
Abstract. A relativistic procedure for deriving the kinetic part of
the generalized Euler equation is proposed as an argument to
justify the application of the vortical equation of motion to the
solution of classical discrete dynamics problems. An invariant
formulation of the potential integration method for the vortical
equation of motion is given for a definite class of two-dimen-
sional motions. To demonstrate the efficiency of the method, a
number of well-known theorems on the dynamics of a material
point are proved. A new result of the study is the fact that zero-
energy hyperelliptic motions are related to the field of `multi-
plicative' type forces.

1. Introduction

By vortical equations of motion are usually meant hydro-
dynamic type equations: either the Euler equation proper for
an ideal liquid [1] or its multidimensional generalization to
the Lamb form [2]. Unlike the Newtonian form of the
equation of motion, equations of hydrodynamics belong to
a totally different Ð continual Ð class of equations of
physics, and in this respect are much closer to the field
theory than to the theory of motion of the point objects.
Nevertheless, these equations have been successfully applied
to the discrete dynamics of Hamiltonian systems Ð first by
I S Arzhanykh [1] and then by V V Kozlov, whose book [2]
presents the results of a further in-depth analysis of
mathematical corollaries to Arzhanykh's ideas and provides
references to the available literature on the subject.

It should be noted that, despite the wide application of
equations of hydrodynamics, the main task of the two above-
mentioned authors was the integration of the canonical

Hamilton equations (but with `vortex terms' introduced into
them) [1]. Therefore, themethodswhichwere developed in the
books [1, 2] belong for the most part to the so-called `vortical
methods' of integration, and will not be treated here. But
conceptually, our work, as we shall see somewhat below, is
rooted in this field, and in particular is closely related to the
hypothesis for the existence of the so-called energy ±momen-
tum field, which I S Arzhanykh advanced in his monograph
[1] based on the formal analogy between the Maxwell
equations and the Euler equation.

It must be said, however, that when solving discrete
dynamics problems, I S Arzhanykh [1, 3] draws this analogy
having in mind the discrete form of the Euler equation,
whereas the object of comparison (the Maxwell equations)
remains continual. While the problems in discrete dynamics
are in no way affected by this inconsistency, it must of course
be eliminated if more ambitious goals are pursued. An
attempt to solve this problem by relativistic methods will,
among other things, help us to understand how the inherently
continual Euler equation can be consistently put to use in
discrete dynamics.With this inmind, we propose an invariant
version of the method, which is inherently potential, of
integrating the vortical equation of motion and apply it to
solving the standard problems of motion of a point object in
an external potential type field (a conservative system). It
should be emphasized that the methodwe formulate is, due to
its inner specifics, by no means a general one but is aimed at
picking out, from all possible motions, such a class ofmotions
whose derivation, compared with traditional nonvortical
methods, becomes much simpler due solely to the direct
integration of the vortical equation of motion. To this
distinguished and particular class belong such motions
which are, to put it mildly, very difficult to find using
nonvortical formulations of mechanics if for no other
reason, than because in the traditional approach these
motions are obscured and not so obvious as is, for that
matter, the nature of the `multiplicative' forces that support
them.

Further, since we will also touch in part on the continual
stage of the problem, this will also help us to see the
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distinguishing features of our approach in comparison to
the one successfully used in hydrodynamics for `potential
flows' [4].

Themethodical results of this work are also augmented by
the derivation of the generalized Huygens `centrifugal'
acceleration formula from the vortical equation of motion
and by obtaining from this a number of well-known theorems
for the dynamics of a material point. In so doing particular
attention will be focused on how to reveal, utilize, and
emphasize by means of comparison the methodical advan-
tages that result directly from the coordinate invariance of the
method.

2. The heuristic significance
of the hypothesis for the existence
of the energy ±momentum density field

We start by writing down and analyzing the `vortical' Ð or in
other words generalized Eulerian Ð form of the equation of
motion, used in Ref. [1] for solving the problems in discrete
dynamics:

qp
qt
� gradKÿ �V� rot p� � ÿm gradj ; �1�

where p andK are, respectively, themomentum vector and the
kinetic energy of a material point of mass m moving with a
velocity V in a generally curvilinear trajectory under the
action of a field of external forces with a potential function
j and t is the time as measured by a clock in the absolute
frame of reference.

Transferring the right-hand side of Eqn (1) to the left-
hand side yields a different form, namely

qp
qt
� gradHÿ �V� rot p� � 0 ; �2�

where H is the Hamiltonian.
Without going here into all the details, let us outline the

relativistic arguments which, by analogy with the field theory,
suggest the existence of the energy ±momentum field Ð the
hypothesis proposed by I S Arzhanykh in Ref. [1] 1.

As already noted, drawing this analogy in a consistent
way requires, first of all, that Eqn (1) be treated as continual.
This means that all the characteristic quantities �p;K;m�
entering the theory should be replaced by their associated
bulk densities, for which purpose it suffices to replace m by m
throughout, where m is a function of the bulk mass density
(arbitrarily distributed in space ± time) of a certain substance
(not necessarily a liquid) whose kinematics of `flow' is just
described by the left-hand side of the substantial equation of
motion.

Now let us recall the sequence of actions which were taken
by HMinkowski in the relativistic derivations of theMaxwell
equations in a vacuum (see Ref. [6]).

The parent concept in this scheme, as is well known, is
framed around the 4-potential, whose spacelike compo-
nents are represented by the 3-vector A (the vector

potential of the electromagnetic field), and whose timelike
component is the scalar function c (electrostatic poten-
tial) 2.

By multiplying this 4-vector externally with the Hamilton
differential 4-operator, i.e. by applying the 4-rot operator [6]
to it, we produce a skew-symmetric tensor of the electro-
magnetic field.

It is important now to emphasize that unit vectors and
differentials are transformed similarly for the Lorentz
group Ð namely, like coordinates. Consequently, these end
products of Minkowski's formalism (the external multiplica-
tion of unit vectors) and of the PoincareÂ ± Cartan formalism
of external differential forms (external multiplication of
differentials) Ð if this latter formalism is extended to the
Minkowski space Ð should of course be the same for the
properly chosen and identical sequence of operations.

Further, using the formulae

e � ÿgradcÿ 1

c

qA
qt

;

h � rotA

which relate the field vectors to the potentials, the first set of
Maxwell equations in a vacuum, viz.

1

c

qe
qt
ÿ rot h � 0 ; �3�

div e � 0 ; �4�

are obtained by requiring the vanishing of the 4-vector
resulting from the internal multiplication of the field tensor
with the Hamilton 4-operator.

