
Abstract. The current turn-of-the-century period witnesses the
intensive use of the bioproducts of theWorld Ocean while at the
same time calling for precautions to preserve its ecological
stability. This requires that biophysical processes in aquatic
systems be comprehensively explored and new methods for
monitoring their dynamics be developed. While aquatic and
terrestrial ecosystems have much in common in terms of their
mathematical description, there are essential differences be-
tween them. For example, the mobility of oceanic plankton is
mainly controlled by diffusion processes, whereas terrestrial
organisms naturally enough obey totally different laws. This

paper is focused on the processes underlying the dynamics of
spatially inhomogeneous plankton communities. We demon-
strate that conceptual reaction-diffusion mathematical models
are an appropriate tool for investigating both complex spatio-
temporal plankton dynamics and the fractal properties of
planktivorous fish school walks.

``Nature's health was undermined by man. Man was
unable to visualize Earth as a suffering living creature''.

D Granin Zubr (Auroch)

1. Introduction

1.1 Why did Babylon fall?
Local catastrophes resulting from human interference in
nature are nothing very new. Of late, however, all layers of
society appear to be concerned about the threatening
situation which is increasingly featured in the press.

On the one hand, the proliferation of industrial activities
brings with it acid rains killing vegetation and discharge of
harmful residues into the air which are responsible for the
rapid enlargement of ozone holes and the associated increase
of solar radiation exposure that may cause a rise in the
frequency of genetic and oncologic diseases. The extensive
use of chemical fertilizers and pesticides in agriculture has
resulted in food quality degradation and river water pollution
threatening the depletion of the available drinking water
resources. Air pollution is a principal cause of the upward
trend in bronchitis, asthma, and other diseases. The Cherno-
byl accident gave rise to concern about the safety of nuclear
power production. Examples of upset ecological balance that
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cloud the life of modern man are numerous, and rapid
economic developments have a boomerang effect on human
health.

On the other hand, the world population has recently
turned six billion. Over the last quarter of the 20th century,
3,000 cities developed into urban agglomerations, with
1 million inhabitants each, to accommodate the growing
population. The progress in science brought an improvement
in the overall life expectancy. Campaigns against infectious
diseases reduced their influence; developments in medicine
and technology forced specialists to revise the concepts of
birth and death. In the past, man's viability was the sole
subject open for discussion in this context. Today, whether
man is doomed to die or not has come to be seriously
considered.

Such is reality. How can we reconcile the need for further
economic growth and the conservation of nature as the
human environment? Where is the way out of this conflicting
situation? Does not mankind find itself in a trap fromwhich it
is impossible to escape except at the expense of great losses?
Are we not close to the `X-hour' when the planet's ecosystem
must collapse under the tremendous human pressure?

Let us turn to an example from the remote past. The
historian and geographer L N Gumilev relates in his book
Etnogenez i Biosfera Zemli (Ethnogenesis and the Earth's
Biosphere) why only ruins remain where Babylon (Babylo-
nian Bab-Ilu, `Gates of the God') stood at the height of its
splendour in former times. It should be mentioned at the very
beginning that Gumilev's hypothesis finds both advocates
and opponents amongst specialists.

Despite a few lapses noticed by historians, the book by
L N Gumilev is not devoid of interest 1. Specialists studying
the complex behaviour of spatially extended nonlinear
systems easily perceive the author's stream of thought
concerning the relationship between man and nature: on the
one hand, nature can directly or indirectly influence social
processes; on the other hand, there is an ever-increasing
human impact on the environment.

Here is how L N Gumilev describes the fall of Babylon.
The economy of Babylonia, an ancient state in southern
Mesopotamia (now in Iraq), was based on irrigated agricul-
ture using water of the Tigris and Euphrates for the purpose.
The flow of water in irrigation canals was fast enough to
avoid salinization of fertile soil and deposition of sand and
gravel brought in from the Armenian Highland.

In 582 BC, Nebuchadnezzar II (Nebuchadrezzar or
Nabuchodonosor), the ruler of Babylon, married princess
Nitocris to strengthen the peace with Egypt. The princess was
accompanied to Babylon by a suite of Egyptian advisers.
Nitocris (presumably counselled by her advisers) proposed to
dig a new canal to enlarge the irrigated area. The king
approved the project, and the Pallukat (Pallakopas) canal
was built during the 560s BC. It ran from the Euphrates
upstream of Babylon and ensured irrigation of vast lands
outside the floodplain, bringing great economic benefits. But
the project had lasting repercussions. Opinions differ,
however, among specialists as to whether the canal pro-
longed the existence of Babylon or precipitated its decline
(as L N Gumilev and some others believed it did).

The river stream slowed down because a large fraction of
its water went into the new canal. Particulate matter

deposited by the water flow choked canals. The irrigation
network became more and more expensive to maintain. The
Pallukat water running across arid lands caused widespread
soil salinization. Irrigated agriculture soon became costly and
unprofitable. In 324 BC, Babylon still remained a large
picturesque city, and Alexander the Great planned to make
it the capital of his empire. However, the results of faulty
irrigation practices became irreversible, the population
declined, and by the beginning of the Christian era Babylon
lay in ruins. The formerly splendid city with almost 1 million
inhabitants was first reduced to a small settlement and then
disappeared. Only a legend remembers the rich and powerful
Babylonia.

That soil salinization was the only (or main) cause of
Babylon's declinemight be objected to as an overstatement. It
can not be excluded, however, that the construction of the
new canal was a gross mistake that undermined Babylon's
economy and made it vulnerable to attack by numerous
enemies. The ecological crisis in Mesopotamia lasted a few
centuries. It formed the background against which faster
social processes developed, certainly in close relation to
environmental changes 2.

The history of the fall of Babylon is a parable for its
descendants. Times change, and the cost of errors rises while
the term of payment shortens. The present paper is concerned
with the important question of how to organize environ-
mental monitoring and ensure prediction of an oncoming
disaster. Soil science has already developed a variety of tests
for the evaluation of the condition of terrestrial ecosystems.
Similar methods for the characteristic of processes in the
world's ocean remain to be elaborated. Because experiments
in nature may have dangerous consequences, such diagnostic
systems should be based on mathematical models adequately
describing the spatio-temporal dynamics of the environment
on different spatial and temporal scales. In this context, the
dynamics of the world's ocean and its ecosystems need to be
described in terms of new notions (chaos, bifurcation,
fractals, catastrophes) ensuing from the general laws of the
theory of nonlinear nonequilibrium systems and specific
functions of aqueous biological communities.

1.2 Patterns in nonlinear nonequilibrium systems
The problem of elucidation of pattern formation mechanisms
in complex nonlinear systems is a central one in natural
sciences, humanities, and technology [1 ± 3]. The discovery
of multiple steady states and transitions from one state to
another as a result of critical fluctuations, excitability,
oscillations, waves, and, in the general case, emergence of
macroscopic order from microscopic interactions in various
nonlinear nonequilibrium natural and social systems has
given an incentive to many theoretical and experimental
studies aimed at investigating these phenomena.

The classical approach to identifying the origin of spatial
structures was pioneered by Turing [4] and further developed
by his followers (references to some of their works can be
found in Ref. [5]). The results of these studies indicate that an
initially uniform distribution of reacting components may
lack stability. As the instability increases, a spatially nonuni-

1 English translation of the book see on the website http://

www.cossackweb.com/gumilev/ Ð Editor's note.

2 The reader can find an extension of this instructive story about the

interplay between man and nature in the territory of ancient Iraq in a

paper by A YuMorst entitled ``Ancient and present-day desertification in

Iraq'' and published in the journal Problemy Osvoeniya Pustyn' (Problems

of Desert Development), No. 2, 1984. Ð Author's note.
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form distribution (spatial pattern) of reaction activators and
inhibitors occurs. Turing pattern formation is based on the
coupling of linear diffusion and local nonlinear kinetics of the
reaction under conditions in which the diffusivity of the
activator is lower than that of the inhibitor. Recent experi-
mental studies reported by De Kepper and co-workers [6]
have demonstrated the formation of Turing structures in the
context of chemical interactions 3.

A major unresolved problem in the framework of the
Turing approach is that there is still no clear identification of
activators and inhibitors which could be involved in the
formation of patterns of different nature (physico-chemical,
biological or social); moreover, such an identification seems
hardly possible at all. Today, more realistic approaches are
being developed to address the pattern formation theory.
With these approaches, the complex spatio-temporal
dynamics of open spatially confined systems is considered to
be a result of the interplay between their intrinsic dynamics
and external impacts coming from the environment. In
ecology, such interactions may involve both physico-chemi-
cal and biological factors. The present paper is focused on
biological factors influencing the dynamics of aquatic
communities. It examines the role of predator invasion,
planktivorous fish cruising, and the interlinks of neighbour-
ing habitats in the formation of complex and variable spatio-
temporal plankton patterns widespread in the ocean.

1.3 Plankton and plankton dynamics models
Plankton are floating organisms of many different phyla
inhabiting the upper layers of the open ocean, freshwater
bodies, and greater rivers. The distribution of these organisms
is to a large extent dependent on water movements [9 ± 11].
Their functional classification is based on the size, trophic
level, and distribution patterns in natural waters. Autotrophs
or primary producers make up phytoplankton while hetero-
trophs, i.e. consumers, comprise both bacterioplankters and
zooplankters. Classification in terms of size is possible
because planktonic organisms are differentially retained by
the aperture of plankton nets and filters. Picoplankton, which
consists of forms less than 2 mm in size, is distinguished from
nanoplankton (0.2 ± 2 mm), macroplankton (2 ± 20 mm), and
megaplankton (over 20 mm) [11, 12].

Antoine van Leeuwenhoek, the founder of microscopy,
was probably the first man to observe, as long ago as the 17th
century, minute creatures, which he called animacules, in a
drop of pondwater [13]. TheGerman scientist VictorHensen,
an organizer of the first big German oceanographic expedi-
tion of 1889 [14, 15], coined the term plankton [from theGreek
planktos, meaning `made to wander (or to drift)'].

Phytoplankton are microscopic plants on which the life
and development of practically all marine communities are
dependent. Because phytoplankton carries out photosynth-
esis, the world stock produces half of the total oxygen needed
to maintain the existence of mankind and consumes half of
the carbon dioxide that might otherwise contribute to global
warming. Phytoplankton recycles other particulate and
gaseous substances, besides oxygen and carbon, such as
phosphorous, nitrous, and sulphur-containing compounds
[16 ± 18]. Therefore, phytoplankton may be regarded as a
main factor involved in the control of the further develop-

ment of the Earth's climate, and there is voluminous literature
in support of this view (see, for instance, Refs [19, 20]).

Zooplankton are planktonic animals. Marine zooplank-
ton comprise both phytophagous and predatory organisms.
The former graze on phytoplankton and are preyed upon by
carnivorous zooplankters. Collectively, phytoplankton and
zooplankton form the basis of all oceanic food chains and
webs. In its turn, the reproduction of plankton-forming
species depends on many environmental factors, such as
water temperature and salinity, solar radiation, nutrient
availability, etc. [9, 12]. The temporal variability of plankton
species composition is caused by seasonal changes and (in
accord with a concept originating from the works of Lotka
[21] and Volterra [22]) `predator ± prey' trophic relationships
between zooplankton and phytoplankton.

Because of its obvious importance, the dynamics of
planktonic systems has been continuously investigated for
over 100 years. It is worthwhile to note that practically from
the very beginning regular plankton studies have combined
field observations, laboratory experiments, and the construc-
tion of mathematical models. In the 19th century, an interest
in plankton dynamics was greatly stimulated by fishery which
then discovered a strong positive correlation between the
abundance of fish and zooplankton. The aforementioned
German plankton expedition of 1889 was initiated by fishing
enterprises. At about the same time, an incentive was given to
the development of scientifically-based commercial fishing.
In the early 20th century, the first mathematical models were
designed to better understand and learn to predict fish stock
dynamics and its correlations with biological and physical
factors taking into consideration the human impact on the
environment (see, for instance, Refs [23 ± 25]).

The foundation of modern mathematical simulation of
the processes underlying phytoplankton production was laid
by the works reported inRefs [26 ± 29] and some others. These
studies were reviewed by Droop [30]. A collection of the most
popular models has been recently depicted by Behrenfeld and
Falkowski [31].

Fleming [26] was the first to use ordinary differential
equations describing phytoplankton biomass dynamics for
the simulation of control of sharp rises in phytoplankton
density (water blooms) by zooplankton. Other approaches
included the construction of functions based on observations
of natural phenomena [32] and the application of the classical
Lotka ±Volterra equations to the description of predator ±
prey relationships between zooplankton and phytoplankton
[33 ± 36]. A more realistic description of zooplankton grazing
and its functional dependence on phytoplankton abundance
was proposed by Ivlev [27]. This approach with slight
modifications was later employed by Mayzaud and Poulet
[37]. In addition, functional plankton reactions are frequently
described by widely-used mathematical expressions from the
Monod and Michaelis ±Menten [38 ± 40] saturation models
which provide the basis for all kinetic studies of enzymes (see,
for instance, Refs [41 ± 48]). The observed temporal patterns
boil down to stable oscillations well-known to occur in
predator ± prey systems and also to oscillatory or monotonic
relaxation to one of the many conceivable steady states. In
connection with this, excitable systems are of special interest
because their characteristically long times of relaxation
toward a steady state following a supracritical external
perturbation, such as a sudden rise of temperature or
nutrient inflow, fit them for the simulation of the so-called
red or brown tides [47 ± 50].

