
Abstract. Theoretical investigations of charge exchange and
ionization processes accompanying collisions of negative and
positive atomic ions are reviewed. Detailed analysis of the
Coulomb Green function provides vast information about these
processes. In particular, we took previously unknown sums of
Coulomb wave function products over degenerate states. Adia-
batic energies of the system and its wave functions can be
expressed through these sums, whereas the wave functions turn
out to possess very interesting and unexpected properties.

1. Introduction

Processes with the participation of negative ions have been
scrutinized intensively in atomic collision physics. The
attention was focused on the processes of ion recombination
in collisions with positive ions:

Aÿ � BZ� ! A� B�Zÿ1���n� ; �1�

and ion production in the collisions of highly excitedRydberg
atoms with atoms in ground states:

A� B��n� ! Aÿ � B� : �2�
Both small and large collision velocities were investigated. In
the review we only consider slow collisions, i.e. those with the
collision velocity v < v0 � 2:19�108 cm sÿ1.

Atomic negative ions constitute many-electron systems.
The simplest such system with only two electrons is the
hydrogen negative ion Hÿ�1s2�. The binding energy of the
weakly bound outer electron (or electron affinity of atomic
hydrogen) is equal to 0.75421 eV. Electron affinities of many
other atoms are smaller. Because of the minor electron
affinity of atomic particles, the effective cross sections of
processes (1) and (2) are rather large.

The perturbation of inner electrons in the atomic negative
ion by the weakly bound outer electron is weak. Then one can
rely on a one-electron approximation when describing
processes (1) and (2). The neutral atom produces electric
field with the potential V in which the weakly bound outer
electron moves. This atomic electric potential is nonzero in
the bounded volume. In the adiabatic approximation, the
wave function of the outer electron in the system Aÿ � BZ�,
the function F�R; r�, is a solution of the steady-state wave
equation where the vector R of internuclear distance is
constant, i.e. this vector is an equation parameter. The wave
equation has the following form�

ÿ D
2
ÿ Z

r
� V

ÿjRÿ rj�ÿ E�R�
�
F�R; r� � 0 ; �3�

where r is the radius vector of the weakly bound electron, and
ÿZ=r is the Coulomb potential of the ion BZ�. The
coordinate origin is placed at the center of the Coulomb
field, i.e. in the nucleus of the ion BZ�. The electron energy
E�R� and wave functionF�R; r� depend on the absolute value
of internuclear distance R and on the vector R, respectively.
Hartree atomic units (e � m � �h � 1) are used throughout
this paper, unless stated otherwise.

Let us consider the CoulombGreen functionG�r; r 0;E�. It
is a solution of the following equation�

ÿD
2
ÿ Z

r
ÿ E

�
G�r;R;E� � d�rÿ R� : �4�
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The spectral representation of the Green function is given
by

G�r;R;E� �
X
n; l;m

cnlm�r�c�nlm�R�
En ÿ E

; �5�

where cnlm�r� are the Coulomb spherical eigenfunctions. The
sum in expression (5) represents both the summation over the
discrete states with negative energies and integration over the
continuum.

The exact solution of equation (4) and a compact
expression for the Coulomb Green function was derived by
Hostler and Pratt [1, 2] in 1963:

G�r; r 0;E� � G�1ÿ Zn�
2pjrÿ r 0j

�
W�tx�M 0�ty� ÿW 0�tx�;M�ty�

�
;

�6�

tfx; yg � fx; ygn
; x � r� r 0 � jrÿ r 0j ;

y � r� r 0 ÿ jrÿ r 0j ; n � 1����������ÿ2Ep :
�7�

FunctionsM andW are the Whittaker functions with indices
Zn, 1/2 (viz. MZn; 1=2, WZn; 1=2). These functions are solutions
of the equation

W 00
Zn; 1=2�t� �

�
ÿ 1

4
� Zn

t

�
WZn; 1=2�t� � 0 : �8�

The function M is regular at the coordinate origin but is
exponentially divergent as t!1. The functionW diminishes
exponentially at infinity but is not regular at the origin.

Instead of differential equation (3) one can write down the
following integral equation

F�R; r� � ÿ
�
G�r; r 0;E�Vÿjr 0 ÿ Rj�F�R; r 0� dr 0 : �9�

The above equation is the main ingredient in the construction
of the weakly bound electron wave function in the system
Aÿ � BZ�.