The relativistic form of the left-hand side of Eqn (1) can
be found in a similar way as a spacelike part of a certain
4-vector. But, for this purpose, the physical quantity we
should start with is the momentum density 4-vector with
components �ÿp ;0 K 0=c�, where p 0 and K 0 are the relativistic
momentum density 3-vector and the relativistic energy
density, respectively, and c is the speed of light. Here too,
the skew-symmetric `field' tensor of the energy ±momentum
density results from the action of the 4-rot operator on the
initial momentum density 4-vector. Further, proceeding
much as in the field theory Ð but adopting a somewhat
different sign arrangement Ð it is possible to define the
vectors of this `field' in terms of the `potentials':

e 0 � grad
K 0

c
� 1

c

qp 0

qt
; �5�

h 0 � rot p 0 :

However, the reduction of rank of the resulting tensor by
unity should be carried out here, from dimensional considera-
tions, by multiplying the tensor Ð internally Ð not with the
Hamilton operator as in the field theory but rather with the
velocity 4-vector (for which purpose its contravariant
components are used). This gives rise to a new 4-vector with
the components

1��������������
1ÿ b 2

q �
ce 0 ÿ �V� h 0�;ÿVe 0	 ; �6�

where b � jVj=c, and V is the usual velocity 3-vector.
1 As concerns the relativistic form of the left-hand (kinetic) side of Eqn (1),

it should be noted that even though it is given in Refs [1, 3], its derivation is

not provided there; at the same time, I S Arzhanykh does provide a

relativistic procedure for the derivation of the field equations based on the

external differential PoincareÂ ± Cartan forms [5].

2 The space ± time metric signature �� � �ÿ� used here corresponds to

that adopted by Pauli [6].
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It should be noted that the relativistic form of the Euler
equation proper, with the function m taken out of the
differential operator signs, can be obtained in an entirely
similar way by interchanging the momentum and velocity
4-vectors in the operational procedure outlined above.

If we now want to proceed to the description of
kinematics of point objects, the function m in formulae (5)
should be represented in the form of a d-function, which
plays the role of the position function of a material point in
the 4-dimensional space ± time. Then, by integrating the
4-vector (6) over the volume and taking into account the
Lorentzian shrinkage of volumes, we arrive at a new
4-vector whose spacelike part, as can easily be seen3 from
Eqns (5) and (6), reproduces the left-hand side of Eqn (1) in
its relativistically generalized form, whereas the timelike
component takes the scalar form

ÿV

c
e 00 ;

in which

e 00 � qp
qt
� gradK ;

where p and K are the relativistic expressions for the
momentum and energy, respectively.

As for the timelike component of the 4-vector, it can be
treated as a `kinetic analogue' of the left-hand side of Eqn (4).
However, the physical meaning of this analogy cannot be
understood within the framework of classical theory, the only
one to be used through the remainder of this paper.

Thus we see that the difference in the way the two
transformation schemes reduce the rank of the tensor has
fundamental implications, since this is themain reason for the
linearity of Maxwell equations, on the one hand, and for the
nonlinearity of the `vortical theory of motion', on the other
hand.

One further point to be made is of course a certain
difference Ð which also has a fundamental nature Ð in the
input quantities used in the analysis.

In the field theory A and c are independent but auxiliary
quantities. In the `vortical theory of motion', on the contrary,
the quantities p 0 and K 0=c have clear physical meaning, but
both depend on velocity and therefore are not independent.

All this does not allow one to draw too close a parallel
between the concepts involved in the two theories, and it is
necessary to have in mind therefore that the energy ±
momentum `field' in Arzhanykh's hypothesis is a fictitious
field, i.e. a concept which can only be employed for heuristic
purposes.

For example, the fact that in relativistic transformations
the momentum density 4-vector plays the role of 4-potential
suggests that it needs no redefinition in terms of other
auxiliary concepts as is the case in nonvortical descriptions
of the motions of point objects, where the action function S

takes the role of a scalar potential:

p � gradS ; �7�

H � ÿ qS
qt

: �8�

In general, the comparative analysis of the problems of
integrating the discrete form of the vortical equation of
motion and the nonvortical equation of motion deserves
special attention and makes it necessary to draw a clear
distinction between the two.

We have seen, for example, that in the relativistic
derivation of the kinetic part of the vortical equation of
motion, the momentum 3-vector is a solenoidal vector
because it plays there the role of a `vector potential'. From
this point of view, formula (7) being used in Hamiltonian
mechanics needs generalization, which is precisely the goal of
the vortical methods for integrating the canonical equations
[1, 2]. On the other hand, turning back to the vortical form, it
seems at first sight that such an obvious solenoidal nature of
the momentum vector of curvilinear motions compromizes to
the highest degree the very idea of employing potential
methods for its integration. This is evidenced by the fact that
the simple substitution of Eqns (7) and (8) into Eqn (2)
reduces the last to an identity independently of whether the
function S has any relevance to actual motions.

Meanwhile, it is well known that the potential Hamilton ±
Jacobi method is the most powerful tool for integrating the
canonical equations of mechanics. But here, not everything is
all that smooth either, because the method depends strongly
on the choice of a coordinate structure, and there are no rules
to govern such a choice [5].

Proceeding now to the comparative analysis of the
application of potential integration methods to the continual
form of the vortical equation of motion (hydrodynamics) and
to its discrete form (dynamics of point objects), the following
fundamental feature should be emphasized.

In the case of ideal fluid, the existence of `potential
flows' is related to the well-known Thomson theorem [4] on
the conservation of velocity circulation along the liquid
contour around fluid streamlines (zero value of circula-
tion). Clearly, in the vortical description of the motions of
a point object, this theorem is not applicable because the
very use of such a concept as velocity circulation around the
trajectory of a point is incorrect here. We can only speak
meaningfully of the velocity circulation along a trajectory
around the origin at rest 4, with the consequence that for the
curvilinear motions we once again end up with a solenoidal
momentum vector.

Thus, the solenoidal nature of this vector rules out its
applicability in potential integration methods for the
discrete-form vortical equation of motion. This does not
mean, however, that methods of this type must be totally
banned here, because we can choose another Ð no longer
solenoidal Ð vector to uniquely characterize the motion of
a material point.

3 Differentiating the function m in the rot p 0 vector actually produces some

additional terms in the equation. Volume integration (using the continuity

equation) eliminates them only in the case of a centrally symmetric

distribution of the function m over the volume of a spherical body (the

d-function meets these requirements in the limiting case) and for an

incompressible substance. All this can be avoided by starting with the

Eulerian form of the equation of motion for the substance.

4 As first shown by Cartan [7], it is this interpretation of the Stokes

hydrodynamic lemma on the conservation of velocity circulation which

may serve as the basis for Hamiltonian mechanics; an example of the

systematic development of this idea is V I Arnol'd's approach to the

construction of Hamiltonian mechanics [5].
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In all circumstances, the vector we can use for this purpose
is the radius vector r of a point, because for this vector we have
the formula

r � grad
r 20
2
; �9�

where r0 is the distance from the origin to the point.
It is this fact which will be used below when formulating

the invariant version of the potential integration method for
Eqn (2) in the stationary case.