3 A discussion of the results pertaining to other types of spatial patterns is

beyond the scope of this communication; see, for example, Refs [7, 8]. Ð

Author's note.
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Of special interest in the context of time-related changes in
plankton species composition are limitations on their predict-
ability. In the early studies, mathematical models of marine
ecosystems were developed based on the belief that the
predictive value of a model increases with increasing number
of explicitly included species. As a result, many multi-species
models were proposed which took into consideration the
detailed food web structure in a given community (see, for
example, Refs [51 ± 53]). However, the real predictive value of
such models is not very high and seldom exceeds a few weeks.
Indeed, the more variables a model includes the lower its
predictive value. This obvious paradox can be explained in
terms of dynamic chaos [54]. In connection with this, it should
be noted that notwithstanding the absence of a strict proof of
chaotic behaviour in natural populations, there is an increas-
ingly large amount of definitive evidence in favour of it [45,
55 ± 57]. The hypothesis of chaotic population dynamics
introduces quite a different view of system predictability
(see, for example, Ref. [55]) and makes conceptual models,
i.e. models considering interactions between few species, as
useful as many-species ones. Moreover, few-species models
are sometimes even more helpful because they take into account
only basic specific features characterizing functional patterns of
a given community (see, for instance, Refs [58 ± 60]).

The dynamics of systems perturbed from the outside is
another interesting problem. Such ideal periodic perturbation
arises naturally, being related to circadian, seasonal, and
annual cycles of solar radiation determining the rate of
photosynthesis, water temperature, food availability, and
other factors [61 ± 64]. Certainly, some external noise is
superposed on these perturbations under natural conditions.
Thus far, few models of complete food chains or their
fragments have been examined starting with nutrient matter,
phytoplankton and zooplankton and ending with planktivor-
ous fish; a variety of transition routes to chaotic dynamics
have been identified [45, 65 ± 72].

Plankton density is time-related and depends on spatial
coordinates. Numerous field studies have demonstrated the
clear-cut spatial heterogeneity of plankton distribution
known as `patchiness' [73 ± 75]. This phenomenon is appar-
ent on all spatial scales from centimeters to kilometers.
Various hypotheses have been suggested to account for the
patchiness of plankton distribution. Specifically, seawater
turbulence [78] and nonuniform temperature fields [79] in
the ocean were considered as factors responsible for the
formation of such plankton patterns. The appearance of
well-known linear plankton structures was attributed to
trapping floating microorganisms in Langmuir circulation
cells [80, 81]. Other physical mechanisms underlying steep
density gradients of plankton distribution were postulated,
e.g. upwelling of nutrient-rich waters [223], local temperature
differences, turbulent mixing, and internal waves [82 ± 84].

Moreover, on small spatial scales (tens of centimeters) and
under relatively uniform physical conditions, the difference
between `diffusive' mobility of individual organisms and their
locomotory ability may result in even smaller spatial aggrega-
tions, e.g. under the effect of bioconvection and gyrotaxis
[85 ± 88]. Thus far, a mechanism of diffusion-limited spatial
aggregation [89] has been proposed and experimentally
verified for certain bacteria, if not for plankton, known to
form the so-called fingering colonies [90, 91].

In other words, mathematical models of plankton popula-
tion dynamics must take into account not only the growth
rate and interactions but also spatial processes, such as

random or directed, concerted or relative motions of
different species, as well as environmental changes. It is
widely accepted that interactions between phytoplankters
and zooplankters coupled to their transport are responsible
for the known diversity of spatio-temporal planktonic
structures (including patchiness; see, for instance, Refs [73,
92]). `Reaction ± diffusion' and probably advection equations
should be used for mathematical simulation of these
phenomena. A good introductory review of relevant studies
was published by Holmes et al. [93].

Since the classical work by Turing [4] on the role of
nonequilibrium reaction-diffusion patterns in morphogen-
esis, dissipative mechanisms of spontaneous formation of
spatial and spatio-temporal structures in a uniform environ-
ment have remained in the spotlight of theoretical biology
and ecology. Turing showed that a nonlinear interaction of at
least two agents having significantly different diffusion
coefficients may result in a spatial structure. Segel and
Jackson [33] were the first to apply Turing's ideas to
population dynamics in a study on dissipative instability of
predator ± prey relationships using interactions between
algivorous crustaceans (showing a higher mobility than
algae) and phytoplankton as a model. Levin and Segel [35]
proposed this scenario of spatial structure formation as a
possible source of plankton patchy distribution. Recent
studies [46, 94] have demonstrated the possibility of realizing
such regimes as local biostability, limit-cycle oscillations in a
predator ± prey system, plankton front propagation, forma-
tion and drift of Turing's plankton patches in the minimal
model of phytoplankton and zooplankton interactions
proposed by Scheffer [44] to elucidate effects of nutrients
and planktivorous fish on alternative types of local equili-
brium in plankton community dynamics.

Kierstead and Slobodkin [95] (see also Ref. [96]) appear to
have been the first to pose the problem of critical size of
plankton patches by presenting what is currently known as
the KISS model which couples exponential growth to
diffusion in an isolated population. In their model, patches
are explicitly unstable because the relationship between
exponential growth and diffusion leads to an explosive
spatial spread of the initial patch of planktonic organisms.
Surprisingly, the speed of the diffusion front turns out to be
equal to the asymptotic speed of a logistically growing
population [97 ± 99].

Allee's populations [100, 101], in which the critical
condition of the species is responsible for one of the two
stable states leading either to extinction or survival at a given
saturation capacity, also depend on a critical spatial size
[102 ± 107]. Spatially limited populations whose size exceeds
the critical one survive while smaller ones die out. However,
neither bistability nor critical spatial size is necessarily
associated with Allee's effect. Indeed, two stable states and
the related hysteresis loops can also arise in a predator ± prey
system where the prey propagation submits to the logistic law
while the functional predator response to variations in the
prey population density may be of type II or III (see, for
instance, Refs [109, 110]).

Consideration of the dynamics of a predator ± prey system
reveals a wide range of spatial and spatio-temporal patterns,
such as regular and irregular oscillations, propagating fronts,
concentric and spiral waves, pulses, and stationary spatial
structures. Many of these patterns first became known from
the examination of oscillatory chemical reactions (see, for
instance, Ref. [110]) but were never observed to occur in
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natural plankton populations. However, spiral waves were
seen in the ocean as rotary motions of plankton patches on a
kilometer scale [111]. Furthermore, they were found to play
an important role in parasitoid ± prey systems [112]. As
regards other motile microorganisms, stationary structures
and travelling waves resembling targets or spirals were
reported to occur in various bacterial colonies and slime
mould (Dictyostelium discoideum) populations [113 ± 135].
These cells are chemotactic strains capable of upward move-
ment along the gradient of a chemical attractant. Chemotaxis
is a form of density-dependent cross-diffusion. The interest-
ing question of whether there is a prey taxis in plankton
populations remains to be clarified.

It is important that consideration of spatial extension and
function of a plankton community reveals new routes to
chaotic dynamics. Pascual [58] described the appearance of
diffusion-induced spatio-temporal chaos along a linear
nutrient gradient. Chaotic oscillations behind propagating
diffusion fronts were recorded in a predator ± prey system
(see, for instance, Refs [136, 137]); a similar phenomenon
occurred in a mathematically similar model of a chemical
reactor [138, 139]. Recent studies have demonstrated that
chaotic spatio-temporal oscillations in predator ± prey sys-
tems are in a sense a somewhatmore general phenomenon not
necessarily associated with front propagation or heterogene-
ity of environmental parameters [59, 60].

Malchow [141, 142] cited an example of structures arising
in the Scheffer model. He also derived conditions for the
emergence of three-dimensional spatial and spatio-temporal
patterns in spatially homogeneous populations resulting from
instabilities induced by a differential flow [140]. Instabilities
in the spatially uniform distribution may arise if phytoplank-
ton and zooplankton travel with different velocities regard-
less of which velocity is higher. This mechanism of generating
patchy patterns is more general than the Turing mechanism
which imposes strong limitations on the diffusion coefficient.
Hence, a wide range of its potential applications to popula-
tion dynamics.

It follows from the above that plankton community
dynamics including pattern formation processes have been
extensively investigated during the past decades. This greatly
promoted the understanding of major distinctive functional
features of plankton systems. For all that, many mechanisms
of spatio-temporal variability of plankton populations await
clarification. Biological processes are to a large extent
dependent on such prominent physical patterns as thermo-
clines, upwelling, fronts, and vortices (see Section 4 for amore
detailed discussion). However, temporal and spatio-temporal
variability may result from the relationship between non-
linear biological processes and nonlinear physico-chemical
dynamics even under relatively uniform physical conditions
[35, 42, 43]. Daly and Smith [143] arrived at the conclusion
``...that in structured biological communities, biological
processes may be more important on smaller scales where
the behaviour, such as vertical migration or predation, may
control the plankton production whereas physical processes
may be more important on larger scales ...''. In order to be
able to distinguish between parameter regions dominated by
biological or physical processes, O'Brien and Wroblewski
[144] introduced a dimensionless parameter containing the
characteristic water speed and maximum species-specific
biological growth rate (see also Refs [145, 146]).

Physical and biological processes may be significantly
different not only on spatial but also on temporal scales. For

example, the effects of external hydrodynamic factors on the
formation and stability of nonequilibrium spatio-temporal
plankton structures were demonstrated on a Scheffer model
using the separation of different time scales of biological and
physical processes [147]. A channel under the tidal force with
relatively large biomass retention time served as the model
hydrodynamic system. The following phenomena character-
ized by different time scales were considered: the simple
physical transport and deformation of an initially nonuni-
form spatial plankton distribution and the formation of a
localized spatial maximum of phytoplankton biomass deter-
mined by biological processes.

The formation of plankton patterns strongly depends on
the interaction between various physical (light, temperature,
hydrodynamics) and biological (nutrient supply, predation)
factors (see, for instance, Refs [73, 78, 79]). Under natural
conditions, the direction of plankton patch motion does not
always coincide with the water flow direction [111, 148]. At
characteristic spatial sizes in excess of about 100 m, the
phytoplankton behaviour progressively deviates from that
of simple passive matter dispersed by turbulence [149, 150].
Similarly, on scales of less than tens of kilometers,
variability of zooplankton abundance in space is signifi-
cantly different from spatial environmental variations [151].
This indicates that biological factors play an important role
in the generation of plankton patchiness [41]. The question
arises of whether biological factors, such as growth and
interaction in a predator ± prey system, can be responsible
for plankton pattern formation in the absence of hydro-
dynamic effects.

The present paper presents conceptual models with a
small number of trophic links in order to demonstrate that
predator ± prey interactions can give rise to complex spatio-
temporal dynamics of both plankton and plankton-fish
communities.

2. Complex patterns in a simple `minimal'
plankton dynamics model

2.1 Mathematical model
This section considers the spatio-temporal dynamics of an
aquatic community in terms of a two-species predator ± prey
(i.e. zooplankton ± phytoplankton) system. We demonstrate
that such a simple model can adequately describe the
formation of patchy spatial distribution of a species.

Based on a widely-accepted approach [152, 153], the
functioning of a predator ± prey community can be described
by the following system of `reaction ± diffusion' equations:

qu
qt
� DDu� f �u; v� ; �2:1�

qv
qt
� DDv� g�u; v� : �2:2�

Here, u�r; t� and v�r; t� denote the prey and predator density
respectively, r is the position, t is time, D is the diffusion
coefficient, andD is the Laplace operator. The two species are
assumed to show equal diffusivity which is normally true of
natural plankton communities where mixing is largely due to
seawater turbulence. The form of the functions f �u; v� and
g�u; v� is determined by local biological processes in a given
community and, for biological reasons, can be described in
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the following way:

f �u; v� � P�u� ÿ E�u; v� ;

g�u; v� � k �E�u; v� ÿ mv :

The function P�u� describes the local growth and natural
mortality of the prey whereasE�u; v� stands for predation, i.e.
trophic interaction between the prey and the predator. The
term m is the predator mortality rate, and the coefficient k�

describes effectiveness of food utilization.
The choice of functions P�u� and E�u; v� in Eqns (2.1),

(2.2) may vary depending on the type of prey population and
functional response of the predator to changes in prey
density. It is assumed, based on the results of field and
laboratory observations of plankton system functioning [12,
73], that the local growth of a prey population is logistic while
the predator displays a Holling type II functional response.
By choosing the simplest mathematical expressions for
functions P�u� and E�u; v� [152], the following equations are
obtained:

qu
qt
� DDu� a

b
u�bÿ u� ÿ g

u

u�H
v ; �2:3�

qv
qt
� DDv� k �g

u

u�H
vÿ mv ; �2:4�

where a, b, H, and g are constants, with a standing for the
maximum growth rate of the prey, b being the carrying
capacity of the prey population, andHÐ the half-maximum
prey population density. It should be noted that a more
detailed parameterization is hardly sensible in such a
schematic model describing interactions between a small
number of species as the (2.1), (2.2) model. Assuming that

eu � u

b
; ev � vg

ab
; et � at ; er � r

�
a
D

�1=2

�2:5�

and introducing new dimensionless parameters h � H=b,
m � m=a, and k � k �g=a, the following equations containing
only dimensionless quantities are derived from (2.3), (2.4):

qu
qt
� Du� u�1ÿ u� ÿ u

u� h
v ; �2:6�

qv
qt
� Dv� k

u

u� h
vÿmv �2:7�

(here and hereinafter, tildes are omitted). Certain comments
and amore detailed consideration of the choice of dimension-
less variables for the (2.3), (2.4) system can be found in
Ref. [60].