The interaction of the outer electron with the atomic core
in a negative ion differs from zero only in a relatively small
potential well volume. For example, the static potential wellV
of atomic hydrogen H�1s� in the ground state is
VH�1s� � exp�ÿ2rA��1� rÿ1A �, where rA � j rÿ R j. For large
rA, the polarization term a=2r4A should be added to this
potential.

If the size of the potential well V is small, one can use a
Taylor series expansion of the Green function in terms of the
variable r0 at the point r0 � R in equation (9):

G�r; r 0;E� � G�r;R;E� � �r 0 ÿ R� dG

dr 0

����
r 0�R

� . . . �10�

At large internuclear distances R and in the vicinity of
atomA, the wave functionF is close to the unperturbed wave
function F0 of an isolated negative ion Aÿ. The latter can be
substituted into the integral equation (9). Then, for zero
angular momentum of negative ion, L � 0, when F0 does
not depend on angles, the adiabatic wave function is
proportional to the Green function at any point r:

F�R; r� � C0G�r;R;E� ; L � 0 ; �11�

where C0 is the normalization constant. The total set of
eigenfunctions of the systems Aÿ � BZ� and A� B�Zÿ1��n�
can be derived by means of formula (11). For negative ions
withL 6� 0, the eigenfunctions are proportional to derivatives
of the Green function at r 0 � R.

Authors of early works [3 ± 6] proceeded from the d-model
approach for the potential V of an atom A: V � V0d�rÿ R�.
Energy levels of the system were derived in this approach by a
numerical solution of a transcendental equation with the
following logarithmic derivative of the Coulomb Green
function: d ln

�jrÿ RjG�r;R;E�	= djrÿ Rj at r � R. In the
Landau ±Zener approximation [7], the cross section of the
recombination process (1) was calculated in paper [3] with the
energy level splittings derived using d-potential method. In
paper [4], spectral line broadening and shifts were investi-
gated using the same method. The d-potential approach
is applicable only for systems with zero orbital momentum
of the negative ion (L � 0). The results obtained by the
d-potential approach are discussed in more detail in book [6].

A detailed investigation of function (11) was carried out in
papers [8 ± 10]. The normalization integral was calculated on
the plane fE;Rgwhere the energyE and internuclear distance
R are independent variables, or where E and R are connected
by the zero-order relation

E � E0�R� � e0 ÿ Z

R
; �12�

which stems from the negative ion's attraction to the positive
ion. Here e0 is the binding energy of an unperturbed negative
ion. In these calculations the resonant behavior of the wave
function normalization factor entering into Eqn (11) was
revealed. Normalization factor resonances are placed at
internuclear distances such that ionic term (12) crosses the
Coulomb energy levels En � ÿZ 2=2n2. In the vicinities of
these crossings, the outer electron transfers from the negative
ion to the positive one and then comes back.

In papers [8 ± 10], the function B�R� was introduced and
investigated. The square of this function describes the
admixture of the normalized negative ion wave function in
the total adiabatic wave function (11). It was found that this
function has zeros at the crossing points. The amplitude of the
function between crossings is close to one. If the function
B�R� is equal to zero, then the outer electron is located near
the positive ion BZ� and the probability of finding the
electron near the atom A is close to zero. On the contrary, if
B�R� � 1, the outer electron resides near atom A, thus
forming an ion Aÿ.

At large internuclear distances R, the potential barrier in
the system Aÿ � BZ� is located between atomic particles A
and BZ�. The probability of finding outer electron near the
atom A or near the ion BZ� depends on the quantum barrier
penetrability. In this approach at large R and between
crossing points the probability of finding an electron near
the positive ion should be small [or function B�R� should be
close to unity: B�R� ' 1]. However, the absolute value of the
difference j1ÿ B�R�j in the barrier factor approach is much
larger than that found in the calculations [8 ± 10].

In reality, in the Coulomb field of the ion BZ� the negative
energy states do not form a continuous spectrum of states.
The wave function behavior is controlled by the regularity
condition at the Coulomb center. As a consequence of this
condition, the amplitude of the wave function (11) in the
neighborhood of the positive ion BZ� is, in ranges between
energy level crossings, appreciably smaller than that resulting
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from the barrier penetrability estimation. Accordingly, the
value of the function B�R� appears to be very close to one.
The graphs of the function B�R� and normalization constant
are presented below.