3. Formulation of the problem

Let us consider the vortical equation (2) in the stationary case,
when the velocity of a material point does not depend on time
explicitly:

gradHÿ �V� rotV� � 0 ; �10�

where H is the Hamiltonian normalized to the mass of the
material point:

H � 1

2
V 2 � j : �11�

The fact that we limit our consideration to the stationary
case means the following.

For an arbitrarily specified dependence of the potential
function on the distance to the material point Ð
irrespective of the initial conditions of its motion but
under some assumptions about the possible values of the
Hamiltonian Ð we wish to find the complete family of the
trajectories of the point, which, for any given values of the
Hamiltonian, is in one-to-one correspondence with the given
potential of the external forces.

Clearly, after fully establishing the geometric picture of
the motion, whether it has beenmonitored for an infinite time
(e.g., for infinitemotions) or (for periodicmotions) for a finite
time (in both cases the time variable is excluded), it is not
difficult to establish the time schedule for the motion of a
particle along a preassigned family of trajectories. It suffices
to impose specific boundary conditions that are compatible
with this family of trajectories on the particle's motion in
space and time.

The following limitation relates to the fact that we will
consider, for simplicity, not all the motions possible for a
given potential, but only a certain class of them, such that
their family of trajectories satisfies a certain condition.
Namely, we will consider plane motions along two mutually
orthogonal families of geodesics for which the components of
the fundamental metric tensor 5 are equal:

g11 � g22 � g �12�

at any point of Euclidean space.
This latter condition, as will become clear later on, is

imposed in order to reduce the problem of searching for
geodesics to the function theory of complex variables.

It is clear that in view of Eqn (9), the radius vector of a
point in any coordinate system with origin at any point O at

rest is the irrotational vector

rot r � 0 ;

and we notice also that for plane motions one has

div r � 2 : �13�

In the Cartesian coordinate system, the vector r can be
expanded in terms of the unit vectors x01, x02 as follows

r � x1�Z; x�x01 � x2�Z; x�x02 ; �14�

where the functions x1; 2 in any orthogonal, cylindrical type
coordinate system �Z; x; x3� should, as a consequence of
Eqns (9) and (13), satisfy the equation

Dr 20 � 4 ; �15�

where D is the Laplacian in the curvilinear coordinate system
used.

For the systems which comply with relations (12), so that
g11 � gZZ, g22 � gxx, Eqn (15) is satisfied if the functions
x1; 2�Z; x� are harmonic.

This means that the Cartesian components of the vector r
must meet the Cauchy ±Riemann conditions

qx1
qZ
� qx2

qx
;

qx1
qx
� ÿ qx2

qZ
; �16�

from which it follows that a plane vector r can be considered
as an analytical function

W � x1�Z; x� � ix2�Z; x� �17�

in the complex plane6 y � Z� ix. Hence, we should try to
reduce the problem of integrating the equation (10) in partial
derivatives to one of finding the analytical function W of a
single variable y.

Let us see how Ð and under what conditions Ð we can
implement this idea.

By and large, the problem is to map the vector equation
(10) onto the complex plane W and to obtain there
quadratures with respect to this complex function that
analytically maps Ð in accordance with Eqns (14) and
(17) Ð the infinite families �Z � const, x � const� of all the
trajectories possible under these circumstances.

Wewill thus represent Eqn (10) in curvilinear, orthogonal,
cylindrical type coordinate systems, first, which satisfy
condition (12); second, for which g33 � 1, and, third, in
which any unit vector is expressed in terms of the two others
by the formula

�g0 � n0� � x03 ; �18�

subject to the cyclic permutation rule.
The velocity vector V in Eqn (10) in the general case is

expanded in terms of the unit vectors of the plane ofmotion as

V � V1g0 � V2n0 :

5 We emphasize once again that this work is aimed not at searching for

some general solutions to the equations of dynamics but rather at

separating from them certain special types of motion, which are very

conveniently described in the `vortical theory' framework.

6 The mapping of plane motions onto the complex plane was, as it is

known, employed by B Bolin (see Ref. [8]), but he limited himself to those

solutions of Newton's equation which obey the law of areasÐ a limitation

which we will try to avoid here.
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However, of fundamental importance for our discussion
is the fact that the coordinate lines Z; x � const will be
considered here as geodesics, i.e. as the only lines along
which the material point can move. It then follows that Ð
not, of course, in general but for specified values of the
Hamiltonian Ð we can encounter only two types of mutually
orthogonal motions along the lines x � const and Z � const,
respectively:

V � V1g0 ; �a�
V � V2n0 : �b�

The vortical equation (10) is considerably simplified
under these circumstances. Before writing it down in full, let
us write separately its first and second terms for the motions
(a) and (b). Using the conditions (12) and Eqns (18) we find

gradH � 1���
g
p
�
qH
qZ

g0 �
�
q�V 2

1 =2�
qx

� qj
qx

�
n0

�
; �19a�

�V� rotV� � ÿV1

g

q� ���gp V1�
qx

�g0 � x03�

� 1���
g
p
�
1

2
V 2

1

1

g

qg
qx
� q�V 2

1 =2�
qx

�
n0 ; �20a�

gradH � 1���
g
p
�
qH
qx

n0 �
�
q�V 2

2 =2�
qZ

� qj
qZ

�
g0

�
; �19b�

�V� rotV� � V2

g

q� ���gp V2�
qZ

�n0 � x03�

� 1���
g
p
�
1

2
V 2

2

1

g

qg
qZ
� q�V 2

2 =2�
qZ

�
g0 : �20b�

Substituting Eqns (19a), (19b), (20a), and (20b) into
Eqn (10) yields the following two sets of scalar equations

qH
qZ
� 0 ; �21a�

1

2
V 2

1

1

g

qg
qx
� qj

qx
; �22a�

qH
qx
� 0 ; �21b�

1

2
V 2

2

1

g

qg
qZ
� qj

qZ
: �22b�

Equations (21a), (21b) express the existence of energy
integrals when moving along geodesics. Indeed, from
Eqn (21a), for example, it follows that in motion along the
lines x � const the Hamiltonian may only depend on the
variable x [i.e. on precisely along which line (from the infinite
set x � const) the point moves], and its value is fixed,
H � h�x�, and remains unchanged during the particle's
entire motion. The same is true of Eqn (21b), the only
difference being that hereH � h�Z�.

