
Abstract. Kinetics of electrons moving in a gas or a plasma
under the action of external fields is considered. Elementary
processes of elastic and inelastic electron ± atom collisions re-
sponsible for electron kinetics in weakly ionized atomic gases
are analyzed. Various regimes of evolution of electrons in a gas
or a plasma in external fields are considered, and the character
of atom excitations under these conditions is studied. Methods
of describing the electron kinetics in gases and plasma are
applied to modeling the electron drift in condensed systems. It
is shown that the electric properties of metals and the behavior
of an excess electron in dielectrics have common features with
electron drift in gases and plasmas. The drift of an excess
electron in condensed inert gases is reviewed.

1. Introduction

The behavior of a gas with an admixture of electrons is of
importance for various problems of the physics of weakly
ionized gases and gas discharges [1 ± 16]. A peculiarity of this
two-component system is that if it is placed in an external
electric field, the energy is transmitted from the field to the
electron subsystem, and then electrons transfer the energy to a
gas as a result of electron ± atom collisions. Therefore, in spite
of thermodynamic equilibrium for a gas, the thermodynamic
equilibrium for the electron subsystem can be violated even
under relatively weak fields. Nevertheless, due to a small ratio
of electron mass to atomic mass, the electron distribution
function can be found under various conditions by solving the
Boltzmann kinetic equation.

Note that, in contrast to the traditional hydrodynamic
description of a two-component gaseous system where
interaction between subsystems is taken into account by a
collision time of particles of these subsystems, the kinetic
analysis of this problem allows one to use real cross sections
of electron ± atom or electron ±molecule collisions. Hence,
the kinetic analysis results in a strict theory instead of amodel
description on the basis of hydrodynamic methods. In
particular, the Ramsauer effect consisting in a sharp mini-
mum in the cross sections of electron scattering by some
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atoms as an energy function leads to certain effects and
phenomena in a weakly ionized plasma, which are absent
under hydrodynamic consideration of such a plasma.

Though the problem of studying the electron evolution in
a gas has a long history, its new aspects demand revisions, and
this is a goal of this review.Next, one can use the results of this
problem's solution for analyzing condensed atomic systems
with electrons. For example, we consider the drift of an excess
electron in condensed rare gases. In a wide range of
parameters, an electron's behavior in this system is similar
to that in gases, and the electron mobility in condensed rare
gases may exceed that of metals. The reason of this is a weak
electron interaction with the environment, so that some
parameters of electron drift in condensed systems are similar
to those in gases, and therefore gaseous models may be useful
for condensed systems.

In considering the evolution of electrons in gaseous and
model systems, we restrict ourselves to simple conditions
where these systems are spatially homogeneous. Hence,
certain phenomena of gas discharges due to specific space
distributions of particles are outside this review. Next, in
analyzing different regimes of the behavior of the electron
subsystem, we will try to be guided by rarefied and condensed
inert gases that allows us to consider peculiarities of the
evolution of these systems in detail. Thus, the aim of this
review is to consider theoretically the kinetics of electrons in
gases in external electric fields from the standpoint of
contemporary problems with the attraction of experimental
data to construct a general picture of these processes. This
theory is useful for the analysis of electron drift in condensed
systems.

2. Kinetics of electrons in a gas
in an external electric field

2.1 Kinetic equation for electrons in gas
We consider first the equilibrium state between individual
electrons and atomic gas, when an external electric field acts
on the electrons. Then, the Boltzmann kinetic equation for
the velocity distribution function f �v� of electrons has the
form

eF

me

q f
qv
� Iea� f � : �2:1�

Here, F is the electron field strength, me is the electron mass,
Iea is the electron ± atom collision integral which accounts for
electron ± atom collisions and is given by (see, for example,
Refs [16 ± 22])

Iea� f � �
�
f �v 0�j�v 0a� ÿ f �v�j�va�

�
ds dva : �2:2�

Here, v, v 0 are the electron velocities before and after collision,
va, v

0
a are the atomic velocities before and after collision, and

ds is the differential cross section of the electron ± atom
scattering.

Because the number density Ne of electrons is small in
comparison to the number density Na of atoms, the presence
of electrons in a gas does not affect the Maxwell distribution
function j�va� of the atoms, which takes the form

j�va� � Na

�
M

2pT

�3=2

exp

�
ÿMv 2

a

2T

�
; �2:3�

whereM is the atomicmass, andT is the gas temperature. The
specifics of electron ± atom collisions in a gas follows from the
small ratio of electron mass me to atomic mass M. Even
collisions with large scattering angles lead to a small change of
the electron energy. This gives the basis for expansion of the
electron distribution function in terms of spherical harmo-
nics, and this problem was solved successfully in Refs [23 ±
28], and the results were summed up in Ref. [29]. As a result,
the expansion of the electron distribution function over
spherical harmonics allows us to solve strictly the problem
of electron drift in a gas in an external electric field, and this
problem will be given below. Note that, along with the
electron drift in gases, this problem was developed simulta-
neously for the electron mobility and conductivity of
semiconductors, when the electron drift velocity is compar-
able or exceeds the speed of sound [30 ± 33].

Thus, because of a small energy exchange in electron ±
atom collisions, the velocity distribution of electrons moving
in a gas in an external electric field is nearly symmetrical with
respect to directions of electron motion and can be repre-
sented in the form

f �v� � f0�v� � vx f1�v� ; �2:4�

where the x-axis is aligned with the electric field F. Since the
electron ± atom collision integral has a linear dependence on
the distribution function f �v�, from formula (2.2) on the basis
of the principle of detailed balance it follows that

Iea� f � � Iea� f0� � Iea�vx f1� : �2:5�

Let us consider the second term of this formula. Accord-
ing to formula (2.2) we have

Iea�vx f1� �
�
�v 0 ÿ v�xvds f1�v�j�va� dva ;

where v, v 0 are the electron velocities before and after
collision, and va is the atomic velocity. Because of a small
atomic velocity, the character of scattering does not depend
on va, and the integration over atomic velocities gives�
j�va� dva � Na, where Na is the atomic number density.

Next, we represent the electron velocity after collision as

v 0 � v cos#� vk sin# ;

where # is the scattering angle, and k is the unit vector located
in the plane that is perpendicular to the initial electron
velocity v. Since this vector has an arbitrary direction in a
given plane, we obtain

�
k ds � 0 to give

� �v 0 ÿ v�x ds �
ÿvxs ��v�, where s ��v� � � �1ÿ cos#� ds is the diffusion
cross section of electron ± atom scattering. Finally, we arrive
at

Iea�vx f1� � ÿnvx f1�v� ; �2:6�

where n � Navs ��v� is the rate of electron ± atom collisions.
The kinetic equation (2.1) taking into account Eqns (2.4)

and (2.6) takes the form

eF

me

�
vx
v

d f0
dv
� f1 � v 2

x

d f1
dv

�
� ÿnvx f1 � Iea� f0� : �2:7�

To extract the spherical harmonics from the last equation, we
integrate it over d cos y, where y is the angle between the
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vectors v and F, and, multiplying this equation by cos y,
integrate it over the angles. We then obtain instead of
equation (2.7) the following set of the equations

a
d f0
dv
� ÿnv f1 ; a

3v 2
d

dv
�v 3 f1� � Iea� f0� ; �2:8�

where a � eF=me. This set of equations establishes the
connection between the spherically symmetric and nonspheri-
cally symmetric parts of the distribution function. From this
it follows for the electron drift velocity in a gas, i.e. for the
average electron velocity,

we �
�
v 2
x f1 dv � eF

3me

�
1

v 2
d

dv

�
v 3

n

��
; �2:9�

where an average is carried out with the spherically symmetric
distribution function of the electrons. In particular, if
n � const, the electron drift velocity we and the mean energy
�e are given by

we � eF

men
; �e � 3

2
T�M

2
w 2
e : �2:10�

2.2 Spherically symmetric part of the
electron ± atom collision integral
For determining the collision integral Iea� f0� from the
spherically symmetric distribution function f0, we account
for the fact that the electron energy change after one collision
with an atom is small compared to the energy itself. Note that
the kinetic equation for the relaxation of the electron
distribution function to equilibrium as a result of electron ±
atom collisions has the following form

q f0
qt
� Iea� f � : �2:11�

The continuous character of variation of the energy of a test
electron in collisions with atoms leads to Fokker ± Planck's
form of this kinetic equation, so that the collision integral in
the electron energy space is equal to

Iea� f � � ÿ 1

r�e�
q j� f �
qe

;

and then equation (2.11) takes the form of a continuity
equation in the electron energy space. Here, the density of
states r in the electron energy space is r�e� � e 1=2, and the
electron flux j� f � in the energy space can be represented in the
linear form

j � Ar fÿ B
q�r f �
qe

;

and the coefficients of this expansion are determined by
electron ± atom collision processes. Accounting for the nat-
ure of the Fokker ± Planck equation [34 ± 36], these quantities
are defined by the expressions

A�e; t� � lim
t!0

1

t

�
�eÿ e 0�W�e; t; e 0; t� t� r�e 0� de 0 ;

B�e; t� � lim
t!0

1

2t

�
�eÿ e 0�2W�e; t; e 0; t� t� r�e 0� de 0 ;

where W�e; t; e 0; t� t� is the probability of a given variation
of the electron energy during a time t. It follows thence that

the collision integral of electrons as a result of collisions with
atoms equals

Iea� f0� � 1

r�e�
q
qe

�
ÿAr f0 � q

qe
�Br f0�

�
: �2:12�

It is essential here that under thermodynamic equilibrium, i.e.
if the distribution function coincides with the Maxwell
distribution function at the gaseous temperature of elec-
trons, the collision integral becomes zero. This gives the
connection between the quantities A and B in the form
A � ÿB=T [37, 38]. Finally, from this we obtain for the
collision integral of the spherically symmetric part of the
electron distribution function:

Iea� f0� � 1

r�e�
q
qe

�
r�e�B�e�

�
q f0
qe
� f0

T

��
; �2:13�

where T is the gaseous temperature.
By definition, the quantity B�e� is expressed in the

following way

B�e� � 1

2

��
�eÿ e 0�2Navds �e ! e 0�

�
: �2:14�

Here, the angle brackets mean averaging over atomic
energies, and ds is the electron ± atom collision cross section
which corresponds to a given change in electron energy. Let
us use the law of conservation of the relative electron ± atom
velocity as a result of their elastic collision, i.e.
jvÿ vaj � jv 0 ÿ vaj, where v, v 0 are the electron velocities
before and after collision, and va is the atomic velocity
which does not change during the collision with an electron,
because the atomic momentum is large in comparison with
the electron momentum. From this it follows that
v 2 ÿ �v 0�2 � 2va�vÿ v 0�, and formula (2.14) takes the form

B�e� � m2
e

2

�
v 2a
3

��
�vÿ v 0�2Navds � T

m 2
e v

2

M
Navs ��v� ;

�2:15�

where hv 2
a =3i � T=M, T is the gaseous temperature, me, M

are the electron and atomic masses, jvÿ v 0j � 2v sin �#=2�, #
is the scattering angle, and s ��v� � � �1ÿ cos#� ds is the
diffusion cross section of electron ± atom scattering. Thus,
using r�e� � ��

e
p

, we have for the collision integral of the
spherically symmetric part of the electron distribution
function:

Iea� f0� � me

M

q
v 2qv

�
v 3nea

�
1

mev

q f0
qv
� f0

T

��
; �2:16�

where nea � Navs ��v� is the rate of electron ± atom collisions.
This part of the collision integral describes the electron energy
change in electron ± atom collisions.

2.3 Equilibrium conditions for electrons moving
in a gas in an external electric field,
and the electron distribution function
In considering the equilibrium of the electron and atomic
subsystems when electrons are moving in a gas in an external
electric field, we have to account in a general case for
electron ± atom collisions and collisions between electrons.
Then the electron distribution function f satisfies the
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following kinetic equation

eF

me

q f
qv
� Iee� f � � Iea� f � : �2:17�

Here, F is the electric field strength,me is the electronmass, Iea
is the electron ± atom collision integral defined in accordance
with formulas (2.6), (2.16), and Iee is the collision integral due
to electron ± electron interaction. The character of the
equilibrium of this system depends on the ratio between Iee
and Iea.

Above we considered the limiting case Iee 5 Iea. Let us
estimate the collision integrals as follows

Iea � me

M
vseaNa f ; Iee � vseeNe f ;

where v is a typical electron velocity, me,M are the masses of
electrons and atoms, Ne, Na are the number densities of
electrons and atoms, and sea, see are the typical cross sections
for collisions of electrons with atoms and with electrons,
respectively. Hence it follows that the above-mentioned limit
corresponds to the criterion

Ne 5
me

M

sea
see

Na : �2:18�

Because me 5M and sea 5 see, this criterion can be valid for
an ionized gas with a weak degree of ionization. For example,
for an argon plasma criterion (2.18) takes the form
ce 5 2� 10ÿ7 at temperature Te � 1000 K, where
ce � Ne=Na is the electron concentration, and at Te � 104 K
this criterion goes to ce 5 5� 10ÿ6.

In the opposite limiting case with respect to Eqn (2.18) we
have

Iee� f � � 0 : �2:19�

The solution of this equation leads to the Maxwell distribu-
tion function similar to Eqn (2.3), which has the form

j�v� � Ne

�
me

2pTe

�3=2

exp

�
ÿmev

2

2Te

�
; �2:20�

where the electron temperatureTe can differ from the gaseous
temperature T in formula (2.3) and is determined by both
interaction of electrons with an electric field and their
collisions with atoms. The electron temperature is governed
by the character of the energy transfer from an external
electric field to a gas. Then the energy transfers first from an
external field to the electrons, and later from the electrons to
atoms as a result of their collisions. One can draw this
conclusion from the kinetic equation (2.17) directly.

Let us multiply it by the electron energy mev
2=2 and

integrate with respect to electron velocities. As a result, we
have�

mev
2

2
Iee dv � 0

because of the physical sense of the collision integral and the
conservation of the total energy in the electron subsystem.
Hence, we arrive at the following integral relation

eFwe �
�
mev

2

2
Iea dv ; �2:21�

wherewe is the electron drift velocity. This relation constitutes
the energy balance equation for electrons, so that the left-
hand side of this relationship is the power which an individual
electron obtains from the electric field, and the right-hand
side defines the power transmitted from an electron to atoms
as a result of their collisions. From equation (2.17) it follows
that the ions give a small contribution to the power
transmission between an external electric field and a gas in
comparison with electrons, because the electron drift velocity
exceeds remarkably the ion drift velocity. Thus, the character
of the power transmission in a weakly ionized gas from an
external electric field to electrons, and from electrons to
atoms, does not depend on criterion (2.18). If this criterion
is violated, one can consider electrons as an isolated
subsystem. If this criterion holds true, we have another
character of equilibrium for the electron ± atom system.

Thus, the distribution function of electrons when they are
located in a gas in an external electric field depends on the
validity of criterion (2.18). If this criterion is violated, the
Maxwell electron distribution function (2.20) follows from
equations (2.17) and (2.19). Using this circumstance in the
first equation of the set (2.8), we find

f1 � eF

nTe
f0 ; �2:22�

and the electron drift velocity equals

we � eF

3Te

�
v 2

n

�
: �2:23�

The electron temperature Te is a parameter which can be
found from the balance equation (2.21) for the power
transmitted from an electric field to electrons and from
electrons to atoms of a gas. This equation, using formula
(2.16) for the electron ± atom collision integral of the
spherically symmetric part of the electron distribution
function, takes the form

eFwe �
�
mev

2

2
Iea� f0� dv � m 2

e

M

�
1ÿ T

Te

�
hv 2ni : �2:24�

On the basis of formula (2.23) for the electron drift velocity in
a gas, we obtain from above relation that

Te ÿ T �Ma 2

3

hv 2=ni
hv 2ni ; �2:25�

where a � eF=me. In particular, in the case n � const, it
follows

we � eF

men
; Te ÿ T �Mw 2

e

3
: �2:26a�

If s ��v� � const, formulas (2.9), (2.24) yield �l � �Nas ��ÿ1�

we � 2eF

3me

�
1

v

�
� 2

���
2
p

eFl
3
�������������
pTeme

p � 0:532
eFl�����������
meTe

p ;
�2:26b�

Te ÿ T � 3pMw 2
e

32
:

On the basis of formula (2.24), we obtain the balance
equation for establishing the average electron energy e:

d�e
dt
� eFwe ÿm 2

e

M

�
1ÿ T

Te

�
hv 2ni :
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Let us write down this equation in the form

dTe

dt
� ÿne�Te ÿ T0� ;

where T0 is the equilibrium electron temperature, Te is the
current electron temperature, and ne is the relaxation rate of
the electron temperature. We can take this rate in the limiting
cases:

ne � 2
me

M
n ; n � const ; �2:27a�

and

ne � 16

3
���
p
p me

M

1

l

���������
2Te

me

s
; s ��v� � const : �2:27b�

A typical time of change in electron momentum, t � 1=n, is
M=me times less than a typical time of variation of electron
energy, te �M=�men�.

In the limiting case when the criterion (2.18) holds true,
the solution to the set of equations (2.8), found using formula
(2.16) for the collision integral, gives

f0�v� � A exp

�
ÿ
� v
0

mev
0 dv 0

T�Mu 2=3

�
; f1�v� � meu f0

T�Mu 2=3
;

�2:28�

where

u � eF

men
� eF

meNavs ��v� ; �2:29�

and the distribution function is normalized on the number
density of electrons:�1

0

4pv 2f0 dv � Ne : �2:30�

From this we get the expression for the electron drift velocity
in a gas:

we � 1

3

�1
0

v 2f14pv 2 dv � 4p
3

�1
0

meu f0
T�Mu 2=3

v 4 dv :

In particular, in the case n � const, the electron drift velocity
we and the mean energy �e have the form

we � eF

men
; �e � 3T

2
�Mw 2

e

2
; �2:31�

which coincides with expressions (2.26a) based on the
opposite criterion for the electron density. If s ��v� � const,
distribution functions (2.28) yield in the limit �e4T [here
l � 1=�Nas ��]:

we � 0:857

�
me

M

�1=4
���������
eFl
me

s
;

�2:32�
�e � 0:427eFl

�������
M

me

r
� 0:530Mw 2

e ;

which corresponds to another dependence of the electron
drift velocity on the field strength as compared to Eqn (2.26b).

