
Abstract. The history of development of the theory of light
scattering and dispersion in gases is outlined, from the works
of Rayleigh, Planck, and Mandelstam to those of Lorentz and
Einstein. It is shown that of central concern in these studies
was actually the problem of thermal fluctuations in a medium.
A formula for the permittivity e�x� taking account of radia-
tion friction forces is derived for the case of an isotropic
medium.

1. Introduction

Early in the 20th century, i.e. approximately 100 years ago,
there occurred a polemic concerning the problem of light
scattering in gases. The starting point was the work of Lord
Rayleigh [1] who described the scattering of light in the
terrestrial atmosphere, provided an explanation for the blue
color of the sky, and derived the Loschmidt number to the
correct order of magnitude using the experimental data as the
base.

This paper came under criticism by Mandelstam (1907),
who also touched upon Planck's paper on dispersion theory
in addition to Rayleigh's paper. A debate broke out between
Mandelstam and Planck (1907 ± 1908). Recalling it seems to
be rather instructive.

Getting ahead of the story, it is pertinent to note that
Lorentz also advanced his views on the problem (1910), even
though he did not participate in the polemic. He performed
calculations of the permittivity e�o� of gases, which led him to
the results of Planck and Rayleigh (for more details, see
Section 3 below).

Today, commenting upon the works of even the great
physicists, which date back to a century ago, is easy and at the
same time difficult. Easy, because many of the present-day
truisms were then completely unknown.Difficult, because the
central physical problems of that time are not topical today.

Everything may appear to be trivially simple. In particular,
this applies to the problem of light scattering and the
dispersion theory.

When discussing the Mandelstam ±Planck polemic I will
endeavor to assume an unbiased attitude. I will note fallacies
and inaccuracies, but in doing this I will not simplify the
problems that faced the physicists a century ago. I will also try
to show that the dispute betweenMandelstam and Planckwas
actually concerned not with a particular problem of light
scattering. The case in point was a controversy about whether
a medium can be homogeneous despite the thermal molecular
motion in the medium. Or whether a medium without
fluctuations is possible, as we would put it today. But at that
time the concept of fluctuations, their unavoidable and
universal nature did not exist. The works of Smoluchowski
and Einstein made their appearance later. Planck proved to
be right in this dispute. Although he did not invoke the notion
of fluctuations explicitly, the results for light scattering in
gases he arrived at turned out to be the same as if he were
doing all the calculations with due regard for fluctuations.

2. Rayleigh scattering law

The problem of light scattering in the terrestrial atmosphere
was first considered by Rayleigh late in the 19th century [1].
He assumed that molecules scatter incoherently because they
participate in thermal motion. This allows a summation to be
made over the intensities of scattering by individual oscilla-
tors. It is customary to characterize the scattering intensity by
an extinction coefficient h[cmÿ1] which describes the attenua-
tion of intensity of a light beam along a path L in the absence
of true absorption: I�L� � I�0� exp�ÿhL�. Rayleigh obtained
the result

h�cmÿ1� � 8p
3

k4jaj2N : �1�

Here, k � o=c, a is the polarizability of an oscillator, andN is
the number of the oscillators per cubic centimeter. The
polarizability enters into the simplest formula for the
permittivity e of a medium:

e � 1� 4pNa :

In gases, outside the absorption bands, the real part of a�o� as
well as of e�o� far exceeds the imaginary part. This permits
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formula (1) to be expressed in terms of eÿ 1 � 2�nÿ 1�,
where n is the index of refraction. Eventually the Rayleigh
scattering law is commonly written as

h � 2

3p
o4

c4
�nÿ 1�2

N
: �2�

The central point of Rayleigh's paper, specifically, that
the motion of oscillators results in the incoherence of their
light scattering, was severely criticized byMandelstam [2]. His
arguments reduced to the following. The wavelength l of
visible light is of the order of 10ÿ4 cm. At the same time, for
N � 1019 ± 1018 cmÿ3 (the upper terrestrial atmosphere) the
average distance between the molecules is �R � 10ÿ6 cm.
Therefore, a volume smaller than l3 contains very many
molecules, viz. � 106. From here Mandelstam concluded
that the light scattering by the particles which make up the
medium is responsible for the light field of the same intensity
and phase, irrespective of whether the particles are at rest or in
motion. The last-mentioned statement is simultaneously
formulated in more general terms: ``an optically homoge-
neous medium cannot scatter light''.