Further, Eqns (22a) and (22b) in fact yield the normal
(with respect to the trajectory) acceleration of the point and
generalize the Huygens formula for centripetal (or centrifu-
gal) acceleration. Indeed, it can be shown [4] that

1

2g
���
g
p qg

qx
� 1

R1
;

1

2g
���
g
p qg

qZ
� 1

R2
;

where R1; 2 are the local radii of curvature of the correspond-
ing geodesics, x � const and Z � const. Hence Eqns (22a) and
(22b) can be rewritten in the Huygens form

an1;2 �
V 2

1; 2

R1; 2
;

where an1;2 are the normal components of the acceleration the
material point experiences when moving along curvilinear
trajectories that belong to corresponding families.

We can at once say, however, that this form is extremely
inconvenient for integration, so we must make use of
Eqns (22a), (22b), in which the local radius of curvature is
factorized by functions that also relate to local curvature; but
this approach is the most convenient for integration and it
enables a transfer to the complex planeW.

Thus, from the existence of energy integrals, and in view of
Eqn (11), we have

h�x� � 1

2
V 2

1 � j ; �23a�

h�Z� � 1

2
V 2

2 � j : �23b�

From these equations we may obtain the expression for
the `kinetic energy' �1=2�V 2

1; 2, which when substituted into
Eqns (22a) and (22b) yields the compatibility conditions for
the equations of each set:

h�x� qg
qx
� q�gj�

qx
; �24a�

h�Z� qg
qZ
� q�gj�

qZ
; �24b�

which are none other than the integrability conditions for
Eqn (10) within the restrictions imposed.

These are precisely the basic equations whose mapping
onto the complex planeW we must now obtain.

4. Zero-Hamiltonian motions.
Multiplicative potentials
and hyperelliptical motions

From the point of view of transfer to the complex plane
W, Eqns (24a) and (24b) possess the necessary symmetry,
and the main point here is that on the right-hand sides of
these equations we differentiate the product of the
unknown function g and the given function j. It is this
fact which is the prerequisite for relating the potential j to
the function W on the complex plane W and for mapping
the orthogonal families of plane mechanical trajectories
onto it.

What makes this possible is the fact that all the quantities
entering Eqns (24a) and (24b) can be expressed in terms of the
functionW.

Indeed, note first that in view of Eqns (14) and (17), the
square of the distance from the origin to any point on the
plane is given by

r 20 �WW �25�

(hereinafter a bar above the symbol denotes the operation of
complex conjugation). Second, the square of the distance
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from a point with Cartesian coordinates �a1; a2� to any other
point on the plane is also expressed in terms of the unknown
functionW:

r 2 � �Wÿ a��Wÿ �a� ; �26�
where a � a1 � ia2.

Next, gZZ and gxx by definition are none other than

gZZ �
�
qx1
qZ

�2

�
�
qx2
qZ

�2

;
�27�

gxx �
�
qx1
qx

�2

�
�
qx2
qx

�2

:

In particular, it is seen that the condition (12) is equivalent
to the Cauchy ±Riemann conditions (16).

Now the first derivative of the required function on a
complex plane y can be represented in two equivalent forms

W 0 � dW

dy
� qx1

qZ
� i

qx2
qZ

;
�28�

W 0 � i

�
qx1
qx
� i

qx2
qx

�
:

Comparison of Eqns (27) and (28) shows that

g �W 0W 0 : �29�

Relation (26) also makes it possible to relate the known
function j to the unknown functionW.

If the center of forces is displaced from the origin, thenj is
a function of the distance r:

j � �F �r� ;

where F is a generally arbitrary function determined by the
conditions of the problem.

Because r is related toW by Eqn (26), we arrive at

j � �F
� �������������

Wÿ a
p �������������

Wÿ �a
p �

; �30�

where a can also be zero if the center of external forces
coincides with the origin.

We note that the quantities related to the geometric
characteristics of the particle's trajectories relative to the
origin [Eqns (25) and (29)] and to the center of forces
[Eqn (26)] are given by factorized expressions with complex
conjugate multipliers.

Let us impose a similar requirement on the potential
function

j � �F
� �������������

Wÿ a
p �

F
� �������������

Wÿ �a
p �

� �FF : �31�

While this requirement clearly puts serious constraints on the
analytical form of the potentials, it provides a very simple way
to make a transfer to the complex plane.

At the same time, the most interesting case of power
functions satisfies the above requirement, thus enabling us to
write down

gj � �ZZ ; �32�
where

Z � FW 0 :

Let us first consider the simplest possible case of motions
with a zero Hamiltonian.

V I Arnol'd, when generalizing [8] Bolin's theorem on the
distinctive duality of the Newton and Hooke laws of
attraction, obtained, in particular, the function W for this
case, too. The essential point to be made here is that the proof
of the Bolin theorem heavily relies on the law of areas and the
algebraic properties of the Joukowski function and therefore
involves unnecessary constraints which can well be disposed
of, if a more systematic method is applied. This is always very
important because otherwise some exceptions (to be consid-
ered below) to the theorems may emerge.

From Eqns (11) it is apparent that motions with a zero
Hamiltonian are achieved only in the case of negative
potentials, and these consequently correspond to attractive
forces for negative powers, and to repulsive forces for positive
powers.

The transfer to the complex plane W from Eqns (24a),
(24b) with their left-hand sides both being zero �h�x� � 0,
h�Z� � 0�, but with qg=qx; qg=qZ 6� 0, does not take much
effort and leads, as it should, to the same equation for both
types of motions:

FW 0 � C ; �33�
where C is a constant.

In the absence of external forces �F � const�, Eqn (33)
gives the solutions

W � Cy �C � C1 � iC2� �34�
with constant g, and Eqns (24a) and (24b) are satisfied for
arbitrary nonzero values of the Hamiltonian.

Since Eqn (34) implies that

x1 � C1Z� C2x ; x2 � C2Zÿ C1x ;

it follows that the geodesics of an empty space are two
mutually orthogonal families of straight trajectories. For a
fixed nonzero energy level, the point moves with a constant
velocity along these trajectories. Hence, the Galilean law of
inertia is contained in the vortical equation of motion.

We turn now to motions with zero Hamiltonian and
g 6� const.

For power and normalized potential functions with the
force center at the origin, namely

j � ÿr a0 ;

where a is any real number, by reference to Eqn (25) we find

F �W a=2 :

From this, setting �1� a=2�C equal to unity in Eqn (33),
we obtain the equation

W a=2 dW � dy
1� a=2

;

from which we have for a 6� ÿ2:
W � y 2=a�2 : �35�

For a � ÿ2, we find separately that

W � exp y : �36�
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Note that this is precisely the `exception' which appears in
the Bolin ±Arnol'd theorem for zero-Hamiltonian motions in
the field of central forces with the potential displaying a
power-law dependence on distance [8] and which is thus
incorporated into a unified scheme thanks to a more
systematic approach to the integration of the equation of
motion (importantly, the vortical type of equation).