2.4 Kinetics of electrons during
electron ± electron collisions
We now consider the case of high electron density for the
motion of electrons in a gas in an external electric field.
Then the equilibrium for the electron subsystem results
from collisions between electrons. The collision integral
characterizing the establishment of this equilibrium has the
form

Iee� f � � ÿ
��

f �v1� f �v2� ÿ f �v 01� f �v 02�
�jv1 ÿ v2j dsee dv2 ;

�2:33�

where dsee is the differential cross section for scattering of two
electrons which have velocities v1, v2 before collision, and v 01,
v 02 after collision. The peculiarity of the collision integral
Iee� f � lies in the fact that this quantity is determined by a
small change in the electron velocity during the collisions. If
the velocity of a test electron varies by small portions, the
collision integral can be expressed as a divergence of a flux in
the velocity space. This form of the electron ± electron
collision integral is called the Landau collision integral
which becomes [18, 19, 39]

Iee� f � � ÿ q jb
qv1b

; �2:34�

where the flux in the space of electron velocities is determined
by [39]

jb �
�
dv2

�
f1

q f2
qv2b
ÿ q f1
qv1b

f2

�
Dab ;

�2:35�
Dab � 1

2

�
DaDbW dDv :

Here, a; b are the components of vectors and tensors
�a; b � x; y; z�, the summation is taken over twice repeating
indices, the velocity variation is D � Dv � v1 ÿ v 01 � v 02 ÿ v2,
and W�v1; v2 ! v 01; v

0
2� is the transition rate per unit volume

resulting from the collision between two electrons.
This symmetric form of the electron ± electron collision

integral, namely, the Landau collision integral, is a
modification of the Fokker ± Planck equation in the
velocity space. Let us evaluate the tensor Dab: The force
acting on a test electron from another one due to their
Coulomb interaction is F � e2r=r 3, where r is the distance
between electrons, and e is the electron charge. This gives
for the momentum change of a test electron after
collision:

Dp � n

�1
ÿ1

e 2r
r 3

dt � 2e 2

rg
n : �2:36�

Here, n is the unit vector along the impact parameter of
collision q, and we consider a free motion of electrons:
r 2 � r2 � g 2t 2, where g � jv1 ÿ v2j � jv 01 ÿ v 02j is the relative
velocity of colliding electrons, and t is time. From this we get
for the variation of the velocity of a test electron after collision
�D � Dv�:

Da � 2e 2ra
r2gme

: �2:37�
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This gives the expression for the tensor Dab:

Dab � 1

2

�
DaDbW dDv � 1

2

�
DaDb g ds

� 2e 4

m 2
e g

�
rarb
r 4

ds � 4pe 4

m 2
e g

nanb lnL : �2:38�

Here, na, nb are components of the unit vector n directed along
q, and the Coulomb logarithm lnL is defined as

lnL �
� r>

r<

dr
r
: �2:39�

This integral diverges at both limits of integration. Its
divergence at small impact parameters results from ignoring
of trajectory distortion owing to the Coulomb repulsion of
electrons, so that this limit of integration follows from the
estimate e 2=r< � e, where e is a typical electron energy. The
divergence at large impact parameters is the peculiarity of the
Coulomb interaction potential. But in a plasma, the Coulomb
field is shielded at distances r> � rD, where rD is the Debye ±
HuÈ ckel radius of this plasma. We evaluate the quantities r<,
r> with the accuracy up to a constant factor, and because
r>4 r<, this leads to a small error. Thus, the Coulomb
logarithm is large for an ideal plasma and is given by

lnL � ln
rDe
e 2

: �2:40�

From this result we have for the diffusion cross section for
electron ± electron collisions in a plasma:

s � �
�1
0

2pr dr �1ÿ cos#� �
�1
0

2pr dr
# 2

2

� p
�

2e 2

meg 2

�2

lnL � pe 4

e 2
lnL ; �2:41�

where the scattering angle is equal to # � 2e 2=�rmeg
2� �

e 2=�re�, and e is the energy of an incident electron in the
laboratory frame of reference, where another electron is
motionless.

For evaluation of the tensor Dab, let us first choose the
direction of the collision velocity g along the x-axis, and xy as
a plane of motion. Then only Dy is nonzero, so that only the
tensor component Dyy is nonzero. For this component of the
tensor we obtain

Dyy � 2e 4

m 2
e g

�
1

r2
2pr dr � 4pe 4

m 2
e g

lnL ;

where we evaluated the integral over impact parameters as
above. Taking into account that the direction of the relative
velocity of interelectron collisions is a random quantity, one
can rewrite the expression for the tensor Dab in an arbitrary
frame of reference. Because this tensor is symmetric with
respect to its indices, it can be constructed on the basis of
symmetrical tensors dab and gagb: Evidently, it has the form
[39]

Dab � 4pe 4

m 2
e g

3
gagb lnL : �2:42�

Thus, the Landau collision integral taking account of
collisions between electrons has the form

Iee� f � � ÿ q jb
qv1b

; jb �
�
dv2

�
f1

q f2
qv2a
ÿ q f1
qv1a

f2

�
Dab ;

Dab � 4pe 4

m 2
e g

3
gagb lnL : �2:43�

This nonlinear form of the collision integral represents a
generalization of the right-hand side of the Fokker ± Planck
equation in the velocity space.

The Landau collision integral is nonlinear with respect to
the electron distribution function. The above expression can
be simplified by considering only fast electrons whose velocity
v is large in comparison with a typical electron velocity in a
plasma. In this limiting case, the tensor Dab does not depend
on the velocity of slow electrons and can be written in the
form

Dab � 4pe 4

m 2
e v

3
vavb lnL ;

where v is the velocity of a fast electron. In this case, according
to formula (2.13) the collision integral for fast electrons takes
the form

Iee� f0� � 1

mev 2
q
qv

�
vBee�e�

�
1

mev

q f0
qv
� f0

T

��
; �2:44�

where the energy of a test fast electron is e � mev
2=2, and by

definition we have

B�e� � 1

2

��
�eÿ e 0�2Nev ds�e! e 0�

�
� Ne

2

�
�eÿ e 0�2W dDv

� Ne

2

�
meva�va ÿ v 0a�mevb�vb ÿ v 0b�W dDv

� Nem
2
e vavb

1

2

�
�va ÿ v 0a��vb ÿ v 0b�W dDv �Nem

2
e vavbDab ;

where the summation is taken over identical indices. Here,Ne

is the electron number density, e, e 0 are the energies of a fast
electron before and after collision, and the angle brackets
mean averaging over velocities of slow electrons. We account
for a small variation in the velocity of a fast electron as a result
of the collision event, so that eÿ e 0 � meva�va ÿ v 0a�. From
this we get, using formula (2.43) for the tensorDab and taking
into account that for a fast electron ga � va [40]:

Bee�e� � 4pe 4vNe lnL : �2:45�

Thus, the collision integral for fast electrons has a simple form
and is linear with respect to their distribution function.

It should be emphasized that in considering electron
behavior in a weakly ionized gas we accounted for electron
collisions with electrons and atoms assuming on the validity
of the criterion (2.18). Even if this criterion was violated, we
supposed that the average electron momentum is established
as a result of collisions with atoms. But along with electron ±
atom collisions, the electron ± ion collisions may be essential
at a high degree of gas ionization. Indeed, the cross section for
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electron ± ion collisions (2.41) exceeds the electron ± atom
scattering cross section sea because of a long-range character
of the Coulomb interaction in electron ± ion collisions. The
rate of electron ± ion collisions has the form [41]

nei � 2
������
2p
p

3

Nie
4

T
3=2
e m

1=2
e

�
ln

T 3
e

2pNie 6
ÿ 2C

�
; �2:46�

where e, me are the electron charge and mass, Ni is the ion
number density, Te is the electron temperature, and
C � 0:577 is the Euler constant. This expression is based on
the Maxwell distribution function of electrons with an
electron temperature Te, and because the ionized gas is ideal
�Nee

6 5T 3
e � and quasi-neutral �Ne � Ni�, the value of the

function in parentheses is much greater than unity. By
comparing the electron ± ion collision rate nei with the
electron ± atom collision rate n � Navs ��v�, one can ascer-
tain the role of electron ± ion collisions in the evolution of
plasma electrons.

3. Electron ± atom collisions

3.1 Elastic electron ± atom scattering
In considering the evolution of electrons in a gas in an
external electric field, we took into account the fact that a
typical electron energy is usually far less than the excitation
energy of the atoms colliding with the electrons. If it is
violated, the electrons can excite the atoms and lose energy.
At low electron energies, only elastic electron ± atom
scattering takes place, and below we will consider the
peculiarities of this scattering [42 ± 46]. If the atomic spin is
nonzero, there are two possible states of the system
involving a colliding electron and atom, and such a system
is developed in each channel independently (we ignore the
relativistic effects). For simplicity, we consider electron
scattering on a structureless atom (being guided by rare
gas atoms) when there is a single electronic state for the
electron ± atom system.

Within the context of phase scattering theory, the
parameters of electron ± atom collisions can be expressed
through the scattering phases dl characterizing the partial
scattering of an electron with an orbital momentum l with
respect to a target atom. In particular, the differential cross
section ds for electron ± atom scattering is given by [43, 44,
47, 48]

ds
d cos#

� 2p
�� f �#���2 ; f �#� �

X1
l� 0

flPl�cos#� ;

fl � 1

2iq
�2l� 1��exp �2idl� ÿ 1

�
;

�3:1�

where # is the scattering angle, i.e. the angle between the
initial and final directions of electron motion, f �#� is the
scattering amplitude, Pl�cos#� is the Legendre polynomial,
and fl is the spherical component of the scattering amplitude.
From this we have for the total st and diffusion s � cross
sections of electron ± atom scattering, expressing them
through the scattering phases dl:

st �
�
ds � 4p

q 2

X1
l� 0

�2l� 1� sin2 dl ; �3:2�

s � �
�
�1ÿ cos#� ds � 4p

q 2

X1
l� 0

�2l� 1� sin2�dl ÿ dl�1� : �3:3�

When the electron velocity v (or the wave vector
q � mev=�h, where �h is the Planck constant) tends to zero, the
scattering phases dl also approach zero, and in the case of a
short-range electron ± atom interaction dl � q 2l�1. Hence, at
low electron energies a finite number of phases contributes to
the scattering cross section. In particular, restricting ourselves
to the principal term of an expansion, we have d0 � ÿLq,
where L is the scattering length, and the cross section for
scattering of a slow electron by an atom is equal to

ds
d cos#

� 2pL2 ; s � 4pL2 ; �3:4�

where s � � ds is the total cross section for scattering of an
electron with zero energy.

From this formula it follows that the electron scattering is
isotropic at zero energy, i.e. the cross section is determined by
the scattering of an s-electron. Next, the electron ± atom
scattering length may be expressed through the wave
function C of the scattered electron as

d lnC
dr

����
r� 0

� ÿ 1

L
; �3:5�

where r is the distance of the scattering electron from the
atomic center. Note that the scattering length is determined
by electron ± atom interaction inside the atom, where a one-
electron approximation is not correct, i.e. the wave function
of an incident electron is entangled with the wave functions of
atomic electrons, and the resultant exchange interaction of an
electron with atom takes a complex form. Hence, we consider
the scattering length as a parameter which results from a
combination of a short-range electron ± atom interaction,
including an energy exchange between incident and atomic
electrons, and a long-range interaction. This allows us to
expand the scattering phases over a small parameter at low
collision energies [49, 50]. We account for a short-range
interaction only for the zero-th scattering phase, and a long-
range interaction for all the scattering phases within the
framework of the perturbation theory that is valid at low
collision energies.

Let us apply the Fermi formula for the short-range
electron ± atom interaction potential [51 ± 53]:

Ush � 2pL
�h2

me
d�r� ; �3:6�

where r is the electron coordinate. Along with a short-range
electron ± atom interaction, a long-range interaction can give
a contribution to scattering parameters. In contrast to a
short-range interaction, at low collision energies the contribu-
tion from a long-range interaction to the scattering amplitude
is determined by an electron location region far from the
atom, where the coordinates of incident and atomic electrons
may be separated. Constructing on these features the
perturbation theory, we obtain for the scattering amplitude
the following expression by separating short-range and a
long-range interactions [48]:

f �#� � ÿL� 1

2p

��
1ÿ exp �ÿiKr��Ul�r� dr ; �3:7�

where Ul�r� is the spherical component of the potential of an
electron ± atom long-range interaction, and K � jqÿ q 0j �
2q sin �#=2� is the variation of the electron wave vector as a
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result of scattering. From this we have for the particular case
of a polarization interaction potential U�r� � ÿae 2=�2r 4�,
which is realized at large electron ± atom distances r (a is the
atomic polarizability):

f �#� � ÿLÿ pa
4a0

K � ÿLÿ paq
2a0

sin
#

2
; �3:8�

where a0 � �h2=�mee
2� is the Bohr radius. As a matter of fact,

it is an expansion of the scattering amplitude at low collision
energies. This gives the following expressions for the total and
diffusion cross sections of electron ± atom scattering at low
electron energies in this approximation [41]:

st � 4p
�
L2 � 2

3
p
aqL
a0
� p2

8

a 2q 2

a 2
0

�
� 4pL2

�
1ÿ 4

3
x� 1

2
x 2

�
; x � ÿ paq

2La0
; �3:9�

s � � 4p
�
L2 � 4

5
p
aqL
a0
� p2

6

a 2q 2

a 2
0

�
� 4pL2

�
1ÿ 8

5
x� 2

3
x 2

�
: �3:10�

The important conclusion resulting from these formulas
consists in a sharpminimum in the cross sections of electron ±
atom scattering at small collision energies if the scattering
length L is negative. This is just the Ramsauer effect [54, 55],
and the reason for a sharp minimum in the cross sections is
that the zero-order phase d0 becomes zero when the contribu-
tion of the other phases to the cross section is relatively small
because of a low electron energy. The Ramsauer effect is
observed in elastic scattering of electrons by argon, krypton
and xenon atoms. As follows from formula (3.9), the total
cross section in this approximation passes the minimum
4pL2=9 at the electron wave number qmin � ÿ8La0=�3pa�
�x � 4=3�. The minimum of the diffusion cross section in
this approximation is equal to 4pL2=25 and corresponds to
the electron wave vector qmin � ÿ12La0=�5pa� �x � 6=5�
according to formula (3.10) [41]. Thus, within the framework
of this approximation, the scattering cross section drops by an
order of magnitude at low electron energies that is of
importance for processes proceeding in gases or plasmas
involving electrons.

Table 1 lists some parameters of electron scattering by
rare gas atoms. Along with measurements of the cross
sections for electron ± atom scattering at zero electron
temperature, the scattering length L is determined from a
shift of spectral lines of highly excited atoms located in a
gas. The data collected in Table 1 for the electron ± atom
scattering length were taken from Refs [56 ± 60], and the

available accuracy for the scattering lengths is several
percent. The minimal total cross sections of electron ± atom
elastic scattering, as well as the energy of such a minimum,
are evaluated by formula (3.10) and contain an additional
error. In order to demonstrate the error in these data, we
give in Fig. 1 the energy dependence for the diffusion cross
section of electron scattering by a xenon atom in accordance
with the results from Refs [61 ± 65]. Comparison of data in
Fig. 1 with those calculated by formula (3.10) shows that
this formula is valid at low energies below the cross section
minimum, while at higher energies the difference between
calculated results and experimental data can be significant.
Moreover, the cross section minimum is observed at higher
energies than formula (3.10) gives, and the cross section
minimum is several times as low as the value calculated with
formula (3.10).

Because of the difference between the cross sections
evaluated on the basis of formulas (3.9), (3.10) and experi-
mental data, we consider this situation in detail. Basing on the
phase scattering theory [Eqns (3.2), (3.3)], we find that under
conditions of the Ramsauer effect, the zero-th scattering
phase d0 becomes zero at low electron energies, where other
scattering phases are small. In formulas (3.9) and (3.10) we
took the long-range electron ± atom interaction potential to
be of the polarization one. Within the framework of this
approach, the zero-th scattering phase is zero at an energy of
0.55 eV, and the total and diffusion scattering cross sections
have minima at 0.44 eV and 0.35 eV energies, respectively, for
scattering of an electron by the xenon atom. One can see from
comparison of the phase theoretical results with the experi-
mental data in Fig. 1 that a long-range interaction potential
between an electron and a rare gas atom is less than the
polarization potential.

Table 1. Parameters of electron scattering by rare gas atoms.

Parameter He Ne Ar Kr Xe

a, a 3
0

L=a0

st�e � 0�, A� 2
emin, eV

st min, A
� 2

DeNa, 1021 cmÿ1 sÿ1

KeNa, 1023 (cm s V)ÿ1

1.4

1.2 [56]

5.1

ì

ì

7.5

3.0

2.8

0.3 [57]

0.3

ì

ì

75

30

11

ÿ1.5 [58 ë 60]
7.9

0.18

0.88

30

12

17

ÿ3.1 [56]
34

0.32

3.8

1.6

0.62

27

ÿ5.7 [56]
110

0.44

13

0.43

0.17

0.01 0.1 1 10
0.2

1

3

10

30

100
200

s�
,1

0ÿ
1
6
cm

2

e, eV

Figure 1.The diffusion cross section of electron scattering by a xenon atom

as a function of the electron energy. Experimental data: solid curveÐ [61],

open circles Ð [62], dotted curve Ð [63], black triangles Ð [64], black

squaresÐ [65]; the black rhombi give the cross section at zero energy at the

minimum in accordance with formula (3.10) and the data from Table 1.
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Basing on the nature of a long-range interaction between
an electron and an atom, we take it to be started from a
certain distance between them, so that the effective electron ±
atom interaction potential can be written in the form of the
sum of the short-range and long-range potentials:

U�r� � 2pL
�h2

me
d�r� ÿ ae 2

2�r 2 � r 20 �2
;

where r is the electron ± atom spacing. Then, using this long-
range interaction potential and formula (3.7) for the scatter-
ing amplitude, instead of Eqn (3.8) we obtain [66]

f �#� � ÿLÿ pa
4a0r0

�
1ÿ exp

�
ÿ2r0q sin #

2

��
: �3:11�

From this we have, in particular, for the reduced diffusion
scattering cross section

s �

4pL2
� 1

4�r0q�4
� 2r0q

0

z 3 dz
�
1ÿ y

�
1ÿ exp �ÿz��	2 ;

y � ÿ pa
4a0r0L

; z � 2r0q sin
#

2
:

�3:12�

Introducing the electron wave vector qmin corresponding to
the cross section minimum and a new variable t � 2r0q, we
find the relation between the parameters x and t from the
minimum condition ds �=dt � 0:

y � 2
�t 4=4��1ÿ exp �ÿt��ÿ � t0 z 3�1ÿ exp �ÿz�� dz
�t 4=4��1ÿ exp �ÿt��2 ÿ � t0 z 3�1ÿ exp �ÿz��2 dz :

�3:13�
In particular, in the limit r0 ! 0 we have t! 0; which gives
x � yt � 6=5 and s �=�4pL2� � 1=25 in accordance with the
result for the polarization interaction potential. The results
for finite values of r0 are given in Table 2 where the
parameters of the cross section minimum are appropriate
for electron scattering from a xenon atom. As follows from
this table, an increase in r0 leads to a decrease in the cross
section minimum and an increase in the electron energy
emin � �h 2q 2

min=�2me� at which this minimum is observed.

