�p;on� ;

where jg0j4 jdsbg1j. Using boundary conditions (6.3) for the
left-hand and right-hand boundaries of the double junction,
we can eliminate bg1 and obtain the equation for bg0:n�

iont3 ÿ bD ; bg0�; bSl
bSr

o
� 2i

vFj pzj
ds

�bg0; bSl
bSr

�
� bSl

h
iont3 ÿ bD ;S�l bg0 bSl � bS�r g0 bSr

ibSr � 0 : �6:13�

Here, the brackets �. . .� and braces f. . .g denote the commu-
tator and anticommutator, respectively.

In the case of a singlet superconductor, the 4� 4matrix bD
should have the form

bD � iDss2t1 : �6:14�

NearTc, the solution for bg0 in Eqn (6.13) is sought in the formbg0 � bg �0�0 � bf �1�0
, where g

�0�
0

is independent of D, and bf �1�0
is

linear in D. The condition of renormalization (6.10) is then
resolved into two equations:�bg �0�0

�2 � ÿ1 ; �bg �0�0 ; bf �1�0

	 � 0 :

For a singlet superconductor, the orientation of the
magnetization in the junction is insignificant, and Tc depends

only on the mutual orientation of the vectors ll and lr. At the
parallel magnetization, the scattering matrices Sl and Sr on
the left-hand and right-hand junctions are equal, and
Eqn (6.13) then reduces to the equation�

iont3 ÿ bD ÿ as2t3; bg0� � 0 ; where a � vFj pzj
2ds

tan y :

Then, from the linearized equation (6.11) we obtain the
equation in tc � Tc?=Tcs:

ln tc � ÿ
X1
n�0

1

n� 1=2

�
1ÿ

�
n� 1

2

�
tc
r
arctan

r
Tc�n� 1=2�

�
;

�6:15�
where

r � r0
tan y

tan�y=2� ; r0 �
x0
2ds

tan
y
2
: �6:16�

Here, as usual, Tcs is the critical temperature for a bulk
superconductor and r0 is the parameter that describes the
breaking of Cooper pairs at one of the FI=S boundaries. In
this case, Tc at r0 5 1 is determined by relationship (6.6).

If r5 1 in Eqn (6.15), we obtain the following conditions
for suppression ofTc in the presence of a trilayer FI=S=FI and
a bilayer FI=S:

dTc2

Tcs
� 4

dTc1

Tcs
; �6:17�

where dTc2 � Tc2 ÿ Tcs and dTc1 � Tc1 ÿ Tc0. The results of
numerical solutions for Tc in these cases are shown in Fig. 18.
We see that the interaction with FI=S boundaries leads to a
pair-breaking effect. Another mechanism arises in the case of
an antiparallel orientation of the vectors ll and lr. In this
case, the matrices of scattering from junctions are linked by
relationship SlSr � 1. As a result, Eqn (6.13) reduces to the
following equation:�

iont3 ÿ a bD ÿ bs2 bD; bg0 � � 0 ; �6:18�

where a � cos2�y=2� and b � i sin�y=2�. Linearized equation
(6.11) yields

Tc; anti � Tcs exp

�
ÿ 1

l
tan2

y
2

�
: �6:19�
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Figure 18. Temperature of the superconducting transition as a function of

the pair-breaking parameter for (a) singlet and (b) triplet superconductors

in the FI=S=FI system [117].
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Thus, in this case, we simply have a weakening of pairing.
Finally, in the case of a perpendicular orientation of the ll

and lr vectors, the dependence on the pair-breaking para-
meter is shown in Fig. 18a. At small r, we have

dTc? � 2dTc1 � 1

2
dTc2 : �6:20�

In the case of a superconductor with triplet pairs, the
situation becomes more complex. The matrix bD contains a
vector order parameter Dt,

bD � 0 �Dtr� is2
is2�D�t r� 0

� �
; �6:21�

and to find it, we should solve the self-consistent equation
(6.11). The results of calculations ofTc at various orientations
of the vectors ll and lr are given in Fig. 18b.