Undoubtedly the above is correct. But the statement that
the motion is insignificant on condition that �R5 l is not true.
This is easy to verify. Induced oscillations of an oscillator in
the field E / exp �ÿiot� kR�t�� contain a factor exp �ikR�t��,
where R�t� is the oscillator coordinate. In a mean free time t
of a molecule, the phase kR�t� acquires an increment kvt,
where v is the oscillator velocity. But vt � l , where l is the
mean free path. Hence one finds

kvt � 2p
l

l ;

and the question of coherence of induced oscillations of the
oscillators in the medium should be solved by comparing l
not with �R but with the mean free path l.

But l � 1=Ns, where s is the elastic cross section. For
gases which make up the terrestrial atmosphere, s is of the
order of 3� 10ÿ16 cm2. For the optical spectral range,
where l � 0:5� 10ÿ4 cm, and altitudes H5 15 km, where
N4 4� 1018 cmÿ3, we have l5 5� 10ÿ3 cm and l=l5 1, so
that random phase shifts kvt exceed 2p. For lower layers of
the atmosphere, viz.H � 5ÿ10 km, these shifts are still large.
For instance, forH � 6 km we have 2pl=l � 1:75. The above
estimates, which rely on the model for terrestrial atmosphere
of Ref. [3], show that Rayleigh was right when treating the
light scattering by the molecules of the upper atmosphere as
incoherent.

The summary of this part of the polemic is as follows:
(1) the coherence criterion is the ratio between l and l

rather than between l and �R, as Mandelstam believed;
(2) assuming that the motion of molecules can be

neglected, i.e. considering the light scattering in the medium
where the molecules stay at rest, Mandelstam assumed that
the condition �R5 l also ensures the homogeneity of the
medium.

Here are citations of Mandelstam's papers [2, 4]:
``The air should be treated as an optically homogeneous

medium, for a cube l3 contains 5� 106 molecules'' (Ref. [2],
p. 116).

``Gases under normal conditions (at atmospheric pres-
sure) should be regarded as optically homogeneous bodies''
(Ref. [4], p. 130).

Both of these statements rest on the �R5 l criterion.

3. On the dispersion theory

What at all has the microscopic dispersion theory got to do
with the question of light scattering?

Two approaches can be pursued to calculate the extinc-
tion coefficient h[cmÿ1] for a rarefied gas. One can proceed
from the calculations of the scattering intensity and the
effective scattering cross section ssc by the particles of a
medium or proceed from the definition of h in terms of the
permittivity e�o� of the medium:

h � sscN � 8p
3

k4jaj2N ; �3�

or

h � o
c
Im e�o� . . . �4�

The difference between these formulas is as follows: no
additional constraints are imposed on a in formula (3). If a is
complex, i.e. a � a0 � ia00, the inequality a04 a00 is always (in
gases, outside of an absorption band) fulfilled. That is why in
the calculation of ssc one can assume that a is a real quantity
and obtain a (quantitatively) correct result, which was taken
advantage of in formula (2).

Im e is another matter. It is precisely the imaginary value
of e�o� and the reasons underlying its imaginary nature that
are the heart of the problem, no matter how small the Im e
quantity may be in comparison with Re e.

In his works on dispersion theory [5], Planck showed that
the attenuation of a transmitted light wave in the absence of
dissipation is determined by its scattering, resulting in the
imaginary value of the permittivity e�o�, which is determined
by the radiative damping constant grad � 2e2o2=3mc3. This
damping results from the deceleration of oscillator oscilla-
tions caused by its intrinsic radiation field E � �2=3c3� d:::, (see
Ref. [6]), where d is the oscillator dipole moment. In his
calculations Planck adopted Rayleigh's postulate that the
light scattering in the terrestrial atmosphere proceeds inco-
herently. It is precisely this result by Planck that was criticized
by Mandelstam (Ref. [4], p. 125): ``If the entire medium,
including resonators, is regarded as optically homogeneous,
no damping due to scattering should be expected in this case''.