3.2 Mobility and diffusion of electrons in gas
Let us introduce the mobility Ke of electrons in a gas in an
external electric field of strength F from the relation

we � KeF ; �3:14�
where we is the electron drift velocity. Then using formula
(2.9), we obtain the following expression for the mobility of

electrons in a gas:

Ke � e

3me

�
1

v 2
d

dv

�
v 3

n

��
: �3:15�

At low electric field strengths, the electron mobility does
not depend on the strength itself because the electric field
perturbs weakly the Maxwell distribution function of
electrons. At larger strengths, the dependence of the mobility
on the electric field is determined by the velocity dependence
of the cross section of electron ± atom elastic scattering. In
particular, if the rate of electron ± atom elastic collision n does
not depend on the electron velocity, formula (3.14) gives

Ke � e

men
: �3:16�

If the diffusion cross section for electron ± atom scattering s �ea
does not depend on the collision velocity, formula (3.14)
yields for electron mobility in a gas in the limit of low
strengths:

Ke � 2el
3me

�
1

v

�
� 2

3

����
2

p

r
el���������
meT
p � 0:53

el���������
meT
p ; �3:17�

where l � 1=�Nas �ea� is themean free path of electrons in a gas
(Na is the number density of gas atoms, T is the gas
temperature).

In the general case of a complex dependence n�v�, as
happens with rare gases, the electron mobility may be a
nonmonotonic function of the electric field strength, and it
is shown in Fig. 2 for gaseous xenon [67]. As may be seen, the
mobility has a maximum at a certain electric field strength. In
addition, the electron drift velocity can be independent of the
electric field strength in a certain range of strengths, i.e. it
shows a `saturation' in this interval of strengths. This is
demonstrated in Fig. 3a by the example of the electron drift
velocity in xenon, and the same dependence was observed in
other measurements [65, 68 ± 73] of electron drift in gaseous
xenon. In addition, Fig. 3b illustrates the saturation effect for
electron drift in a mercury vapor according to measurements
[74, 75]. In the case of electron drift in gaseous krypton, the
saturation effect is weaker [68, 76, 77]. We will analyze this
effect below in Section 7 for electron drift in condensed rare
gases, where the saturation effect is strong. Note that in the
case of monotonic dependence of the scattering cross section
on the collision velocity, the mobility varies monotonically

Table 2.The parameters of the Ramsauer minimum for electron scattering
from a xenon atom.

r0=a0 emin, eV smin=4pL2 xmin

0
0.1
0.3
0.7
1.0
1.5
2.0
2.5
3.0

0.35
0.36
0.39
0.44
0.50
0.61
0.79
1.11
1.83

0.04
0.039
0.038
0.035
0.032
0.028
0.023
0.017
0.011

1.20
1.22
1.26
1.34
1.42
1.58
1.79
2.12
2.73

10 102 103 104
10

102

103

K
e
,c
m

2
(V

s)
ÿ
1

F, V cmÿ1

Figure 2. The electron mobility as a function of the reduced electric field

strength if an electron moves in an external electric field in xenon at the

temperature T � 236 K and the number density of atoms Na �
3� 1020 cmÿ3 [67].
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with an increase in electric field strength. A nonmonotonic
strength dependence of the electron mobility, as in the case of
xenon in Fig. 2 [67], follows from the Ramsauer shape of the
electron ± atom collision cross section.

Let us establish the connection between the electron
mobility Ke in a gas at low electric field strengths and the
diffusion coefficientDe of electrons in this gas. At low electric
field strengths, the thermodynamic equilibrium is established
for the electron subsystem, so that the space distribution for
the number density of electrons is given by the Boltzmann
formula

Ne � N0 exp

�
ÿ eFx

T

�
; �3:18�

where F is the electric field strength, T is the temperature, and
the coordinate x is directed along the field. Because of a
gradient in the electron number density, a diffusion flow
arises, which tends to equalize the electron number density in
the space. Under equilibrium, the diffusion flux is compen-
sated for by a flux resulted from the action of an electric field,
and the total electron flux je is zero:

je � ÿDeHHNe � KeFNe � 0 : �3:19�
Using formula (3.18) for the electron density, we obtain the
Einstein relation which connects the electron mobility Ke and
the diffusion coefficient De of electrons in a gas [78 ± 80]:

Ke � eDe

T
: �3:20�

The Einstein formula is valid both at low field strengths, when
an individual electron moves in a gas in an external electric
field [the criterion (2.18)], and at any field strengths if the
electron density is large and the electrons have the Maxwell
distribution function over velocities. The electron tempera-
ture is then included in formula (3.20).

Table 1 contains the reduced diffusion coefficients of
electrons in rare gases at room temperature, taken from
Ref. [81] for He, Ne, and Ar, and from Ref. [61] for Kr and
Xe. The experimental error of these data is approximately
10%, and within this accuracy these data agree with other
measurements. The electron reduced mobilities at room
temperature (see Table 1) were obtained from these data for
the electron diffusion coefficient on the basis of the Einstein
relation (3.20).

Expansion (2.4) for the velocity distribution function of
electrons located in a gas is valid for any electric field
occurring in the gas and acting on the electrons. Below we
use this expansion for evaluating the diffusion coefficient of
electrons in a gas when an electron flow results from a
gradient in the electron concentration, and this electron flow
tends to equalize the electron concentration at different
points in space. We define the electron diffusion coefficient
in a weakly ionized gas starting from the relation
je � ÿDeHNe. The Boltzmann kinetic equation for electrons
then has the form

vxHf � Iea� f � ; �3:21�

where the electron distribution function in accordance with
the expansion (2.4) is f � f0�v� � vx f1�v�, and the x-axis is
directed along the gradient of the electron density. Taking
into account f � Ne, we find Hf � f HNe=Ne. Then we obtain
by analogy with the first equation of the set (2.8) that

vx f0HNe

Ne
� ÿnvx f1 ;

or, simply, f1 � ÿf0HNe=�nNe�. Let us evaluate the electron
flux

je �
�
vf dv �

�
v 2x f1 dv � ÿHNe

Ne

�
v 2
x

n
f0 dv � ÿHNe

�
v 2x
n

�
;

where the angle brackets mean averaging over the electron
distribution function. According to the definition of the
electron diffusion coefficient De, the diffusive electron flux is

je � ÿDeHHNe :

Comparing this formula with the above one, we obtain the
following expression for the diffusion coefficient of electrons
in a gas:

De �
�
v 2

3n

�
: �3:22�

In the case of strong electric fields, formula (3.22) relates
to transversal diffusion of electrons because only in this case
can one separate the corrections to the spherically symmetric
electron distribution function due to the action of the electric
field and the gradient of the electron density. If the rate of
electron ± atom collisions n�v� does not depend on the
electron velocity, the transversal and longitudinal diffusion
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Figure 3. The saturation effect for the dependence of the electron drift

velocity in a gas or vapor on the strength of an external electric field.

(a) electron drift in xenon: open circles Ð [68], squaresÐ [67], solid curve

and triangles Ð [65]; (b) electron drift in a mercury vapor [74, 75].
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coefficients of electrons in a gas coincide, just as in the case of
low field strengths or high electron densities. Formula (3.22)
for the electron diffusion coefficient is valid at any field
strengths, but if the electron ± atom collision rate n�v�
depends on the electron velocity, the transversal and long-
itudinal diffusion coefficients of electrons in a gas are
different at moderate fields. This is demonstrated in Fig. 4
where these quantities are given for the diffusion of electrons
in xenon at various field strengths. Note that the maximum
difference between the transversal and longitudinal diffusion
coefficients of electrons in a gas occurs in the range with the
strongest dependence n�v�. The anisotropy in electron
diffusion in gases in a strong electric field was first discovered
and explained in Refs [82 ± 84]. It was then the subject of
special study (for example, see Refs [76, 85, 86]).

Note that transport coefficients of ions of a small mass in
atomic gases, when the transport coefficients are determined
by elastic ion ± atom scattering, do not depend on the nature
of the scattering, because for both the classical and quantum
character of scattering the ion transport coefficients are
expressed through the diffusion cross section s ��v� of ion
scattering. One can then use the results for classical motion of
ions in atomic gases for analyzing the electron transport
coefficients in gases in strong fields. In the case where the
scattering rate n�v� is independent of the collision velocity, we
have D? � Dk. In the other limiting case, when the cross
section s ��v� of ion ± atom collisions does not depend on the
collision velocity v, we have the following expressions for the
ion drift velocityw and the diffusion coefficients in the limit of
high fields (M5ma, eFl4T; M, ma are the ion and atomic
masses, respectively) [87 ± 89]:

w � 0:897

��������
eFl
p

�maM�1=4
; D? � 0:292

�
ma

M

�1=4
������
eF

M

r
l3=2 ;

Dk � 0:144

�
ma

M

�1=4
������
eF

M

r
l3=2 :

It is convenient to introduce the characteristic electron
energy ech at a given electric field strength on the basis of the
Einstein relation, so that

ech � eDe

Ke
: �3:23�

This energy characterizes the mean energy �e of the electron
distribution [17, 90, 91], and if the electron ± atom collision
rate n�v� does not depend on the electron velocity v, we have
�e � 3ech=2.

By way of illustration of electron motion in a magnetic
field, we determine below the transversal diffusion coefficient
of electrons in a strong magnetic field, when the directions of
the electric and magnetic fields coincide. This case corre-
sponds to the criterion oH 4 n, where oH � eH=�mec� is the
cyclotron frequency for electrons. The projection of the
electron trajectory onto the plane which is perpendicular to
the field consists of circles whose centers and radii vary after
each collision. By definition, the diffusion coefficient is
D? � hx 2i=t, where hx 2i is the square of the electron
displacement for a time t in the direction x which is
perpendicular to the field. We have xÿ x0 � rH cosoHt,
where x0 is the x-coordinate of the center of the correspond-
ing electron rotation, and rH � vr=oH is the Larmor radius,
so that vr is the electron velocity in the direction perpendi-
cular to the field. By averaging over collision times it follows
that hx 2i � nh�xÿ x0�2i � nv 2r=�2o 2

H�, where n is the number
of collisions. Since t � n=n, where n is the rate of electron ±
atom collisions, we obtain [18]

D? �
�
v 2r n

2o2
H

�
�
�
v 2n
3o2

H

�
; oH 4 n ; �3:24�

where the angle brackets mean averaging over the electron
velocities. Combining this formula with Eqn (3.22), we obtain
the following expression for the transversal diffusion coeffi-
cient of electrons which are located in a gas and are moving
perpendicular to electric and magnetic fields [16]:

D? � 1

3

�
v 2n

o2
H � n 2

�
: �3:25�

3.3 Excitation and quenching of an atom
by electron impact
A typical electron energy in a gas is usually small compared to
an excitation energy of atoms, and therefore the excitation of
atoms in a weakly ionized gas occurs on the tail of the energy
distribution function of electrons. Hence, we need for the
threshold cross section of atom excitation by electron impact
in order to analyze the character of atom excitation in an
ionized gas. In the opposite limiting case, when the electron
energy exceeds significantly the atomic excitation energy, the
excitation cross section is determined in the Born approxima-
tion [43, 44, 47, 48]. Themaximum cross sections corresponds
to excitation of resonantly excited states, when the excitation
cross section is given by the Bethe formula [43, 44, 47, 92]

s0� � 4p
Dea0

���Dx�0�
��2F� e

De

�
� 2pe 4

De 2
f0�F

�
e
De

�
;

F�x� ! lnC
���
x
p
x

; x!1 :

�3:26�

Here, subscripts 0 and � refer to the initial and final states of
the atom excitation process, e is the electron energy, De is the
excitation energy, e is the electron charge, a0 is the Bohr
radius, Dx� �0� is the matrix element of the dipole moment
projection for the atomic states of transition, f0� is the
oscillator strength for this transition, and C is a constant.
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Figure 4. The reduced transversal (D?) and longitudinal (Dk) diffusion
coefficients of electrons in xenon in an external electric field: solid curveÐ

[65], open circles Ð [71].
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Thus, in the case of excitation of resonantly excited atomic
states, the excitation cross section is expressed through the
parameters of radiative transitions for the atom. This
connection follows from the analogy between the operators
for the interaction of a fast charged particle with an atom and
of an electromagnetic wave with an atom [44, 92 ± 95].

One can extend the dependence (3.26) on the basis of
experimental data to electron energies ewhich are comparable
with the atomic excitation energyDe [96]. Then accounting for
the threshold dependence of the atomic excitation cross
section [47], we will find the following expression for the
cross section near the threshold for excitation of resonantly
excited states [96 ± 98]:

s0��e� � 2pe 4f0�
De 5=2

a
�������������
eÿ De
p

; �3:27a�

and the numerical coefficient estimated from experimental
data is [96, 97]

a � 0:130� 0:007 : �3:27b�

Formulas (3.26), (3.27) can be used for determining the rate
constant of atom excitation by electron impact in gas
discharges [98, 99].

We now turn to determining the cross section and the rate
constant of the quenching of a resonantly excited atom by a
slow electron. Atom quenching is an inverse process with
respect to atom excitation by electron impact, andwewill find
below the connection between the parameters of these
processes which proceed according to the scheme

e�A0  ! e�A� ; �3:28�

where A0, A� denote an atom in the ground and resonantly
excited states. The connection between the parameters of
direct and inverse processes is established on the basis of the
principle of detailed balance for processes (3.28). Let us place
one electron and one atom in a volumeO; and the atom can be
found only in states 0 and �, so that transitions between these
states result from collisions with the electron. Because this
system is found under equilibrium, there is a certain relation
between the rate constant w0� of transition 0! � and the rate
constant w�0 of transition � ! 0. Introducing the interaction
operator Vwhich is responsible for these transitions, we have
the following expressions for the transition rates within the
framework of the perturbation theory:

w0� � 2p
�h

��V0�
��2 dg�

de
; w�0 � 2p

�h

��V�0��2 dg0
de

: �3:29�

Here, dg0=de, dg�=de are the statistical weights per unit
energy for the corresponding channels of the process. We
apply the definition of the cross sections for these processes:

s0� � w0�
Nv0
� O

w0�
v0

; s�0 � w�0
Nv�
� O

w�0
v�

; �3:30�

whereN � 1=O is the number density of the particles, and v0,
v� are the electron velocities for the corresponding channels
(for simplicity, we consider an atom to be motionless). The
time reversal operation gives the relationship for the matrix
elements of the interaction operator: V0� � V ��0. This leads to
the following relation between the cross sections of direct and

inverse processes in electron ± atom collisions [37, 19]:

s0� v0
dg0
de
� s�0v�

dg�
de

: �3:31�

Statistical weights for the corresponding channels of the
processes (3.28) are equal to

dg0 � O
dp0

�2p�h�3 g0 ; dg� � O
dp�
�2p�h�3 g� ;

where g0, g� are the statistical weights for given atom states.
Then, finally, formula (3.31) takes the form [37, 19]

sex � sq
v 2
� g�
v 2
0 g0

; �3:32�

where sex � s0� is the excitation cross section, and sq � s�0 is
the quenching cross section. Taking near the excitation
threshold

sex � A
�������������
eÿ De
p

; eÿ De5De ; �3:33a�

whereA is a constant, we arrive at the expression for the cross
section of atomic quenching resulting from collisions with a
slow electron of an energy e � Eÿ De5De:

sq � A
g0De

g�
���������������
Eÿ De
p : �3:33b�

From this it follows that the rate constant of atom quenching
by a slow electron (me is the electron mass) is described as

kq � vf sq � A
g0De

���
2
p

g�
������
me
p ; �3:34a�

and the rate constant kex of atom excitation by electron
impact is given by

kex � kq
g�
g0

��������������
eÿ De
De

r
: �3:34b�

It is of importance that the rate constant kq of atom
quenching depends neither on the electron energy nor on the
energy distribution function for slow electrons. Hence, it
depends only on the parameters of the transition atomic
states, so that the rate constant of quenching is a convenient
parameter that characterizes also the excitation of atoms by

Table 3. Parameter k0 in formula (3.35) that was derived from the
experimental data indicated. This parameter is expressed in 10ÿ5 cm3 sÿ1,
if De is quoted in eV, and t�0 in ns.

Atom
Ref.

k0 for Te equal to

6� 103 K 8� 103 K 10� 103 K 12� 103 K

K�42P� [100]
Rb�52P� [100]
Cs�62P� [100]
K�42P� [92]
Rb�52P� [92]
Cs�62P� [92]
K�42P� [101]
Rb�52P� [101]
Cs�62P� [101]

ì

5.5

3.4

5.2

4.6

4.3

3.4

3.7

3.9

4.1

5.7

3.1

4.8

4.8

4.4

3.7

3.7

4.3

4.2

4.4

2.8

5.0

5.0

4.5

4.1

4.0

4.6

3.9

3.8

3.4

5.4

5.0

4.8

4.2

4.0

4.9
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electron impact near the threshold. In particular, in the case
of quenching a resonantly excited atomic state, when this
process is effective, the rate constant of quenching is
determined approximately within the framework of the
perturbation theory, according to formula (3.27a), as

kq � const
g0 f0�

g��De�3=2
� k0

�De�7=2t�0
: �3:35�

Here, f0� is the oscillator strength for this transition, t�0 is the
radiative lifetime of the resonantly excited state, l is the
wavelength of the emitting photon, const and k0 are
numerical coefficients, the atom excitation energy De is
expressed in eV, and the radiative lifetime is given in ns. The
numerical coefficient k0 � 4:4� 0:7� � � 10ÿ5 cm3 sÿ1 if we
resort to the experimental data for the excitation cross
sections of alkali metal atoms. As it follows from the data of
Table 3, the accuracy of formula (3.36) for the rate constants
of quenching of resonantly excited states is about 20%, and
Table 4 contains the rate constants of quenching for several
resonantly excited atoms by electron impact. The rate
constants of quenching of atom metastable states by electron
impact is lower than those for resonantly excited states
because of a more weak coupling between these states during
interaction with an electron. This is demonstrated by
comparison of the data in Table 4 with those in Table 5
where the rate constants for quenching metastable rare gas
atoms are compiled.