Before proceeding to the examination of spatio-temporal
pattern formation, it appears appropriate to consider local
system dynamics, i.e. properties of Eqns (2.6), (2.7) without
diffusion terms. It is easy to show by the linear stability
analysis that the system

qu
qt
� u�1ÿ u� ÿ u

u� h
v ;

�2:8�
qv
qt
� k

u

u� h
vÿmv

possesses three stationary states: (0, 0) or total extinction;
(1, 0), i.e. extinction of the predator; �u�; v��, i.e. prey/
predator coexistence, where

u� � rh

1ÿ r
; v� � �1ÿ u���h� u�� ; �2:9�

r � m=k. It is easy to see that (0, 0) is a saddle-point for all
non-negative values of k,m, and h. The stationary point (1, 0)
is a saddle-point if the nontrivial point �u�; v�� lies in the
biologically meaningful region u > 0, v > 0; otherwise, it
represents a stable node. The stationary point �u�; v�� can be
of any type.

It is worthwhile to note that the coexistence state �u�; v�� is
shifted toward a biologically meaningful region u > 0, v > 0
when

h <
1ÿ r

r
; �2:10�

and becomes unstable at

h <
1ÿ r

1� r
: �2:11�

In the latter case, the steady state is surrounded by a stable
limit cycle and the system is characterized by oscillatory
kinetics.

These results provide useful information on the choice of
parameters for the numerical integration of Eqns (2.6), (2.7).
In the case of existence of a stable stationary point in the
phase space of the system (i.e. when condition (2.10) is
satisfied and condition (2.11) is broken), the system
dynamics is usually reduced to the relaxation toward a stable
spatially homogeneous state �u�; v��. Details of this process
depend on the initial conditions; for example, in the case of a
finite initial distribution of the species, the relaxation is
normally achieved after the propagation of diffusion fronts
[152, 154 ± 156]. Further discussion will be mostly focused on
the formation of short-living spatio-temporal patterns and
the parameter region satisfying condition (2.11).

2.2 One-dimensional models
The spatio-temporal dynamics of `reaction ± diffusion' sys-
tems to a large extent depends on the choice of initial
conditions. Specific features of the initial species distribution
in natural communities can be attributed to concrete causes.
The spatially homogeneous initial conditions represent the
simplest form of the initial spatial distribution. In this case,
however, the species distribution remains uniform at any
time, and no spatial patterns can emerge. Nontrivial spatio-
temporal dynamics can be obtained by the introduction of a
perturbation into the initially uniform distribution.

In this section, we concentrate on the one-dimensional
dynamics of the system (2.6), (2.7). A variety of disturbed
initial conditions are considered. To begin with, there is a
constant-gradient distribution

u�x; 0� � u� ; �2:12�
v�x; 0� � j1�x� � v� � ex� d ; �2:13�

where e and d are certain parameters.
The results of computer simulation indicate that the type

of system dynamics is determined by quantities e and d. In the
case of a small e, the initial conditions (2.12), (2.13) evolve
into a smooth heterogeneous spatial distribution of the
species [59]. Such spatial distributions tend to gradually vary
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in time, and the local temporal behaviour of variables u and v
follows the limit cycle of a homogeneous system. This regime
is not self-contained, and the smooth spatial pattern arising in
this case slowly relaxes to the spatially uniform species
distribution [60].

However, for another set of parameters (e.g. when the
gradient exceeds a certain critical value, e5 ecr, where ecr
depends on d), the species spatial distribution is substantially
different (cf. [59]). Figure 1 illustrates such a spatial distribu-
tion at the moments t � 640 (a) and t � 2640 (b) obtained at
k � 2, r � 0:4, h � 0:3, e � 10ÿ6, and d � ÿ1:5� 10ÿ3. In
this case, the initial distribution (2.12), (2.13) results in the
appearance of strongly irregular sharp transient patterns
inside a sub-domain of the system (Fig. 1a). The area
occupied by such a structure increases with time, and the
irregular spatio-temporal oscillations eventually prevail
throughout the entire domain (Fig. 1b). Importantly, this
regime is a persistent one. Long-time numerical simulations
show that the system dynamics undergoes no further changes
after irregular spatio-temporal oscillations spread over the
entire domain.

In this case, the temporal behaviour of concentrations u
and v also becomes completely different. Figure 2a shows a
`local' phase plane of the system obtained at a fixed point

�x � 480 inside the region invaded by irregular spatio-
temporal oscillations. Now, the trajectories fill almost the
entire domainwithin the limit cycle (such a cycle characterizes
smooth pattern formation). It will be shown below that this
dynamic regime of the system corresponds to spatio-temporal
chaos (see Ref. [59]).

A remarkable property of such system dynamics is the
spread of the irregular pattern over the entire domain so that,
at any moment, there are boundaries separating regions with
different dynamic regimes, i.e. regions where sharp irregular
patterns arise and those with smooth regular patterns. The
results of our numerical experiments indicate that these
interfaces propagate in opposite directions at an approxi-
mately constant speed; as a result, the chaotic dynamics
region always increases. This phenomenon is an essentially
spatio-temporal one, that is chaos exists because the chaotic
regime `displaces' the regular one. Such dynamics of the
system appears to resemble the transition between regular
and chaotic `phases'.

Because the spatial distribution of species abundance is
essentially non-uniform, the most informative approach
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Figure 1. Spatial distribution of populations (solid line Ð prey, dashed

line Ð predator) calculated for a case where the `regular phase' is

gradually displaced leading to the onset of a `chaotic phase'; (a) t � 640,

(b) t � 2640.
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appears to be such that considers specially introduced
quantities taking into account both temporal dynamics and
spatial extension of the system. The spatially averaged density
of organisms provides the simplest example of such quantities
(other examples will be given below). Figure 2b presents
dynamic changes in a phase space �hui; hvi� at the following
values of parameters:

k � 2:0 ; r � 0:33 ; h � 0:43 :

As the trajectory corresponding to the smooth pattern (not
shown in the figure) slowly approaches the limit cycle (dashed
curve), that corresponding to the regime in which a clear-cut
spatial pattern arises remains in close proximity to the steady
state hui � u�, hvi � v� and fills the space within a certain
domain with a diameter significantly smaller than the limit
cycle diameter. This means that the amplitude of time-related
changes of the spatially averaged species abundance is much
smaller in the case of smooth regular patterns.

It is worth noting that the `two-phase' dynamics of system
(2.6), (2.7) described above can not be attributed to a selective
choice of initial conditions in the form (2.12), (2.13).
Specifically, for the initial conditions

u�x; 0� � u� ; �2:14�
v�x; 0� � v� for x4 x0 or x5 x0 � S ; �2:15�
v�x; 0� � v� � A sin

�
2p�xÿ x0�

S

�
for x0 4 x4 x0 � S

the spatially uniform distribution (with periodic changes in
time characteristic of the limit cycle) `survives' only at very
low values of amplitudeA and/or perturbation S (see Ref. [60]
for a detailed analysis). For somewhat higher (yet rather
small) A and S, the initial distribution (2.14), (2.15) evolves
into clear-cut irregular spatio-temporal patterns. The
`embryo of the chaotic phase' first appears in the vicinity of
the initial finite perturbation of a homogeneous steady state
while the travelling interface separates the domain occupied
by irregular spatio-temporal oscillations from the uniform
spatial distribution region. The speed of the interface can be
found analytically [60].

It should be noted that for somewhat more complex (e.g.
nonmonotonic) initial conditions, a systemmay be character-
ized by even more complicated dynamics; that is, it may
acquire a so-called intermittent structure. Then, the domains
occupied by regular and chaotic phases alternate in space
(Fig. 3), and the following initial conditions should be
considered:

u�x; 0� � u� � e�xÿ x1��xÿ x2� ; �2:16�
v�x; 0� � v� : �2:17�

In this case, slightly disturbed initial conditions evolve into a
complex spatial structure in which two domains occupied by
sharp patterns separate smooth-patterned regions. Figure 3
shows a snapshot of the species distribution at the moment
t � 600 calculated for e � 10ÿ8, x1 � 1200, x2 � 2800 (values
of other parameters are the same as in Fig. 1). Similar to the
previous case, the size of chaotic domains grows steadily so
that they eventually displace the regular phase and occupy the
entire region.

The results of our numerical experiments with different
types of initial conditions and parameter values indicate

that the formation of clear-cut patterns is normally initiated
in the vicinity of the point/points xcr, where u�xcr; 0� � u�,
v�xcr; 0� � v�. Whenever the initial conditions contain no
`critical point', the factors determining the position of the
embryo remain unclear.

The pattern formation scenario described in previous
paragraphs appears to be essentially different from that
known for two-component reaction ± diffusion systems [4,
33, 58, 94, 136, 140, 147]. It is worthwhile to note that
mathematical model (6), (7) describing the formation of
sharp irregular spatial patterns is in a sense minimal because
it does not contain common assumptions and constraints, e.g.
with respect to relative motions of interacting species or any
type of environmental heterogeneity. In the rest of this
section, we shall extensively consider this new mechanism of
pattern formation. Firstly, we shall present definitive evi-
dence of the chaotic nature of irregular spatio-temporal
oscillations described above. Secondly, the results obtained
will be extended to the case of a two-dimensional distribution
in order to estimate the applicability of this mechanism to the
dynamics of natural communities.

2.3 Spatio-temporal chaos
In this section, we show that the formation of clear-cut non-
stationary patchy structures in the species distribution
corresponds to spatio-temporal chaos. It should be noted
that the term chaos has a special meaning, and the apparent
irregularity in the system behaviour, no matter how complex
it may be, does not necessarily imply chaotic dynamics. By
definition, chaos means sensitivity to initial conditions at
which small early variations in the distribution of species lead
to a large difference at a later time. It has been shown that this
characteristic feature of chaos is inseparable from some other
properties of system dynamics, such as the specific `flat' form
of Fourier spectra of dynamic variables and exponential
decrease of the autocorrelation function [158]. Thus, a
variety of methods can be used to reveal chaos.

It is worth noting that the concept of chaos was first
elaborated in connection with the temporal dynamics of
spatially homogeneous systems. Meanwhile, the dynamics of
an extended system may prove much more complex than that
and promote the development of chaos in those cases where it
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Figure 3. `Intermittent' spatial structure arising from nonmonotonic initial

conditions (2.16), (2.17); see the text for parameters. Solid line Ð prey,

dashed line Ð predator.
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would be otherwise impossible. Specifically, the appearance
of chaos in a two-species system is a direct consequence of
spatial pattern formation. The phenomenon is essentially a
spatio-temporal one; therefore, to distinguish it from a
`purely' temporal chaotic dynamics of homogeneous sys-
tems, the term spatio-temporal chaos appears more adequate.

That the formation of sharp temporal patterns corre-
sponds to chaotic dynamics is confirmed by its sensitivity to
variations of the initial conditions [264]. As a result, minor
changes of the initial conditions account, after a certain time
T, for a totally different spatial distribution, regardless of the
approach to the numerical evaluation of the difference
between perturbed and unperturbed solutions. The domi-
nant Lyapunov exponent corresponding to such chaotic
behaviour takes a positive value and is estimated to be
l � 0:001.

Another way to demonstrate the chaotic nature of
irregular spatio-temporal oscillations of species abundance
is to calculate the autocorrelation function. The state of a
predator ± prey community is naturally described by two
dynamic variables, u and v, defining prey and predator
densities respectively. Thus, in the general case, two auto-
correlation functions as well as cross-correlations should be
considered. The present paper is confined to the results
obtained for prey abundance, the autocorrelation function
for predator density exhibiting a qualitatively similar beha-
viour.

It should be noted that the direct application of the
standard definition of an autocorrelation function leads to
certain problems. In the framework of the usual approach,
when the dynamic variable c is a function of t (having the
meaning of time or position or any other sense), the
autocorrelation function is given by the following expression:

F �x� � lim
Z!1

1

Z

�Z
0

c�t� x�c�t� dt : �2:18�

In the case being considered, prey density depends on two
variables, time and position. Therefore, the use of (2.18) to
characterize the spatial structure of the system leads to the
following expression:

F �x; t� � lim
Z!1

1

Z

�Z
0

u�x� x; t� u�x; t� dx : �2:19�

Eqn (2.19) has a few evident drawbacks. First, the
autocorrelation function calculated from (2.19) depends not
only on the distance x but also on time. The situation in which
the properties of F �x� are time-dependent looks rather exotic
and makes it difficult to interpret the results. On the other
hand, the structures under study varying in time, a proper
definition of the autocorrelation function should take into
account both spatial and temporal behaviour of the system.
Another problem is that, in order to obtain reliable results of
a computer simulation, the value of Z in Eqn (2.19) must be
chosen sufficiently large. In practice, this means that the
numerical grid must consist of at least a few tens of
thousands of nodes which is hardly feasible.