Further integration reduces to quadratures and is in
principle identical to the integration of straight-line motions.

Let us illustrate this operation of integration by taking
motions along geodesics x � const [case (a)] as an example.

Since

V1 � ds

dt
� ds

dZ
dZ
dt
� ���

g
p dZ

dt
; �37�

where s is a natural parameter (the length of an arc of the
trajectory), it follows from Eqn (22a) that the equality holds
true:

V1 �
�����������������������
2g �qj=qx�

qg=qx

s
�38�

with g given by Eqn (29).
Substituting Eqn (38) into Eqn (37) and integrating over Z

(x being a fixed parameter) yields an equation for determining
the time of motion as a function of the current value of this
coordinate:

t �
� ���������������������

2 �qj=qx�
qg=qx

s
dZ� C1 ;

where the constant C1 is determined by the initial conditions.
Let us now consider in detail Eqn (35) for the case of

attractive forces �a < 0�.
For theNewton potential �a � ÿ1�we have, as we should,

the orthogonal families of confocal parabolas, because

W � y 2 �x1 � Z 2 ÿ x 2 ; x2 � 2Zx� :

Generally, the functionW performs a conformal mapping
of the plane y, which is caused by external forces and the result
of which is that the straight geodesics of an empty space (i.e.
the coordinate lines of the plane y) transform into the
curvilinear (and not necessarily infinite) plane geodesics of
the Euclidean space (the coordinate lines of the planeW ) with
the potential j residing there.

One further point to note is that for a 2 �0;ÿ2� the
motions remain infinite (as they should in this case), and the
infinitely distant points of the plane y remain infinitely distant
on the planeW as well. The fall onto the center along straight
trajectories takes place along the geodesics Z � 0 and x � 0 (a
parabola degenerates into a ray). As the power a approaches
ÿ2, the `parabolas' are flattened, and for a � ÿ2 we arrive at
the limiting formula (36) with

g � exp 2Z �x1 � exp Z cos x ; x2 � exp Z sin x� :

Here qg=qx � 0, implying that zero-Hamiltonian motions
proceed only along the rays Z � const and end up with the fall
onto the center (with the `parabolas' being totally flattened
into rays for any, not only zero, values of the parameter x).

For a 2 �ÿ2;ÿ1�, all curvilinear trajectories become
finite and involve a fall onto the center. The only trajectories

which remain infinite are straight ones terminating with a fall
onto the center along the rays (their images on the y plane are
always geodesics passing through its origin), and they will not
be pursued further.

For finite motions closing in the force pole (the zero point
of the planeW ), the origin of the planeW becomes the image
of the infinitely distant points of the plane y. For negative
integer powers �a < ÿ2�, the following features are observed
in the behavior of these trajectories.

For a � ÿ3, the families of trajectories are, as already
noted, cardioid-like curves closed in the center.

The case a � ÿ4 corresponds to Newton's theorem on the
attractive force being inversely proportional to the fifth
power of the distance, when trajectory families consist of
circumferences touching the force center [5, 8].

By further decreasing a in Eqn (35), fractional powers
appear. Accordingly, the trajectories will exhibit several
center-closed branches which are gradually `flattened' as
their number increases. However (considering the fall
onto the center as an elastic impact), the motions here
will remain periodic as before. It is only for nonintegral
a from the interval a 2 �ÿ2;ÿ1� that motions, while
remaining finite, will not be periodic and will, within an
infinite period of time, everywhere densely fill the circular
region around the force pole.

Let us look at some other possibilities that arise from the
fact that the method employed does not rely on the law of
areas.

Potentials which are not subject to this law but which
again satisfy formula (31) (the necessary condition here) and
depend only on distances can be constructed immediately as
the product of several central type potentials with their poles
shifted with respect to each other. Therefore we will call such
potentials `multiplicative'. Let us consider one such example,
one with two centers:

j � ÿ 1

�r1r2�m ; �39�

where r1; 2 are the distances from any point on the plane to the
two force poles, which are conjugate to each other by the
condition of the mirror symmetry of their coordinates with
respect to the origin, and m > 0.

We set m equal to unity and place the conjugate centers
themselves on the axisOx1, at distances a on the right and on
the left from the origin. The image of the potential (39) on the
planeW will be the function

F � 1������������������
W 2 ÿ a 2
p :

Assuming for convenience that the constantC in Eqn (33)
is imaginary, C � i=a, we have after performing the integra-
tion that

arccos
W

a
� y ;

or finally

W � a cos y : �40�

From this we conclude that `the multiplicative potential'
of attractive forces, given byEqn (39) withm � 1 andwith the
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force centers at the two foci �ÿa; a� of the ellipse, is capable of
maintaining the motion of a material point at a zero-energy
level along elliptic trajectories (the analysis of a Lyapunov
stability of orbits is omitted in this paper).

Because the potentials of this type cannot be viewed as
central, this conclusion is not in disagreement with the well-
known Bertrand theorem [9] which states that of all the
central potentials only two Ð Newtonian and Hookian Ð
have relevance to elliptic motions.

Figure 1 shows the families of trajectories for the motion
of a point, which result from the analytical properties of the
function (40) (in accordance with Eqns (17) and (40), the
Cartesian coordinates of the point are given by

x1 � a cos Z cosh x ; x2 � ÿa sin Z sinh x ;

implying that the geodesics x � const are the ellipses).
The notation we used in the figure is as follows

u1 � cos Z ; u2 � cosh x ;

e1 � g0 ; e2 � n0 ; r1; 2 � a�u2 � u1� :

The angle g (true anomaly) and the eccentric anomaly Z
are related by the well-known formula [10]

tan
g
2
�

������������
1� e

1ÿ e

r
tan

Z
2
;

where e is the eccentricity �e � uÿ12 �.
We next set m � 2 and C � ÿi=a in Eqns (39) and (33).

Integrating Eqn (33) we obtain

W � a tan y :

By separating the real and imaginary parts in this expression
one can show that one type of zero-Hamiltonian motions in
the field of forces with the potential (39) for m � 2 reduces
to closed finite motions without falling onto the center,
which occur along the circumferences u2 � const
�x � const� of the bipolar coordinate system [11] (Fig. 2).
The notation in Fig. 2 is the same as in Fig. 1, the only
difference being that here g � Z. From this figure we can see
that for this type of motions one of the force poles is always
external in reference to these circumferences and that the

motions proceed around the second pole Ð but with the
central symmetry being disrupted.

Themotions of the second type occur along the circumfer-
ences u1 � const �Z � const�, with the poles touching twice
(see Fig. 2). It is not difficult to show that with respect to this
type of motion the `multiplicative potential' (39) and the
central potential j � ÿrÿ41; 2 are interchangeable (as indeed
they should be due to theNewton theoremmentioned above).