4. Electron transport processes
in gas and plasma

4.1 Regimes of electron drift in gas
in an external electric field
When electronsmove in a gas in an external electric field, they
acquire energy from the field and transfer it to gas atoms in

collisions with them. As a result, electrons transfer energy
from the field to the gas. Depending on the ratio between the
rates of electron ± electron and electron ± atom collisions, we
have different regimes of electron equilibrium in a gas in an
external electric field. Let us consider the case of a high
electron concentration, when it satisfies the criterion which is
opposite with respect to criterion (2.18):

Ne 4
me

M

sea
see

Na : �4:1�

In this case, the electron distribution function is given by the
Maxwell formula (2.20), and the electron temperature is
determined by relation (2.25):

Te ÿ T �Ma 2

3

hv 2=ni
hv 2ni ; �4:2�

whereM is the atomic mass, and a � eF=me. In particular, in
the case n � const, this gives

we � eF

men
; Te ÿ T �Mw 2

e

3
: �4:3�

Since the rate n�v� of electron ± atom collisions is propor-
tional to the number density of atomsNa, we present formula
(4.2) in the form

Te ÿ T �
�

F

Na

�2

g�Te� ; �4:4�

where

g�Te� �Me 2

3m 2
e

hv 2=keai
hv 2keai �4:5�

depends neither on the electric field strength F nor on the
number density of atoms Na. Here, kea is the rate constant of
electron ± atom collisions with kea � n=Na � vs �ea�v� and s �ea
being the diffusion cross section of electron ± atom scattering.
Figure 5 gives the function g�Te� responsible for electron drift
in xenon [103]. Formula (4.4) connects the electron tempera-
ture in a given regime of electron drift with the reduced
electric field strength F=Na. This connection is illustrated in
Fig. 6 for electron drift in xenon within a range of electron
temperatures that are not too small [103] since, due to the
Ramsauer effect, equation (4.4) possesses three solutions at
small reduced field strengths F=Na if they are below
0:03� 1017 V cm2 [103, 104] for xenon, which can be

Table 4. Parameters of resonantly excited states of some atoms and the rate constants of quenching these states in collisions with a slow electron.

Atom (transition) De, eV l, nm f t�0, ns kq, 10ÿ8 cm3 sÿ1

H�21P! 11S�
He�21P! 11S�
He�21P! 21S�
He�23P! 23S�
Li�22P! 22S�
Na�32P! 32S�
K�42P1=2 ! 42S1=2�
K�42P3=2 ! 42S1=2�
Rb�52P1=2 ! 52S1=2�
Rb�52P3=2 ! 52S1=2�
Cs�62P1=2 ! 62S1=2�
Cs�62P3=2 ! 62S1=2�

10.20

21.22

0.602

1.144

1.848

2.104

1.610

1.616

1.560

1.589

1.386

1.455

121.6

58.43

2058

1083

670.8

589

766.9

766.5

794.8

780.0

894.4

852.1

0.416

0.276

0.376

0.539

0.74

0.955

0.35

0.70

0.32

0.67

0.39

0.81

1.60

0.555

500

98

27

16.3

26

25

28

26

30

27

0.79

0.18

51

27

19

20

31

32

32

33

46

43

Table 5. The rate constants of quenching metastable states of rare gas
atoms in collisions with slow electrons on evidence from Ref. [102].

Atom (transition) De, eV kq, 10ÿ10 cm3 sÿ1

He�23S! 11S�
Ne�23P2 ! 21S�
Ar�33P2 ! 32S�
Kr�43P2 ! 42S0�
Xe�53P2 ! 52S0�

19.82

16.62

11.55

9.915

8.315

31

2.0

4.0

3.4

19
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considered as a critical field strength. Below this field strength
and correspondingly at low gaseous temperatures, instabil-
ities can be developed in the plasma. Because of low electron
temperatures (below 3000 K), this fact is not of importance
under real conditions.

The drift velocity of electrons in a gas in an external
electric field is determined by formula (2.9) for both regimes
of electron drift, and when the rate constant of electron ±
atom collisions kea depends sharply on the collision velocity,
the drift velocity we�F � as a function of the electric field
strength has a kink in the range of electric field strengths
corresponding to electron energies at the minimum of the
electron ± atom collision cross section. Then if the criterion
(2.18) holds true, we�F � near kink varies stronger than in the
case of the opposite criterion (4.1), because the energy
distribution function (2.28) for electrons in the first case
drops more sharply than in the case of the Maxwell
distribution function (2.20) in the second regime. This fact is
confirmed by the curves in Fig. 7 where the electron drift

velocity in xenon is given as a function of the reduced electric
field strength for two regimes of electron drift in the range of
field strengths corresponding to the Ramsauer minimum for
the electron ± atom cross section [103].

Note that if the electron ± atom collision rate n�v� does not
depend on the collision velocity, we have the same expressions
for the drift velocity as a function of the electric field strength,
which are given by formulas (2.10) and (4.3). In this case, the
characteristic electron energy ech defined by formula (3.17) is
equal according to formula (4.2) to

ech � Te ÿ T :

4.2 Conductivity of ionized gas and plasma
A simple method of the selective action of an external electric
field on different degrees of freedom of a gaseous substance
based on the interaction between electrons and an electric
field. Field energy is then transmitted first from the field to
electrons and then to atoms in a gas through their collisions
with electrons. In this case there is a strong action of the
electric field on electrons, and a weak action on atoms. As a
result, the atoms have theMaxwell distribution function over
energies, while the energy distribution function of electrons
can differ remarkably from the Maxwell distribution.

Electrons of a weakly ionized gas determine its electric
properties, and the plasma conductivity S is defined as the
proportionality factor between the electric current density i
and the electric field strength F in Ohm's law

i � SF : �4:6�

The electric current represents a sum of two components Ð
the electron current and the ion current:

i � ÿeNewe � eNiwi ; �4:7�
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Figure 6. The connection between the reduced electric field strength and

electron temperature for electrons moving in xenon in an electric field
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where Ne, Ni are the electron and ion number densities, and
we, wi are the electron and ion drift velocities, respectively,
which are expressed through the electron and ion mobilities
Ke, Ki by formula (3.14). For the conductivity of a quasi-
neutral ionized gas this gives

S � e�Ke � Ki�Ne : �4:8�

From formula (3.17) one can estimate the mobility of a
charged particle in a gas by the relation

K � e

Nas
������
mT
p ; �4:9�

where Na is the number density of atoms, s is a typical cross
section of collisions between charged particles and atoms, and
the temperature T characterizes an energy scale of such
collisions. From this follows that Ke 4Ki, i.e. electrons give
the main contribution to plasma conductivity. Then from
formulas (4.8) and (4.9) we have the following estimate for the
conductivity of an ionized gas:

S � Nee
2

Nas �ea
�����������
meTe

p ; �4:10�

where sea is a typical cross section of electron ± atom
scattering. So, restricting ourselves with the electron part of
plasma conductivity, we have

S � Nee
2

3me

�
1

v 2

d

dv

�
v 3

n

��
; �4:11�

where n � Navs �ea is the electron ± atom collision rate. In
particular, introducing a collision time t � 1=n and assuming
it to be independent of the collision velocity v, we obtain the
plasma conductivity in the traditional form

S � Nee
2t

me
: �4:12�

Let us consider a strongly ionized plasma, where elec-
tron ± ion collisions prevail over electron ± atom collisions.
Notice that electron ± electron collisions do not change the
total electron momentum and thus do not influence plasma
conductivity. Because the electron ± ion collision cross section
exceeds the electron ± atom cross section for elastic scattering,
the term `strongly ionized plasma' in which electron ± ion
collisions dominate, can refer to a plasma with a small degree
of ionization. For a strongly ionized plasma, formula (4.8)
together with formula (3.15) for electron mobility give

S � Nee
2

3me

�
1

v 2

d

dv

�
v 3

nei

��
; �4:13�

where nei � Nivs � is the electron ± ion collision rate, and an
averaging is made over electron velocities. Because of the
plasma quasi-neutrality �Ne � Ni�, its conductivity does not
depend on the electron density. The diffusion cross section of
electron ± ion collisions is given by formula (2.41) which has
the form s � � pe 4 lnL=e 2, where e is the electron energy, and
the Coulomb logarithm equals lnL � ln�e 2=�rDT ��, with rD
being theDebye ±HuÈ ckel radius. Using theMaxwell distribu-
tion function of electrons, we have formula (2.46) for
electron ± ion collision rate. Substituting formula (2.46) into
(4.13) and accounting for nei � vÿ3, we obtain finally the

Spitzer formula for plasma conductivity [105]

S � 25=2T
3=2
e

p3=2m 1=2
e e 2 lnL

: �4:14�

4.3 Electrons in gas in an alternating electric field
As follows from the above consideration, there are two
typical times for electron ± atom collisions, when electrons
are moving in an atomic gas in an external electric field. The
first time t � 1=n (n is a typical rate of electron ± atom
collisions) characterizes an electron momentum variation,
and the second time�M=�men� � tM=me is a typical time of
variation of the electron energy as a result of collisions with
atoms. We now consider electron motion in a gas in a
harmonic electric field of strength F cosot under the condi-
tion of ot4me=M, so that the electron energy does not vary
appreciably during the period of field variation. This
condition simplifies considerably the problem [2, 106, 107].
The above condition for the field frequency corresponds to
the following form of the distribution function instead of
Eqn (2.4) [106]:

f �v;t� � f0�v� � vx f1 exp �iot� � vx fÿ1 exp �ÿiot� ;

where the x-axis is directed along the field. Substituting this
expansion into the kinetic equation and separating the
corresponding harmonics by the standard method, we obtain
the following set of equations instead of Eqn (2.8):

a

2

d f0
dv
� �n� io�v f1 � 0 ;

a

2

d f0
dv
� �nÿ io�v fÿ1 � 0 ;

a

6v 2

�
v 3� f1 � fÿ1�

�
� Iea� f0� :

From this, instead of formula (2.9), we have for the electron
drift velocity

we�t� �
�
v 2x
�
f1 exp �iot� � fÿ1 exp �ÿiot�

�
dv

� eF

3me

�
1

v 2
d

dv

�
v 3

n cosot� o sinot
o2 � n 2

��
:

This expression corresponds to the expansion in terms of a
small parameter me=�Mot� that allows us to ignore other
terms of expansion over the spherical harmonics and time
harmonics. Note that the parameter o=n may take the
arbitrary values in comparison with unity, and this ratio
determines the phase shift for an electron motion with respect
to an external field. The above expressions are valid for both
criteria (2.18) and (4.1). We now write down these formulas
when the criterion (4.1) holds true that allows us to introduce
the electron temperatureTe. Then the electron drift velocity is
given by

we�t� � eF

3Te

�
v 2
�
n cosot� o sinot

o2 � n 2

��
; �4:15a�

and the difference in the electron and gaseous temperatures is
equal to [19]

Te ÿ T � Ma 2

6hv 2ni
�
v 2

n
o2 � n 2

�
: �4:15b�
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In the limito5 n, formula (4.15a) coincides at t � 0 with that
following from Eqns (3.9), (3.15), (3.17), and formula (4.15b)
is transformed into formula (4.2) if instead of the electric field
strength F we employ in formula (4.15b) its effective value
F=

���
2
p

.

4.4 Thermal conductivity and thermal diffusion
of electrons in gas
Because of a small mass of electrons, their transport can give a
contribution to the thermal conductivity of a weakly ionized
gas. Below we will evaluate the thermal conductivity coeffi-
cient of electrons. In this case, the electron number density
satisfies the criterion (4.1), and an equilibrium is established
in the electron subsystem, i.e., the velocity distribution
function of electrons is a Maxwell distribution j�v� and is
characterized by the electron temperature. Under the action
of the temperature gradient this distribution function is
disturbed and can be represented in the following form that
is similar to the expansion (2.4):

f �v� � j�v� � �vHH lnTe� f1�v� : �4:16�

The kinetic equation vHHf � I� f � then takes the form

j�v�
�
mev

2

2Te
ÿ 5

2

�
vHHTe � Iea� f � :

Here we took into account that the x-dependence of the
electron distribution function appears owing to the electron
temperature gradient and the electron pressure pe � NeTe is
constant throughout a space. From this equation and formula
(2.16) yielding Iea�vx f1� � ÿnvx f1, we obtain the following
expression for the asymmetric part of the distribution
function:

f1�v� � ÿj�v�
n

�
mev

2

2Te
ÿ 5

2

�
:

The electron heat flux is equal to

qe �
�
mev

2

2
vx f �v� dv �

�
mev

2

2
v 2
x H lnTe f1�v� dv :

Introducing the thermal conductivity coefficient of electrons
by the formula

qe � ÿkeHTe ; �4:17�
we obtain

ke � Ne

�
v 2

3n
mev

2

2

�
mev

2

2
ÿ 5

2

��
; �4:18�

where the angle brackets mean averaging over the Maxwell
electron distribution function.

Assuming n � v n, namely, n�v� � n0z n=2, where z �
mev

2=�2Te�, from formula (4.18) we have

ke � 4

3
���
p
p TeNe

n0me

�
1ÿ n

2

�
G
�
7ÿ n

2

�
: �4:19�

In particular, if n � const, this formula gives

ke � 5TeNe

2n0me
: �4:20�

If n � 1; i.e. n � v=l �l is the mean free path), we have from
this formula one finds

ke � 2

3
���
p
p Nel

���������
2Te

me

s
: �4:21�

In order to determine the electron contribution to the total
thermal conductivity coefficient, it is necessary to connect the
gradients of the electron �Te� and atomic �T � temperatures.
Let us consider the case where the difference in the electron
and gaseous temperatures is determined by an external
electric field, and the connection between the electron and
gaseous temperatures is given by formula (2.25). If n � v n,
this formula yields

HTe � HT
1� nÿ nT=Te

: �4:22�

Belowwe consider the caseTe 4T. Thenwe have for the total
thermal conductivity coefficient that

k � ka � ke
HTe

HT
� ka � ke

1� n
; �4:23�

where ka is the thermal conductivity coefficient of the atomic
gas. If we use formula (4.20) as an estimate of the electron and
gaseous thermal conductivity coefficients and substitute the
atomic parameters in this formula for the electron para-
meters, we conclude that the electron thermal conductivity
can give a contribution to the total quantity at low electron
number densities Ne < Na due to a small electron mass and a
high electron temperature.We assume the criterion (4.1) to be
satisfied, so that an equilibrium is established in the electron
subsystem, and this allows us to introduce the electron
temperature separately.

The peculiarity of the electron thermal conductivity lies in
the fact that cross-fluxes can be essential in these conditions.
In the case of electron thermal conduction in a weakly ionized
gas placed in an external electric field, when temperature
gradients exist, we have the following expressions for fluxes

j � NeKFÿDTNH lnTe ; q � ÿkeHTe � aeF : �4:24�

We consider the simplest cross-flux, namely, the electron flux
under the action of a gradient of the electron temperature.
This flux is equal to

j � ÿDTNH lnTe ; �4:25�

where DT is the thermodiffusion coefficient, and the last
formula is its definition. We will find this quantity under
conditions when the electron density is high enough, so that
criterion (4.1) holds true, and we can introduce the electron
temperature Te. Then using expansion (4.16) for the electron
distribution function and the relation (2.6) for the collision
integral of the asymmetric part of the distribution function,
we obtain the following equation for f1�v�

vx
qj
qx
� ÿnvx f1 ; �4:26�

where n is the rate of electron ± atom elastic collisions.
Let us calculate the electron flux that is created by the

asymmetric part of the distribution function. Taking into

1266 B M Smirnov Physics ±Uspekhi 45 (12)



account that the flux is directed along the x-axis, we have

jx �
�
vx f dv �

�
v 2x f1 dv � ÿ 1

3

�
v 2

n
q f0
qx

dv

� ÿ d

dx

�
Ne

�
v 2

3n

��
;

where the angle brackets mean taking an average over the
electron velocities. Since the x-dependence occurs due to a
gradient in the electron temperature, we obtain from this
formula that

jx � ÿHTe
d

dTe

�
Ne

�
v 2

3n

��
:

Comparing this expression with formula (4.25) we find the
following relation for the thermodiffusion coefficient

DT � Te
d

dTe

�
Ne

N

�
v 2

3n

��
� Te

d

dTe

�
Ne

N
D

�
; �4:27�

with the diffusion coefficient D of electrons in a gas being
given by formula (3.22).

If the electron pressure pe � NeTe is unvaried, the above
formula can be rewritten in the form

DT � T 2
e

Ne

N

d�De=Te�
dTe

: �4:28�

In particular, if n � const, this formula gives DT � 0. In the
case of power velocity dependence of the electron ± atom
collision rate n � v n, we obtain

DT � ÿn Ne

N
D : �4:29�

This means that the direction of the electron flux with respect
to the temperature gradient depends on the sign of n.

We now consider the case of electron transport when the
displacement of electrons as a whole cannot violate the
plasma quasi-neutrality that corresponds to plasma regions
far from electrodes and walls. Then the mobilityK in formula
(4.24) is the electron mobility, and one can neglect ion
mobility, including ambipolar diffusion. The expression for
the electron thermodiffusion coefficient is given by formula
(4.28), and formula (4.19) defines the thermal conductivity
coefficient. Below we will determine the coefficient a in
formula (4.24) by the standard method using expansion (2.4)
of the electron distribution function over the spherical
harmonics. Then, the first equation of the set (2.8) yields
f1 � eF f0=�nTe�, and the coefficient a is equal to

a � meNe

6Te

�
v 4

n

�
� 4TeNe

3
���
p
p

men0
G
�
7

2
ÿ n

2

�
; �4:30�

where we set n � n0�v=
����������������
2Te=me

p �n. This gives for n � 0:

a � 5TeNe

2men
; �4:31�

and for n � 1, when n � v=l, this formula yields

a �
���������
2Te

me

s
l

3
���
p
p � 2lNe

3vT
; �4:32�

where vT �
������������������
8Te=pme

p
is the mean electron velocity.

Formulas (4.31) and (4.32), together with the correspond-
ing expressions for the plasma kinetic coefficients, allow us to
determine the electron heat flux under different conditions in
the plasma. In particular, let us determine the effective
thermal conductivity coefficient in the direction perpendicu-
lar to an external electric field F. If the plasma is placed into a
metallic enclosure, the transverse electric field is absent
�F � 0�, and formulas (4.31) and (4.32) are added to formula
(4.17). If the walls are dielectric, we have j � 0, which
corresponds to the regime of ambipolar diffusion, when
electrons travel together with ions. In the electron scale of
values, this gives je � 0, i.e., an electric field of strength F �
DTHH lnTe=�NeK� is established. We represent the heat flux in
the form

q � ÿCkeHTe ; �4:33�

where the coefficient C � 1ÿ aNDT e=�keTeNeK�. Using
formula (4.28) for the electron thermodiffusion coefficient
and the Einstein relationD � KTe=e, we obtain it in the form
C � 1� an=ke.