Therefore, starting from formula (4), one should perform
calculations of e�o� taking into account the action on the
medium oscillators exerted by their radiation fields. The
intensity of scattering (or its absence) should be made
consistent with the magnitude of Im e�o�. This relationship
follows from the comparison of formulas (3) and (4).

By way of example I will consider the light scattering by a
harmonic oscillator. The induced oscillations are given by the
equation for the oscillator dipole moment d:

�d� g _d�o2
0d �

e2

m

�
E exp�ÿiot��E� exp�iot�	 ; d � ex :

�5�

Here, the term g _d describes the possible damping of oscillator
oscillations, the cause of damping in no way being defined
concretely. It is easy to calculate the polarizability a�o�, the
total cross section stot defined by the work done on the
oscillator by the field, and the scattering cross section ssc:

a � e2

m

1

ÿo2 � o2
0 ÿ iog

; �6�
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stot � 4pk Im a ; �7�
ssc � 8p

3
k4jaj2 : �8�

Here, k � o=c. Because in the general case stot � ssc � sdis,
where sdis is the dissipation cross section, there occurs an
inequality stot 5ssc, so that

Im a�o�5 2

3
k3jaj2 ; �9�

which is referred to as the optical theorem. From expression
(6) and inequality (9) it follows that

g5
2e2o2

3mc3
:

The right-hand side of this inequality is precisely the radiative
damping constant (see Ref. [6]):

grad �
2e2o2

3mc3
: �10�

If no dissipation occurs, g in Eqn (5) becomes g � grad, i.e.
the damping is determined by the light scattering alone. We
can put it somewhat differently. If an oscillator does scatter
light, the damping constant in Eqn (5) cannot be equal to
zero: g5grad.

One can see that the definition of h by formula (4) is a very
fine instrument. L I Mandelstam addressed himself to
precisely this instrument, i.e. he decided to undertake the
calculations of e�o� and in this way determine h. But he
approached the realization of this task with the assumption
that the condition �R5 l ensures the optical homogeneity of
the medium. We are reminded of the following statement
from Ref. [2]: ``The air should be treated as an optically
homogeneous medium, for a cube l3 contains 5� 106

molecules''. If so, it is assumed in advance that the calcula-
tions of e�o� in the absence of dissipation will yield
Im e�o� � 0 and h � 0.

All this took place in the days when an understanding of
the role of fluctuations was completely missing; their
universal character and principal role in several phenomena
were not recognized. An absolutely correct idea that a
homogeneous medium cannot scatter light ruled Mandel-
stam's mind. In his dispute with Lord Rayleigh he tried to
take advantage of the inequality �R5 l to actually impose
homogeneity on the medium. In Ref. [2], first of all he says
that molecular motion is insignificant, that it should be
neglected and the oscillators should be `brought to rest', and
mentions in passing that the medium therewith becomes
homogeneous. In the subsequent discussion the assertion
that the medium is homogeneous comes to be central. But
h � �o=c� Im e should be equal to zero, since the medium is
homogeneous.

By contrast, M Planck adopted, after Rayleigh, that
independent oscillators scatter light (incoherently). Starting
from the condition h 6� 0, he constructed the dispersion
theory in such a way as to obtain Im e 6� 0 and make
damping, with g � grad given by expression (10), responsible
for this. He thereby introduced fluctuations implicitly and,
what is more, correctly. Later on, when the concept of
fluctuations was realized (Smoluchowski, Einstein), it
became clear that the scattering in rarefied gases is deter-
mined by the fluctuations of density or the number of

particles, i.e. by the quantity DN 2. But for an ideal gas one
has DN 2 � N, i.e. the result arrived at is precisely the same as
in the consideration of the light scattering by individual
particles. In the Mandelstam ±Planck discussion Planck was
doomed to obtain the correct result. He supposedly sensed
that the thermal molecular motion is bound to disturb the
homogeneity.