Finally, let us consider one more integrable example of
this kind with two pairs of conjugate force centers; the
coordinates of the second pair �ÿb; b� are again brought in
coincidence with the axis Ox1, and it is assumed that b > a.
The image of the potential

j � ÿ 1

r1r2r3r4
; �41�

all the singularities of which are integrable, on the complex
planeW takes the form

F � 1���������������������������������������������W 2 ÿ a 2��W 2 ÿ b 2�p :

Introducing the parameter k � a=b, Eqn (33) becomes

dw

b
������������������������������������������1ÿ w 2��1ÿ k 2w 2�p � C dy

�
w �W

a

�
:

Setting C � 1=b and integrating, we arrive at the elliptical
integral of the first kind, namely

y �
� w

0

dx����������������������������������������1ÿ x2��1ÿ k 2x2�p ;

and it is by inverting this integral that we can express the
required function in terms of the elliptic Jacobian function:

W � a sn �y; k� : �42�

It can be shown that in conformity with the properties of
the function (42) (the details of the corresponding conformal
mapping can be found in the book by H Bateman and

F 0F x3

x2 e2

e1

x1aa

a�u2 � u1� a�u2 ÿ u1�

u1 � const

u2 � const

g

Figure 1. Families of mechanical trajectories mapped by the analytical

functionW � a cos y.

x2

x1A B0

r1

r2

e2

g e1

u2 � const

u1 � const �u1 � cos g�

Figure 2. Families of mechanical trajectories mapped by the analytical

functionW � a tan y.
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A ErdeÂ lyi [12]), the straight geodesics of an empty space with
the potential (41) appearing in it transform Ð for zero-
Hamiltonian motions Ð to a biorthogonal system of the
fourth-order confocal bicircular curves.

It should be stressed that the elliptic function (42) by
no means maps elliptic motions [as is the case with the
trigonometric function (40)], but already maps hyperellip-
tic Ð and even periodic Ð motions.

It is not difficult to recognize that a system approach to
integrating the vortical equation of motion (10) can theoreti-
cally provide an infinite number of examples of such motions
in the force field of `multiplicative potentials' (with integrable
singularities at the poles)

j � ÿ
YN
i� 1

1

r1i r2i
;

where r1i, r2i are the distances to the point from two force
centers of the ith pair of conjugate force poles, and N is the
number of such pairs.

Clearly, the function W can emerge here from the
inversion of the `normalized' hyperelliptical integrals

y �
� w

0

�
�1ÿ x2�

YNÿ1
i� 1

�1ÿ k 2
i x

2�
�ÿ1=2

dx ; �43�

where ki � a=bi; �ÿa; a�; �ÿbi; bi� are the coordinates of the
pair closest to the common center and those of the ith pair of
poles, respectively. Notice that for an arbitrary angular
orientation of axes of the conjugate pairs of force centers
relative to the axis Ox1, their coordinates bi may also assume
complex values here.

The inversion of the integral (43) is equivalent to using the
generalized Jacobi functions which, unlike the usual elliptic
functions in Eqn (42), will depend not on a single parameter k
(its absolute value) but on several ki at once. It is interesting to
emphasize that the generalized `hyperelliptic functions' of this
kind can map `hyperelliptical motions' along geodesics in the
form of polycircular curves of order higher than four. It is
worthwhile to note, therefore, that there exists a relation
between motions in the `multiplicative' and central force
fields, which reveals itself due to the fact that function (40),
obtained here for zero-Hamiltonian motions and for those in
the field of `multiplicative type' forces, is at the same time the
solution formotions with a nonzero energy level in the field of
gravitational and elastic forces.

5. Nonzero energy level motions.
The Bertrand theorem

The integration of Eqn (10) for H 6� 0 presupposes the same
sequence of actions as before, the first and most important
stage being the determination of the function W from the
integrability conditions for Eqns (24a) and (24b).

Let us represent them in the following form

h�x� � q�gj�=qx
qg=qx

; �44a�

h�Z� � q�gj�=qZ
qg=qZ

: �44b�

We next take advantage of the fact that motions along the
geodesics x � const and Z � const are executed conserving

the total energy, which can be expressed by the equations

qh�x�
qZ
� 0 ;

qh�Z�
qx
� 0 :

From this, substituting the right-hand sides of Eqns (44a)
and (44b) and changing to differentiating on the complex
planeW �W �with respect to y ��y �, we find using Eqn (32) and
the results

qg
qx
� i�W 0W 00 ÿW 0W 00� 6� 0 ;

qg
qZ
� �W 0W 00 �W 0W 00� 6� 0

that the following equations hold:

�
� �ZZ 00 ÿ ZZ 00�
�W 0W 00 ÿW 0W 00�

ÿ �ZZ 0 ÿ ZZ 0�
�W 0W 00 ÿW 0W 00�2 �W

0W 000 ÿW 0W 000�
�
� 0 ; �45a�

� i

� �ZZ 00 ÿ ZZ 00�
�W 0W 00 �W 0W 00�

ÿ �ZZ 0 � ZZ 0�
�W 0W 00 �W 0W 00�2 �W

0W 000 ÿW 0W 000�
�
� 0 : �45b�

From these it follows that the existence condition common to
both interrelated motions is the compatibility condition for
the solutions of two equations:

ZZ 00 ÿ ZZ 00 � 0 ; �46�
W 0W 000 ÿW 0W 000 � 0 : �47�

Hence, under the restrictions imposed earlier, these are
precisely the equations we could rely on when transferring
to the complex planeW.

Let us first consider the second of these equations because
it has no relation to external forces while, on the other hand,
immediately placing restrictions on the geometric shape of
possible trajectories.

The structure of Eqn (47) clearly shows that it is satisfied
identically only if

W 0 � am 0�l; y� ;

W 000 � a

l2
m 000�l; y� ;

with the function m being one of the particular solutions of the
equation

m 00 � l2m � 0 ; �48�

where a and l are certain constants. Notice that it makes no
sense to ascribe to the last constant any other value than unity
because, otherwise, a particular solution of the equation (48):

m � cos �ly�

is reduced to the form

m � cos y
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anyway by simply calibrating the variable whose real part has
no relation initially to any angular coordinate g 2 �0; 2p�.

Thus, we see that for motions with a nonzero energy level
our earlier restriction (12) has a consequence that any other
curvilinear motions Ð apart from elliptic �x � const� and
hyperbolic �Z � const�Ð are altogether ruled out7.

It is easy to see that Eqns (46) and (47) are entirely similar
in structure. Therefore, transferring to the complex plane W,
we make the same substitutions as before for the solutions to
Eqn (46), namely

Z � FW 0 � qz�s; y� ; �49�
Z 00 � q

s 2
z 00�s; y� ;

where q is a constant, and z is one of the particular solutions of
the equation

z 00 � s 2z � 0 :

In other words, as a function z we can take either

z � cos sy ; �50�

or

z � sin sy ; �50 0�

and the particular choice, as well as the determination of the
constant s, should be made in a unique way from Eqn (49),
because its left-hand side contains the image of the potential
function F.