To overcome these difficulties, we consider a modified
definition of the autocorrelation function in which spatial
averaging is substituted by averaging over time:

K�x� � lim
T!1

1

T

�T
0

u�x0 � x; t� u�x0; t� dt : �2:20�

Note that Eqn (2.20) includes the usual definition as a
particular case if the system exhibits an ergodic behaviour.
Also, the results of numerical simulation at different x0 values
show no dependence on x0 although the value of K formally
depends on the parameter x0.

The autocorrelation function K�x� calculated in accor-
dance with (2.20) is shown in Fig. 4. The calculations were
made at k � 2:0, r � 0:2, H � 0:3, x0 � 100, and the aver-
aging was performed over the time interval from t � 4000 to
t � 12000; the solid line corresponds to a case of irregular
(sharp pattern formation) and the dashed line to regular
(smooth spatial patterns) dynamics.

To summarize, in the case of a regular dynamics, the
spatio-temporal behaviour of the system is highly correlated
over the entire domain. Moreover, since the smooth pattern
formation regime is in fact a slow relaxation to the uniform
spatial distribution, the autocorrelation function gradually
changes with time so that the correlation between the
temporal behaviour at different points increases. In the
infinite time limit, temporal oscillations throughout the
system become synchronized and K�x� � 1.

On the contrary, the behaviour of the autocorrelation
function in the case of clear-cut spatial patterns shown in
Fig. 4 is typical of chaotic dynamics (cf. [158]). It should
be mentioned that irregular oscillations K�x� of a finite
(non-zero) amplitude (see Fig. 4) result from the finiteness
of the averaging interval T; the results of our numerical
simulation show that the amplitude tends to zero as T
increases. Since the modified definition (2.20) of the
autocorrelation function takes into account both tem-
poral and spatial aspects of population dynamics, the
dynamic regime corresponding to the formation of sharp
spatial patterns can be classified as spatio-temporal chaos.
This inference agrees with the recent results of Petrovskii
and Malchow (see Ref. [59] where the spatio-temporal
chaos in a predator ± prey system is described in terms of
temporal behaviour of spatially averaged population
densities).

2.4 Pattern formation in a two-dimensional case
Now, we consider the extension of the above results to a two-
dimensional case. In this case, Eqns (2.6), (2.7) take the
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Figure 4. Autocorrelation function K�x� calculated for sharp (solid line)

and smooth (dashed line) pattern formation regimes.
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following form:

qu�x; y; t�
qt

� q2u
qx 2
� q2u
qy 2
� u�1ÿ u� ÿ u

u� h
v ; �2:21�

qv�x; y; t�
qt

� q2v
qx 2
� q2v
qy 2
� k

u

u� h
vÿmv : �2:22�

In Eqns (2.21), (2.22), 0 < x < Lx, 0 < y < Ly. These equa-
tions describe the dynamics of an aquatic community in a
horizontal layer, the vertical distribution of species within this
layer being assumed homogeneous.

Eqns (2.21), (2.22) were solved numerically. The choice of
the domain length Lx and width Ly varied in different
computer experiments. For the results presented below,
Lx � 900, Ly � 300. The boundary conditions were chosen
so as to ensure a zero-flux across the boundary. As above, the
type of system dynamics to a certain extent depended on the
choice of initial conditions. For a purely uniform initial
species distribution, the system remains homogeneous at
any time and no spatial pattern emerges. A slight perturba-
tion of the initially homogeneous conditions [the shape of
perturbation may differ; cf. Eqns (2.12), (2.13) and (2.14),
(2.15)], induces smooth spatial patterns which are unstable
and gradually evolve into a uniform spatial distribution.
However, somewhat stronger disturbed initial conditions
give rise to sharp irregular spatial patterns which persist a
long time.

We present here the results of two computer experiments
differing in terms of initial conditions. In the first case, the
initial distribution of species was given by a two-dimensional
generalization of Eqns (2.16), (2.17). Specifically,

u�x; y; 0� � u� ÿ e1�xÿ 0;1yÿ 225��xÿ 0;1yÿ 675� ; �2:23�
v�x; y; 0� � v� ÿ e2�xÿ 450� ÿ e3�yÿ 150� ; �2:24�

where e1 � 2� 10ÿ7, e2 � 3� 10ÿ5, and e3 � 1:2� 10ÿ4

(note that the initial conditions were deliberately chosen to
be asymmetric in order to emphasize the effect of the corners
of the domain in which integration was performed). The
values of parameters in Eqns (2.21), (2.22) were taken as
k � 2:0, r � 0:3, h � 0:4.

Figure 5 presents snapshots of the species spatial distribu-
tion at different times: (a) t � 0, (b) t � 150, (c) t � 200,
(d) t � 300, (e) t � 400, and (f) t � 1000. Since both species
exhibit a qualitatively similar behaviour (except for early
stages of the process influenced by the initial conditions), only
the prey (phytoplankton) abundance is shown.

Thus, for the two-dimensional system (2.21), (2.22), the
formation of an irregular patchy structure (see Fig. 5f) can be
preceded by the evolution of a spiral spatial pattern. The
centre of each spiral lies at a certain critical point, i.e. at a
point �xcr; ycr�where u�xcr; ycr� � u�, v�xcr; ycr� � v�. It is easy
to see that the distribution (2.23), (2.24) contains exactly two
such points; for different initial conditions, the number of
spirals may be different. The spirals having been formed
(Fig. 5b), their size slowly increases for some time and the
spatial structure becomesmore distinct (Figs 5b and 5c). They
start to degenerate from the centre (Fig. 5d). The newly-
formed `embryo' of the patchy structure grows steadily
(Figs 5d and 5e), and the irregular spatial pattern eventually
spreads over the entire domain.

In the second case, the initial conditions describe a
phytoplankton (prey) patch placed into a domain with a

constant-gradient zooplankton (predator) distribution:

u�x; y; 0� � u� ÿ e1�xÿ 180��xÿ 720� ÿ e2�yÿ 90��yÿ 210� ;
�2:25�

v�x; y; 0� � v� ÿ e3�xÿ 450� ÿ e4�yÿ 135� ; �2:26�

where e1 � 2�10ÿ7, e2 � 6�10ÿ7, e3 � 3�10ÿ5, e4 �
6�10ÿ5.

Figure 6 presents snapshots of the plankton distribution
at times (a) t � 0, (b) t � 120, (c) t � 160, (d) t � 300,
(e) t � 400, and (f) t � 1200 for the following parameter
values: k � 2:0, r � 0:3, h � 0:4. Although in these initial
conditions, the system dynamics prior to the formation of a
patchy spatial structure is somewhat less regular than in the
previous case, it seems to follow a similar scenario. Again, the
spirals first appear with their centres at critical points (Figs 6b
and 6c) even though their form is not so perfect as before. The
destruction of the spirals leads to the formation of two
growing embryos of the patchy spatial pattern (Figs 6d and
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Figure 5. Spatial distribution of prey (phytoplankton) at different times:

(a) t � 0, (b) t � 150, (c) t � 200, (d) t � 300, (e) t � 400, and (f) t � 1000;

the parameters are given in the text. An irregular patchy structure arises as

a result of spiral destruction.
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6e) and, finally, to the irregular patchy species distribution
over the entire integration domain.

It should be emphasized that the formation of a spiral
structure in the spatial distribution of planktonmay shed new
light on some unresolved problems. The existence of dipole-
like structures in the plankton distribution in the world's
ocean is a well-known phenomenon normally related to the
so-called mushroom-like structure of the advective current
field [159].We have shown that such a structure may arise as a
result of predator ± prey trophic interactions in aquatic
communities and need not be necessarily associated with
oceanic hydrodynamics.

In conclusion, although the system dynamics appears
rather regular at `intermediate' time scales (Figs 5b and 5c),
the evolution of the species spatial distribution may, in the
longer run, lead to the formation of an irregular patchy
structure (Figs 5e and 5f). These predicted spatial patterns
are consistent with the results of field observations on the
functioning of planktonic systems (cf. Refs [76, 79, 151, 153]).

The relevance of this pattern formation mechanism to the
patchy plankton spatial distribution in the marine environ-
ment can be evaluated from the analysis of the characteristic
size of the arising spatial structures. Taken together, the
patterns shown in Figs 5f and 6f and the behaviour of the
autocorrelation function K�x� (cf. Fig. 4) suggest a character-
istic intrinsic length of these structures estimated at 10 ± 25 in
dimensionless units. According to Eqns (2.5), the value of this
parameter in dimensional units is a function of the maximum
phytoplankton growth rate and turbulent diffusivity. The
maximum growth rate a undergoes seasonal variations and
amounts to 4� 10ÿ5ÿ10ÿ5 during water bloom periods,
corresponding to a doubling time for phytoplankton bio-
mass of 6 ± 48 hours. The effects of turbulent diffusivity are
somewhat more complicated. In the open sea, the intensity of
turbulent mixing usually depends on the scale of the pattern
being examined [92, 160, 161]. In the case of a single plankton
patch, the diffusion coefficient may grow with time [162].
However, this property of turbulent mixing is much less
manifested in coastal regions, such as bays, harbours, etc.,
where so-called small-scale turbulence occurs and the diffu-
sion coefficientD � 103 cm2 sÿ1 [160, 163]. It follows from the
estimates of D and a and also from Eqn (2.5) that the
dimensionless unit length corresponds to approximately
50 ± 100 m in original dimensional units. This gives the
intrinsic length of a spatial pattern on the order of 1 km, in
agreement with the observed characteristic size of plankton
spatial structures [71, 72, 79].

3. Relationship between the formation
of plankton spatio-temporal patterns
and the cruising of planktivorous fish schools

3.1 Subject-matter of this section
The previous section demonstrated the efficiency of classical
continuous two-species models for the description of pattern
formation in a planktonic community. However, the contin-
uous approach using ordinary or partial differential equa-
tions often fails to account for the individual goal-oriented
behaviour of model species in their environment and for their
mutual adaptation. This difficulty has been partly overcome
in the framework of the concept of complex adaptive systems
(first suggested by Holland [164] and further elaborated by
modern authors) and simulation strategies for individual
behaviour. With this approach, the behaviour of several
`agents' is usually assumed to obey a limited set of strictly
defined rules determining the growth, interaction, andmotion
of these agents and their interplay with the environment.
These rules taken on a certain microscale may govern the
formation of temporal, spatio-temporal or functional macro-
structures.

In the present section, this concept is applied to a dynamic
study of a system of fish and plankton populations. A hybrid
model simulates the mutual control of continuous spatio-
temporal dynamics of two interacting spatially dispersed
populations (phytoplankton and zooplankton) and the
behaviour of a discrete agent (fish school) subject to given
rules. A similar hybrid model was used earlier to describe
morphogenesis in cellular tissues [166].

The process of aggregation of individual fish into a school
and its persistence under environmental or social constraints
have been studied bymany authors [23, 25, 167 ± 178] and will
not be considered here.
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Figure 6. Spatial distribution of prey (phytoplankton) at different times:
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the parameters are given in the text.
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It is important to note that predator ± prey relationships
form the basis of any food chain. At the same time, this
concept was employed in the Marxist class struggle models
likening the employment rate to a prey and the wages to a
predator (see Ref. [180]). Also, the relationship between
economic and ecological factors equally well applies to
fishery [181].

3.2 Model of a `nutrient ± plankton ± fish' system
3.2.1 Continuous plankton dynamics. We consider a four-
component `nutrient ± phytoplankton ± zooplankton ± fish'
model in which phytoplankton P�X;Y; t� and phytophagous
zooplankton H�X;Y; t� population dynamics at any point
�X;Y� and time t are given by the following reaction ±
diffusion equations:

qP
qt
� RP

�
1ÿ P

K

�
ÿ AC1P

C2 � P
H�DP DP ; �3:1�

qH
qt
� C1P

C2 � P
HÿMHÿ F

H 2

C 2
3 �H 2

�DH DH : �3:2�

ParametersR,K,M, and 1=A denote the intrinsic growth rate
and carrying capacity of phytoplankton, the mortality and
nutrient assimilation rates of zooplankton respectively.
Constants C1, C2, and C3 parameterize the saturating
functional response of zooplankton; F is the fish predation
rate on zooplankton;DP andDH are the diffusion coefficients
of phytoplankton and zooplankton respectively; D is the two-
dimensional Laplace operator. A change in phytoplankton
biomass resulting from its consumption by zooplankton is a
type II functional response whereas fish predation on
zooplankton is described by a type III sigmoid functional
reaction, in agreement with the assumptions of the Scheffer
model [44].

The local kinetics of the model, i.e. DP � DH � 0, have
been considered in detail in Refs [41, 44]. In the absence of
zooplankton, phytoplankton would reach its carrying capa-
city K. By considering zooplankton as a non-dynamic
predator, on condition that qH=qt � 0, it is easy to show the
existence of two stationary phytoplankton levels if zooplank-
ton densities are not too high. In contrast, high zooplankton
density is associated with a single stable low phytoplankton
level and vice versa. Dynamic zooplankton can induce typical
predator ± prey limit cycle oscillations, and the introduction
of effects exerted by zooplanktivorous fish with the last
kinetic term in Eqn (3.2) restores bistability. Which of the
two stationary states is reached depends on the initial
conditions provided neither external nor internal noise
interferes. Fluctuations due to natural noise as well as
`extreme' events can induce transitions between the station-
ary states.

The behaviour of a local model subjected to seasonal
changes has been studied in Refs [45, 71, 72]. Such seasonal
impacts may be due to natural variations of temperature,
light, and nutrient supply. The local predator ± prey limit
cycles can transform to quasi-periodic and chaotic oscilla-
tions while locally stable states simply oscillate with an
externally-induced frequency.