A Coulomb system possesses four-dimensional symmetry
and the degeneracy of the Coulomb energy levels is a
consequence of this property. Because of the energy level
degeneracy, the Coulomb Green function (6) and the
adiabatic wave function (11) depend on the sums of the
Coulomb wave function products over orbital quantum
numbers l;m with the same principal quantum number n,
namely

P
l;m c�nlm�r�cnlm�R�. These functions correspond to

the states with the same energy En � ÿZ 2=2n2. For negative
ions with a nonzero angular momentum, the adiabatic wave
functions depend on the sums of the products of the Coulomb
wave functions and their derivatives.

The sums of the Coulomb wave function products have
been calculated and investigated in papers [8, 11 ± 13]. It was
found that these sums are expressed in terms of the quadratic
form that depends on the wave function of only one state,
namely, on the function cn00 with zero orbital momentum
l � m � 0. In these quadratic forms, the functionscn00 depend
on the two-center elliptic coordinates x; Z � �r� jrÿ Rj�=R.
The sums of interest were obtained by investigating the
limiting behavior of the Coulomb Green function (6) as the
energy E approached the Coulomb energy level En. This limit
was then compared with the appropriate limit of the spectral
representation (5) of the Green function. These sumswere not
known before. In 1935, VAFock calculated a similar sum for
wave functions in momentum representation.

The possibility of expressing adiabatic wave functions
(11) through the functions cn00�x� and cn00�Z� greatly
simplifies the investigation of these wave functions. It has
been found that in the states governed by the adiabatic wave
functions (11) the electron has a dipole moment that depends
on the internuclear distanceR. At infinitely large internuclear
distances (R!1), the limits of functions (11) are the wave
functions of Stark states, i.e. functions (11) transform to the
wave functions in parabolic coordinates [7]. The limits of
dipole moments are ÿ3n�n1 ÿ n2�=2Z that are dipole
moments of the Stark states [7].

It is well known that Stark states are the Coulomb
eigenstates in a weak uniform electric field [7]. It was found
that Stark states are also formed when the Coulomb Rydberg
states are perturbed by a neutral atom in the limit R > rn,
where rn � 2n2=Z is the size of theRydberg orbit. This result is
very important for investigations of laser radiation interaction
with Rydberg atoms in a gas medium of neutral atoms.

Normalization factors of adiabatic wave functions (11)
depend on the above-discussed sums with r � R. Many such
sums were calculated in papers [8, 11 ± 13]. They exhibit a
specific behavior as the functions of internuclear distance R.
Energy splittings at avoided crossings of ionic and covalent
electronic terms are expressed through the sums [8] that do
not have zeros at finite values ofR and decay exponentially as
R!1. As a result, all the electronic energy crossings in the
system Aÿ � BZ� are really avoided crossings but not strict
crossings.

It has been found in earlier works [3 ± 6] that in the
d-potential approach the ionic term couples with only one
covalent term from n2 degenerate states with the same
principal quantum number n. This covalent state was
referred to as the `active' state. The wave functions of the
active states are given by formula (11). The energies of these

states depend on R. The remaining n2 ÿ 1 states are passive
and do not interact with the ionic state; the energies of these
states are independent of R and all equal to the Coulomb
energy En.

The basis of n2 degenerate Coulomb states can be
reconstructed by introducing the linear combinations of
Coulomb wave functions cnlm�r� for every n. Wave func-
tion (11) is one of these combinations, and the wave
functions of passive states represent the other n2 ÿ 1
combinations. Because the wave functions of passive states
are orthogonal to function (11), they depend on R and are
closely coupled with the active state in the time-dependent
SchroÈ dinger equation. Thus, passive states are occupied in
collisions (1) and (2), which increases appropriate cross
sections. If that is the case, the passive states are not in
reality passive. In paper [8], the complete basis set of n2

orthonormal wave functions was constructed for every n.
Adiabatic wave functions (11) have not been studied

previously. In calculating the cross section of recombination
process (1) it was not possible to get the populations of
individual states because the adiabatic wave functions (11)
differ essentially from the Coulomb spherical functions
cnlm�r� [3]. The calculation of the cross section of the inverse
process (2) and investigations of spectral line broadening and
shifts are not possible in this approach at all, because of the
problem of initial states [14].