Starting from the statement that the medium is homo-
geneous, Mandelstam was certain to show that Im e � 0 and
that the radiative damping in the equation for the oscillator
of a medium is compensated for by the presence of
neighbors.

I note in passing that the well-known Einstein formula for
the light scattering by the fluctuations of density r and
temperature T (1910):

h � o4

6pc4

�
rT
�
qr
qP

�
T

�
qe
qr

�2

T

� T 2

rCV

�
qe
qT

�2

r

�
�11�

is easily shown, if we go over to the variables P and S (the
pressure and the entropy, which is always done, by the way, in
the description of the spectral composition of the scattered
light), to be strongly simplified for gases and to pass into the
Rayleigh formula (2) (see Ref. [7]) 1

h � 2o4

3pc4
�nÿ 1�2

N
:

After the above-mentioned we need not outline in detail
the works of Mandelstam and Planck on the dispersion
theory (so firmly did the idea of medium homogeneity rule
Mandelstam's mind). I will only note the main points.

In his first paper on the dispersion theory [4] (a
semiphenomenological work with elements of microscopic
description)Mandelstamwrote down theMaxwell equations,
where the induction vector is

D � E� 4pNd :

For d�t�, advantage is taken of the equation

�d� o2
0dÿ

e2

m

2

3c3
d
::: � e2

m
E0 ; �12�

where E0 is the electric field which would have existed at the
location of a resonator had we removed the corresponding
resonator together with its field. Planck referred to E0 as `the
driving force' [4]. The term containing d

:::
is responsible for the

damping due to radiative friction. Since the damping is weak,
for harmonic oscillations at a frequency o it is possible to
make the change

ÿ e2

m

2

3c3
d
::: � 2

3

e2o2

mc3
_d � grad _d :

According to Planck, one sets

E0 � E� 4p
3

Nd :

1 Now we could say that the Rayleigh scattering law is the correct formula

for h in gases (not only under the assumption of incoherent light

scattering).
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Mandelstam's calculations and the corresponding reason-
ing give [4]

E0 � E� 4p
3

Ndÿ 2

3c3
d
:::
:

Therefore, the radiative friction is removed from
Eqn (12). In response to Planck's criticism [8], pointing out
that the radiation fields of the neighbors should also be
included, Mandelstam took these into account in the
subsequent papers [9, 10]. He carried out an extensive
calculation of the radiation fields of the oscillators in the
medium, but in the summation of the fields of the
neighboring oscillators he made every effort to retain the
homogeneity of the medium. In calculating the resultant
sums, a large volume V is divided into cells, each of which
contains strictly one particle.

As a result, Mandelstam obtained a complete compensa-
tion for the radiative friction forces: ``The refractive index
proves to be real. Therefore, no attenuation occurs due to
scattering'' [9, 10]. This is undoubtedly true for a homo-
geneous medium. It fluctuations are nonexistent Ð no light
scattering occurs. But in fact, this is specially thrusted upon
by the calculations.

In 1910, H A Lorentz interfered in the polemic by
publishing his paper ``On the question of light scattering
by molecules'' [11]. It is pertinent to note that he made no
mention of Mandelstam and Planck at all, as if their
polemic was nonexistent. The paper bore a reference only
to Rayleigh. But one can see from the text of the paper, very
comprehensive and detailed, that the paper was a direct
answer to the questions posed by Mandelstam. Lorentz
gave a thorough derivation of the formulas which define the
interaction of the oscillators in the medium via their
radiation fields. The resultant sums over the oscillators of
the medium surrounding a given oscillator were calculated
in two ways Ð first assuming the oscillators of the medium
to be regularly distributed in space, and next for an
irregular distribution. In the former case, the result he
obtained is that in the absence of dissipation the e�o�
function is real and Im e � 0. In the latter case, he arrived
at the results of Rayleigh and Planck. Lorentz complemen-
ted the e�o� computations with direct calculations of the
intensity of scattering by a medium with an irregular spatial
distribution of oscillators. A perfect agreement was reached.
The main result was formulated as follows: ``Scattering can
occur only when molecules are irregularly distributed, as
they are in gases and liquids''.