Considering diffusion allows diffusion-induced plankton
patchy distributions to be revealed which remain stable
despite weak seasonal effects [46]. However, such spatial
structures arise only if prey and predator populations are
characterized by different diffusion coefficients [4, 33]. In the

case of their having similar diffusivity, time-related changes in
the patch distribution occur if the instability of uniform
plankton patterns is due to growth, interactions, diffusion,
and advection [141] or if certain parameters, e.g. nutrient
concentration, show a spatial gradient [58].

Hydrodynamic forces and the spatio-temporal flow
patterns they induce frequently drive or restrict structures
formed by drifting and floating matter. Hydrodynamic
processes are usually much faster than biological ones in
plankton communities. This allows a method for the separa-
tion of variables [147] to be employed which is beyond the
scope of the present paper. This section deals with physically
uniform pieces of time and space.

For convenience, the model (3.1), (3.2) is simplified by the
introduction of dimensionless densities p � P=K and
h � AH=K as in Pascual's work [58]. Space is scaled by a
characteristic length L=k equalling the total length L of the
area under consideration divided by an integer factor kwhich
determines the scale of the expected patchy patterns. Time is
scaled by the characteristic phytoplankton growth rate R0.
Hence,

x � kX

L
; y � kY

L
; t � tR0 :

In this case, Eqns (3.1), (3.2) are converted to

qp
qt
� rp�1ÿ p� ÿ ap

1� bp
h� dp Dp ; �3:3�

qh
qt
� ap

1� bp
hÿmhÿ f

gh 2

1� g 2h 2
� dh Dh ; �3:4�

where the new parameters are

r � R

R0
; a � C1K

C2R0
; b � K

C2
; m � M

R0
;

f � F

C3R0
; g � K

C3A
; dp � k2DP

L2R0
; dh � k2DH

L2R0
:

The results reported in this work have been obtained by
numerical simulation for a set of parameters r � 2, a � 5,
b � 5, m � 0:6, g � 2:5 chosen so as to have limit cycles at
each point under f � 0.

It is frequently supposed that in natural waters the
plankton diffusion rate is a function of turbulent diffusion.
With this inmind, both phytoplankton and zooplanktonmay
be regarded as a passive admixture transported by turbulent
water flows [182 ± 185]. Therefore, dp � dh � d. Using the
relationship between the turbulent diffusion and the spatial
scale of the phenomenon of interest in the open sea [92, 161], it
can be shown that, at the characteristic growth rate
R0 � 10ÿ5 sÿ1 (or one division per day as is typical of
phytoplankton propagation) and the characteristic length
L=k � 1 km (typical of plankton spatial patterns), d is about
5� 10ÿ2.

Numerical integration of Eqns (3.3), (3.4) was performed
using a simple difference scheme. The two-dimensional space
was divided into a rectangular grid of 64� 64 quadratic finite
elements of unit length each. The time step was set equal to
0.01. Repeated integration at a smaller step showed that the
numerical results are independent of its size and thus
confirmed the accuracy of the adopted approximation.
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Periodic boundary conditions were chosen for both spatial
directions.

3.2.2 Discrete fish school dynamics. It is generally accepted
that the predation rate of planktivorous fish is a constant
parameter in plankton-fish interaction models [44, 55, 70].
This implies that fish must always be uniformly distributed in
space. But it is well known that fish can form mobile schools.
For such fish schools occupying spatially confined regions, f
is not a constant but is a function of zooplankton density h,
time t, and space �x; y�; i.e. in Eqn (3.2), f � f �h; t; x; y�.
Function f describes the plankton density-dependent travel-
ling of a fish school to a region favourable in terms of food
availability. Such a motion can be simulated in a variety of
ways [167, 186].

In this paper, we suggest that the behaviour of a fish
school obeys the rules formulated by EbenhoÈ h [187]. In this
case, a localized fish school moves, in search of food, to the
nearest region with highest concentration only after the local
zooplankton density is reduced (as a result of predation) to or
below a certain threshold value hth and the density gradient
across the border of the habitat becomes higher than a
threshold dhth. This, however, does not occur before some
residence time tth has elapsed.

The EbenhoÈ h rules reflect observations of fish school
movements in natural waters [167, 187 ± 189]. However, the
rules are simplified on the assumption that fish schools
travel independently of one another other and their specific
characteristics (e.g. size, speed, and residence time) remain
unaltered. The model (3.3), (3.4) with function f describing
fish school movements following the EbenhoÈ h automata
rules combines the characteristic features of a cellular
automaton and a model based on partial differential
equations.

Fish movements were calculated taking into account the
EbenhoÈ h rules. The fish predation rate on zooplankton f

�n�
i j

was assumed to equal f0 if the school was in position �i; j� at a

time step ndt; otherwise, the predation rate was zero. The
resulting zooplankton density gradient was computed
numerically by the formula

�nHHh��n�i j � jxxj h �n�i�sign �xx�; j � jxyj h
�n�
i; j�sign �xy� ÿ h

�n�
i j : �3:5�

3.3 Formation of spatial plankton patterns resulting
from fish school motions
Figure 7 demonstrates phytoplankton and zooplankton
spatial patterns that emerge as a result of the fish-plankton
interplay. It can be seen that the phytoplankton density falls
in the regions where zooplankton is abundant and vice versa.
Many early observers reported an inverse relationship
between phytoplankton and zooplankton densities [71].
Obviously, this is due to the consumption of the former by
the latter. As a result, the penetration of phytoplankton into
the regions occupied by zooplankton is blocked.

Spiral waves generated by phytoplankton and zooplank-
ton are shown in Fig. 7. Two and three-dimensional spiral
waves are known to emerge in excitable physical, chemical,
and biological media [190 ± 194]. For example, they play an
important role in heart rhythm disturbances and in
biomorphogenesis. In the ocean, they look like rotary
motions of plankton patches on a kilometer scale [111].
The formation of such waves has been described in detail in
Refs [183, 266]. It has been shown that these spirals are
stable over 106 iterations equivalent to more than 50 real
time years. However, they proved sensitive to physical
perturbations, such as shear flows [195] and nutrient
gradients [182].

Interestingly, fish school mobility falls dramatically at a
low predation rate f of zooplankton-eating species, and
spiral waves do not appear. Instead, point sources arise in
this case (Fig. 8).

The formation of both spiral waves (see Fig. 7) and point
sources (see Fig. 8) is followed by a sharp decrease of
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Figure 7. Phytoplankton and zooplankton spatial distribution obtained in model (3.3), (3.4). The density scale is shown at the bottom of the figure;

f � 2.
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spatially-averaged plankton density oscillations

h pi � 1

S

�
�S�

p�x; y; t� dx dy ; hhi � 1

S

�
�S�

h�x; y; t� dxdy ;
�3:6�

where S � k 2, k � 64. It turned out that plankton density
oscillations at f � 1, unlike those at f � 2, display aperiodic
bursts coincident with drastic changes of fish school location
(Fig. 9).

It may be concluded that plankton dynamics depends on
fish school movements [183]. Therefore, the analysis of these
motions is of practical interest for the studies of plankton ±
fish interactions.

3.4 Fish school random walks resulting
from the fish-plankton interplay
3.4.1 Regularity of irregular walks. Fish school motions are
controlled by various biotic and abiotic factors, such as light,
temperature, salinity, nutrient supply (e.g. plankton density),
etc. [167, 186]. On the other hand, fish school walks have been
shown to depend on plankton ± fish interactions [167, 183,
187, 189] which in turn influence plankton dynamics [183]. It
is no wonder that school movements governed by the
interplay between fish and their environment may be highly
irregular [183, 184].

An irregular behaviour exhibits very erratic features and is
described by irregular functions. The irregular functions may
be (1) selfaffine and (2) multiaffine. If function �F � represents
a stochastic process, it may be given by the following formulas
[196 ± 199]:
��F �x� l� ÿ F �x���� � l H �3:7�
(where h. . .imeans averaging) for case (1) and��F �x� l� ÿ F �x��� � l h�x� �3:8�
for case (2). The exponent H in Eqn (3.7) is called the Hurst
exponent. Note that ifH < 1, then F is not differentiable, and
the smaller H the more singular is F. Thus, the Hurst

exponent characterizes the degree of global irregularity of
function F. Exponent h�x� in Eqn (3.8) is called the Holder
exponent. It is a measure of F irregularity at point x. The
greater the Holder exponent the more regular the function F.
Selfaffine and multiaffine functions are regarded as fractal
and multifractal respectively [198 ± 200]. The latter are
characterized by a multifractal spectrum D�h� that describes
the distribution of Holder exponents and represent the
Hausdorff dimension of such a subset for which the Holder
exponent is h:

D�h� � dimH

�
xj h�x� � h

�
; �3:9�

where, in the general case, h may have either a positive or
negative value [198, 200, 201].

Multifractal processes can also be characterized by a
singularity spectrum f �a� which relates the Hausdorff
dimension of f �a� to a subset carrying measure m with the
singularity strength a:

f �a� � dimH

�
xj mÿBx�e�

��
; �3:10�

where Bx�e� is the e-box centred at x, and

m
ÿ
Bx�e�

� � e a�x� : �3:11�
Homogeneous measures are characterized by a singularity
spectrum given by a single point

ÿ
a0; f �a0�

�
. In other words,

only one kind of singularity is inherent in the measure.
Multifractal measures involve singularities of different
strengths. Generally speaking, the approach based on the
f �a� spectrum of singular measures has the same status as
that based on the Holder exponent spectrum D�h� [201].

The question arises of whether fish school movements can
be described by simple equations (3.7) or (3.8) and, if so,
which of the two provides the best fit to such movements.

3.4.2 Fish school trajectories. A fish school obeying the
EbenhoÈ h rules travels to the regions with the highest

Phytoplankton

10 20 30 40 50 60

60

50

40

30

20

10

Zooplankton

10 20 30 40 50 60

60

50

40

30

20

10

min max

Figure 8. Plankton waves emitted by a point source at f � 1. The density scale is shown at the bottom of the figure.
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zooplankton density. Since the plankton distribution changes
with time, the walks of the school are somewhat chaotic.
Figure 10 demonstrates typical fish school trajectories, both
highly (at f0 � 1) and poorly (at f0 � 15) persistent. In either
case, hth � 0:35, dhth � 0:01, and tth � 0:08.

Evidently, the transition from low to high fish predation
rate markedly reduces the persistence of fish school move-
ments; indeed, the school retains the direction of its motion at

f0 � 1much longer than at f0 � 15. Amore subtle analysis of
school walks reveals characteristic features of either type of
fish behaviour.

3.4.3 Multifractal analysis of fish school walks. Recently, we
have shown that fish school walks can be regarded as fractal
Brownian motion with the Hurst exponent H depending on
both the phytoplankton growth rate and the fish predation
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shifted and qualitatively similar to averaged phytoplankton density oscillations.
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rate on zooplankton [183, 185]. However, caution is needed
when using the Hurst exponent in the analysis of Brownian
signals because this approach tends to yield imprecise
estimates of H when the function of interest is not a spatially
homogeneous fractal function with constant `roughness'
described by the exponent H [202].

In the present paper, it is not supposed a priori that a fish
school trajectory can be represented by a spatially homo-
geneous fractal function; rather, we carry out the multifractal
analysis of fish school walks (cf. Ref. [184]). A strategy is used
which provides a practical possibility to directly derive
singularity spectra D�h� (3.9) and f �a� (3.10) from any
experimental signal [201, 203, 204]. This approach is essen-
tially that of transformations used in the `wavelet (burst)
theory' [76, 77, 205 ± 208, 266]. It includes a space-scale
analysis which consists of expanding signals in terms of the
so-called wavelets constructed, by means of translations and
dilations, from a certain single function referred to as the
analysing wavelet c. The continuous wavelet transform of a
real-valued function F is defined as

Wc�F ��b; a� � 1

a

��1
ÿ1

F �x�c
�
xÿ b

a

�
dx ; �3:12�

where b and a are the space and scale parameters respectively.
The analysing wavelet c is usually chosen to be localized in
both space and frequency. The main advantage of wavelet
transforms for the analysis of function F regularity is that
they `do not recognize' a signal described by a polynomial
function, given a proper choice of the analysing wavelet c.
The analysing wavelet referred to as the `Mexican hat', by
virtue of its specific shape, will be used throughout this
section.

The fastest way to estimate functions D�h� (3.9) and f �a�
(3.10) is to analyse the scaling behaviour of the partition
functionZ�q; a� from thewavelet transformmaximamodulus
[203]

Z �
XN�a�
i�1

ÿ
oi�a�

�q
; �3:13�

where i � 1; . . . ;N�a�; N�a� is the number of local
Wc�F ��b; a�maxima on each scale a considered as a function
of x; function oi�a� can be defined in terms of wavelet
transform coefficients [201, 203] as

oi�a� � max
�x;a 0�2 li
a 04 a

��Wc�F ��x; a 0�
�� ; �3:14�

li 2 L�a�; L�a� is a set of lines connecting the wavelet
coefficient maxima which reach or cross a level correspond-
ing to scale a.