The collisions of two negative ions discussed below can be
described, generally speaking, bymeans of theGreen function
for theCoulomb field of repulsion.However, the one-electron
approach is not applicable to the system Aÿ � Bÿ because
both weakly bound electrons can be detached in this collision.
At large internuclear distances, the wave function of every
weakly bound electron can be expressed through the appro-
priate Green function. The total wave function is equal to the
product of these Green functions, which complicates the
analysis. On the other hand, in the repulsion field there are
no excitedRydberg states and this simplifies the problem. The
total set of ionized states consists of two states evolving
through the one-electron ionization channels Aÿ � B� e
and A� e� Bÿ, and of one state attendant to two-electron
detachment channel A� B� 2e. The probabilities of passing
all channels are determined by the Coulomb repulsion of
weakly bound electrons and are in strong competition. All
these channels should be incorporated in a system of closely
coupled equations. If the electron of the ion Aÿ is detached
then the systemA� Bÿ is formed and the subsequent electron
detachment from the ion Bÿ is only possible as a result of the
weaker interaction with the neutral atom A.

A more detailed analysis of the problems related to the
collisions of negative and positive atomic ions is given below.

2. Adiabatic states of the system A±+BZ+

2.1 Negative ions with zero orbital momenta
The wave function of the outer electron in the unperturbed
negative ion with an orbital momentum L � 0 can be written
in the form

F0

ÿjrÿ Rj� � N0
exp �ÿgjrÿ Rj�
jrÿ Rj ; �13�

N0 �
������
g
2p

r
; e0 � ÿ g2

2
; L � 0
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that is the limit of the wave function F of the ionic state at
infinite internuclear separation (R!1). Let us investigate
in more details the relationship between the unperturbed
wave function (13) and the Coulomb Green function which,
in accordance with formula (11), is the wave function of the
outer electron of the negative ion in the presence of a positive
ion.

The Whittaker function M is defined as the linear
combination of functionsWÿ�t� andW��t� [84]:

G�1ÿ Zn�MZn; 1=2�t� � �ÿ1�1�Zn G�1ÿ Zn�
G�1� Zn� Wÿ�t�

� �ÿ1�Zn W��t� ; �14�
where the function Wÿ�t� �WZn; 1=2�t� is exponentially
decreasing and the function W��t� �WÿZn; 1=2�ÿt� is
exponentially increasing for large arguments t!1. Using
this linear combination we can write out the Green function
(6) at r 0 � R as the sum of two terms:

G�r;R;E� � �ÿ1�
1�Zn

2p
G�1ÿ Zn�
G�1� Zn� G1�r;R;E�

� �ÿ1�
Zn

2p
G2�r;R;E� ; �15�

where

G1�r;R;E� �Wÿ�tx�W 0
ÿ�ty� ÿW 0

ÿ�tx�Wÿ�ty�
jrÿ Rj ; �16�

G2�r;R;E� �
Wÿ�tx�W 0

��ty� ÿW 0
ÿ�tx�W��ty�

jrÿ Rj : �17�

The functions W� and Wÿ are not regular at the
coordinate origin (at the Coulomb center) but their linear
combination (14), i.e. the function M, is regular there.
Accordingly, the functions G1 and G2 are not regular at the
Coulomb center but their linear combination, i.e. the total
Green function (15), is regular. The function G2 can be called
the ionic part of the Coulomb Green function, and the
function G1 the covalent part. The coefficients in the linear
combination (15) are determined by the regularity condition
at the Coulomb center. The properties of the system
Aÿ � BZ� depend essentially on this condition.

The arguments tx, ty of the functions G1 and G2 are given
by formulas (7). At fixed r 0 � R, these variables are propor-
tional to the elliptic coordinates x, Z [15]:

tx � R

n
�x� 1� ; ty � R

n
�Z� 1� ; x; Z � r� jRÿ rj

R
;

14x41 ; ÿ14Z4 � 1 :

Being exponentially divergent at large arguments, the func-
tion M�ty� depends on the variable ty which varies in the
limits 04ty 4 2R=n and does not tend to infinity as r!1.
Therefore, functionsG1 andG2 and the wave function (11) are
regular as r!1. The variable tx is varied in the limits
2R=n4tx 41, so that the irregularity of functions W��tx�
does not manifest itself, because at finite values of R the
variable tx is not equal to zero.