In both cases, the superconductivity of the FI=S=FI
system strongly depends on the mutual orientation of the
vectors ll and lr. At the parallel orientation, Tc decreases
with increasing pair-breaking parameter r0 more rapidly than
at the perpendicular (or antiparallel) orientation of the
vectors ll and lr. This means that if at a fixed r0 the
temperature T satisfies the condition Tc2 < T < Tc? and the
three-layer junction is in the superconducting state at the
perpendicular (antiparallel) orientation of ll and lr, then if
the orientation of the magnetic field in one of the FI layers
changes in such a way that ll and lr become parallel, the
system passes into the normal state. Thus, in this situation, a
sharp change in the conductivity will occur with changing
orientation of the magnetic field at the second contact. This
phenomenon can be employed for producing superconduct-
ing spin switches of current.

7. Transport properties of S/F systems

7.1 Josephson effect in S/F/S structures
Up to this point, we have mainly considered the thermo-
dynamics of F=S systems, in particular, the phase diagrams of
F=S junctions and F=S superlattices. However, there exist a
number of remarkable phenomena related to the passage of
electric current through double junctions. Among these, the
Josephson effect in three-layer S=F=S structures should be
noted, which permits one to directly study the p-phase
superconductivity. Another example is a three-layer F=S=F
junction, in which the transport properties of spin-polarized
electrons and the Andreev reflection are used. At present,
numerous theoretical investigations devoted to these pro-
blems are available, which could already constitute a subject
of a separate review. Here, we restrict ourselves to a brief
report of the main results obtained to date.

For the first time, the idea of using current oscillations in
the S=F=S junction for the investigation of p-phase super-
conductivity was suggested by Buzdin et al. [118], who
considered the junction in the pure limit. Later, the realistic
case corresponding to the dirty limit was considered by
Buzdin and Kupriyanov [119] and then in more detail by
Buzdin et al. in Ref. [62]. Given theUsadel function F �z;o� in
each layer of an S=F=S junction, we can calculate the current
through the junction depending on the phase difference in the
superconducting order parameter at the first and second
S layers. As in the case of an ordinary Josephson junction,

the current is j�j� � Jc sinj. Calculations show that the
critical current jc through the S=F=S contact is determined
by the formula [119]

jc � F

�
D
T

�
y exp �ÿy� sin

�
y� p

4

�
; �7:1�

where

y � df
xf

�
2I

pTcs

�1=2

: �7:2�

Thus, the current amplitude decreases with increasing
parameter y and vanishes at y � npÿ p=4 �n � 0; 1; 2; . . .�.
Formula (7.1) is valid at y4 1; however, it can be shown that
jc�y� has a maximum value at y � 0. The quantity F �D=T � is
a decreasing function of temperature and vanishes atT � Tcs.

We see that jc oscillates with increasing thickness of the
F layer or (at fixed df) with increasing temperature, since
I � hSzi falls off on approaching the Curie point Tm. The
temperature oscillations can occur when Tm and Tc are close
to one another in order of magnitude. Note that with the
boundary conditions used in Ref. [119], the results obtained
are valid only in the limit of a high transparency of the barrier.

Similar (in physical meaning) results were recently
obtained in Ref. [120], where the authors used the micro-
scopic model of a layered metal in which atomic planes with
ferromagnetic and superconducting order parameters alter-
nate [121]. In this `atomic' limit of an S=F superlattice, they
obtained the condition for the appearance of p-phase super-
conductivity and calculated the critical current that passed
perpendicular to the layers. It turned out that jc as a function
of the parameter I=Tc has a maximum at I � 0 and falls off to
zero at the critical point Ic corresponding to the appearance of
p-phase superconductivity. In contrast to Eqn (7.1), which is
valid for an S=F=S junction, in the case of an atomic
F=S superlattice there is only one zero of the critical current.

The experimental observation of such a nonmonotonic
behavior of the critical current with decreasing temperature
was made on a S=F=S trilayer in which Nb was taken as the
superconducting layer and a CuxNi1ÿx alloy with x close to
0.5 was taken as the ferromagnetic layer [122]. Figure 19
displays the variation of the critical current measured on
two such junctions (curves A and B) with a ferromagnetic
layer thickness df � 22 nm. The curve A shows that jc
increases with decreasing temperature, passes through a
maximum, vanishes, and again increases. This corresponds
to the supposition that p-phase superconductivity is realized
in the S=F=S system. The point where the critical current
becomes zero corresponds to the transition from the 0-phase
to the p-phase superconductivity. Thus, the measurements
performed in Ref. [122] appear to be the first evidence that
confirms the existence of p-phase superconductivity.