In the limit a! 0�, the partition functionZ�q; a� exhibits
a power law behaviour:

Z�q; a� � a t�q� : �3:15�
The spectrum f �a� (3.10) can be found by the Legendre

transformation, i.e.

f �a� � min
q

ÿ
qaÿ t�q�� : �3:16�

Because t�q� is normally differentiable, and t 00�q�4 0, it is
found that

a�q� � dt�q�
dq

; �3:17�

f �q� � q a�q� ÿ t�q� : �3:18�

Unfortunately, the computation of the Legendre transform
has several disadvantages (related, for example, to the local
violation of the inequality t 00�q�4 0). This may lead to errors
[209]. Therefore, another approach was developed to derive
singularity spectra in the context of the so-called canonical
method [209]. It uses the following functions:

h�a; q� � 1

Z�a; q�
qZ�a; q�

qq
; �3:19�

where

qZ
qq
�
XN�a�
i�1

oi�a�q lnoi�a� ; �3:20�
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and, by analogy with Eqn (3.18),

D�a; q� � qh�a; q� ÿ lnZ�a; q� : �3:21�
D�q� and h�q� spectra are found in the following way [204]:

D�q� � lim
a! 0

D�a; q�
ln a

; �3:22�

h�q� � lim
a! 0

h�a; q�
ln a

: �3:23�

The singularity spectrum D�h� can be computed from Eqns
(3.22) and (3.23). Unlike the Legendre transform (3.17),
(3.18), this approach makes it possible to avoid any
instability related to numerical differentiation and attendant

a

h
�a
;q
�

2 4 6 8 10

6

4

2

0

8

10

12

14

log2 a

6

ÿ4
ÿ2
0

2

2 4 6 8 10

ÿ20

ÿ10

0

10

20

30

40

log2 a

lo
g
2
Z
�a
;q
�

6

ÿ4

ÿ2

0

2

D
�a
;q
�

2 4 6 8 10

5

15

10

20

25

log2 a

6

ÿ4

ÿ2

0

2

c

ÿ4 ÿ2 0 2 4 6
ÿ0.5

ÿ0.4

ÿ0.3

ÿ0.2

ÿ0.1

0

q

H � 0:6

H � 0:9

t�q
�ÿ

q
H
�
1

0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.6

0.7

0.8

0.9

1.0

h; a

H � 0:6 H � 0:9

D; f
d

b

D
�a
;q
�

2 4 6 8

5

15

10

20

25

log2 a

6

ÿ4

ÿ2

0

2

h
�a
;q
�

2 4 6 8

2

10

12

4

6

8

14

16

log2 a

6

ÿ4
ÿ2
0

2

log2 a

lo
g
2
Z
�a
;q
�

2 4 6 8

ÿ20

20

0

40

6

ÿ4

ÿ2

0

2

Figure 11.Multifractal analysis of realizations of fractional Brownian processes for (a)H � 0:6 and (b)H � 0:9. Dependences of log2 Z�a; q� on log2 a,

h�a; q� on log2 a, and D�a; q� on log2 a for each process were obtained from 32 realizations, 212 in length each. q values are shown at each graph. (c) The

difference between the numerically obtained t�q� [Eqn (3.15)] and its theoretical value t�q� � qHÿ 1 [201]. (d) f �a� and D�h� spectra (dashed and solid

lines respectively).

January, 2002 Spatio-temporal pattern formation, fractals, and chaos in conceptual ecological models 43



errors. At the same time, the canonical method allows one to
identify and evaluate errors in the calculation of D�q� and
h�q� from the variances in the slope of linear approximations
(3.22) and (3.23).

Figure 11 demonstrates how the two approaches work
when applied to the model realization of fractional Brownian
motion. It can be seen that all functions, log2 Z�a; q� vs log2 a,
h�a; q� vs log2 a, D�a; q� vs log2 a, are essentially linear in
agreement with Eqns (3.15), (3.23), and (3.22) respectively.
Note (Fig. 11c) that the difference between the numerical and
theoretical values of t�q� is virtually independent of H and

remains close to zero over rather awide range of q values. This
region widens as the length of realization increases while the
error grows with increasing jqj. Because the difference
between numerical and theoretical values of t remains non-
zero for any finite realization, neither D�h� nor f �a� is a
pointlike fractal spectrum. Instead, they form bell-shaped
functions the half-width of which is rather small compared
with that characteristic of any multifractal process.

Similarly narrow fractal-like spectra are typical of fish
school cruising associated with a fish predation rate f0 � 15
[Figs 12a(3)]. It can be seen that h � 0:6 corresponds to the
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Figure 12a. Multifractal analysis of small-scale () and medium-scale (4) fish school walks at different fish predation rates on zooplankton: (1) f0 � 1,

(2) f0 � 4, and (3) f0 � 15. Small and medium-scale walks were obtained by splitting fish school trajectories (similar to those in Fig. 10) into sections of

length 23 and 25 respectively. Functions h�a; q� vs log2 a and spectra D�h� are presented for each f0 value (q values are shown on each graph).
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maximum of D. Hence, these movements may be regarded as
fractional Brownian motion with the Hurst exponent H, in
excellent agreement with the results reported in Ref. [183]. A
dramatic change in singularity spectra occurs as f0 decreases.

Figure 12a(2) presents singularity spectra obtained for
small and medium-scale walks of a fish school at f0 � 4.
These spectra are broader than in Fig. 12a(3) and have a
shape similar to that typical of multifractal spectra [201 ±
204].

Figure 12a(1) demonstrates selected results ofmultifractal
analysis of small and medium-scale fish school walks at

f0 � 1. It follows that small-scale motions are characterized
by essentially non-linear h�log2 a� dependences. As a result,
the singularity spectrum cannot be obtained. A spectrum of
medium-scale walks is also presented. It is multifractal.

Finally, Fig. 12b shows the results of multifractal analysis
of large-scale fish school walks. Evidently, the function t�q�
for the fractal motion [Fig. 12b(3)] is virtually linear whereas
the transition to multifractal spectra D�h� and f �a� is
accompanied by the growing non-linearity of function t�q�.
Such non-linearity is typical of multifractal patterns and
processes [198].
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Figure 12b.Multifractal analysis of large-scale fish school walks for different fish predation rates on zooplankton: (1) f0 � 1, (2) f0 � 4 and (3) f0 � 15.

Large-scale walks were also obtained by splitting fish school trajectories (similar to those of Fig. 10) of lengths 219 (for f0 � 4 and f0 � 15) and 220 (for

f0 � 1) into separate sections of length 29. For each value of f0 the function h�a; q� of log2 a (the value of q is shown by each curve), t�q�, the spectrum f �a�
(dashed line) and D�h� (solid line) are shown.
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3.4.4 Concluding remarks. This section presented a hybrid
model describing the continuous spatio-temporal dynamics
of phytoplankton and zooplankton as well as the discrete
dynamics of planktivorous fish. Also, it considered the
plankton patch formation known to occur under natural
conditions [52, 167, 186]. Fish and plankton dynamics
undergo continuous mutual adaptation. Fish school trajec-
tories are strongly dependent on the predation rate f of
plankton-eating species (see Fig. 10). Any decrease of f
results in a transition from low-persistent to high-persistent
fish school movements. The former exhibit fractal properties
while the latter are multifractal on large scales. Therefore,
seasonal changes of D�h� and f �a� spectra are of practical
interest. It can be expected that future experiments and field
observations will show whether fish school movements may
be characterized in this way.

In conclusion, these results indicate that rather a simple
conceptual minimal model (3.3), (3.4) can describe a large
variety of fish school movements and the formation of
complex plankton spatio-temporal patterns resulting from
predator ± prey interactions and diffusion processes.

4. Inhomogeneous marine environment

In the preceding section, the plankton system dynamics was
mainly considered on the assumption that the properties of
the environment are time and space-independent. Strictly
speaking, this is not true of the marine environment. The
majority of hydrophysical factors controlling the function of
a biological community, e.g. temperature, salinity, turbulent
mixing, etc., are functions of t and r. This accounts for the
appearance of spatial patterns in an aquatic community
induced by heterogeneous hydrophysical and hydrochemical
fields. To better understand the dynamics of an aquatic
community in a real marine environment, it is important to
distinguish between `intrinsic' patterns, i.e. patterns arising
from trophic interactions within the community (like those
described above), and `imposed' ones which are due to the
heterogeneous environment. The physical nature of environ-
mental heterogeneity (thus, the dispersion of varying para-
meters and characteristic temporal and spatial scales) can
differ considerably from one situation to another. To assess
the applicability of the `homogeneous' models considered
above and obtain the information necessary for their further
development (to ensure a more realistic approach taking into
consideration environmental heterogeneity), we briefly
describe the main types of spatial inhomogeneities known to
occur in the ocean. This concise and rather schematic account
should be considered as an introduction to the subject rather
than a comprehensive review. Readers interested in more
details are referred to the voluminous scientific literature on
this and related issues. Here, this problem is treated in so far
as it is necessary for the purpose of this paper.

Before considering concrete cases of hydrophysical
heterogeneity, it appears useful to outline the scope of
processes that may be of special interest for the further
discussion. First of all, it should be borne in mind that the
ocean is a highly stratified system characterized by a distinct
vertical and horizontal asymmetry. Because we are mainly
interested in phenomena arising from the interplay between
physical and biological processes, this section is largely
concerned with the dynamics of the upper `productive' sea
layer. Being dependent on a number of factors, such as
geographic region and season, its thickness has been

estimated to vary from tens to hundreds of meters. Since the
spatial biological patterns considered in the preceding
sections normally arise on scales from hundreds of meters to
a few kilometers, they appear to be in the first place related to
the horizontal dynamics of an aquatic community. Therefore,
what follows concentrates on the horizontal spatial structure
of the marine environment.

Another important point is that the typical time of
evolution of a given inhomogeneity should not be too short.
The ocean is a multiscale system, and the adequacy of the
assumption of its steadiness and/or homogeneity depends on
the scale of the process of interest. The characteristic time of a
plankton system is usually defined as the period it takes for
the community to double in abundance. Roughly estimated,
this varies from a few hours to a few days for phytoplankton
species and from a few days to several weeks for zooplankters.
Thus, a distinct spatial structure of a marine planktonic
system can be expected to develop if induced by environ-
mental inhomogeneities with a typical lifetime of not less than
one month.

According to one definition, plankton is the collective
name formarine organisms poorly adapted for activemotion.
Therefore, the first apparent cause of the formation of spatial
structures in plankton systems is water movements. There is
an extensive literature concerned with velocity fields of such
motion in the world's ocean (see, for instance, Refs [210 ± 212]
and references therein). In a broader sense, this problem
constitutes the principal issue in modern physical oceano-
graphy. The nature of velocity field heterogeneity depends on
the scale of a given process. For example, on a small scale
(from several centimeters to a few dozens of meters), this
heterogeneity is mainly due to water turbulence and has the
form of stochastic turbulent pulsations. On a large scale
(hundreds of kilometers and more), the heterogeneity of
velocity fields takes the form of oceanic currents and is
induced by planetary-scale processes, e.g. such that ensue
from interrelations between different climatic zones and the
rotation of the Earth [213]. On intermediate scales (from
several to tens of kilometers) the inhomogeneity of velocity
fields is usually due to the interaction between different
factors, one of the most important being the impact of the
wind. Field heterogeneity of (horizontal) advective currents
apparently leads to the formation of spatial structures in
plankton communities [214 ± 218]; some of them are reported
in Ref. [12]. However, a detailed consideration of the data
pertinent to this problem is beyond the scope of the present
paper which is mostly centred on the patterns arising from
biological interactions unrelated to ocean hydrodynamics.

The influence of seawater turbulence on the functioning of
an aquatic community via its impact on the feeding and
growth rates has been reported in a number of papers [219 ±
221]. Also, inhomogeneous turbulent mixing of oceanic water
(intermittence, turbulent patches, rips, etc.) is a widely
observed phenomenon [222, 223]. It is natural to expect that
it should also contribute to the formation of spatial and
spatio-temporal patterns in a plankton community. This
inference, however, is not so self-evident as it may seem. The
thing is that the intensity of turbulent mixing in the ocean
varies not only in space but also rapidly changes in time. Some
theoretical findings indicate that an isolated turbulent patch
tends to decay with time [224, 225], the estimated decay time
usually being much smaller than characteristic times of
aquatic communities. Thus, intermittent seawater turbu-
lence appears to influence spatially homogeneous time-
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averaged parameters of community dynamics [226] rather
than the initiation of spatial structures by environmental
factors.

Today, the point of primary interest is the possibility of
formation of spatial structures unrelated to direct induction
by water motion. There are a variety of factors affecting the
dynamics of an aquatic community via effects on the growth,
mortality, and feeding rates, etc. In what follows, the main
attention will be given to temperature fields, the reason being
that temperature is considered to be one of the most
important parameters controlling the abundance of aquatic
species [12, 227, 228]. Many authors have reported a strong
correlation between sea surface temperature and chlorophyll
concentration (see, for instance, Refs [79, 229, 230]). On the
other hand, due to recent progress in remote sensing
technology, the properties of spatial temperature fields in
the ocean are known better than the properties of other fields
[231].

The spatial inhomogeneity of temperature distribution in
the ocean is a result of many underlying processes. As
mentioned above, the characteristic time of different tem-
perature field anomalies depends on the spatial scale of the
process involved. Planetary-scale processes may have char-
acteristic times of many tens or hundreds of years. Specifi-
cally, temperature differences between climatic zones are
responsible for a steady horizontal temperature gradient
averaging approximately 0.01 �C kmÿ1 [232]. The value of
the spatially averaged climatic gradient provides a natural
scale for measuring the `intensity' of various temperature
anomalies.