On the basis of formulas (4.28), (4.29), and (4.32) we have

C � n� 2

2ÿ n
: �4:34�

As may be seen, the effective thermal conductivity coefficient
for electrons depends on n in the two considered cases of
metallic and dielectric walls. For n � 0, this quantity takes
identical values in both cases; for n � 1, its value is 3 times
more in the second case than in the first one.

We analyze heat transport in a plasma under simple
conditions. In gas discharges with moderate and high
currents, heat processes can determine the properties of the
discharge positive column [103, 108, 109]. Moreover, heat
processes can be the principal cause of plasma instabilities. In
particular, heat transport leads to contraction of the
discharge current, resulting in an instability that compels a
plasma to be concentrated only in the central part of the
positive column [108, 110 ± 113]. Next, alongwith the simplest
transport processes, other fluxes may occur in a real gas-
discharge plasma because of additional gradients, for exam-
ple, due to a gradient or nonstationarity of the electric field
strength. Each of these gradients causes a new flux, and the
absence of equilibrium between the electron and atomic
subsystems complicates the general character of transport
processes in a plasma. It is convenient then to rely on the
hydrodynamic description of electrons, which starts from the
expansion of the electron distribution function in terms of the
spherical harmonics. This expansion has the form (2.4) in the
simple case and can account for other gradients or non-
stationarities. The kinetic equation for the symmetric sphe-
rical harmonic f0 of the distribution function is reduced to a
hydrodynamic equation, and transport coefficients in this
equation are evaluated independently. This approach allows
one to model real conditions and to analyze specific effects in
a real plasma [114 ± 117]. Note that in contrast to traditional
hydrodynamics, thermodynamic equilibrium between the
electron and gaseous subsystems is absent in this case, and
the above approach requires small gradients or slow processes
which violate the equilibrium distribution of current. In
addition, in contrast to the traditional hydrodynamic descrip-
tion, this approach accounts for real dependences of the
collision rates on the electron velocity, which can be of
importance.
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4.5 The Hall effect
Let us consider the behavior of electrons in a gas when
constant electric and magnetic fields are directed perpendi-
cular to each other. Because an electron has a circular motion
in a magnetic field in a plane perpendicular to the magnetic
field, the action of electric and magnetic fields gives rise to an
electron motion in the direction perpendicular to these fields.
The Hall effect is connected with the creation of electron
currents in the direction which is perpendicular to the electric
and magnetic fields. In this case, the electron distribution
function satisfies the kinetic equationÿ

eF� e�vH�� q f
qv
� Iea� f � ; �4:35�

where F is the electric field strength, H is the magnetic field
strength, and we took the electric and magnetic field
directions along the x- and z-axes, respectively. One can
solve this equation by the same method as we used for
electrons in a gas in a constant electric field. Then, instead of
formulas (2.4), for the electron distribution function we have

f �v� � f0�v� � vx f1�v� � vy f2�v� ; �4:36�

and extracting spherical harmonics, we obtain now instead of
the first equation of the set (2.8):

v f1 � an
n 2 � o 2

H

d f0
dv

; v f2 � aoH

n 2 � o2
H

d f0
dv

; �4:37�

where a � eF=me, and n � Navs �ea is the rate of electron
collisions with atoms. These equations lead to the following
expressions for the components of the electron drift velocity:

wx � eF

3me

�
1

v 2

d

dv

�
nv 3

n 2 � o2
H

��
;

�4:38�
wy � eF

3me

�
1

v 2

d

dv

�
oHv

3

n 2 � o2
H

��
:

In the limit oH 5 n, the first formula is transformed into
Eqn (2.9).

In the absence of amagnetic field, the plasma conductivity
is scalar. The presence of a magnetic field causes transforma-
tion of the conductivity of a weakly ionized gas into a tensor,
and Ohm's law takes the form

ja � SabFb ;

where ja is a component of the current density, and the
summation is taken over twice repeating indices. In the case
where the collision rate n does not depend on the electron
velocity, the components of the conductivity tensor are given
by

Sxx � Syy � S0
1

1� o2
Ht 2

;
�4:39�

Syx � ÿSxy � S0
oHt

1� o2
Ht 2

;

where t � 1=n.
In the limiting case oHt4 1, the electric current is

directed perpendicular to both the electric and magnetic
fields. In this case, the plasma conductivity and electric
current do not depend on the collision rate because the
change in the direction of electron motion is determined by

the electron rotation in a magnetic field. We have in this case

jy � ecNe
Fx

H
� Fx

RHH
; �4:40�

where RH � 1=�ecNe� is the Hall constant.
Let us determine the average electron energy in the case

where the criterion (4.1) holds true. The balance equation for
the electron energy has the form

eFwx �
�
mev

2

2
Iea� f0� dv :

Using formula (4.38) for the electron drift velocity and
formula (2.16) for the electron ± atom collision integral, we
obtain

Te ÿ T �Ma2

3

�
v 2n

n 2 � o2
H

�
1

hv 2ni : �4:41�

In particular, if n � const, this formula gives

Te ÿ T � Ma 2

3�n 2 � o2
H�

: �4:42�

In the limit oH 4 n, formula (4.41) yields

Te ÿ T �Ma 2

3o2
H

�Mc 2F 2

3H 2
: �4:43�

Let us analyze the case where a weakly ionized gas is
moving in a transverse magnetic field of strength H with an
average velocity u. Then in the system of axes where the
plasma is motionless, the electric field of strength F 0 � Hu=c
is induced, where c is the velocity of light. This field creates an
electric current which is used for obtaining the electric energy
in magnetohydrodynamic (MHD) generators. The energy
released through the action of this electric current results
from the transformation of the flow energy of a gas into
electric and heat energy. Correspondingly, this process leads
to a deceleration of the gas flow and to a decrease in its
average velocity. Along with this, the induction of an electric
field causes an increase in electron temperature which is given
by formula (4.42). As can be seen, the maximum increase in
the electron temperature is achieved in the limit oH 4 n. In
this limit, formula (4.43) yields

Te ÿ T �Ma 2

3o2
H

�M
u 2

3
: �4:44�

4.6 Acceleration of fast electrons in plasma
Let us take a look at the effect of runaway electrons in an
ionized gas or plasma [18, 118, 119], which shows itself if
electron ± electron collisions are more intensive than electron
collisions with neutral particles, i.e., the criterion (4.1) holds
true. In particular, this may be realized in the course of
deceleration of fast electrons in metals until electron ± ion
collisions stop them. Because the cross section of electron ±
electron or electron ± ion collisions results from the Coulomb
interaction potential between these charged particles, it
decreases sharply with an increase in electron energy, and
electrons resided at the tail of the energy distribution function
are scattered more weakly than the main part of electrons.
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Hence, an instability occurs when fast electronsmoving along
the electric field do not decelerate in collisions with electrons
and ions. Therefore, a part of the electrons is accelerated and
leaves the plasma with a high velocity. Below we will analyze
the effect of runaway electrons in the simplest way, account-
ing for the fact that an acceleration of electrons in an external
electric field will not be compensated for by electron
deceleration in collisions with other electrons and ions,
starting from certain electron velocities. For this analysis
one can apply the Landau collision integral (2.44), (2.45)
which takes into account deceleration of fast electrons in
collisions with charged particles in a plasma.

Let us consider the evolution of a fast electron whose
velocity significantly exceeds the typical energy of plasma
electrons. We have the following balance equation for the
momentum mevx of the test electron when it moves along the
electrical field of strength F:

me
dvx
dt
� eFÿ 1

vx

de
dt
;

where de=dt is the variation of the electron energy per unit
time in collisions with plasma electrons.We take into account
the fact that an individual collision leads to electron scattering
through small angles, and an individual act of collision is
accompanied by a small variation of energy. This derivative is
defined as

de
dt
�
�
Nev 2pr dr

Dp 2

2me
:

Here, v is the velocity of the test electron, v � vx, Ne is the
electron number density, r is the impact parameter of
collision, and Dp is the momentum which is transferred from
the test electron to a plasma electron during their collision.
According to formula (2.37) we have

Dp � 2e 2

rv
;

and we obtain

de
dt
� Ne

4pe 4

mev
lnL ;

where the Coulomb logarithm is given by formula (2.40).
Finally, we obtain the balance equation for the momentum of
a fast test electron moving along an electric field in a plasma:

me
dvx
dt
� eFÿNe

4pe 4

mev 2
lnL : �4:45�

As follows from the balance equation (4.45), fast electrons
accelerate in an electric field, starting from the energy

e5 ecr � Ne
2pe 4

eF
lnL : �4:46�

In particular, if the electric field strength F is measured in
V cmÿ1, the number density of electronsNe in 1013 cmÿ3, and
the electron energy e is measured in eV, the criterion (4.46)
takes the following form, if we set lnL � 10:

ecr � 13
Ne

F
: �4:47�

5. Excitation of atoms in gas and plasma
in collisions with electrons

5.1 Excitation of atoms in gas in an electric field
by electron impact
Electrons moving in a gas in an external electric field can
excite atoms of the gas, and the atomic excitation rate
depends on the character of equilibrium between electrons
and excited atoms in the gas. Below we will evaluate the rate
of atomic excitation if a typical electron energy is small
compared to the excitation energy, and the electrons which
excite atoms are found at the tail of the energy distribution
function of electrons located in a gas in an external electric
field. Then, the asymmetric component of the velocity
distribution function is of importance, in spite of its relative
smallness, because the electron extracts energy from the
electric field through its active participation. Let us consider
first the excitation of gas atoms in collisions with individual
electrons located in a gas in an electric field, when the criterion
(2.18) is satisfied.We assume that collisions with atoms create
a strong friction for electrons in an energy space, and the
electron energy attains the excitation threshold after many
elastic electron ± atom collisions. The excitation rate of atoms
by the electrons is then determined by motion toward the
excitation threshold in a velocity or electron energy space.

For a description of this process, we use the expansion
(2.4) for a nonstationary electron distribution function, and
using the standard procedure, as in deducing the set of
equations (2.8), we obtain

q f0
qt
� a

3v 2
q�v f1�
qv

� Iea� f0� ; q f1
qt
� a

qf0
qv
� ÿnv f1 : �5:1�

Assuming the excitation energy flux to be relatively small, we
ignore everywhere the nonstationarity, except for the first
termwhich corresponds to a small flux in the energy space. As
a result, one finds

qf0
qt
� Iea�f0� � a

3v 2
d

dv

�
v 2

n
d f0
dv

�
: �5:2�

The nonstationarity of the distribution function is only
due to atomic excitation. Hence, the excitation rate is given by

dN�
dt
� ÿ dNe

dt
� ÿ

�
4pv 2 dv

q f0
qt

;

where N� is the number density of excited atoms. Using the
collision integral (2.16) for the spherically symmetric electron
distribution function f0, we obtain in the upshot

dN�
dt
� 4p

me

M
v 3n
��

T�Ma 2

3n 2

�
d f0
de
� f0

�
e�De

; �5:3�

where e � mev
2=2 is the electron energy, and De is the energy

of atomic excitation.
We use the boundary condition f0�De� � 0 for the

distribution function which satisfies the following equation
under stationary conditions over the region below and far
from the excitation threshold:�

T�Ma 2

3n 2

�
d f0
de
� f0 � 0 :
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This signifies a fast absorption of electrons above the
excitation threshold and gives the following expression for
the distribution function

f0�e� � C
�
j0�e� ÿ j0�De�

�
� C

�
exp

�
ÿ
� e

0

de 0

T�Ma2=3n 2

�
ÿ exp

�
ÿ
� De

0

de 0

T�Ma2=3n 2

��
: �5:4a�

Here. j0�e� is the distribution function if we ignore the
absorption of fast electrons due to the excitation process, so
that far from the excitation threshold f0�e� � j0�e�. The
constant C follows from the normalization condition

C � Ne

�
4p
� v0
0

v 2 dv exp

�
ÿ
� e

0

de 0

T�Ma2=3n 2

��ÿ1
; �5:4b�

where Ne is the number density of electrons, and the electron
threshold velocity is v0 �

����������������
2De=me

p
. Thus, we have for the

rate of atomic excitation by individual electrons moving in a
gas in an external electric field:

dN�
dt
� 4pv 30

me

M
n�v0�j0�v0�

� Ne
me

M
n�v0� exp

�
ÿ
� De

0

de 0

T�Ma2=3n 2

�
�
� � v0

0

�
v

v0

�2
dv

v0
exp

�
ÿ
� e

0

de 0

T�Ma2=3n 2

��ÿ1
; �5:5�

where j0�v0� � j0�De� is the electron distribution function at
the excitation threshold if we neglect the atomic excitation
process. In the special case n�v0� � const, this formula takes
the form

dN�
dt
� 4���

p
p
�

De
T�Ma2=3n 2

�3=2

Ne
me

M
n�v0�

� exp

�
ÿ De
T�Ma2=3n 2

�
: �5:6�

It is of interest now to find which portion x of the power
taken by electrons from an external electric field is consumed
on atomic excitation. We assume that the power absorbed by
electrons from the electric field is transformed mostly into the
thermal energy of the gas as a result of elastic collisions
between electrons and atoms, and such a power per electron is
eFw, where w is the electron drift velocity. In the case
n � const, we have from formula (5.6), neglecting the atomic
thermal energy (T5Mw 2):

x � De
dN�
dt

1

eFwNe
� 4

3
���
p
p
�
De
�e

�3=2

exp

�
ÿDe

�e

�
; �5:7�

where �e �Ma2=�3n 2� �Mw 2=3 is the average electron
energy. Figure 8 shows the dependence of the efficiency x of
atomic excitation on the electron energy e under these
conditions.

The above formulas are based on the assumption that the
atomic excitation rate is determined mostly by diffusion of
electrons in an energy space from small energies up to the
atom excitation energy. We now consider another limiting

case where excitation at the tail of the energy distribution
function proceeds weakly and the efficiency of atomic
excitation near the threshold is determined by individual
electrons which move in a gas in an external electric field.

Let us first find the electron distribution function above
the excitation threshold in the energy range e5De, including
inelastic electron ± atom collisions in the kinetic equation for
electrons.We assume that quenching of the excited atom does
not proceed by electron impact because of the small density of
electrons. Then the second equation of the set (2.8) takes the
form

a

3v 2
d

dv
�v 3f1� � Iea� f0� ÿ nex f0 ; �5:8�

where nex � Nakex,Na is the number density of atoms, and kex
is the rate constant of atomic excitation by electron impact.
The collision integral Iea takes into account elastic electron ±
atom collisions. Using the connection (2.8) between f0 and f1,
we obtain the following equation for f0:

a

3v 2
d

dv

�
v 2

n
d f0
dv

�
� Iea� f0� ÿ nex f0 � 0 : �5:9�

Based on expression (2.16) for the electron ± atom collision
integral and neglecting the atomic kinetic energy �� T � as
compared to the electron energy, we arrive at

a

3v 2
d

dv

�
v 2

n
d f0
dv

�
�me

M

1

v 2

d

dv
�v 3n f0� ÿ nex f0 � 0 : �5:10�

We assume the average electron energy �e to be small
compared to the atomic excitation energy De. Then, as
follows from formula (2.25), the average electron energy is
�e �Ma2=n 2. In addition, we assumed that atomic excitation
does not influence the electron distribution function below
the excitation threshold, so that

n4 nex 4 n
me

M

De
�e
: �5:11�

This allows us to neglect the second term in the kinetic
equation (5.10). Let us solve the resultant kinetic equation
for the tail of the electron distribution function on the basis of
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Figure 8. The portion of electron energy which is consumed for atomic

excitation from the energy obtained by an electron moving in a gas from

an external electric field. It is assumed that the frequency of elastic

electron ± atom scattering is independent of the electron energy, and a

test electron acquires excitation energy after many collisions with atoms.
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the quasi-classical method, thus accepting f0 � A exp �S�,
where S�v� is a smooth function, i.e., �S 0�2 4S 00. This gives
S 0 � �����������

3nexn
p

=a, a � eF=me, and the distribution function for
e4�e has the form

f0�v� � f0�v0� exp �ÿS� � f0�v0� exp
�
ÿ
� v
v0

dv

a

�����������
3nexn

p �
;

�5:12�

where v0 =
����������������
2De=me

p
, and f0�v0� is determined by elastic

electron ± atom collisions. Near the threshold of atomic
excitation this formula reduces to

S � 2v0
5a

�������������������
3
g�
g0

nqn0

r �
eÿ De
De

�5=4

; �5:13�

where the rate of elastic electron ± atom collisions at the
excitation threshold is n0 � n�v0�, nq � Nakq, with kq being
the rate constant of quenching of the excited atom by electron
impact, g0, g� are the statistical weights of the ground and
excited atomic states, a � eF=me, and we used formula
(3.34b) for the rate constant of atom excitation by electron
impact, which connects this rate constant with the rate of
quenching of an excited atom by a slow electron. Using
formula (5.12) for the electron distribution function, we
assume the logarithm derivative of the distribution function
to be determined by the excitation process proceeding not far
from the threshold.

Formula (5.12) gives the rate of atom excitation by
electron impacts if this process proceeds mostly near the
excitation threshold:

dN�
dt
�
�
4pv 2 dv f0�v0� exp �ÿS� nex�v�

� 4:30av 2
0

�
a

v0n0

�1=5�nqg�
n0g0

�2=5

f0�v0� �5:14�

and the distribution function is normalized by the condition
(2.30).

Comparing formulas (5.6) and (5.14) for the rate of
atomic excitation by individual electrons moving in a gas in
an external electric field, one has to make a choice between
these two limiting cases. Indeed, in the case�

a

v0n0

�6=5�nqg�
n0g0

�2=5

4 1 ; �5:15�

the excitation process is restricted by electron diffusion in an
energy space to the excitation threshold, and the rate of this
process is determined by formulas (5.5) and (5.6). In the other
limiting case, the excitation rate is determined by formula
(5.14). Note that formula (5.14) is valid at low electric field
strengths, whereas formula (5.6) holds true at high field
strengths.