Another observation of p-phase superconductivity was
made on F=S junctions by the same authors [123]. They
studied the temperature and field dependences of the critical
current in a circuit composed of three F=S junctions in a
triangular geometry. At a temperature Tcr � 2:2 K, a cross-
over from the 0-phase superconductivity (atT > Tcr) to the p-
phase superconductivity (at T < Tcr) was observed. The
occurrence of a crossover can be judged from the shift of the
periodic jc�H� dependence. In the case of the standard
0-phase superconductivity, peaks are observed in jc�H�which
correspond to integer quanta of the flux F0 passing through
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the Josephson junctions. In the case of the p-phase super-
conductivity, the jc�H� curve should be shifted by a half-
period, which was observed in reality. With decreasing
temperature the critical current jc vanishes at the point Tcr

and then again increases already in the p-phase.
The shift of the jc�H� curve by a half-period is due to the

appearance of a spontaneous current (corresponding to a
half-quantum of the flux) in the triangular circuit consisting
of p-contacts. In this case, the ground state degenerates
because of the possibility of two directions of this current.
Since such an object has a double-degenerate ground state, it
can be used as a quantum bit of information (qubit). Earlier,
analogous suggestions were made in Refs [124, 125].

The authors of Ref. [126] considered a Josephson S=I=S
junction formed by two magnetic superconductors in which
superconductivity coexisted with a spiral magnetic order.
Such a coexistence phase in a uniform metal was earlier
investigated in Refs [4, 127]. The spiral phase arises in a
ferromagnetic superconducting metal as a result of the
adjustment of the superconducting and magnetic order
parameters under the conditions where Qÿ10 5 x0, when the
paramagnetic effect in the system is weakened. If the phases of
themagnetic OP y1 and y2 at the surface of the insulating layer
are fixed, the calculation shows that the Josephson tunneling
current is determined by the formula [126]

J�j; y� � �Jc ÿ J 0c cos y� sinj ;

where j � j1 ÿ j2 and y � y1 ÿ y2. The additional current
J 0c , which is determined by the phase difference y, also
depends on the chirality (i.e., on whether the spiral is left-
hand or right-hand) of the first and second superconductors.
The strength of the current depends on the magnitudes of the
parameters D=h and QvF=h. In such a junction, p-phase
superconductivity can be realized if the phase difference y
can be changed with the help of an external magnetic field
applied to one of the superconductors.

In another work [128], a complex Josephson junction
S=F=I=F=S was considered, which consisted of two S=F
bilayers separated by an insulating layer. In such a
heterosystem, one can study the critical current depending
on the mutual orientation of magnetic moments in the
ferromagnetic layers. Calculations show that at low tem-
peratures (T5D), the critical current Jc increases with
increasing exchange field h at the antiferromagnetic orienta-
tion of the F layers. In the case of the parallel orientation, Jc
is suppressed. In principle, such an effect can be used for
controlling current with the use of an external magnetic
field.

7.2 Transport of spin-polarized electrons
in F=S=F structures
In recent years, great attention has been paid to transport
properties in F=S structures connected into an electric circuit,
which are due to the passage of spin-polarized electrons from
the ferromagnetic layer into the superconductor [72, 129 ±
135]. Depending on the applied potential difference, new
physical phenomena arise, which are promising for engineer-
ing applications [129, 130]. The most interesting phenomena
were found in F=S=F structures, in which the current was
studied as a function of the applied potential V in two
different configurations: when the mutual orientation of
spontaneous moments in F layers was ferromagnetic or
antiferromagnetic.

The phenomena that occur in the F=S=F junction upon
the application of a potential difference to it consist in the
following. Because of the magnetic biasing of conduction
electrons in the F layer, they pass into the S layer with the
preferred orientation of their spins directed upward (", in the
direction of the spontaneous moment). It is assumed that the
time of spin relaxation ts in the S layer is greater than all other
characteristic times; therefore, an electron with spin up �"�
that passed from the left-hand F layer (Fig. 20) rapidly relaxes
to the Fermi distribution of quasi-particles in the super-
conductor but retains its spin up to the passage into the
right-hand F layer. If the junction has an antiferromagnetic
configuration, a nonequilibrium spin polarization is accumu-
lated in the S layer; for the ferromagnetic orientation, no such
polarization occurs. Owing to the spin polarization, the
chemical potential of quasi-particles in the superconductor
is shifted by dm for quasi-particles with spin up �"� and byÿdm
for quasi-particles with spin down �#�. Thus, there arises a
paramagnetic effect, which results in a decrease in the
magnitude of the superconducting gap D; at a certain dm
(i.e., at a certain potential V ), this gap can vanish. The D�dm�
dependence is determined by the same equation as in the case
of the paramagnetic effect in a superconductor [133, 134],
namely,