The smallest spatial scale of the temperature field is
determined by turbulence. Usually, it differs significantly in
horizontal and vertical directions due to effects of gravity and
stratification. Vertical spatial inhomogeneities are related to
turbulent pulsation and do not to exceed the `Ozmidov
length' Loz [160, 226] which normally falls into the range
from tens of centimeters to several meters. Lateral turbulent
exchange generally has a somewhat complicated nature and
depends on the scale of the underlying phenomenon [160, 161,
233]. However, spatial temperature inhomogeneity induced
by turbulent pulses can hardly produce any stable spatial
structure in an aquatic community because the amplitude of
temperature fluctuations is small (on the order of 0.1 �C)
[233]. Also, the periods of fluctuations do not usually exceed a
few minutes [233], being much smaller than temporal scales
that characterize the functioning of aquatic communities.

Another mechanism for the formation of inhomogeneous
temperature fields is vertical convection. Although, in certain
cases, the processes underlying this phenomenon are not well
understood [234], a widely accepted hypothesis suggests that
free vertical convection results from hydrodynamic instability
arising because the water density in the upper ocean layer is
higher than in the subsurface one due to evaporation and
cooling. The development of this instability can lead to the
formation of a cell structure at the sea surface with alternating
cold and warm patches, each underlain by a column of
descending or ascending water respectively [235, 236]. The
typical size of these patches in the ocean is estimated at 10 to
100m and the characteristic time of their evolution from a few
tens of minutes to several hours, with the temperature
difference between cold and warm patches rarely exceeding
1 �C [159]. It is worthwhile to note that vertical convection
strongly affects the dynamics of pelagic communities, being
responsible for seasonal disturbances of thermocline and

upwelling of nutrient-rich warm water. However, free
vertical convection can hardly be expected to contribute to
the formation of a distinct long-living horizontal spatial
structure in a pelagic community because of its relatively
small spatial scale and non-stationary nature.

An example of a stable long-living spatial structure in a
temperature field is provided by ocean fronts. The term ocean
front is normally applied to an ocean region where the
gradient of a certain parameter, e.g. temperature, salinity,
and/or density, is much higher than its characteristic value for
a given sector of the world's ocean [237]. With respect to
temperature, such a typical value is given by the average
climatic gradient. In practice, a temperature field in the ocean
is usually considered to create a front when
jHT j5 0:5ÿ1:0 �C kmÿ1. Special literature [232, 237] con-
tains a great number of examples of ocean fronts differing in
terms of structure, behaviour, and underlying physical
mechanisms. A brief review of their properties that can be
important in the context of this paper indicates that the
temperature difference across the front varies from less than
1 to 5 ± 6 �C. The width of the front (i.e. its characteristic size
along the temperature gradient) usually lies between a few
hundreds of meters and several kilometers while its length
(extension along the front) varies from tens to several
hundred kilometers. As regards the inner spatial structure,
ocean fronts are usually either stepwise (sometimes, multi-
step), when the front separates regions with cold and warm
water, or intermittent, when regions with cold and warm
water alternate (also, cases of more complicated geometry
may occur).

A remarkable property of ocean fronts is that they usually
exist quite a long time, from a fewmonths (seasonal fronts) to
many years (e.g. fronts created by large-scale ocean currents),
that is much longer than the characteristic time of a plankton
system. Also, the temperature difference of a few �C across
the front is often sufficient to markedly change the growth
rate of phytoplankton species [12]. Another important point
is that water on either side of the front usually comes from
different sources and may thus significantly differ in nutrient
levels, e.g. in the case of upwelling fronts. It appears that the
combination of these two factors may be responsible for an
`imposed' spatial structure in the pelagic community [238,
239]. Indeed, some studies indicate that both the phytoplank-
ton growth rate and the biomass of a pelagic community may
be somewhat different on either side of the front [229, 239].

Ocean fronts give a typical but not the sole example of
long-living inhomogeneities in an ocean temperature field.
Another widely observed phenomenon leading to a relatively
stable spatial structure are mesoscale (synoptic) eddies or
`rings' [240]. Eddies usually have a horizontal size from tens to
250 ± 350 km and thickness from several hundred meters to
slightly more than 1 km. They exist for a few weeks to several
months. Mechanisms by which eddies are formed vary from
one hydrographic region to another (see, for instance, Refs
[241 ± 244]). Eddies can be either `warm' (when water
temperature inside the ring is higher than outside) or `cold',
with the maximum temperature difference amounting to 10 ±
12 �C. Besides the temperature, other factors (e.g. salinity and
nutrient concentration) inside and outside a ring may be
significantly different too.

An important point is that, regardless of their origin and
peculiarities of hydrophysical structure, virtually all rings
exhibit anomalous `biological activity' [245], i.e. enhanced
density of different plankton species and phytoplankton
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growth rates. Moreover, the plankton community inside a
ring can be spatially structured [246 ± 248]. Some authors also
report an increased abundance of certain fish species
associated with eddies [249]. Another biologically important
effect is due to the high mobility of such rings. While ocean
fronts are usually localized in a certain region, synoptic rings
can travel many hundreds of miles. In some cases, this may
lead to a large-scale biological invasion when big masses of
water containing a pelagic community are brought from the
ring origin to another place occupied by a different commu-
nity [250].

Also worthy of mention is a specific type of synoptic eddy
known as rotating lens-like eddies (called meddies if they
occur in the Northeastern Atlantic) [251 ± 253]. Unlike an
`ordinary' synoptic ring with the volume of rotating water
bordering the ocean surface, a lens as a whole is localized at
depth. Typically, a lens leaves no observable traces at the
ocean surface which makes it difficult to observe. This
probably accounts for the scant information available on
biological phenomena associated with rotating lenses. Never-
theless, because lenses exist like isolated water parcels with
properties different from those of the surrounding water, they
provide an good example of long-living inhomogeneities in
ocean hydrophysical and hydrochemical fields. It is expected
that further studies will bring more data on biological
anomalies associated with this phenomenon [254].

It may be concluded that this brief examination of the
properties of heterogeneous ocean fields (especially tempera-
ture fields) has demonstrated the presence of stable spatial
structures (fronts and eddies) existing much longer than the
typical time of plankton system dynamics. There is extensive
evidence of the impact of these environmental patterns on
the functioning of marine ecosystems. This provides a basis
for the construction of models taking into account externally
induced spatial structures in aquatic communities. An
example of such a model will be considered in the next
section.

5. Chaotic and regular plankton dynamics
in spatially structured fish
and plankton communities

5.1 Formulating the task
A brief revision of the main patterns in the marine environ-
ment (see Section 4) shows that spatio-temporal dynamics of
aquatic communities is greatly affected by stable mesoscale
structures. It should be noted that the temporal dynamics of a
communitymay strongly depend on the spatial structure of its
environment [255, 256]. In this section, we focus on the
dynamics of plankton populations in a patchy environment.
A minimal one-dimensional `reaction ± diffusion' model of
plankton dynamics within a patch is considered on the
assumption that some plankton habitats are rich in fish
while others are not. We study the temporal behaviour of
spatially averaged zooplankton and phytoplankton densities
depending on such ecologically important parameters as fish
predation rate on zooplankton and patch-to-patch distance.
We show that diffusive interlinks between different habitats
in a heterogeneous marine environment where some patches
are inhabited by fish and others are not can give rise to
plankton spatial patterns. We also demonstrate that spatially
averaged plankton dynamics depending on the fish predation
rate and the distance between fish-populated habitats can

exhibit both chaotic and regular behaviour. Chaotic plankton
dynamics occurs over a wide parameter range.

5.2. Model
We consider the basic four-component marine food chain
model described by Eqns (3.3), (3.4). A simple explicit
difference scheme is used for numerical integration of these
equations. The one-dimensional space is divided into a grid of
64 finite-difference cells of unit length. The borderline
between habitats divides the entire space into two patches.
The time step is set equal to 10ÿ2. Repetition of integration at
a smaller step showed that the numerical results did not
change testifying to the accuracy of the chosen time step.
The dynamics was investigated on the assumption of no-flux
boundary conditions. The initial distributions of h and p in
Eqns (3.3), (3.4) were taken to be uniform and the same for
each habitat.

The diffusion terms in Eqns (3.3), (3.4) frequently describe
spatial mixing of species due to active motions of individual
organisms [96, 169]. In natural waters, however, it is turbulent
diffusion that is supposed to dominate plankton mixing [92,
146]. Taking this into account, both phytoplankton and
zooplankton may be regarded as a passive admixture
transported by turbulent water flows. Therefore, in
Eqns (3.3), (3.4), dp � dh � d. Using the relationship
between the turbulent diffusion and the spatial scale of the
phenomenon of interest [92, 160, 161], at the minimal
phytoplankton growth rateR0 � 10ÿ6 sÿ1 [52] and character-
istic length L=k (see Section 3) of plankton patches around
2 km, it can be shown that d is about 5� 10ÿ2.

5.3 Two-patch ecosystem dynamics
Figure 13 shows system (3.3), (3.4) solution diagrams, i.e. the
dependence of steady-state solutions on the fish predation
rate. Evidently, phytoplankton-dominated stationary states
are associated with a high predation rate f of fish feeding on
zooplankton. A decrease of f results in one unstable and one
more stable state thus making the system bistable. At a
further decrease of f, both the phytoplankton-dominated
stable steady-state and the unstable state disappear in a
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Figure 13. Model (3.3), (3.4) solution diagrams for the following set of

parameters: r � 5, a � b � 5,m � 0:6, n � 0:4. The curves display steady-
state solutions for different f.H shows the Hopf bifurcation.
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saddle ± node bifurcation. For even lower f, a Hopf bifurca-
tion occurs at point H which causes destabilization of the
zooplankton-dominated steady-state while creating a stable
limit cycle. This means that, in the absence of fish � f � 0�, the
local kinetics of the system is oscillatory (for parameters
corresponding to the solution diagram in Fig. 13). A deeper
analysis of local properties ofmodels similar to (3.3), (3.4) has
been undertaken in Refs [44, 71, 147, 257].

Let us consider the simplest example of a spatially
structured ecosystem consisting of only two patches. In both
patches, the dynamics obey Eqns (3.3), (3.4), but for one of
them f � 0, i.e. the fish density is negligibly small (for
example, due to local changes in temperature or salinity).
Figure 14 shows three sets of one-dimensional plankton
spatial patterns which have emerged from the initially (at
t � 0) homogeneous plankton distributions as a result of the
diffusion interaction between a habitat populated by fish [at
x4 32 with f � 0:05 (Fig. 14a), f � 0:18 (Fig. 14b), and
f � 0:395 (Fig. 14c)] and another one �x > 32� where fish are
absent ( f � 0�. It readily appears from the consideration of
the dependence of the steady-state solution of system (3.3),
(3.4) on the fish predation rate (see Fig. 13) that the values of
f � 0:05 and f � 0:18 correspond to oscillatory plankton
kinetics while f � 0:395 corresponds to the zooplankton-
dominated steady state. It can be seen that, in the fish-
populated habitat, an increase in the fish predation rate is
followed by the transition from rather regular plankton
patterns (see Fig. 14 at f � 0:05) to irregular ones (see
Fig. 14 at f � 0:18) and thereafter to virtually unstructured
plankton distributions (see Fig. 14 at f � 0:395). In the fish-
free habitat, the transition is from regular (Fig. 14a) to
irregular (Fig. 14b, c) patterns. Note that interlinks between
the habitats are essential for perturbation of the initially

homogeneous distributions; no pattern can form in their
absence.

In order to demonstrate the dependence of plankton
spatial patterns on the predation rate of zooplanktivorous
fish in more detail, a pattern bifurcation diagram was
constructed. Figure 15 shows plankton abundance as a
function of coordinate x (horizontal axis) calculated at
t � 5000 for different f (vertical axis), from 0 to 0.395. It
can be seen that, for the fish-populated habitat, structures of
large inner scale characteristic of smaller f values transform
into small-scale irregular patterns as f increases. After the
system passes the Hopf bifurcation, the transformation
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Figure 14. Spatio-temporal plankton patterns (left column: phytoplankton, right column: zooplankton) that emerged from the initially homogeneous

distributions in a system of two habitats: for (a) f � 0:05, (b) f � 0:18, and (c) f � 0:395; x is the spatial coordinate, t is time.
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continues to nearly homogeneous plankton distributions (see
Fig. 13). In contrast, in the fish-free habitat, the Hopf
bifurcation is not accompanied by substantial changes of the
plankton structure (see Fig. 15). It also appears that
phytoplankton density is lower in regions where zooplank-
ton abounds and vice versa. Such an inverse relationship
between phytoplankton and zooplankton was reported in
many earlier studies as an apparent consequence of zooplank-
ton grazing on phytoplankton [71].

Although the differences between the three main types of
planktonic structures shown in Fig. 14 are well-apparent, it
appears appropriate to characterize them in a more quantita-
tive way, i.e. to ascribe a certain numerical index to each of the
patterns. Also, it seems important to consider the transforma-
tion of one pattern to another in more detail in order to
understand how the properties of the structures change for
small variations of f. For this purpose, plankton spatio-
temporal patterns (like those in Fig. 14) were converted to
two-level structures for which densities below a threshold
value were taken to be zero while those exceeding it were set
equal to 1. The threshold value was chosen as the minimum
peak of spatially averaged plankton density achieved in the
course of pattern formation. Note the absence of differentia-
tion between space and time for the identification of peculiar
features characterizing spatio-temporal dynamics of the
system.