5.2 Excitation of atoms in plasma
When electrons are located in a plasma, the energy distribu-
tion function of electrons drops strongly at the tail due to the
excitation of atoms and can be restored owing to collisions
between electrons. Analyzing the character of atomic excita-
tion in a plasma, we assumed for simplicity that excited
atomic states were destroyed as a result of radiation, so that
quenching by electron impact was absent, and the excitation
energy did not return to the electrons. We assume the

criterion (4.1) to be valid, so that we have the Maxwell
distribution function of electrons. In the first limiting case,
we assume theMaxwell distribution function to be restored at
energies e5De (De is the atom excitation energy) which are
responsible for the excitation of atoms. Then the atomic
excitation rate is equal to

dN�
dt
� Na

�
4pv 2 dvj�v�kex�v� ; �5:16�

where N� is the number density of excited atoms, Na is the
number density of atoms in the ground state, j�v� is the
Maxwell distribution function of electrons, and kex is the rate
constant of atom excitation by electron impact, which is given
by formula (3.34b). Averaging kex over the Maxwell distribu-
tion function of electrons, we arrive at

dN�
dt
� NaNe kex � NaNekq

g�
g0

exp

�
ÿDe
Te

�
; �5:17�

where the average rate constant of atom excitation in the limit
De4Te (Te is the electron temperature) is defined as

kex � 1

Ne

�
4pv 2 dvj�v�kex�v� � g�

g0
kq exp

�
ÿDe
Te

�
: �5:18�

Let us turn to the other limiting case of excitation of atoms
by electrons in a plasma, when the criterion (4.1) is valid, but
the Maxwell distribution function of electrons is not restored
due to electron ± electron collisions above the excitation
threshold because of absorption of fast electrons as a result
of the excitation process. Then the excitation rate of atoms is
determined by the rate of formation of fast electrons with
energies e > De as a result of elastic collisions with electrons.
Then on the basis of the kinetic equation (2.17), using
expression (2.44) for the electron ± electron collision integral,
we can deduce the excitation rate per unit volume:

dN�
dt
� ÿ

�1
v0

4pv 2 dv
q f
qt
� ÿ

�1
v0

4pv 2 dv Iee� f0�

� ÿ 4pv0
me

Bee�v0�
�
f0
Te
� d f0

de

�
;

where the distribution function f0 is taken at the excitation
energy e � De. The electron distribution function in this case
is the solution of the equation Iee� f0� � 0 under the boundary
condition f0�v0� � 0 which accounts for an effective absorp-
tion of electrons above the excitation threshold. We then
obtain the following expression for the distribution function

f0�v� � Ne

�
me

2pTe

�3=2�
exp

�
ÿ e
Te

�
ÿ exp

�
ÿDe
Te

��
; e4De :

�5:19�

From this it follows that the electron distribution function is
of the Maxwell type far from the excitation threshold, while
near the threshold this function tends to zero because of the
absorption of fast electrons due to the excitation of atoms.
Using such a distribution function and expression (2.45) for
Bee�v�, we obtain in this case for the rate of excitation:

dN�
dt
� 4

������
2p
p N 2

e e
4De lnL

m
1=2
e T

5=2
e

exp

�
ÿDe
Te

�
: �5:20�
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Formula (5.20) is valid at high densities of electrons, when an
equilibrium for the electrons is quickly established. The
corresponding criterion takes the form

Ne

Na
4

kq
kee

; �5:21�

where the effective rate constant of elastic collisions of
electrons kee due to the Coulomb interaction of electrons
follows from comparison of formulas (5.17), (5.20) and is
given by

kee � 4
������
2p
p g0

g�

e 4De lnL

m
1=2
e T

5=2
e

: �5:22�

Formula (5.20) is valid under the opposite condition with
respect to criterion (5.21). As can be seen, criterion (5.21) is
much stronger than criterion (4.1) because me 5M. Thus,
both the regimes considered for atomic excitation in a plasma
are possible. At relatively small densities of electrons, their
distribution function is given by formula (5.19), while the
Maxwell distribution function of electrons is valid at high
degrees of ionization. Correspondingly, the rate of atomic
excitation in a plasma varies from that defined by formula
(5.17) to that of formula (5.20) as the electron density
increases.

As a demonstration of these results, Table 6 lists rate
constants (5.22) for rare gas atoms under typical conditions
Te � 1 eV, lnL � 10, with the boundary ionization degree
being given by the relation�

Ne

Na

�
b

� kq
kee

�5:23�

for these parameters. The quenching rate constant for
metastable rare gas atoms was taken from Table 5. Note
that in the case of high electron densities, when the electron
distribution function is of theMaxwell type in the basic range
of electron energies, this quantity may be represented in the
form f � f �v0� exp �ÿS�, with S being characterized by the
following expression:

S � eÿ De
Te

� 3n 20
eÿ De
Ma2

: �5:24�

Here, for simplicity, we assumed n�v� � const. Because of
criterion (5.21), formula (5.24) shows amore smooth decrease
of the distribution function with an increase in electron
energy if compared to formula (5.19) which holds true in the
limit when collisions between electrons are not significant.

5.3 Equilibrium between excited atoms
in gases and plasmas
Above we have supposed that the quenching of excited atoms
in plasma is governed by processes other than electron

impact. We now consider the other case, when quenching of
excited atoms is determined by electron ± atom collisions.
Then, based on criterion (5.21), we reveal that fast electrons
are produced and destroyed as a result of inelastic collisions
between electrons and atoms. Because of the equilibrium
between the atomic states considered, this gives

nex f0�v�v 2 dv � nq f0�v 0�v 0 2 dv 0 :

Here, v 2 � 2De=me � v 0 2, and v, v 0 are the velocities of fast
and slow electrons, nex � Na kex, nq � N�kq are the rates of
excitation and quenching of atomic states by electron impact,
so thatNa,N� are the number densities of atoms in the ground
and excited states, respectively, and kex, kq are the rate
constants of the corresponding processes which are con-
nected by the principle of detailed balance (3.34b). From
this follows

Na

g0
f0�v� � N�

g�
f0
ÿ ����������������

v 2 ÿ v 20
q �

; v >

���������
2De
m

r
: �5:25�

This relation establishes the connection between the distribu-
tion functions of slow and fast electrons. The relation can be
written down in the form

f0�v� �
f0�v0� f0

ÿ ���������������
v 2 ÿ v20

q �
f0�0� : �5:26�

In particular, for the Maxwell distribution function of slow
electrons � f0 � exp �ÿe=Te�� this formula gives

f0�v� � f0�v0� exp
�
eÿ De
Te

�
; �5:27�

where Te is the electron temperature, and e � mev
2=2 is the

electron energy. Thus, inelastic collisions of electrons with
excited atoms restore the Maxwell electron distribution
function above the threshold of atom excitation.

The above cases of atomic excitation by electrons in a
plasma show that this process depends on the character of
establishment of the electron distribution function near the
excitation threshold. The result depends both on the rate of
restoration of the electron distribution function in electron ±
electron or electron ± atom collisions and on the character of
the quenching of excited atoms. Competition between these
processes yields different means of establishing the electron
distribution function and different expressions for the
effective rate of atomic excitation in a gas and plasma. Thus,
the excitation rates depend on the collision processes which
establish the electron distribution function below and above
the excitation threshold, and on the equilibrium between
excited atoms.

6. Electrons in metals

6.1 Metallic plasma and degenerate electron gas
Let us analyze the electric properties of condensed systems,
which are created by the electrons located in them. Compar-
ing the behavior of electrons in condensed systems with that
in gases in external fields, we restrict ourselves by condensed
systems where electrons may be separated as a subsystem.
First and foremost, this relates to metals whose electric
properties are determined by electrons interacting with each

Table 6. The parameters of the criterion (5.21) for metastable rare gas
atoms.

Metastable atom De, eV kee, 10ÿ4 cm3 sÿ1
�
Ne

Na

�
b

, 10ÿ6

He�23S�
Ne�23P2�
Ar�33P2�
Kr�43P2�
Xe�52P2�

19.82

16.62

11.55

9.915

8.315

5.8

2.9

2.0

1.7

1.4

5.4

0.69

2.0

2.0

13
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other andwith the environment. Therefore, we first consider a
metallic plasma from this standpoint.

The simplest model of electrons in metals assumes the
electrons to be free and is often called the Drude model [121,
122]. Within the framework of this approach, we first ignore
the interaction of electrons with the lattice that leads to
kinetic equation (2.19) for the electron distribution func-
tion. But because of the high density of electrons in metals, at
room and low temperatures the solution of equation (2.19) is
not theMaxwell distribution function (2.20) because the Pauli
exclusion principle is of importance. Hence, we will take this
principle into consideration. Assuming the electron subsys-
tem in this case to be a degenerate electron gas, we have the
Fermi ±Dirac formula for the probability n�e� of electron
location in a state with a given energy e [120]:

n�e� � 1

1� exp
��eÿ m�=T �� ; �6:1�

where T is the temperature, and m is the chemical potential for
this distribution. In the limiting case of zero temperature, this
distribution function becomes stepwise, and the chemical
potential of this distribution tends to the Fermi energy of
electrons in the limit of a zero temperature. Below we will be
guided by this limit which is realized for metals at room
temperature. Electrons of this metallic plasma are then
transformed into a degenerate electron gas. Though this
approach is crude for real metals [124], it allows us to
describe their behavior in the simplest way, and this
description has an analogy with that for free electrons in
gases in external fields.

Formulas for a degenerate Fermi gas are contained in
many textbooks [120, 123 ± 125], and we below give the
simplest ones which will be used for determining the
parameters of some metallic plasmas from the standpoint of
the above consideration of the electron subsystem. At zero
temperature, electrons have momenta p located within the
range 04 p4 pF, where pF is the Fermi momentum that can
be found from the relation

n �
�
n�e� 2 dp dr�2p�h�3 � 2

�
p4 pF

dp dr

�2p�h�3 ; �6:2�

where n is the total number of electrons, the factor 2 accounts
for the two directions of the electron spin, and dp, dr are the
elements of the electron momentum and a plasma volume,
respectively. Introducing the electron number density
Ne � n=

�
dr, we obtain the maximum electron momentum

pF, or the Fermi momentum, the maximum electron energy
eF, or the Fermi energy, for this electron distribution, and the
electron velocity vF on the surface of the Fermi sphere:

pF � �3p2�h 3Ne�1=3; eF � p 2
F

2me
� �3p

2Ne�2=3�h 2

2me
; vF � pF

me
:

�6:3�

The distribution of electrons for a degenerate electron gas is
given by the Fermi ±Dirac formula with zero temperature,
and the chemical potential m � eF.

A degenerate electron gas is characterized by a small
parameter

Z � T

eF
: �6:4�

From this it follows that r 2DN
1=3
e 5 a0, where rD is theDebye ±

HuÈ ckel radius for this electron gas, and a0 � �h2=�mee
2� is the

Bohr radius. The values of the parameter Z for univalent
metals at room temperature are given in Table 7. As can be
seen, the degenerate electron gas of metals refers to a
quantum system.

Let us find the total energy E0 per unit volume of a
degenerate electron gas at zero temperature:

E0 �
� eF

0

e
2dp

�2p�h�3 �
2
���
2
p

5p2
m

3=2
e e 5=2F

�h 3
: �6:5�

At low temperatures, the energy of the system per unit volume
is equal to

E �
�1
0

e
2dp

�2p�h�3
1

exp
��eÿ m�=T �� 1

;

where e � p 2=�2me�, and the chemical potential for this
distribution is m � eF in the zero-order approximation.
Expanding this formula in a power series of a small
parameter (6.4), we obtain [120]

E � E0

�
1� 5p2

4

T 2

e 2F

�
: �6:6�

Thus, the addition to the electron energy at moderate
temperatures is determined by a small parameter (6.4) of the
theory. From this follows the expression for the heat capacity
per unit volume of a degenerate electron gas at low
temperatures:

C � dE

dT
� 5p2

2

T

e 2F
E0 � m

3=2
e T

�������
2eF
p

�h 3
: �6:7�

Notice that the heat capacity of metals is determined by the
phonons and electrons. At low temperatures, formula (6.7)
determines the contribution to the heat capacity of metals due
to electrons, and the contribution to this quantity due to
phonons is proportional to T 3. Therefore, at low tempera-
tures the heat capacity of metals is determined by electrons.

We consider a metallic plasma as a degenerate electron
gas, taking its positive charge to be distributed uniformly over
a space. The Fermi energy is the parameter of a degenerate

Table 7. Parameters of univalent metals at room temperature.

Metal Li Na K Cu Rb Ag Cs Au

Lattice type bcc bcc bcc fcc bcc fcc bcc fcc

a, A
�

3.51 4.29 5.34 3.61 5.71 4.09 6.09 4.08

r, g cmÿ3 0.534 0.97 0.89 8.96 1.53 10.5 1.93 19.3

Ne, 1022 cmÿ3 4.6 2.5 1.4 8.5 11 5.9 8.7 5.9

eF, eV 4.7 3.2 2.1 7.1 1.8 5.5 1.6 5.5

vF, 108 cm sÿ1 1.3 1.0 0.86 1.6 0.79 1.4 0.74 1.4

Z, 10ÿ3 5.5 8.2 13 3.7 15 4.6 17 4.6

x 1.8 2.2 2.7 1.4 2.9 1.6 3.1 1.6

Note: These metals consist of atoms with one valence s-electron. Here,

the lattice structure is bcc (body-centered cubic) or fcc (face-centered

cubic), a is the lattice constant, r is the metal density which determines

the number density of electrons Ne. Other parameters are given by

formulas (6.3) and (6.4).
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electron gas, and just this parameter must be used for the
analysis of this quantum plasma. Let us introduce the ideality
parameter of the quantumplasma as the ratio of the Coulomb
interaction energy of electrons to the Fermi energy:

x � e 2

rWeF
� 25=3

3pa0N
1=3
e

� 0:337

a0N
1=3
e

; rW �
�

3

4pNe

�1=3

; �6:8�

where rW is theWigner ± Seitz radius for the electron gas, and
a0 is the Bohr radius. The ideal degenerate electron gas has a
large number density compared to the typical atomic value,
i.e., Nea

3
0 4 1: This means that the properties of a degenerate

electron gas are closer to the properties of a quantum plasma,
the larger the electron density. On the contrary, the role of the
Coulomb interaction between charged particles of the plasma
decreases with an increase in electron density.

Let us apply the model of a degenerate electron gas to
electrons of metals. Table 7 lists parameters of real metallic
plasmas at room temperature. Metals under consideration
contain atoms with one valence electron, and we assume that
just these electrons of metal atoms form a degenerate electron
gas. Parameters of this gas are determined by formula (6.3).
As follows from the data of Table 7 [16, 40], the parameter Z is
small for real univalent metals, and hence the metallic plasma
is a quantum system. But the Coulomb interaction involving
electrons and ions of metals is comparable to the exchange
interaction potential of electrons that is determined by the
Pauli exclusion principle. Thus, a metallic plasma of these
elements at room temperature is a quantum system where the
potential of the Coulomb interaction of charged particles and
the exchange interaction potential of electrons have the same
order of magnitude.

6.2 Thermal and electric properties of metals
The above results concerning the behavior of electrons in an
ionized gas can be used partially for electrons of metals if we
change the interaction of electrons with surrounding atomic
particles by an effective mean field. In such a mean field
model, the behavior of metal electrons is similar to that of
plasma electrons. But in contrast to a plasma, because of a
high density of electrons in metals, the electrons degenerate at
room or low temperatures. Therefore, we start from the
model of a degenerate electron gas for metal electrons.
Within the framework of this model, in a space of electron
momenta or wave vectors, electrons occupy a domain inside
the Fermi sphere. The electron distribution function over
energies results from formula (6.1) and has the following form
at low temperatures:

f �e� � const
Ne

1� exp
��eÿ eF�=T

� ; �6:9�

where Ne is the number density of valence electrons, and the
chemical potential of this distribution at zero temperature
coincides with the Fermi energy eF in accordance with
formula (6.3). This distribution function is normalized by
the condition�

f �e� dv � Ne ; �6:10�

and the small parameterT=eF (6.4) relates to this distribution.
Within the framework of the Drude model where valence

electrons of a metal are modelled by free electrons, the

electron transport coefficients are determined by formulas
of Section 4. In particular, one can use formula (4.13) for the
conductivity of themetallic plasma, which takes the following
form under assumption that the collision rate n is independent
of the electron velocity [124, 125]:

S � Nee
2t

me
; �6:11�

where t � 1=n is the collision time. Next, one can repeat the
deduction of formulas (4.18) and (4.19) for electron thermal
conductivity having regard to the distribution function (6.9)
instead of theMaxwell distribution function. For the thermal
conductivity coefficient of a metallic plasma, when the
electron ± atom collision rate n does not depend on the
electron velocity, this yields

k � p2

3

NetT
me

: �6:12�

In particular, the Wiedemann ±Franz law follows from this
consideration:

ke 2

ST
� p2

3
: �6:13�

We now consider a more real model for electrons in a
metal, when the electron energy distribution function is given
by formula (6.9). One could expect that transition from the
Maxwell distribution function of electrons to the Fermi ±
Dirac one, namely, the transition from the model of free
electrons to themodel of a degenerate electron gas, could lead
to a significant change in connection between the plasma
conductivity and the electron density. But it is not so.We now
consider the conductivity of a degenerate electron gas,
assuming it to be found in a weak electric field. We represent
the electron distribution function f in a form similar to
formula (2.4):

f � f0 � f1 ;

where f0 is the distribution function (6.9) in the absence of an
electric field, and the perturbation f1 of the distribution
function is proportional to the electric field strength: f1 � F.
We write down the kinetic equation (2.1) as an expansion in a
power series of a small parameter F :

eF

me

q f0
qv
� Icol� f1� ; �6:14�

where Icol� f0� � 0 because of the equilibrium in the absence of
the electric field. Using formula (2.6) for the collision integral
of the asymmetric part of the distribution function, we obtain
from equation (6.14) the following result:

f1 � ÿ eFt
me

q f0
qv

; �6:15�

where t � 1=n is the collision time, and the drift velocity of an
individual electron is given by

w � 1

Ne

�
v f1 dv :
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From this follows that the conductivity S of the degenerate
gas S � i=F, where the current density equals

i � ewNe :

This leads to formula (6.11) for the conductivity S of a
degenerate electron gas, if we assume the collision time t to
be independent of the electron velocity v, take the integral by
parts, and use the normalization condition (6.10):

S � Nee
2t

me
: �6:16�

Formulas (6.11) and (6.16) for the conductivity of a
degenerate electron gas are identical to formula (4.12) for
the conductivity of a gas of free electrons, though only a small
portion of the electrons of a degenerate electron gas can be
scattered, since the final states of a scattered electron can be
occupied by internal electrons of this distribution, whereas
the final states of scattering are free for a gas of free electrons.
But the fact indicated for the degenerate electron gas is
compensated for by a large derivative of the distribution
function in formula (6.15) that leads to the identical formulas
for conductivity in these two cases.