ln
D0

D
�
��hoD

0

de
E�e�

�
1

exp
�ÿ
E�e� � dm

�
=T
�� 1

� 1

exp
��E�e� ÿ dm�=T �� 1

�
: �7:3�

Here, E�e� �
����������������
e 2 � D2

p
, andD0 is the magnitude of the gap at

T � 0 in the absence of spin density �dm � 0�.
For the normal state in the antiferromagnetic configura-

tion, we have dm � PeV=2, where P is the spin polarization;
for the superconducting state, dm can be calculated as a
function of T and V [133, 134].
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Figure 19. Temperature dependence of the critical current in a

Nb=Cu0:48Ni0:52=Nb trilayer. The inset shows the dependence of Ic on

the external magnetic field at various temperatures: (1) T � 4:19, (2) 3.45,
and (3) 2.61 K [122].
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The authors of Ref. [133] calculated, in terms of a
phenomenological model, the width of the gap D and the
spin density (normalized to the density of states in the normal
phase in the S layer) as a function of the applied potential V.
The results of calculations at a fixed spin polarization of the
ferromagnetic layer P � 0:4 and various temperatures are
given in Fig. 21. We see that for each temperature T < Tcs

there is a critical value V � Vc at which the gap vanishes. The
suppression of superconductivity is due to the accumulation
of spin polarization in the S layer to a certain critical value
corresponding to breaking of Cooper pairs because of the
paramagnetic effect. The critical value Vc turns out to be
inversely proportional to the spin polarization of the F layer
�Vc � 1=P�, which seems to be quite reasonable, since the
greater P, the greater the spin polarization in the S layer (and,
consequently, the greater the pair-breaking factor), and the
smaller the magnitude of the gap D. The authors of Ref. [134]
calculated the conductance of the junction as a function of the
applied potential for the antiferromagnetic and ferromag-
netic configurations, as well as the tunneling magnetoresis-
tance. Both quantities are quite specific functions of V in the
range eVj j < 2D0.

Experimental investigations of spin-polarized transport in
F=S structures were carried out in Refs [72, 136 ± 138]. In
Ref. [139], along with experimental data for an Fe=Nb=Fe
trilayer, the dependence of the depairing critical current Jc0 on
the thickness of the superconducting layer ds was calculated
theoretically based on the boundary-value problem for the
Usadel functionwith boundary conditions for the case of high
transparency of the barrier. From a comparison of the
experimental data with calculations of Tc�ds� in the
Fe=Nb=Fe system, the microscopic parameters of the junc-
tion were determined, which were then used to calculate
Jc0�ds�. The results obtained agree well with the direct

measurements of the pair-breaking current in this junction.
Both the Jc0�ds� and Tc�ds� curves begin from a critical value
dNb � 35 nm and saturate at dNb � 150 nm.

7.3 Role of the Andreev reflection
The phenomenological theory developed inRef. [133] ignored
the Andreev reflection at the boundaries of the normal
ferromagnetic and superconducting metals in the double
F=S=F junction. As is shown in Ref. [134], this reflection can
play an important role if the height of the corresponding
barrier is small. The Andreev reflection is known [140, 141] to
arise upon the passage of an electron from the normal into
superconducting metal. The chemical potentials of both
metals are equal; therefore, if the energy o of the electron
incident onto the boundary (measured from the chemical
potential) is smaller than the superconducting gap �o < D�,
the electron should be reflected. Its energy and quasi-
momentum in this case are conserved but the velocity
changes (becomes opposite). This means that the reflected
electron should be considered as a hole (upon ordinary
reflection, only the normal component of the velocity usually
changes to the opposite). Another aspect of this extraordinary
reflection is that the electron current passing through the
normal and superconducting metals transforms at the
boundary into a current of Cooper pairs, but in the normal
metal it is accompanied by a current of holes produced at the
boundary.