Given below is the main point of Lorentz's calculations of
the e�o� function, namely, the method of summation of the
oscillator radiation fields in themedium. I will take advantage
of the approach and the terminology of present-day disper-
sion theory, which allows the presentation to be made more
compactly, but in doing this I will closely follow Lorentz.

The radiation field of an oscillator at a distance R is given
by the expression (see Ref. [6])

E�t� � rot rot
d�tÿ R=c�

R
:

By going over to the Fourier components at a frequency o
and employing the general relation for the Fourier transform
of a function f �t 0� of a retarded argument t 0 � tÿ a:�

f �tÿ a�	o � �f �t�	o exp �ioa� ;

we obtain

Eo � rot rot
exp�i�o=c�R�

R
do :

That is why the equation of oscillator motion in the medium
with the inclusion of the response of the intrinsic radiation
field and the fields of all remaining oscillators, which is
written for the Fourier component dio of the dipole moment,
assumes the form

dio
�ÿ o2 ÿ iograd � o2

0

	
� e2

m

X
j6�i

rot rot
exp

�
i�o=c�jRi ÿ Rjj

�
jRi ÿ Rjj d j

o �
e2

m
Eo : �13�

Here, Ri and Rj are the oscillator coordinates; the rot
operation in the sum over j acts on Ri; possible dissipation
processes are neglected; the damping is determined by the
radiative friction force alone, and Eo is the external field.

It is easily shown that the expression

rot rot
exp

�
i�o=c�jRi ÿ Rjj

�
jRi ÿ Rjj d j

o

for jRi ÿ Rjj5 l includes the effect of radiative friction. We
expand the exponent

exp
�
i�o=c�jRi ÿ Rjj

�
jRi ÿ Rjj

in a series and retain only the first nonvanishing imaginary
term in this expansion to obtain

e2

m
rot rot

exp
�
i�o=c�jRi ÿ Rjj

�
jRi ÿ Rjj d j

o � i
e2

m

2

3

�
o
c

�3

d j
o

� iogradd
j
o : �14�

The calculations of e�o� with the aid of system (13) are
performed as follows (see, for instance, Ref. [12]). We
consider Eqn (13) without the external field Eo. We average
the right-hand side of Eqn (13) over the coordinates Rj

assuming that every oscillator can find itself at any point in
space with an equal probability, irrespective of the location of
other oscillators, including the ith oscillator (this is precisely
the ideal gas approximation invoked by Lorentz):X

j 6�i
! lim

V!1
�NVÿ 1�

� 1

V

�
d
dRj rotRi

rotRj

exp
�
i�o=c�jRi ÿ Rjj

�
jRi ÿ Rjj do�Rj�: �15�

The lower limit d of integration signifies that the integration
should be taken over the range jRi ÿ Rjj > d! 0. We next
take advantage of the relation (see Ref. [13])�

d!0

dR0rotR rotR
exp

�
i�o=c�jRÿ R0j�
jRÿ R0j do�R0�

�
�
dR0rotR rotR

exp
�
i�o=c�jRÿ R0

�
jRÿ R0j do�R0� ÿ 8p

3
do�R�

�16�
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to obtain the integral equation for do�R�:

do�R� � Na�o�
�
dR0 rotR rotR

exp
�
i�o=c�jRÿ R0j�
jRÿ R0j

� do�R0� ÿ 8p
3

Na�o� do�R� : �17�

Here, a�o� is the polarizability of one isolated oscillator
defined by expression (6); for g � grad, one obtains

a�o� � e2

m

1

ÿo2 � o2
0 ÿ iograd

: �18�

The solution of Eqn (17) will be sought in the form of plane
waves, which can propagate through the medium of dipoles
whose oscillations are given by the system of equations (13) or
the integral equation (17). The wave vector of a plane wave in
the medium is not k, as in vacuum. The sought plane waves
will be assumed to be of the form