Let us investigate now the passage to the limit r! R. The
binding energies e0 of negative ions are small and the energies
En of covalent states of the system A� B�Zÿ1���n�, occupied
in collision (1), are also small. For small energies we can avail
ourselves of the asymptotics of theWhittaker functions in the

index Zn!1 [16] or calculate them in the semiclassical
approach invoked for solving equation (8). We shall rely on
the semiclassical approach and then the solutions of equation
(8) in the subbarrier region are given by [9]

W��t� �
�
1ÿ t0

t

�ÿ1=4
exp

�
� 1

2

������������������
t�tÿ t0�

p
� Zn� 2Zn ln

���
t
p ÿ ������������

tÿ t0
p
2Zn

�
: �18�

The functionM is expressed as the linear combination (14) of
functions (18).

A semiclassical representation (18) is conveniently used
for investigating the ionic partG2 of the Green function in the
region close to a negative ion. Expanding G2 at jrÿ Rj5R
we obtain

G2�r;R;E� �
exp

ÿÿgscljrÿ Rj�
jrÿ Rj ;

gscl�R� �
"
ÿ 2

�
E� Z

R

�#1=2
: �19�

The form of function (19) is the same as the form of the
unperturbed function (13). If the energy E is equal to the
negative ion energy in the zero approximation (12), then the
exponential powers coincide as well: gscl � g. Numerical
calculations with the use of exact Whittaker functions,
carried out by us, have shown that expression (19) coincides
with the results of numerical calculations in the subbarrier
region with a high accuracy for Zn5 2.

The function G1 is regular as r! R, and in the vicinity of
the negative ion the expansion of this function assumes the
form

G1�r;R;E� �
W��tx�W 0

��ty� ÿW 0
��tx�W��ty�

jrÿ Rj

� n
2

��
dW�
dR

�2

� 2

�
E� Z

R

�
W 2
�

�
t�2R=n

ÿ Zn
2
�rÿ R� W 2

��2R=n�
R2

� . . . �20�
We now turn our attention to the normalization of the

Green function regarded as a wave function in accordance
with relation (11). The normalized wave function F�R; r� can
be written in the form

F�R; r� � N�R�
jrÿ Rj

�
W

�
x

n

�
M 0
�
y

n

�
ÿW 0

�
x

n

�
M

�
y

n

��
;

�21�

where the normalization factor

N�R� �
��

dtx dty
1

�rÿ R�2

�
�
W

�
x

n

�
M 0
�
y

n

�
ÿW 0

�
x

n

�
M

�
y

n

��2�ÿ1=2
; �22�

or in the form

F�R; r� � 2pN0 B�R�G�r;R;E�

� N�R� G1�r;R;E�
G�1� Zn� �N0 B�R�G2�r;R;E� ; �23�
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where the function B�R� is defined in the following way

B�R� � N�R�
N0G�1ÿ Zn� : �24�

The normalization factor N�R� has been calculated numeri-
cally [9, 10] on the basis of the series representation of
Whittaker functions W and M over positive degrees of an
argument [84]. The adiabatic energy of the system as a
function of the internuclear distance R was taken in zero
approximation (12). The derived function N�R� is shown in
Fig. 1. As illustrated, N�R� passes through sharp maximums
located at term crossing positions where E�R� �
En � ÿZ 2=2n2, from which Rn can be calculated in the zero
approximation for the ionic energy (12):

En � e0 ÿ Z

Rn
; Rn � Z

e0 ÿ En
: �25�

Far from the term crossings (Rn < R < Rn�1), the exponen-
tially increasing term in the linear combination (14) is the
leading one. In this case integrand in Eqn (22) is large and the
normalization factor N�R� is small. Alternatively, near
crossings (R � Rn), the exponentially decreasing term is
dominant in the linear combination (14); the integrand in
Eqn (22) is small and N�R� has a maximum.

In Fig. 2, the calculated function B�R� is depicted. Far
from crossings, theB�R� function is close to 1. The equality of

the function B�R� to unity signifies that the outer electron is
located near the negative ion [see formula (23)]. Indeed, the
first term with the function G2 in the normalized Green
function [see formulas (15), (23)] is small in this case, and the
second term with G1 coincides with the unperturbed function
(13). The second terms in Eqns (15) and (23) are given by
expression (19) at all distances R. In the zero approximation
for the energy (12), when gscl � g, the second terms in
expressions (15), (23) and hence the complete ionic function
F�R; r� are close to the unperturbed function (13) and the
electron spends more time near the negative ion. At crossings,
when the exponentially decreasing term in Eqn (14) is the
leading one, the function B�R� drops to zero and the electron
leaves its position for a positive ion. In formula (15), the first
term containing G2 becomes the leading one.