If the normal metal is in the ferromagnetic state, we
should take into account magnetic biasing of electrons and a
shift of the Fermi surface for the electrons with spins up and
down. Consider an electron with spin up and energy o
moving along the normal to the junction surface. The wave
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function for the left-hand layer can be written in the form

cf�z� � exp�ike"z� 1
0

� �
� a" exp�ikh"z� 0

1

� �
� b" exp�ÿike"z� 1

0

� �
; �7:4�

where ke" �
�������������������������
2m�EF � o�p

, kh" �
������������������������������������
2m�EF ÿ oÿ 2I �p

are
the quasi-momenta of the electron and `reflected hole'. The
third term in Eqn (7.4) takes into account the usual reflection
of electrons.

In the S layer, the wave function includes the electron-like
and hole-like parts:

cs�z� � c" exp�ik s
e"z� uk

vk

� �
� d" exp�ÿik s

h"z� vk
uk

� �
; �7:5�

where
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�o� dm�2 ÿ D2

q ir
:

In view of the smallness of o, dm, and D in comparison with
EF, wemay approximately assume k s

e" ' k s
h" �

������������
2mEF

p � pF.
In expression (7.5), uk and vk are the coefficients of the uÿv
transformation for the quasi-particles of the superconductor.

The use of the conditions of joining solutions (7.4) and
(7.5) at the boundaries of the FM=S junction permits one to
calculate the amplitudes a", b", c", and d" and the current
passing through the F=S=F junction. Note that in Ref. [134]
the authors also (phenomenologically) included the potential
barrier for electrons at the F=S boundaries of the junction:

U0

�
d
�
zÿ ds

2

�
� d
�
z� ds

2

��
; �7:6�

so that the complete solution of the problem depends on the
dimensionless parameter Z � U0=�hvF. Numerical calcula-
tions show the significant influence of Z on the behavior of
the tunneling magnetoresistance of the F=S=F junction,
which is determined as the ratio � jF ÿ jA�=jA of the difference
of currents passing through the junction upon the ferromag-
netic and antiferromagnetic configurations to the current
corresponding to the antiferromagnetic configuration. For
low height of the barrier �Z! 0�, the magnetoresistance
effect as a function of the applied potential is positive (the
resistance of the junction in the ferromagnetic configuration
is less than that in the antiferromagnetic configuration) and
only weakly depends on Z up to eV � 0:75 �2D�. With
increasing V, the effect begins decreasing more rapidly, the
greater Z, and finally becomes negative. Since the Andreev
reflection is especially efficient at low barriers, it follows from
the calculated data obtained that taking this effect into
account is of great importance when considering the problem
of magnetoresistance of the F=S=F junctions.

Note also the importance of Andreev reflection in
considering Josephson currents in S=F=S junctions [120].
This problem has been considered in numerous papers
[142 ± 157], and the list of papers is continually growing.
Andreev [147] showed that in a thin layer of a normal metal
sandwiched between two superconductors, bound localized
states arise with energies lying inside the superconducting gap
(Andreev states). The structure of these states and their
density were later investigated in many works (see, e.g.,

Ref. [146] and references therein). It was clearly shown in
Ref. [146] that the Josephson current in an S=N=S junction
was transferred through Andreev states. It also turned out
that the structure of the localized states (or the local density of
states in the spectrum of quasi-particles) in the normal part of
the junction strongly depends on the macroscopic phase
difference f of the wave function in the left-hand and right-
hand superconductors [146]. Another remarkable property
related to Andreev reflection is the appearance of states with
zero energy in junctions formed by superconductors with a
d symmetry of the OP [143].

These properties of the S=N=S contacts are superimposed
by special properties of the S=F=S contacts containing a
ferromagnetic (metallic or insulating) layer. The exchange
field I leads to a spin splitting of the localized Andreev levels.
This splitting is described by the equation that determines the
energies o� and oÿ of the localized states inside the S=F=S
junction [150]:

tan

�
o�

v0j cos yj � sgn �cos y� f
2
� Idf
v0j cos yj

�
�

������������������
D2 ÿ o 2

�
o�

s
:

�7:7�
Here, y is the angle between the momentum of an electron
incident from the superconducting layer onto the interface
and the normal to this interface, andD is the magnitude of the
gap in the superconducting layer. At I � 0, Eqn (7.7) defines
the spectrum of the Andreev quasi-particle in the S=N=S
junction, with the condition f 6� 0 corresponding to the
current state. In the special case of a narrow barrier
�df 5 xs� and an excitation propagating along the normal to
the boundary �cos y � 1� under the conditions f � 0 and
I � 0, there is a single (degenerate in spin) level o0 �
D�1ÿ d 2

f =2x
2
s �. The introduction of a weak exchange field

splits this level:

o� � o0 � I
d 2
f

2x 2
s

:

With increasing I, the level oÿ increases whereas the level o�
decreases. Under certain conditions, the upper level is
expelled into the region of continuum (oÿ � D), so that the
remaining level belongs to a spin-polarized state.