To characterize the `integral' properties of `two-dimen-
sional' spatio-temporal plankton patterns, we used the fractal
dimension �D� of the two-level plankton structures described
above and studied the dependence of D on the predation rate
f of fish feeding on zooplankton. It should be noted that
small changes in both the threshold and the range of t do not
significantly influence the results of plankton pattern analy-
sis; in this sense, these results should be regarded as rough
ones.

Figure 16 demonstrates functions D� f � obtained for
zooplankton patterns in both fish-populated (Fig. 16a) and
fish-free (Fig. 16b) habitats. (Because of the inverse relation-
ship between phytoplankton and zooplankton density dis-
tributions, phytoplankton patterns are characterized by
qualitatively similar functions.) The comparison of Figs 15
and 16 indicates that each D� f � plateau corresponds to more
regular plankton distributions. This tendency is more con-
spicuous at small f in the fish-populated habitat and at large
f in the fish-free one. Functions D� f � expose some new
details of plankton patterns. Specifically, smooth changes of
D inherent in the fish-populated habitat are accompanied by
an abrupt change of the fractal dimension in the fish-free
habitat (cf. Figs 16a and 16b). Therefore, plankton spatio-
temporal dynamics in the fish-free habitat appears to be less
stable with respect to changes in the fish predation rate than in
the fish-populated habitat.

To study temporal plankton dynamics, both jpi�t�j and
jhi�t�j were used, i.e. the vector lengths characterizing
phytoplankton and zooplankton densities in each habitat:

pi�t� �
ÿ
pi 1�t�; pi 2�t�; . . . ; pik=2�t�

�
; �5:1�

hi�t� �
ÿ
hi 1�t�; hi 2�t�; . . . ; hik=2�t�

�
; �5:2�

as well as phytoplankton and zooplankton densities spatially
averaged over each of these habitats:

h pii�t� �
1

Si

�
Si

p�x; y; t� dx dy ; �5:3�

hhii�t� �
1

Si

�
Si

h�x; y; t� dx dy ; �5:4�

where Si is the area of the ith habitat, i � 1 corresponds to the
fish-populated and i � 2 to the fish-free habitat,
S1 � S2 � k2=2 and k � 64. The two approaches yield
qualitatively similar results.

Functions (5.1), (5.2) and (5.3), (5.4) turned out to
strongly depend on the fish predation rate f. By way of
example, Figs 17a and 17b demonstrate the dynamics of
space-averaged zooplankton density hhii for fish-populated
and fish-free habitats respectively. There are three main types
of dynamics: regular oscillations (when f is small), irregular
oscillations in both fish-populated and fish-free patches
(when f increases), and virtually constant plankton density
in the fish-populated patch and irregular oscillations in the
fish-free habitat (when f grows further and becomes higher
than the critical value characteristic of the Hopf bifurcation,
see Fig 13). The same three types of dynamics occur for jhi�t�j.

The temporal behaviour of phytoplankton resembles that
of zooplankton.

There is an obvious correspondence between the three
types of averaged density temporal behaviour (see Fig. 17)
and spatio-temporal patterns in Fig. 14. Regular and
irregular patterns are responsible for regular and irregular
oscillations of both h pii and hhii and jpi�t�j and jhi�t�j
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Figure 16. Dependence of the fractal dimension of zooplankton spatio-

temporal patterns on the fish predation rate for fish-populated (a) and

fish-free (b) habitats.
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respectively whereas nearly homogeneous distributions lead
to a practically constant plankton density.

It is noteworthy that irregular regimes, unlike regular
ones, exhibit sensitivity to the initial conditions (Fig. 18); such
dependence characterizes chaotic dynamics. Whether such
chaotic behaviour is common for two-patch planktonic
systems was investigated by constructing bifurcation dia-
grams for both fish-populated and fish-free habitats.

Figure 19 presents bifurcation diagrams for fish-popu-
lated (a) and fish-free (b) habitats. They show successive local
maxima of time-dependent spatially averaged plankton
densities for the corresponding fish predation rates on

zooplankton over a range of f that covers all types of
dynamics (see Fig. 17). Regular oscillations produce one or
a small number of points whereas the successive maxima of
irregular changes in plankton density are spread over rather a
wide range of values. The diagrams were obtained after all
transition processes were over, and the effect of the initial
conditions became insignificant, allowing selected types of
plankton dynamics to be fully manifested. Note the qualita-
tively different regions in the diagrams. At high fish predation
rates, the fish-populated habitat displays regular plankton
dynamics (Fig. 19a) while it is irregular in the fish-free patch
(Fig. 19b; an example of such dynamics at f � 0:395 is shown
in Fig. 17). For smaller f values, the regular dynamic patterns
in the fish-populated patch are lost, and the maxima occur
throughout the entire range of values excepting a very narrow
gap in the vicinity of f � 0:2, where the dynamics becomes
regular again (Fig. 19a). The example shown in Fig. 17 at
f � 0:18 demonstrates irregular dynamics in the two patches.
At f < 0:1, the plankton dynamics in both fish-populated and
fish-free patches is regular (cf. Figs 19a and 19b; an example
of such dynamics at f � 0:05 is given in Fig. 17). To provide a
more quantitative insight into the nature of the temporal
dynamics of averaged densities, we also computed the
dominant Lyapunov exponent �l�. The results obtained for
different predation rates of zooplankton-eating species in
fish-populated (Fig. 19c) and fish-free (Fig. 19d) habitats are
in good agreement with the bifurcation diagrams (Fig. 19a, b)
and clearly demonstrate the chaotic nature of irregular
plankton dynamics. Indeed, comparison of Figs 19a and 19c
as well as Figs 19b and 19d shows that l > 0 and chaos always
occur at f values for which the regularity of plankton
dynamics is broken. Our calculations indicate that, for
irregular oscillations, at least the four first Lyapunov
exponents are positive. This means that the irregular
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Figure 17. Three main types of oscillations of space-averaged zooplankton density depending on f: (a) at x4 32 (fish-populated habitat); (b) at x > 32
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plankton dynamics may be regarded as high-dimensional
chaos.

It is worth noting that the dependence of plankton
dynamics on the initial conditions is not reduced to the
example shown in Fig. 18. Another type of such dependence
is illustrated by Fig. 20. This figure shows two attractors
obtained at slightly different initial zooplankton densities but
with identical sets of model (3.3), (3.4) parameters. It can be
seen that even minor changes of the initial conditions may
lead to both regular oscillations (Fig. 20a) and chaotic
variations (Fig. 20b) of plankton density. This suggests the
existence of two attraction basins, each associated with one of
the two attractors.

Interestingly, there is a large region of initial plankton
density conditions in which the basin of attraction to the limit
cycle is interlaid in a complicated manner with the chaotic
attraction basin. Figure 21 shows the initial conditions (in a
range of jh1�0�j � jh2�0�j values from 0.3 to 2.7) leading either
to a limit cycle (Fig. 20a) or to a chaotic attractor (Fig. 20b).
The latter are shown as white sectors while the initial densities
leading to regular oscillations are coloured black. It can be
seen that, by increasing the resolution within a selected sector
(e.g. 1:84 jh1�0�j � jh2�0�j4 2:55), additional details can be
visualized giving evidence that the black zones (continuous at
first sight) are actually broken into separate small parts. The
higher the accuracy with which the borderline between the
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attraction basins is determined, the more jagged it looks
(Fig. 21). The basins of attraction to regular and chaotic
oscillations for these zooplankton density values are fractal,
of Cantor set type. This accounts for the difficulty, if not
impossibility, of prediction of which basin of attraction
determines a given trajectory. To be correct, such a predic-
tion must be based on exact information about the initial
conditions. Even a weak noise renders the system unpredict-
able. There is, however, a continuous, non-fractal region of
the initial conditions adjacent to the quantity jh1�0�j �
jh2�0�j � 2:7. All trajectories originating in this region lead
to a chaotic attractor (Fig. 21).

5.4 Three-patch ecosystem dynamics
Figure 22a presents an example of plankton spatial patterns
emerging from an initially uniform distribution in a three-
patch system consisting of two fish-populated habitats
separated by a fish-free gap. The chosen parameters corre-
spond either to the steady-state local kinetics [ f � 0:395 in
Fig. 22a(1)] or to the limit cycle local kinetics [ f � 0:18 in
Fig. 22a(2)]. The question is how the type of plankton
dynamics depends on the width of the fish-free gap.

To answer this question, the dominant Lyapunov expo-
nent for various gapwidths �d�was calculated. It appears that
regular oscillations (similar to those in Fig. 17 at f � 0:05) are
independent of d. In Fig. 22b, l is plotted versus d for two
other types of plankton dynamics (see Fig. 17). The function
l�d� is explicitly nonmonotonic in the case of irregular
plankton density oscillations in both the fish-populated
patches and the fish-free gap separating them (Fig. 22b at
f � 0:18). Note that there is a close correlation between the
gap width-dependent variations of the dominant Lyapunov
exponent characterizing plankton dynamics in the fish-
populated patches (solid line) and the fish-free gap (dashed
line). Such a correlation is absent for a practically constant
plankton density in the fish-populated patches whereas the
fish-free gap undergoes irregular oscillations of this para-
meter (Fig. 22b at f � 0:395). It is easy to see that in the fish-
populated patches l is virtually constant and equal to zero
while in the fish-free gap it monotonically decreases to zero as
the gapwidth becomes smaller approaching 14 (the bottom of
Fig. 22b). To conclude, these results indicate that in a natural
heterogeneous environment plankton dynamics in a given
habitat may depend not only on local habitat-specific
parameters (such as the fish predation rate on zooplankton)
but also on patch-to-patch distances.
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6. Brief summary

This work updates readers on the processes underlying the
dynamics of spatially inhomogeneous aquatic communities.
It is well-known that the non-uniform spatial distribution of
different species cannot be invariably reduced to the hetero-
geneity of the marine environment because it is governed by
physical as well as biological factors. The paper considers
different mechanisms of the formation of intrinsic biological
patterns, i.e. patterns not directly related to any aspect of
ocean hydrodynamics. It is shown that the formation of
spatial structures in the plankton distribution resembling
natural ones (i.e. irregular structures with a finite lifetime)
may come about as an immediate result of the interplay
between turbulent mixing and phytoplankton-zooplankton
interactions. The formation of a plankton pattern is char-
acterized by an intrinsic spatial scale the size of which
(estimated to be on the order of 1 km) is consistent with the
results of field observations.

The minimal model used in this work as sufficient to
describe the formation of the irregular spatially non-uniform
plankton distribution is a two-species predator ± prey (phy-
toplankton ± zooplankton) system with the parameters inde-
pendent of coordinates and free from constraints on the
diffusion coefficients which make up the system of compo-
nents. The system dynamics corresponding to the spatial
pattern formation may be regarded as spatio-temporal
chaos. The appearance of irregular spatial distributions (in
the case of an unusual development scenario) may be
preceded by the formation of distinct spiral patterns.

Another mechanism of formation of irregular spatial
patterns in a plankton community may be related to the
impact of a planktivorous fish school. The interaction
between a mobile fish school and a plankton system,
although modifying the properties of its spatial structure,
leaves the major features of the system dynamics unaltered,
i.e. generation of spiral waves and chaos. The fish school
motion has been shown to possess fractal properties.

A review of field observation data has demonstrated that
in many cases the dynamics of an aquatic community is
subject to effects of relatively stable mesoscale inhomogene-
ities inherent in ecologically significant factors, such as water
temperature, salinity, nutrient concentration, etc. The char-
acteristic size of these inhomogeneities determines one more
(external) scale of the system. The paper analyses plankton
pattern formation and the associated spatio-temporal com-
munity dynamics in an inhomogeneous environment. A
minimal reaction ± diffusion model of the nutrient ± plank-
ton ± fish food chain is used to evaluate the role of diffusive
interrelations between fish-populated and fish-free habitats in
a patchy environment in plankton pattern formation. It is
shown that such interactions may give rise to spatio-temporal
plankton patterns of fractal dimension depending on the fish
predation rate. The spatially averaged plankton dynamics
turns out to be a function of both fish predation rates and
distances between fish-populated habitats; it exhibits chaotic
as well as regular behaviour.

The results reported in this paper (see also Ref. [265])
demonstrate the critical role of chaotic regimes in the spatio-
temporal organization of aquatic ecosystems. Indeed, there is
a growing body of evidence that systems with chaotic
dynamics have a higher adaptive potential under changing
environmental conditions than systems with a stable equili-
brium point [57, 258 ± 261]. At the level of the organism, the

existence of chaos and related irregularities may indicate well-
being [262, 263]. Certain authors go so far as to argue that
aging is related to the loss of plasticity and variability
afforded by chaos in basic physiological systems [263].
Hence, the great interest of the problem of the interrelations
between chaotic and regular dynamics.

This paper illustrates new challenges created by an
improved understanding of the importance of non-linear
interactions in the dynamics of aquatic communities. Con-
ceptual few-species reaction ± diffusion models appear to be
an adequate tool for discovering and elucidating fundamental
mechanisms of spatio-temporal pattern formation in coupled
plankton-fish dynamics.
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