Using the spectral representation (5) of the Green
function we can write out an analogous representation for
the adiabatic wave function (11):

F�R; r� �
X
n

Cn�E�Cn�R; r� ; �26�

where the normalized adiabatic wave functions Cn�R; r� of
covalent states are defined by the sums of the Coulomb wave
function products:

Cn�R; r� �
Xnÿ1
l�0

Xl
m�ÿl

Jnlm�R�c�nlm�r� ; �27�

Jnlm�R� � cnlm�R��������������
Qn�R�

p �
�
cnlm�r�Cn�R; r� dr ; �28�

and the coefficients Cn�R� and the sum Qn�R� are equal to

Cn�R� � ÿ 2pN0B�R�
Eÿ En

Q1=2
n �R� ; �29�

Qn�R� �
Xnÿ1
l�0

Xl
m�ÿl

��cnlm�R�
��2 : �30�

If the energy E coincides with the Coulomb eigenenergy
(E � En), then the denominator in formula (29) becomes
zero. However, the coefficient Cn�R� remains finite because
at this energy the function B�R� is also equal to zero (see
above).

So, in the approximation being considered the wave
functions of adiabatic states are constructed from the
functions Cn�R; r� which are sums of the Coulomb wave
function products over degenerate states. The basis of n2

degenerate states can be reconstructed [6, 17] by the use of
linear combinations made up from the initial wave functions.
For every principal quantum number n, only one state (in
more exact terms only one combination of degenerate states)
is present in the expansion (26). All the other n2 ÿ 1 passive
states are not present in the expansion (26). The complete
orthonormal basis of adiabatic wave functions is constructed
below.

Coulomb eigenfunctions written in the spherical coordi-
nates, viz. cnlm�r� � Nnl fnl�r�Ylm�y;f�, depend on the z-axis
direction of the coordinate system because the spherical
harmonics Ylm�y;f� are transformed when the coordinate
z-axis rotates [18]. Using the addition theorem for spherical
harmonics [7, 18]:

Xl
m�ÿl

Y�lm y;f� �Ylm�yR;fR� �
2l� 1

4p
Pl�cos a� ; �31�

101

N�R�
100

10ÿ1

10ÿ2

200 40 60 80
R, a.u.

Figure 1.Normalization factorN�R� as a function of internuclear distance

R for the colliding system Hÿ �He��.

1.0

B�R�

0.5

0

ÿ0.5

ÿ1.0

0 20 40 60 80
R, a.u.

Figure 2. Function B�R� versus internuclear distance R for the colliding

system Hÿ �He��.
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where yR and fR are the spherical angles of the vector R,
and a is the angle between vectors r and R, we can write
down the wave functions Cn�R; r� of active states and the
sums Qn�R� in the form of single sums over an orbital
momentum l only:

Cn�R; r�� 1�������������
Qn�R�

p Xnÿ1
l�0

2l� 1

4p
Pl�cos a� fnl�r� fnl�R� ; �32�

Qn�R� �
Xnÿ1
l�0

2l� 1

4p

�� fnl�R���2 : �33�

Expressions (32) and (33) for Qn�R� and Cn�R; r� do not
depend on the z-axis direction in the reference system and can
be calculated in an arbitrary oriented coordinate system. The
subsequent summation in these expressions over l is carried
out in a closed form making use of the Hostler ± Pratt Green
function (6) (see below).

2.2 Negative ion with an orbital momentum L� 1
The three angular components fx; y; zg of the unperturbed
wave function of the weakly bound electron with an orbital
momentum L � 1 can be written out in the form

F0;fx;y;zg�rb� �
������
3

4p

r
w0�rb�
rb

� fcos yb; sin yb cosfb ; sin yb sinfb

	
; rb � rÿ R ; �34�

where the radial function w0�rb� is the solution of the equation
d2w0�rb�

dr2b
�
�
2
ÿ
e0ÿV�rb�

�ÿ L�L� 1�
r2b

�
w0�rb��0 ; L � 1 :

�35�
Substituting the wave function (34) and the expansion of the
Green function (10) into the right-hand part of the integral
equation (9), we obtain that the integral (9) of the first term in
the expansion (10) is equal to zero.