In later works [144, 145, 151 ± 156], the results obtained in
[150] were generalized in various directions. The most
comprehensive investigation of Josephson S=F=S junctions
can be found in Ref. [151]. We borrow from it, for example,
the equation that determines the spectrum of a quasi-particle
in the case of a superconductor of s type

cos

�
f
2
ÿ d

oÿ I

D cos y

�
� �o

D
; �7:8�

and d type

cos

�
f
2
ÿ d

oÿ I

D cos y

�
� � o

cos 2yD
; �7:9�

where d � df=xs is the reduced thickness of the F layer.
Equation (7.8) is equivalent to Eqn (7.7), and Eqn (7.9)
describes a situation in which a superconducting OP has a
dx 2ÿy 2 symmetry, and the crystal axes a of both super-
conductors are perpendicular to the interface. With allow-
ance for the main factors that characterize the S=F=S
junction, i.e., the phase difference f, exchange field I, and
symmetry of the OP, the physics of Andreev states and
Josephson currents passing through the junction becomes
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very rich. We also give, for example, Fig. 22 from Ref. [151],
which illustrates the complex structure of Andreev states in
the S=F=S junction.

Experimental investigations of S=F=S junctions that
require extremely thin ferromagnetic layers (df 9 1 nm) are
in the incipient stage (see Refs [122, 157]). The theoretical
investigations of this problem, on the contrary, have been in
progress quite long and quite intensively. We also mention
Refs [104, 158 ± 161] devoted to separate theoretical problems
related to transport properties of multilayer F=S structures.

8. Conclusions

The aim of this review was to discuss the mutual accommoda-
tion of the superconducting and magnetic states in F=S
systems where the superconducting and ferromagnetic
regions are spatially separated but coupled with one another
through the interfaces between the layers. To summarize the
investigations of this problem, we may say the following.

In the decade passed since the publication of the
pioneering works [61, 62], in which the fundamentals of the
theory of FM=S junctions were developed, numerous
theoretical and experimental investigations of heterogeneous
systems consisting of layers of a ferromagnetic metal and a
superconductor have been carried out. For conditions
corresponding to experiments (dirty superconductor), it was
shown that such systems are described by a boundary-value
problem for a pair amplitude (Usadel function). Super-
conductivity in such a heterogeneous system proves to be a
superposition of the superconductivities of the Bardeen ±
Cooper ± Schrieffer (BCS) type in S layers and of the
Larkin ±Ovchinnikov ±Fulde ±Ferrel (LOFF) type in
FM layers. The most important success of the theory is the
explanation of the nonmonotonic dependence of the critical
temperature Tc on the thickness of the ferromagnetic layer df.
Oscillations of Tc are caused by conditions at the boundary:
the flux of Cooper pairs is proportional to the jump in the pair
amplitude at the ferromagnet ± superconductor interface. The

solution of the boundary-value problem makes it possible to
calculateTc as a function of df. Depending on themicroscopic
parameters that characterize the S layer, the FM layer, and
the boundary, varied behavior of the FM=S junctions and
superlattices can be expected and is observed in numerous
experiments.

Another problem concerning the behavior of FM=S
systems (of superlattices, in particular) is the problem of the
mutual orientations of the magnetizations of FM layers as an
effect of the inverse influence of superconductivity on
magnetism. Analysis of the boundary-value problem makes
it possible to find conditions under which a ferromagnetic or
antiferromagnetic arrangement of the magnetizations of
FM layers is realized (the antiferromagnetic orientation
proves to be more favorable). Thus, the theory of FM=S
junctions and superlattices based on the boundary-value
problem for the Usadel function is capable of explaining the
experimentally observed behavior of these systems.