Shortly, we will note two types of electron scattering in
metals: by defects of a crystal lattice, and by phonons. If an
electron moves inside a regular crystal lattice at zero
temperature, it is not scattered. When atoms are displaced
from their equilibrium positions due to vibrations, the regular
lattice field is disturbed, and the electrons undergo scattering
by phonons, with the intensity of this scattering increasing
with temperature, whereas scattering by defects does not
depend on the temperature. The latter mechanism usually
gives a small contribution to the plasma conductivity at room
temperature.

We now apply the results of this analysis to the simplest
metals whose atoms have one valence s-electron. Table 8 gives
the parameters of electrons for these metals whose valence
atomic electrons form a degenerate electron gas [126, 127].
The electron number density N0 was taken from Table 7 and
is obtained from the metal density. Another method for

finding the electron number density which determines the
metal conductivity, is guided by using the Hall coefficient RH

(4.40) whose values are collected in Table 8. In this table, the
electron number density Ne was obtained from the measured
values of the Hall coefficient, and the values of N0 from
Table 7 are given in parentheses. If the ratio Ne=N0 exceeds
unity, this means that internal p- and d-electrons of atoms
give a contribution to the metal conductivity. According to
the data of Table 8 we have the following value for the
parameter in formula (6.13), averaged over these metals at
room temperature: ke 2=�ST � � 3:3� 0:2, while according to
the Wiedemann ±Franz law (6.13) for a degenerate electron
gas, this ratio should be 3.3. In addition, Table 8 contains the
average mobility of electrons, which follows from formula
(4.11):

Ke � S
eNe
� C

S
Ne

; �6:17�

and if the mobility is expressed in cm2 (V s)ÿ1, the
conductivity is measured in 1016 sÿ1, and the electron number
density is expressed as 1022 cmÿ3, then the proportionality
coefficient is C � 6:94. In addition to Table 8, Fig. 9,
constructed on the basis of data from handbooks [126, 127]
contains electric and thermal parameters of metals at room
temperature. Note that the ratio following from formula
(6.12) in this case is ke 2=�ST � � 3:3� 0:2 according to the
statistical treatment of the data in Fig. 9.

Next, we use formula (6.11) for determining typical time t
between neighboring acts of electron scattering in the metals,
and corresponding values of this quantity for metals of the
first group elements of the Periodic System are given in
Table 8. The mean free path of electrons in metals is defined
as l � vFt, where vF is the electron velocity on the surface of
the Fermi sphere, and its values are listed in Table 7. Since the
parameter l=a is large, with a being the lattice constant (see
Table 8), one can consider the lattice to be transparent for
electrons. Notice that the Debye temperatures YD of the
metals under consideration (see Table 8, and Fig. 9) are
compared with room temperature, which allows us to
consider lattice atoms as being classical in processes of
electron scattering by these atoms.

Table 8. Parameters of single valencemetals at room temperature, so that the atoms of these metals have one valence s-electron, and r is themetal density.

Metal Li Na K Cu Rb Ag Cs Au

a, A
�

3.51 4.29 5.34 3.61 5.71 4.09 6.09 4.08

r, g cmÿ3 0.534 0.971 0.862 8.96 1.53 10.5 1.87 19.3

S, 1016 sÿ1 9.7 19 12 54 7.0 57 4.4 40

k, W (cm C)ÿ1 0.85 1.41 1.02 4.01 0.58 4.29 0.36 3.17

ke _2=�ST _� 3.6 3.1 3.4 3.1 3.4 3.1 3.4 3.3

cRH, 10ÿ4 cm3 Cÿ1 ÿ1.7 ÿ2.5 ÿ4.2 ÿ0.55 ì ÿ0.84 ÿ7.8 ÿ0.72
Ne, 1022 cmÿ3 3.7(4.6) 2.5(2.5) 1.5(1.4) 11(8.5) (1.1) 7.4(5.9) 0.80(0.87) 8.7(5.9)

Ke, cm2 (V s)ÿ1 18 52 58 34 44 53 38 32

Ne=N0 0.79 0.98 1.1 1.3 ì 1.3 0.92 1.5

t, 10ÿ14 s 1.0 3.0 3.3 1.9 (2.6) 3.0 2.2 1.8

l=a 38 73 54 82 36 100 26 62

YD, K 370 158 90 310 52 220 54 185

m�=me 1.40 0.98 0.94 1.01 0.87 0.99 0.83 0.99
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Metals at room temperature

Period
G r o u p

I II III IV V VI VII VIII

2

52 0.534

3Li 9.7

Lithium 0.85

97 1.85

4Be 25
Beryllium 2.0

3
120 0.97

11Na 19
Sodium 1.4

120 1.74

12Mg 21
Magnesium 1.6

2.70 170
34 13Al
2.4 Aluminum

4

100 0.89

19K 12
Potassium 1.0

180 1.54

20Ca 27
Calcium 2.0

9 2.99

21Sc 1.6
Scandium 0.16

17 4.51

22Ti 2.1
Titanium 0.22

21 6.0

23V 4.6
Vanadium 0.31

44 7.15

24Cr 7.0
Chromium 0.94

3 7.3

25Mn 0.6
Manganese 0.078

22 7.87

26Fe 9.4
Iron 0.80

60 8.86

27Co 14
Cobalt 1.0

60 8.90

28Ni 14
Nickel 0.91

8.96 240
54 29Cu
4.0 Copper

7.14 72
15 30Zn
1.2 Zinc

5.91 27
5.2 31Ga
0.41 Gallium

5

170 1.53

37Rb 7.0
Rubidium 0.58

50 2.64

38Sr 6.9
Strontium 0.35

9 4.47

39Y 1.5
Yttrium 0.17

20 6.52

40Zr 2.1
Zirconium 0.23

36 8.57

41Nb 7.2
Niobium 0.54

82 10.2

42Mo 17
Molybdenum 1.4

28 11

43Tc 6
Technecium 0.51

56 12.1

44Ru 12
Ruthenium 1.2

97 12.4

45Rh 20
Rhodium 1.5

40 12.0

46Pd 8.5
Palladium 0.72

10.5 280
57 47Ag
4.3 Silver

8.69 280
17 48Cd
0.97 Cadmium

7.31 63
11 49In
0.82 Indium

7.26 47
8.2 50Sn
0.67 Tin

6.68 140
23 51Sb
0.24 Antimony

6

41 1.93

55Cs 4.4
Cesium 0.36

120 3.62

56Ba 3.3
Barium 0.18

10 6.15

57La 1.5
Lanthanum 0.13

15 13.3

72Hf 2.7
Hafnium 0.23

35 16.4

73Ta 6.9
Tantalum 0.58

82 19.3

74W 17
Tungsten 1.7

20 20.8

75Re 4.3
Rhenium 0.48

44 22.6

76Os 9.5
Osmium 0.88

79 22.5

77Ir 17
Iridium 1.5

40 21.5

78Pt 8.5
Platinum 0.72

19.3 200
40 79Au
3.2 Gold

13.5 5
0.94 80Hg
0.083 Mercury

11.8 29
5.0 81Tl
0.46 Thallium

11.3 26
4.4 82Pb
0.35 Lead

9.79 5
0.78 83Bi
0.079 Bismuth

9.20 13
2 84Po
0.2 Polonium

Ratio of the electron mean
free path to
the Wigner ë Seitz radius

Thermal
conductivity, W cmÿ1 Kÿ1

Conductivity, 1016 sÿ1
Density, g cmÿ382 19.3

74W 17
Tungsten 1.7

Symbol

Element

Atomic number

Figure 9. Thermal and electric parameters of solids of pure elements with a metallic conductivity at room temperature [126, 127].
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6.3 Character of electron transport in metals
Considering the behavior of electrons in metals within the
context of the problem of electron drift in gases in external
fields, we compare the description of electron transport in
gases and metals. In this respect we find an analogy between
the qualitative descriptions of electron drift in gases and
metals, though the energy distribution function of free
electrons in gases differs, in principle, from the Fermi ±
Dirac distribution function in the model of a degenerate
electron gas relevant to metal electrons. Moreover, the
model of a degenerate electron gas, whose electrons are
located inside the Fermi sphere in a space of electron wave
vectors at zero temperature, is crude for electrons in metals
(see, for example, Refs [124, 128]), because it does not take
into account the interaction of electrons with the lattice. In
particular, if the Fermi surface at zero temperature intersects
the boundary of the Brillouin zone, the Fermi surface
becomes open, and electrons can pass freely to neighboring
Brillouin zones. This leads to a specific character of the
electron conductivity at low temperatures and cannot be
taken into account by the simple models under considera-
tion. But because our aim is to ascertain the possibility of
employing the theory of electron transport in gases for a
qualitative description of electron drift in condensed systems,
we leave aside the special effects of electron behavior in
metals.

Starting from a metallic crystal at zero temperature, we
take into account the interaction between an electron and
crystalline lattice on average by introducing the effective
electron mass m� instead of the free electron mass me, thus
we reduce the problem of electron drift in the periodical lattice
field to the motion of a free quasi-electron. There are two
types of scattering when electron moves inside a metal. In the
first one, the electron scattering proceeds from defects of the
lattice and this mechanism is similar to elastic scattering of
electrons by atoms if they move in a gas. The second type of
electron scattering is due to atomic vibrations and proceeds
owing to crystal inhomogeneities which result from the
displacement of atoms from equilibrium positions. This
character of electron scattering is similar to that of free
electrons in a plasma, when electrons are scattered by
charged particles of the plasma due to the Coulomb
interaction, and scattering through small angles gives the
main contribution to the mobility of an individual electron.
Thus, we see an analogy between the electron drift in metals
and that in a gas and plasma.

We will point out one more peculiarity of electron drift in
metals. In the first approximation we ignore electron
scattering, so that the electron subsystem can be considered
as an isolated system in this approximation. Of course, the
properties of the electron subsystem are governed by its
interaction with the lattice that results in a specific form of
the Fermi surface for electrons of a given metal. But this
interaction can be taken into account on average, for all the
electron subsystem, and we hence consider the electron
subsystem as a degenerate electron gas located in a certain
mean field. Electron collisions with the lattice distort this
picture, but we consider the electron scattering to beweak and
assume the mean free path l of electrons in a metal to be large
in comparison to the lattice constant or to the Wigner ± Seitz
radius rW for electrons, which is defined as

rW �
�

3

4pNe

�1=3

�6:18�

and characterizes the size of the area occupied by one
electron. Figure 9 contains the ratio l=rW, where the mean
free path of electrons in metals is taken from formula (6.16)
and is connected with a typical collision time t for an
individual electron through the formula

t � l
vF

:

Here, vF is the Fermi velocity for electrons, which is given by
formula (6.3), and the electron subsystem is considered as a
degenerate electron gas. Next, for simplicity we assumed in
Fig. 9 that one valence electron relates to one metallic atom.

Note that the large ratio l=rW can be considered as the
definition of metals where electrons may be separated as an
individual subsystem. In this definition of a metal, we do not
concretize specific properties of the total system, and hence
one can consider from this standpoint both crystals and
liquids, as well as amorphous metals. Within the context of
this consideration, the lattice periodicity is not of basic
importance for metals, and thus it does not influence
significantly their conductivity. Indeed, though the conduc-
tivity of metals usually has a jump at the melting point, the
metal conductivities for the solid and liquid phases do not
differ in principle. Thus, summing up the above analysis, we
conclude that the electron drift in metals is analogous to that
in a gas and plasma. By definition, metals have a high
conductivity, so that the mean free path of electrons is much
larger than the typical size per atom in a metal. Correspond-
ingly, the above theory of electron transport in a gas or
plasma can be used successfully for a semiquantitative
description of electron transport processes in metals.

7. Excess electrons in solids and liquids

7.1 Drift of excess electrons in condensed systems
It is customary to divide condensed systems of bound atoms
into metals and dielectrics depending on the character of the
electron levels and bands in these systems. If we are
compressing a gas of atoms, transforming it into a condensed
system, electron energy levels of individual atoms are
transformed into energetic bands, and the upper occupied
band is filled completely for dielectrics. Since the following
free band is separated from this filled band by a gap, a certain
energy is required for exciting an electron to another state. On
the contrary, the upper electron band of metals is filled
partially, and valence electrons can change their states by
small changes of energy. In particular, if ametal is found in an
external electric field, those states of individual electrons are
preferable that are connected with their motion along the
field. This effect determines the conductivity of a metallic
plasma and is absent in dielectrics.

We now consider the case when an excess electron is
inserted into a condensed system. This electron occupies an
empty energetic band, so that the behavior of such individual
electrons is identical, in principle, for metals and dielectrics.
But in contrast to a gas system, where electron scattering
proceeds independently of the position of other atoms, in a
dense or condensed system of atoms a test electron interacts
simultaneously with electrons of many atoms. Then, the
system of interacting atoms can be considered as a whole
electron system in which a test electron moves.

One can analyze the behavior of an individual electron in a
condensedmatter by introducing an effective potential energy
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for motion of a test electron in a condensed system of atoms.
Then two types of electron motion in a condensed system are
possible in accordance with Fig. 10. In the first case (Fig. 10a),
the electron is locked in a space between two neighboring
atoms, and its transfer to a neighboring position requires it to
overcome a barrier and lasts relatively long. This is a dielectric
type of electron drift. In the second case of a metallic type of
electron drift, the electron moves almost freely inside the
condensed system (Fig. 10b). Note that these types of electron
drift do not depend on the type of condensed system. In
particular, we will show below that the drift of an excess
electron in condensed rare gases has a metallic nature in a
certain range of parameters.

Thus, in considering the drift of an excess electron in
dielectrics [129 ± 134], we observe two limiting cases in
electron behavior. In the first case (Fig. 10a), the electron is
displaced in jumps, and its mobility is relatively small, while in
the second case the electron moves almost freely, thus imply
its meaning that free path is relatively large. Of course, in this
case of metallic mobility of a test electron in a dielectric, we
account for the interaction between the electron and the
environment, but it is taken into account on the average,
through an effective field. Then, we introduce the energyV0 of
the ground state of an electron in this system as the solution of
the SchroÈ dinger equation for the electron wave function ce:

ÿ �h 2

2me
Dce � Vce � V0ce ; �7:1�

where the effective potential energy V corresponds to
interaction of a test electron with other electrons and
electrons of surrounding atoms. This interaction potential
depends on the positions of nuclei. Assuming that the nuclei
form a crystal lattice, we obtain the periodicity of the effective
interaction potential. The eigenvalues of equation (7.1) may
be represented then in the form [124, 125]

ek � V0 � �h 2k 2

2m�
; �7:2�

where m� is the effective electron mass, and k is the electron
wave vector. Parameters of electron ± lattice interaction were
included in the quantities V0, m�. These quantities character-
ize the drift of electrons in condensed systems if we treat this
problem on the basis of the model of free electrons, and the
interaction of an excess electron with the environment is

taken into account in these quantities. In such a considera-
tion there is no difference between crystals and liquids
because their interaction with the electron is introduced in
the above quantities. But, being restricted by the case of
metallic conductivity of an excess electron, we are based on
the criterion that the electron mean free path is large
compared to the distance between neighboring atoms.
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Figure 11.The ground state energy of an excess electron moving in a gas in

an external electric field with respect to a vacuum as a function of the

atomic number density: (a) argon [138]; (b) xenon [135].

Electron ground state

bU�x�

Electron ground state

aU�x�

Figure 10. The character of motion of an excess slow electron in a

condensed system of atoms depending on the position of the ground-

state electron energy level: (a) dielectric type of mobility; (b) metallic type

of mobility.

Table 9.Drift parameters of an excess electron in liquid rare gases.

Parameter Ar Kr Xe

V0, eV [135 ë 138]

N0, 1022 cmÿ3

Tmax, K

Nmax, 1022 cmÿ3

amax, A
�

Kmax, cm2 (V s)ÿ1 [139]
Ttr, K

Ntr, 1022 cmÿ3

atr, A
�

Ktr, cm2 (V s)ÿ1 [139 ë 147]
m�=me [148, 149]

tl, ns [150]
ts, ns [150]

ÿ0.3
1.1

155

1.2

4.9

1800

85

2.1

4.1

500� 70

0.55

0.9

0.5

ÿ0.5
1.2

170

1.4

4.7

4600

117

1.8

4.3

1400� 300

0.4

4.4

2.2

ÿ0.8
1.1

223

1.2

4.9

6000

163

1.4

4.7

2000� 700

0.3

6.5

4.4
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7.2 Experimental study of the mobility
of an excess electron in condensed inert gases
We will be guided below by condensed rare gases Ar, Kr, and
Xe, where both the dielectric and metallic types of mobility
can be realized under different conditions. Figure 11 displays
the ground-state electron energy V0 in condensed argon [138]
and xenon [135] as a function of the number density of atoms.

Note that the quantity V0 does not characterize the electron
behavior inside the condensed system because it is measured
with respect to a vacuum, i.e. V0 is the difference between
electron energies outside and inside this bulk system. In
reality, electrons can form a layer on the boundary of a bulk
condensed rare gas, and such a charged layer equalizes the
potential on both sides of the interface. It should be
emphasized that the ground-state energy V0 of an excess
electron in condensed argon, krypton, and xenon passes a
minimum at the densities of atoms which are close to those
related to the maximum of the electron mobility (see Fig. 11,
and Table 9). Table 9 also contains the number densitiesN0 of
atoms for liquid rare gases, corresponding to the minimum of
the ground-state electron energy V0. The atomic number
density Nmax, the temperature Tmax, and the distance amax

between nearest neighbors relate to the maximum of the zero-
field mobility of an excess electron in liquid rare gases. Next,
Ttr and Ntr are the temperature and number density of atoms
at the triple point, andKtr is the electron mobility at the triple
point. In addition, tl and ts are the relaxation times for an
excess electron in liquid and solid rare gases near the triple
point. These times characterize thermalization of electrons
excited by a pulsed electric signal, and the accuracy of these
values is estimated as 10 ± 20%.
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Measurements of the reduced mobility of an excess
electron in condensed rare gases show a strong variation of
this quantity depending on the rare gas parameters and
electric field strength. For example, Fig. 12 gives the reduced
mobility of an excess electron in xenon [67], and this quantity
varies within the limits of three orders of magnitude under
variation of the number density of xenon atoms from the
gaseous to condensed-phase values. In Fig. 13 is shown the
dependence on the reduced electric field strength for the
reduced mobility of an excess electron in liquid argon under
different conditions [143]. It can be seen that the form of this
dependence and the values of the reduced mobility are
different at low electric field strengths, whereas in strong
fields the mobility of an excess electron is not sensitive to the
parameters of condensed argon. Figure 14 shows the
dependence of the zero-field mobility on the number density
of atoms in liquid argon [143] and xenon [135]. The
temperature dependence for the zero-field electron mobility
in condensed argon is given in Fig. 15 [143]. The above
information shows that the mobility of an excess electron in
condensed rare gases strongly depends on the number density
of atoms, temperature, and pressure, especially in relation to
low electric fields. Note also the correlation between the
densities corresponding to the minimum of the ground-state
electron energy V0 and the maximum of the zero-field
mobility of an excess electron as it follows from the data of
Table 9 and Figs 11, 14.