At the same time, we have already seen that the function
W is none other than a cos y. This restriction [which emerged
fromEqn (47)] imposes conditions both of its own and as fully
determined by Eqn (49) on the selection of possible combina-
tions of the functions z and F. Indeed, from all that has been
said it follows that Eqn (49) can now be represented in the
form

ÿaF sin y � qz�s; y� : �51�

From this last equation and Eqns (50), (50 0) it follows that the
only possible choice for F is a trigonometric function whose
multiplication by sin y using trigonometric rules would
produce the right-hand side of Eqn (50) or (50 0) with a value
of s admissible here.

We see that the restrictions placed on and hence the
algorithm of selecting the function F supporting elliptic and
hyperbolic motions with a nonzero energy level are here
related exclusively to the transformation rules for trigono-
metric functions Ð i.e. to elementary operations Ð which,
from themethodical point of view, is undoubtedly a success of
this approach.

After these remarks it is not difficult to recognize that
there exist generally only three trigonometric functions F
capable of satisfying Eqn (51) with the right-hand side in the
form of the function (50) or (50 0). Two of these functions are
related to the Newtonian potential (with poles at the foci of

the ellipse):

F1 � 1�������������
Wÿ a
p � 1

i
���
a
p �������������������

1ÿ cos y
p � ÿi�����

2a
p

sin �y=2� ;

F2 � 1�������������
W� a
p � 1�����

2a
p

cos �y=2� ;

and for them we have from Eqn (51) that

q1 � i
�����
2a
p

; z1 � cos
y
2
; s � 1

2
;

q2 � ÿ
�����
2a
p

; z2 � sin
y
2
; s � 1

2
:

The third function, quite naturally, is none other than the
image of the Hookian potential for elastic forces:

F3 �W � a cos y ; q3 � ÿ a 2

2
; z3 � sin 2y ; s � 2 :

Thus, employing the vortical form of the equation of
motion, we have proven the well-known Bertrand theorem
already mentioned above, because no functions F other than
those indicated are capable of satisfying the trigonometric
equation (49) for any value of the parameter s except
s � 1=2; 2.

Comparison of the above proof with that given by
H Alfven (and whose reproduction takes several pages in
Ref. [9]) shows that, in addition to the criterion of simplicity,
the vortical equation approach is clearly superior in laconism.

Finally, as another illustration of the applicability of the
method, we consider one special case of the periodic motion
of a point in the field of two gravitating centers at rest.

The general problem of determining the mechanical
trajectories for a point moving in the field of such forces was
first considered by Euler and, later, in more detail, by
Legendre (see book [13]). According to the classification
made by C Charlier [13], the motion to be discussed belongs
to the category of periodic `planetary motions'. These
motions, unlike periodic `satellite motions' (exemplified by
motions along the geodesics u2 � const, shown in Fig. 2),
involve both attracting centers and proceed along elliptic
orbits.

From the practical point of view, this question is of
interest in, for example, including the effect of Earth's
oblateness on the motion of artificial satellites [5]. Other
practical examples of the application of this question to
celestial mechanics are given in the book by Charlier [13].

Themost important initial stage of integrating the vortical
equation here, too, reduces to elementary trigonometric
operations. Indeed, it is necessary first to prove that the
motions will be elliptic, but they will not, however, obey the
second Kepler law as the integration of formula (38a) will
later show.

To solve the first problem, it is necessary again to address
the integrability conditions (44a) and (44b) and to substitute
the potential function

j � ÿ p1
r1
ÿ p2

r2
�52�

into them; here, p1; 2 � GM1; 2,M1; 2 are the masses of the two
gravitating centers located at the foci of the ellipses (see
Fig. 1), and G is the gravitational constant.

7 Equation (48) does not rule out the trivial case of straight-line motions

ending with a particle's falling onto the center if we take l2 � ÿ1, but we
do not take them into account here.
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Here, the quantity gj in Eqns (44a) and (44b) has the form

gj � ÿ�Z1Z1 � Z2Z2� ;

where

Z1; 2 � F1; 2W
0 ;

and F1; 2 are the images of the Newtonian potential of the
gravitating poles:

F1; 2 �
�������������
p1; 2

W� a

r
:

It can be shown that the result of differentiating
Eqns (44a) and (44b) in the complex plane again reduces
to compatibility conditions for the solutions of two
equations, which this time areX

i� 1; 2

�ZiZ
00
i ÿ ZiZ

00
i � � 0 ; �46 ��

W 0W 000 ÿW 0W 000 � 0 ;

and which differ only in the first equation from the pair (46),
(47).

For periodic `planetary motions' �W � a cos y� we have

Z1 � F1W
0 � ÿ

����������
2ap1

p
sin

y
2
;

Z2 � F2W
0 � i

����������
2ap2

p
cos

y
2
:

Equation (46�) for this kind of motion is obeyed due to the
fact that each of the terms vanishes separately, which was to
be shown.

6. Conclusions

Let us summarize briefly the main results of this work and
examine likely prospects for the future.

First, with regard to the theoretical justification for
applying the Euler equation to the motion of point objects
we note the following.

The fact that this equation (or, more precisely, its left-
hand kinetic side) is the limiting form of the spacelike part of a
certain 4-vector resulting from relativistically invariant
operations on the momentum density 4-vector (which has
clear physical meaning) Ð this fact, in our opinion, brings
some clarity to the situation. It is another matter that in doing
so we should account for the fact that real objects are by no
means pointlike. And questions also remain as to, for
example, how and under what conditions the spatially
nonuniform distribution of mass density over volume will
contribute to their inertia. We should also account for the
effects due to the fact that real solids are not at all absolutely
rigid, etc.

Generally, the continual form of the equation of motion
of a `substance' as a starting point for developing equations of
motion for objects with a finite and not necessarily constant
volume can impart somemomentum to this field. Problems of
this kind Ð ones involving continual methods, but in
application to the Lagrange and Hamiltonian versions of
mechanics Ð have already been treated in the scientific
literature (see, e.g., monograph [14]).

With regard to the general purposes and specific results of
the present work, we should say the following.

Conceptually, this work does not belong to the group of
works that traces the hydrodynamics of Hamiltonian
systems in either the narrow or broad sense of the word
(variational calculus). This can already be seen from the fact
that this work is concerned with the development of
potential (rather than vortical) integration methods and
that it treats the Euler equation directly as the basic
equation of motion. One may even say, therefore, that this
work is in some opposition to the methods of Hamiltonian
mechanics Ð but only in the sense that hydrodynamic
equations are not fundamental there [1, 2].