As to the FI=S systems consisting of layers of a
ferromagnetic insulator and a superconductor, their theore-
tical description is performed on the basis of minimization of
the Ginzburg ±Landau functional for two interacting order
parameters (OPs). Based on this approach, phase diagrams
on the �T; h� plane were obtained, where h is the exchange
field acting from the near-surface atomic layer of the ferro-
magnet on the electron spins in the superconductor. The
possible phases in such a system are determined by the
competition between the direct ferromagnetic exchange
interaction in the FI layer and indirect antiferromagnetic
interaction via the conduction electrons of the S layer. This
proves that, depending on the relationship between these
exchange energies, two types of behavior of FI=S systems can
exist. In one case, two phases compete on the �T; h� plane: an
antiferromagnetic superconducting (AFS) and a ferromag-
netic normal (FN) phase, whereas in the second case, three
phases can exist: AFS, FN, and cryptoferromagnetic super-
conducting (CFS) phases. Thus, the mutual adjustment of the
superconducting and magnetic OPs in the FI=S systems
manifests itself in the appearance of either AFS or CFS
phases. Experimental investigations of FI=S systems are
much more scarce than for the corresponding FM=S
systems. In order to test the theory, it was expedient to
primarily determine phase diagrams for these systems on the
�T; h� plane.

So far, we have spoken of the thermodynamic properties
of F=S systems. Now, we summarize the investigations of the
main features of their transport properties. They manifest
themselves most vividly in three-layer junctions. Thus, an
S=F=S junction can most conveniently be used to study
p-phase superconductivity by the observation of oscillations
of the Josephson current across the junction. Vanishing of the
critical current at a certain thickness of the ferromagnetic
layer (or at a certain temperature if df is fixed) with its
subsequent increase is persuasive evidence of the existence of
p-phase superconductivity in such systems.

Another class of phenomena arise in F=S=F junctions
depending on the mutual orientations of magnetizations of
the F layers. For the antiferromagnetic orientation, a none-
quilibrium spin polarization due to the injection of magne-
tized electrons from the ferromagnetic layer is accumulated in
the superconducting layer. As a result, the superconducting
characteristics of the entire junction, e.g., the superconduct-
ing gap or the tunneling magnetoresistance, depend quite
specifically on the applied voltage.

ÿ1.5 ÿ1.0 ÿ0.5 0 0.5 1.0

0

2.5

5.0

N
�E
�=
N

0

o=D0

Figure 22. Density of states inside the ferromagnetic layer of the S=F=S
junction with superconductors of d type [151]. The calculation was

performed for the parameter values I � 0;5D and d � 1, at which the

ground state of the junction corresponds to f � 0.
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Thus, owing to intense theoretical and experimental
investigations, a significant understanding of the effects of
the mutual influence of superconductivity and magnetism in
nonuniform F=S systems has been achieved. There are also
numerous suggestions for engineering applications of some of
the above considered phenomena in microelectronics, in
particular, for the fabrication of electric current switches, in
which the switching is effected using a weakmagnetic field, or
for the production of devices based on quantum bits of
information. This stimulates the further study of layered
F=S systems.

Along with the investigation of inhomogeneous F=S
systems, interest in the problems of the coexistence of
superconductivity and ferromagnetism in homogeneous
systems has arisen again in recent years [162 ± 164], especially
after the discovery of such a coexistence in UGe2, which
belongs to the class of heavy-fermion compounds [165].
Superconductivity is observed in this compound below 1 K
in the ferromagnetic phase over a narrow range of pressures
near the boundary of existence of the ferromagnetic state.
Thus, the superconductivity in UGe2 exists in the region of
the ferromagnetic phase. The UGe2 compound is an itinerant
ferromagnet, and the same electrons form in it both the
ferromagnetic and superconducting states, in contrast to
other systems in which the coexistence of F and S order
parameters was observed earlier [7].

In Ref. [164], a mean-field theory has been constructed for
the one-fermion model of an itinerant magnet with singlet
superconductivity, and in Ref. [162], a theory of an itinerant
ferromagnet with a p symmetry of the superconducting OP
has been developed. In such a superconductor, triplet Cooper
pairs apparently should be formed. The theory suggested
employs the Eliashberg equations for electrons interacting
with one another via the fluctuations of the ferromagnetic
OP, which lead, as is well known, to attraction in the triplet
Cooper channel. Numerical solution of the Eliashberg
equations shows that Tc increases as the system approaches
the critical point where the ferromagnetic OP appears. We
also give the latest references concerning the topic of the
review [166 ± 176].

There is no doubt that the problems of the coexistence of
superconductivity and ferromagnetism will in the near future
be at the peak of interest of theoreticians, experimentalists,
and research engineers.
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