For a negative ion with an orbital momentum L � 1, the
adiabatic two-center wave function of the outer electron is
given by the second term in the expansion (10) and is therefore
proportional to the derivatives of the Green function:

Fz � ÿ cos yb Nz
FzfM;Wg
jrÿ Rj �

qG
qz 0

����
r 0!R

; �36�

Fx � ÿ sin yb cosjbNx
FxfM;Wg
jrÿ Rj �

qG
qx 0

����
r 0!R

; �37�

Fy � ÿ sin yb sinjb Ny
FyfM;Wg
jrÿ Rj �

qG
qy 0

����
r 0!R

; �38�

where yb and jb are the spherical angles of the vector
rb � rÿ R in the coordinate system the origin of which is
placed in the nucleus of the negative ion, and Nx; y; z are the
normalization factors. If the z-axis is directed along the vector
R, then one finds

FzfM;Wg � 2

n
W 0M 0 �

�
ÿ 1

2n
� Zn

R

Rÿ r

Rÿ z

�
WM

ÿWM 0 ÿW 0M
jRÿ rj ; �39�

Fx; yfM;Wg � 2

n
W 0M 0 �

�
ÿ 1

2n
� Zn

R

r� R

r� z

�
WM

ÿWM 0 ÿW 0M
jRÿ rj ; �40�

where FxfM;Wg � FyfM;Wg � Fx; yfM;Wg, and x; y; z are
the components of the vector r.

The asymptotics of the unperturbed radial function w0�rb�
entering into Eqn (35) is controlled mainly by the centrifugal
potential. The atomic potential V�rb�, which is determined at
large distances by the polarization interaction
V�rb� ! ÿa=2r4b, may be neglected. The asymptotics of
w0�rb� is then given by

was0 � N
�1�
0

�
1� 1

grb

�
exp �ÿgrb� : �41�

This expression is an exact solution of Eqn (35) for
V�rb� � 0. The coefficient N

�1�
0 � 0:112 for the ion

Caÿ (e3=20 � 0:01973 eV, e1=20 � 0:02455 eV) was found by
numerical solution of Eqn (35) with the model potential
V�rb� in papers [19, 20].

Substituting the semiclassical expression (18) for Whit-
taker functions into formulas (39) and (40) and expanding
them with the constraint jrÿ Rj5R, we obtain

Fz � Fx; y �
�
1� 1

gscljrÿ Rj
�
exp

ÿÿgscljrÿ Rj� : �42�

Here, the constant gscl is defined by Eqn (19) in the
semiclassical approximation. Expression (42), to within a
constant factor, coincides with the asymptotics (41) if the
ionic-state energy is described in the zero-order approxima-
tion (12), when gscl � g. Thus, the constructed functions
(36) ± (38) satisfy the necessary condition: at large inter-
nuclear distances, they coincide with the unperturbed func-
tions in the vicinity of the negative ion.

The main contribution to the normalization integral is
made by the region of large distances from the negative ion
nucleus, but the contribution from asymptotics (41) is
divergent as rb ! 0. Therefore, expressions (36) ± (38) were
matched with the numerical solution of equation (35). For the
ion Caÿ, the behavior of quantities N�R� and B�R� as
functions of the internuclear distance R for zero approxima-
tion to the ionic energy (12) is similar to the behavior of the
same quantities for the system Hÿ �He��, shown in Figs 1
and 2. In the case of the Caÿ ion, the number of energy levels
crossed by the ionic term is larger because the electron binding
energy of this ion is smaller.

For the case of the negative ion with an orbital
momentum L � 1, the adiabatic wave functions are
expressed in the following way:

Fx;y;z�R; r� � N
�1�
0

������
3p
p

g
Bx;y;z�E� qG�r; r 0;E�

qfx0; y0; z0g
����
r 0�R

; �43�

Bx;y;z�E� � gNx;y;z�E�
N
�1�
0

����������
3=4p

p
G�1ÿ Zn�

: �44�

With the use of the spectral representation of the Green
function (5), we write down a similar expansion of adiabatic
functions:

Fx;y;z�R; r� �
X
n

Cx;y;z
n �E�C x;y;z

n �R; r� ; �45�

6 M I Chibisov Physics ±Uspekhi 45 (1)



where the normalized wave functions of covalent states are

Cx;y;z
n �R; r� � 1������������������

Q
x;y;z
n �R�

p X
l;m

c�nlm�r�
qcnlm�R�
qfx; y; zg : �46�

These functions are linear combinations of Coulomb sphe-
rical wave functions cnlm�r� with the common principal
quantum number n and, consequently, with the equal energy.