At high field strengths, the electron motion in liquid rare
gases resembles that in gases. As follows from Fig. 13, the
reduced mobility of an excess electron as a function of the
reduced electric field strength does not depend strongly on the
number density of atoms and temperature. This can be
explained by a small cross section of electron scattering by
an individual center that makes this process similar to
electron scattering in gases.

One more peculiarity of the excess-electron mobility in
condensed rare gases relates to the `saturation' of the electron
drift velocity at some fields. Above (see Fig. 3) we considered

this effect for gases and explained it by a strong variation of
the cross section of electron ± atom collisions in a narrow
range of collision energies. This effect is more strong for
condensed rare gases than for gases. In particular, for liquid
xenon near the triple point, the excess-electron drift velocity
increases only 2 ± 3 times [from �1ÿ1:5� � 105 cm sÿ1 up to
�3ÿ4� � 105 cm sÿ1] [142, 145, 147, 150, 151] if the electric
field strength increases by three orders of magnitude
(102ÿ105 V cmÿ1). In this range of fields, the characteristic
electron energy increases by approximately two orders of
magnitude (0.1 ± 10 eV) [147, 152 ± 154]. In addition, this
effect depends on the parameters of the liquid (Fig. 16) [139,
142]. The saturation effect is also observed for solid rare gases
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(see, for example, Refs [133, 151, 155]), although the range of
fields is narrower than in the case of a liquid.

Thus, though condensed rare gases are dielectrics, the
drift of excess electrons in them is similar to that in metals.
It is of interest to compare the mobility of excess electrons
in liquid rare gases and metals if the parameters of
condensed rare gases correspond to the maximum excess-
electron mobility. Comparing the electron mobilities for
alkali and coin metals, which are given in Table 8, with
the data in Table 9, one can see that the maximum zero-field
electron mobilities in liquid rare gases exceed the electron
mobilities in metals by at least several times. This means
that the mean free path of electrons in condensed rare gases
under optimal conditions exceeds by several times the mean
free path of electrons in alkali and coin metals at room
temperature. Thus, the condensed rare gases can have
metallic properties with regard to the drift of excess
electrons.

7.3 Character of the mobility of an excess electron
in condensed rare gases
The theory of the mobility of an excess electron in condensed
rare gases [66, 154, 156 ± 158] relates to a range of parameters
where the electron mobility is relatively large and interaction
between an excess electron and surrounding atoms is weak.
Under such conditions, an excess electron has a metallic
mobility, and the condensed rare gas is fairly transparent for
its motion. In other words, the mean free path of an excess
electron is large compared to the distance between neighbor-
ing atoms. The weakness of this interaction allows one to
describe electron scattering in terms of formfactors, but
because the electron scattering is determined by the exchange
interaction with surrounding atoms, the formfactors for
electron and neutron scattering in condensed rare gases are
different, except maybe of high electron energies. This
restricts the possibilities of the theoretical analysis of this
problem.

Providing the theoretical description of the mobility of an
excess electron in condensed rare gases within the framework
of the perturbation theory by use of the formfactor, an
electron motion in condensed matter is compared with
electron scattering by individual atoms. Then, an increase in
the electron mobility over some range of parameters ensures
from the Ramsauer effect for electron scattering by many
atoms. But the use of the theory of electron scattering by an
individual atom for description of electron motion in a
condensed system of atoms is not correct for the following
reasons. First, the Ramsauer effect results from the correla-
tion between a short-range exchange electron ± atom interac-
tion and the long-range polarization interaction between
them (see Section 3). But the polarization interaction occurs
at large electron ± atom separations, and because of a
simultaneous interaction of an electron with many atoms in
a condensed matter, it has another nature in the case of
condensed systems. This peculiarity can be taken into account
as a collective effect which, in particular, creates the
permittivity of the condensed system of atoms, but the total
electron interaction is not a sum of electron interactions with
individual atoms. Hence, an increase in the excess-electron
mobility in condensed rare gases over some range of
parameters does not have a direct analogy with the Ram-
sauer effect.

Second, restricting ourselves to a short-range electron ±
atom interaction, we have that electron scattering by an

individual atom proceeds at electron ± atom separations of
the order of the scattering length which is compared with the
distance between nearest atoms for condensed atomic
systems. Hence, electron scattering in condensed rare gases
cannot be resolved into components of electron scattering by
individual atoms, and the concept of electron scattering by an
individual atom cannot be used for a strict theory of excess-
electron mobility in condensed systems. Therefore, though it
is convenient to explain observed high mobilities of excess
electrons in condensed rare gases on the basis of the
Ramsauer effect [140, 167 ± 169], these phenomena are
different in their nature. Correspondingly, the theoretical
description of the mobility of an excess electron in liquid or
solid rare gases on the basis of an electron interaction with an
individual atom is not correct.

Keeping to the general scheme of this paper, we use a
gaseous model for the drift of an excess electron in a
condensed system of atoms, and this model holds true in the
case of high electron mobilities. Within the framework of this
model, we consider the electron motion in a gas of scattering
centers, so that each scattering center is located on a
corresponding nucleus, and the cross section of electron
scattering by an individual center is small compared with the
cross section of an individual atom. Then the electron mean
free path is large compared to the distance between neighbor-
ing atoms, andwewill use this model below. It is assumed that
a test electron is scattered by individual centers indepen-
dently, and each scattering center is modelled with a hard
sphere. Parameters of this gaseous model for certain densities
and temperatures of condensed rare gases, as well as for
particular electric field strengths, can be found from experi-
mental data, whereas the theory does not describe them
strictly and reliably on the basis of the parameters of
electron ± atom scattering.

As a matter of fact, the gaseous model proceeds from the
analogy between electron drift in gases and condensed
systems, and we use this analogy throughout this paper.
Assuming the electron mean free path to be independent of
the electron velocity, we use formula (2.32) for the electron
drift velocity, replacing the electron mass in this formula by
the effective electron mass from Table 9. From this formula
we find the effective cross section s for the process of electron
scattering by an individual center. Table 9 contains the
distance amax between nearest neighbors at the number
density of atoms Nmax �

���
2
p

=a3max at which the electron
mobility passes its maximum, and the mean free path
lmax � 1=�Nmaxsmax� under these conditions. In the same
way we find the mean free path of an excess electron in liquid
rare gases near the triple point on the basis of data of Table 9.
The resultant values are collected in Table 10, and as follows
from this table, lmax 4 amax and ltr 4 atr, namely, this dense
atomic matter becomes transparent enough for electrons.
Correspondingly, we have under these conditions
smax 5 pa2max, and str 5 pa2tr. Moreover, the zero-field mobi-
lity of an excess electron in condensed rare gases under such
conditions can exceed that in metals (compare the mobilities
from Tables 8 and 9). Note that the transparence of
condensed rare gases for excess electrons takes place only
within a certain range of parameters. Table 10 also contains
times te of thermalization of electrons in liquid rare gases near
the triple point, which were evaluated on the basis of formula
(2.27b) using the electron mean free paths from Table 10.
Comparing them with experimental values tl presented in
Table 9, one can see that calculated values are several times
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greater. Evidently, this is due to a difference in the energy
exchange during elastic electron collisions with free and
bound atoms.

Let us turn to the role of correlation if an electron interacts
with several atoms at short-distances between interacting
particles. We first consider an electron interaction with a
diatomic molecule, when an electron can form a bound state
with each atom, and the region of interaction with each
atomic particle is relatively small. Characterizing an electron
short-range interaction with each atom by negative scattering
lengths L1 and L2, we find that the electron scattering length
on this diatomic molecule becomes zero at the distance R
between the atoms which is given by [159]

R �
�����������
L1L2

p
: �7:3�

The general nature of this interaction is conserved, when
atoms have a certain size [160]. Thus, the correlation in
electron scattering by individual atoms is also of importance
for electron ±molecule scattering [161 ± 163]. Parameters of a
short-range electron interaction with individual atoms, as
well as the structure of the total atomic system produced,
determine the electron behavior in a chain molecule formed
by individual atoms [163 ± 166]. Thus, the correlation between
the positions of individual atoms and the parameters of a
short-range interaction potential of an electron with an
individual atom governs the character of electron interaction
with this atomic system. This correlation is of importance for
the mobility of an excess electron in condensed rare gases, but
the parameters of the resultant interaction cannot be
expressed strictly through the interaction parameters of an
electron and an individual atom.

Analyzing from this position the behavior of an excess
electron inside liquid or solid systems of bound and weakly
interacting atoms and restricting ourselves with a short-range
interaction of an electron with each atom, we will represent
the total interaction potential for an electron as the sum of the
Fermi potentials [51 ± 53] [see also formula (3.6)]:

U�r� �
X
j

2p�h 2

me
Ld�rÿ Rj� ; �7:4�

where L is the electron scattering length by an individual
atom, r is the electron coordinate, and Rj is the coordinate of
the jth atom. From this it follows that the average interaction

potential V0 � U�r� of an electron with atoms varies mono-
tonically with an increase in atomic density, while according
to the data of Fig. 11, V0�N� has a minimum in a range of
atomic number densities N, where the electron mobility has a
maximum. This means the existence of an additional
correlation in electron ± atom interaction, which is of impor-
tance for the behavior of this electron inside the atomic
system and depends on the number density of atoms. Next,
according to the above assumption, the correlation effects
leading to a highmobility of an excess electron are determined
by the electron ± atom scattering length L. One can then
expect that a strong correlation takes place at number
densities of atoms N � 1=L3. But, in spite of the difference
in the scattering lengths for Ar, Kr, and Xe, the maximum
electron mobility for these condensed systems is observed at
close concentrations of atoms. This testifies that the above
simple scheme of correlation, when the electron mobility in a
condensed rare gas is expressed through the parameters of
electron ± atom scattering, is not valid.

Let us turn to the character of electron influence on a
condensed rare gas if an excess electron is moving inside it. In
the case of a strong interaction with surrounding atoms, an
electron can form a bubble by repulsion of atoms from the
region around it [131, 133]. This takes place in helium and
neon. If the bubble is conserved during electron motion, an
electron has a high effective mass which is comparable to the
atomic mass. In the case of other rare gases (Ar, Kr, and Xe),
an electron creates a fluctuation in the region where it is
located due to interaction with surrounding atoms [132].
Because of a high thermal electron velocity compared to the
speed of sound in a condensed rare gas, this fluctuation exists
in a region whose size is comparable to themean free path l of
the electron. Let us estimate an additional pressure p which is
created by an electron inside a rare gas due to electron
scattering from atoms. Because of the random character of
electron motion, this pressure is estimated as

p � f

4pl2
; �7:5�

where we assumed an electron to be locked in a region of size
l. The force f produced by an individual electron with a
momentum P � mev (v is the electron velocity) equals

f � dP

dt
� mev

l=v
� e

l3
; �7:6�

where e is the electron energy. Hence, an additional pressure
owing to electron motion inside a condensed rare gas is given
by

p � e

4pl3
: �7:7�

This effect is weak for a normal gas because of the high
mean free path of the electron, but it can be remarkable for
condensed rare gases. For example, let us take xenon under
conditions of saturation of the electron drift velocity in it. We
take e � 1 eV, l � 10ÿ7 cm, so that on the basis of formula
(7.7) it is inferred that an additional pressure p � 1 atm, i.e.,
this effect may be noteworthy under real conditions. Note
that this effect exists until the electron drift velocity is less
than the speed of sound in this rare gas. The fluctuation
considered facilitates an electron motion, namely, it increases
the electron mobility. If this fluctuation disappears, the
electron drift velocity decreases. Therefore, this effect of

Table 10. Drift parameters of the gaseous model for an excess electron in
liquid rare gases.

Gas Ar Kr Xe

pa2max; a
2
0

21 19 21

pa2tr; a
2
0

14 16 19

lmax; 10
ÿ6 cm 9,6 21 24

lmax=amax 200 450 480

smax=pa2max
0.004 0.002 0.002

ltr; 10ÿ6 cm 2.6 6.3 7.8

ltr=atr 65 150 170

str=pa2tr 0.012 0.005 0.005

te, ns 5.0 22 36
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formation of the density fluctuation in a condensed rare gas
due to electron scattering by atoms inside the rare gas can be
an additional reason for the saturation effect concerning the
electron drift velocity. This effect is added to a sharp velocity
dependence of the scattering cross section of an electron by an
individual center, as it takes place in gases.

The character of electron behavior in condensed systems,
which is being considered, is realized for the metallic electron
mobility, if interaction between an excess electron and atomic
system is weak. Then the gaseous model is suitable for the
description of electron behavior. Assuming the electron to be
scattered by each atom with a small effective cross section s,
one can apply the gaseous model to electron mobility in
condensed rare gases.

7.4 Emission of condensed rare gases
under the action of drifting electrons
An atomic excitation inside condensed rare gases represents
the simplest form of excitons in solids and liquids [170]. The
basis of excitons in condensed rare gases is formed by excited
atomic states, when a valence electron from the outer p-shell
is transferred to the lowest free s-shell. But because of a strong
interaction with the environment, an excited atom forms
inside a condensed rare gas an excited diatomic molecule,
and the emission spectrum of such molecules in condensed
rare gases is a broadened spectrum of radiation of isolated
molecules, as is demonstrated by Fig. 17. Excimer molecules
emit radiation in the vacuum ultraviolet spectral range, and in
condensed rare gases the radiation wavelengths are shifted to
the red side in comparison with isolated excimer molecules
due to the interaction with surrounding atoms.

Note that there exist two types of electron excitation
depending on the total spin of an excited electron and a
core. Because their total spin is zero for the ground state, the
radiative lifetime of an exciton with total spin one exceeds

significantly the radiative lifetime of an excitonwith zero total
spin, and in this way the emitted radiation is resolved into a
slow and fast one, as is shown in Fig. 17, though the radiation
spectra are close in these cases. In addition, Table 11 contains
the radiative lifetimes for upper electronic states of molecular
transitions in gases, liquids, and solids [171]. The radiative
lifetimes for slow transitions are given in this table, and the
lifetimes of fast transitions are contained in parentheses. One
can see a tendency towards an increase in the transition rate
with an increasing atomic density in the course of transfer
from the gaseous state to the liquid and solid states, especially
for slow radiative transitions.

The process of formation of excitons in condensed rare
gases as a result of electron impact is similar to that in gases,
and, as follows from Fig. 8, the efficiency of this process can
be remarkable if the ratio of the average electron energy to the
excitation energy is not very small. For example, according to
Ref. [172] the efficiency of generation of the ultraviolet
photons as a result of irradiation of a reflective photocathode
is 10%, 17% and 31% for liquid argon, krypton and xenon,
respectively. Condensed rare gases with excess electrons
located in an external electric field may be a source of laser
radiation [173, 174]. As a demonstration of this, emission of a
broad line with a central wavelength of 175 nm was observed
in liquid xenon [175] where electrons drift from a cold field-
emission cathode into a strong electric field.

Note one more excitation process which can proceed in
this case and is specified by the scheme [176]

e�Rg! �Rgÿ��� ; �7:8�

where Rg is a rare gas atom. The autoionization state formed
decays promptly (� 10ÿ14ÿ10ÿ13 s) with the production of a
fast electron or as a result of emission of a UV photon during
a time � 10ÿ9ÿ10ÿ8 s, so that the probability of photon
emission during decay of the autoionization state is relatively
small. But this process may be repeated, and the process of
photon emission through the channel (7.8) can be valuable.
Note that the excitation energy of the autoionization states
�Rgÿ��� is lower than the excitation energy of Rg �, as is the
case for the excitation energy of the autoionization state
�Rgÿ2 ��� in comparison with Rg �2 . This difference can be
estimated from the excitation energy of the autoionization
state H�2s 2� [176]. If the channel (7.8) is realized, the
radiation spectrum is shifted to longer wavelengths [177].

8. Conclusion

The theory intended for describing the behavior of electrons
in a gas and plasma in external fields uses a small parameter

In
te
n
si
ty

6 7 8 9 10 11

Photon energy, eV
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Figure 17. Emission spectra of condensed argon (N � 1:1� 1022 cmÿ3),
krypton (N � 1:2� 1022 cmÿ3), and xenon (N � 1:3� 1022 cmÿ3): (a) for
fast � 1S�u ! 1S�g �, and (b) slow � 3S�u ! 1S�g � transitions. The absorp-

tion spectrum centers are at photon energies 11.480, 9.611 and 8.046 eV for

argon, krypton and xenon, respectively [171].

Table 11. The radiative lifetimes for excited rare gas atoms (ns).

Ar Kr Xe

Gas 3200� 400

�4:3� 0:1�{
280� 30

�4:1� 0:9�
110� 20

�5:2� 0:6�
Liquid 1300� 200

�5:2� 0:9�
90� 10

�1:8� 0:3�
24� 5

�2:6� 1:2�
Solid 1200� 100

�3:0� 0:9�
81� 8

�1:3� 0:1�
21� 4

�1:8� 0:8�
{The lifetimes are given for themolecular transitions � 3S�u ! 1S�g � and
� 1S�u ! 1S�g � (in parentheses); they were obtained on the basis of data
from Ref. [171].
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which is the ratio between the electron and atomic masses.
The theory is based on solution of the Boltzmann kinetic
equation for electrons whose velocity distribution function is
almost isotropic. This approach allows us to analyze a variety
of equilibrium regimes or evolution of the electron subsystem
under various conditions using real dependences on the
collision energy for the cross sections and rate constants of
elementary processes in gases and plasmas involving elec-
trons. This gives the possibility to analyze various aspects of
the problem under real conditions. The simplicity and
clearness of the theoretical methods and results for electron
drift in gases and plasmas makes them useful for the analysis
of electron drift in condensed systems, if the mean free path of
electrons is relatively large as compared with the atomic scale.
Themodeling of electron drift processes in condensed systems
on the basis of gaseous concepts is convenient and holdsmuch
promise.

The author thanks Prof. E B Gordon for fruitful
discussions that gave impetus to subsequent studies. This
work was supported partially by NWO-RFBR collaborative
grant #047-008-015.
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