exp�ÿiot� igR� ;
where g 6� k and Z � ��

e
p �o=c�. The dependences of the

Fourier amplitudes do�R� and do�R0� respectively on R and
R0 are of the form

do�R� � do exp�igR� ; do�R0� � do exp�igR0� ;

where do is a constant independent of coordinates. The
calculation of the integral in Eqn (17) can be found in
Ref. [13]:�

dR0
�
rotR rotR

exp
�
i�o=c�jRÿ R0j�
jRÿ R0j do�R0�

�
� exp

�
ig�R0 ÿ R�� � 4pZ2

Z2 ÿ k2
; k � o

c
: �19�

As a result, we obtain the dispersion equation which relates
Z�o� � ���������

e�o�p �o=c� and the frequency o:

1 � Na
4pZ2

Z2 ÿ �o=c�2 ÿ
8p
3

Na ; Z2 � e
�
o
c

�2

; �20�

whence after simple identity transformations there follows
the well-known Lorentz ± Lorenz formula

eÿ 1

e� 2
� 4p

3
Na�o� � 4p

3
N

e2

m

1

ÿo2 � o2
0 ÿ iograd

: �21�

This formula was obtained by application of the technique of
summation over j in Eqns (13), which was developed in
Lorentz's work for an ideal gas [11].

As shown byKlimontovich andFursov [14], for amedium
wherein density fluctuations differ from the case of an ideal
gas, the radiative damping in the expressions for a�o� and
e�o� is determined by the constant

grad
DN 2

N
: �22�

Here, DN 2 andN are respectively the rms fluctuation and the
average number of particles residing in a specific volume
selected in the body. For an ideal gas, we have DN 2 � N,
which leads to formula (21). If the possibility of fluctuations is
completely neglected by putting DN 2 � 0, the radiative
damping vanishes altogether.

Therefore, in a homogeneous medium of isotropic
oscillators, the interaction of the oscillators through their
radiation fields results in a complete compensation for
radiative damping. A homogeneous medium does not scatter
electromagnetic waves. By postulating the uniformity of
oscillator distribution in a medium, Mandelstam obtained
this result by direct calculation of e�o� [9, 10]. The occurrence
of fluctuations is responsible for light scattering, the intensity
of scattering by density fluctuations in an ideal gas proving to
be equal to the sum of the intensities of scattering by each of
the isolated oscillators, as was adopted in the works of
Rayleigh and Planck. Indeed, in gases jej � 1 and formula
(21) gives

Im e�o� � 4pNjaj2 2

3

�
o
c

�3

;

whence follows, in view of the general definition
h ��o=c� Im e, the Rayleigh scattering law (1) or (2).

In the calculation of the e�o� function in the foregoing, the
motion of oscillators was disregarded (like in the papers by
Mandelstam and Lorentz). The inclusion of motion is
significant in the calculation of the light scattering spectrum,
but does not influence the spectrum-integrated extinction
coefficient h.

The works of Lorentz and Einstein dotted the i's and
crossed the t's. TheMandelstam ±Planck polemic ceased. The
idea that the intensity of light scattering is related to the
fluctuations induced by thermal molecular motion in a
medium received general acceptance. Already in Ref. [15]
(1913), L I Mandelstam considered the scattering of light
from the fluctuations on a liquid surface, having completely
abandoned the postulate of optical homogeneity of a
medium, which he had adopted in Refs [9, 10]. Here are just
two citations of Ref. [15]:

``As is well known, the statistical consideration of the
second principle of thermodynamics leads to the notion that a
system which is in the state of thermodynamic equilibrium
does not nevertheless stay at rest, but fluctuates constantly
about its equilibrium position.''

``The surface of a liquid, which would be, for instance,
planar under ideal equilibrium, is persistently deformed due
to irregular thermal motion. When a light beam is reflected
from such a surface, along with regular (specular) reflection,
diffuse reflection is also bound to occur.''

Today these statements are evident. However, as the
foregoing suggests, the way to them proved to be by no
means an easy one for the physicists early in the 20th century.

The author is grateful to E L Fe|̄nberg and I L Fabelinski|̄
for the discussion of this historical review devoted to the
initial stage of light scattering theory.
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