By and large, of course, the problem boils down to what
kind of conveniences this or that method offers and precisely
where. In this sense, even though the results of our work relate
to a narrow enough area of research, they show that at least in
this narrow area the direct integration of the Euler equation
yields something.

In this connection, there arises yet another stratum of
comparisons because the direct integration of the stationary
Euler equation state is in fact the concern of the hydro-
dynamics of steady-state flows.

Comparisons of this kind show that a difference in the
subject-matters creates significant distinctions both in the
methodology and in the physical interpretation of the
results.

Indeed, unlike hydrodynamics, in which the subject-
matter is a really existing velocity field in a fluid and which,
in addition, always involves pressure, the integration of the
Euler equation as applied to the motions of point objects
(with pressure `turned off') offers the function W as the
solution. The domain of definition of this function is the
entire plane of motion of the object, which itself occupies no
volume. Therefore, the functionWmaps not real motions but
rather the everywhere dense, infinite families of virtual
trajectories, which acquire reality as a result of `reduction',
occurring immediately after the particular boundary condi-
tions of motion in space and time have been specified.

Note that independent of the object being compared the
convenient and simple manner in which the key features of
particle motions are expressed here is due primarily to the fact
that it proves possible to formulate Ð and to apply to the
vortical equation of motion Ð an invariant version of the
potential integration method. True, thus far this can only be
achieved for a certain class of motions, a class which by no
means includes finite nonclosed trajectories with a nonzero
energy level. But then this class includes Ð and in a quite
systematic way Ð those motions which are supported by
`multiplicative potentials'. It is of great importance here that
all these motions are, in principle, integrable and might be
represented in terms of generalized hyperelliptic functions
obtainable by inverting the corresponding Abel integrals.

In methodical terms, the sum total of this work is the
highlighting of the vortical form of the equation of motion as
a means for developing an invariant version of potential
integration methods for the motions of point objects.

Here is what V I Arnol'd said on this item in his book [5],
referring also to the Hamilton ± Jacobi method Ð which is
potential in nature andwhich is well known to be rooted in the
nonvortical form of the equation of motion:

``Turning to the apparatus of generating functions, I can
say that it is depressingly noninvariant and heavily relies on
the coordinate structure in the phase space f�P;Q�g. Wemust
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therefore employ the apparatus of partial derivatives Ð but
this is an object whose very name suggests ambiguity.''

Transfer to the complex plane clearly does solve this
problem, and here the method itself starts looking for ways
to find the most convenient coordinate system Ð thereby
displaying its invariance. This, however, is achieved at the
expense of employing the condition (12) which narrows the
class of motions being examined. To change to other classes
of motions, while remaining within the `vortical theory'
framework, one should abandon the condition (12). That
this is, in principle, possible may be implied by an example of
centrally symmetric circularmotionsÐan example which, on
the one hand, is already not subject to the condition (12), but,
on the other hand, from the viewpoint of integrating
Eqns (24a), (24b), is too elementary to deserve special
treatment.

References

1. Arzhanykh I S Pole Impul'sov (Field of Momenta) (Tashkent:

Nauka, 1965)

2. Kozlov V V Obshchaya Teoriya Vikhre|̄ (General Theory of

Vortices) (Ser. ``Regulyarnaya i Khaoticheskaya Dinamika'',

Vol. 4) (Izhevsk: Izd. Dom ``Udmurtski|̄ Universitet'', 1998)

3. Arzhanykh I S Opyt Klassifikatsii Matematicheskikh Issledovani|̄:
Kategorii Matematicheskogo Poznaniya (Attempt at Classifying

Mathematical Studies: Mathematical Categories of Knowledge)

(Tashkent: FAN, 1982)

4. Morse P M, Feshbach HMethods of Theoretical Physics Pt. 1 (New

York: McGraw-Hill, 1953) [Translated into Russian (Moscow: IL,

1958)]

5. Arnold V I Matematicheskie Metody Klassichesko|̄ Mekhaniki

(Mathematical Methods of Classical Mechanics) (Moscow: Nau-

ka, 1989) [Translated into English (New York: Springer, 1997)]

6. Pauli W RelativitaÈtstheorie (EncyklopaÈ die der mathematischen

Wissenschaften, Bd. 19, Ed. A Sommerfeld) (Leipzig: Teubner,

1921) [Translated into English: Theory of Relativity (New York:

Dover Publ., 1981)]; [Translated into Russian (Moscow: Nauka,

1983)]

7. Cartan E LecË ons sur les Invariants InteÂgraux (Paris: A. Hermann &

Fils, 1922) [Translated into Russian: Integral'nye Invarianty (In-

tegral Invariants) (Moscow-Leningrad: Gostekhizdat, 1940)]
8. Arnol'd V IGyu|̄gens i Barrou, N'yuton i Guk (Huygens and Barrow,

Newton and Hooke) (Moscow: Nauka, 1989) [Translated into

English (Basel: BirkhaÈ user Verlag, 1990)]

9. Appell P ETraiteÂ deMeÂcanique Rationnelle (Paris: Gauthier-Villars,

1926 ± 1933) [Translated into Russian: Teoreticheskaya Mekhanika

(Theoretical Mechanics) (Moscow: Fizmatgiz, 1960)]

10. Duboshin G N Nebesnaya Mekhanika. Osnovnye Zadachi i Metody

(Celestial Mechanics. Basic Problems and Methods) (Moscow:

Fizmatgiz, 1963)

11. Korn G A, Korn T M Mathematical Handbook for Scientist and

Engineers: Definitions, Theorems, and Formulas for Reference and

Review 2nd ed. (New York: McGraw-Hill, 1968) [Translated into

Russian (Moscow: Nauka, 1973)]

12. BatemanH, ErdeÂ lyi AHigher Transcendental Functions (NewYork:

McGraw-Hill, 1953 ± 1955) [Translated into Russian (Moscow:

Nauka, 1967)]

13. Charlier C L Die Mechanik des Himmels (Berlin: W. de Gruyter &

Co., 1927) [Translated into Russian: Nebesnaya Mekhanika (Celes-

tial Mechanics) (Moscow: Nauka, 1966)]

14. Kil'chevski|̄ N A et al. Analiticheskaya Mekhanika Kontinual'nykh

Sistem (Analytic Mechanics of Continual Systems) (Kiev: Naukova

Dumka, 1979)

1164 A V Kukushkin Physics ±Uspekhi 45 (11)


	1. Introduction
	2. The heuristic significance of the hypothesis for the existence of the energy--momentum...
	3. Formulation of the problem
	4. Zero-Hamiltonian motions. Multiplicative potentials and hyperelliptical motions
	5. Nonzero energy level motions. The Bertrand theorem
	6. Conclusions
	References