The expansion coefficients and the normalization factors
are defined as

Cx;y;z
n �E� � ÿN

�1�
0

������
3p
p

g
Bx;y;z�E�

������������������
Q

x;y;z
n �R�

p
En ÿ E

; �47�

Qz
n�R� �

X
l;m

���� qcnlm�R�
qz

����2
z�R
�
X
l;m

���� qcnlm�R�
qR

����2 ;

Qx;y
n �R� �

X
l;m

���� qcnlm�R�
qfx; yg

����2
x�y�0

� 1

R2

X
l;m

���� qcnlm�R�
qy

����2
y�0

;

�48�

where two last sums with the indices x and y are the same.
When constructing the complete adiabatic basis set (see

Section 2.3), the wave functions (46) should be expressed
through the sums of the Coulomb functions cnlm in a
coordinate system the z0-axis of which is perpendicular to
the collision plane. The x0-axis should be directed at a time
either along the impact parameter (rectilinear trajectories) or
along the vector of a closest approach (Coulomb trajectories,
the point in time t � 0). This coordinate system x0; y0; z0 is not
rotated at collision.

If we pass on to a new coordinate system, then use could
bemade of the fact that the sum

P
l;m c�nlm�r�cnlm�R� does not

depend on the coordinate system orientation (see above).
Because the derivatives in formula (48) are concernedwith the
vector R, we should only redetermine these derivatives in the
new coordinate system. Since the x-axis of the above-used
rotating coordinate system coincides with the z-axis of the
new nonrotating system, we have

d

dx
� d

dz0
;

d

dz
� cosfR

d

dx 0
� sinfR

d

dy 0
;

d

dy
� ÿ sinfR

d

dx 0
� cosfR

d

dy 0
:

Transforming the derivatives with respect to x0; y0 to
derivatives with respect to spherical coordinates R; y;f, we
obtain the functions C x;y;z

n �R; r� in the new nonrotating
coordinate system:

Cx
n�R; r��

X
l;m

c�nlm�r� Jx
nlm�R� ; Jx

nlm�R��
qcnlm�R�=qyR
R

�������������
Qx

n�R�
p ;

Cy
n�R; r��

X
l;m

c�nlm�r� Jy
nlm�R� ; J

y
nlm�R��

qcnlm�R�=qfR

R
�������������
Q

y
n�R�

p ;

Cz
n�R; r� �

X
l;m

c�nlm�r� Jz
nlm�R�; Jz

nlm�R� �
qcnlm�R�=qR�������������

Qz
n�R�

p ;

�49�

where yR and fR are the spherical angles of the vector R. The
polar angle yR is constant and equal to p=2 during the
collision, because the z0-axis is perpendicular to the collision
plane. The normalization factors Qx;y;z

n �R� are defined as

Qx
n�R� �

1

R2

X
l;m

���� qcnlm�R�
qyR

����2 ;
Qy

n�R� �
1

R2

X
l;m

���� qcnlm�R�
qfR

����2� 1

R2

X
l;m

m2

����cnlm�R�
����2 ; �50�

Qz
n�R� �

X
l;m

���� qcnlm�R�
qR

����2
and do not depend on the coordinate system.

Since the wave functions C x;y
n �R; r� belong to the states

with nonzero projections of the orbital angular momentum
onto the R-axis, these functions are zero if the vector r is
directed along the vectorR. In the new coordinate system, the
polar angles of these vectors are equal to p=2 in that event. Let
us consider first the function Cx

n . The associated Legendre
polynomials, which are constituents of the Coulomb func-
tionscnlm�r�, and their derivatives at y � p=2 are equal to [84]

NlmP
jmj
l �cos y�

��
cos y�0 � Nlm

2jmj���
p
p G

��l� jmj � 1�=2�
G
�
1� �lÿ jmj�=2�

� sin

�
p
2
�l� jmj � 1�

�
; �51�

Nlm
dP
jmj
l �cos y�
d cos y

����
cos y�0

�Nlm
2jmj�1���

p
p G

�
1� ÿl� jmj�=2�

G
�ÿ
lÿ jmj � 1

�
=2
�

� sin

�
p
2

ÿ
l� jmj�� : �52�

We see from the definition of Cx
n�R; r� that for rkR this

function is proportional to the product of expressions (51),
(52). The latter product, in turn, is proportional to the
product of sines

sin

�
p
2

ÿ
l� jmj � 1

��
sin

�
p
2

ÿ
l� jmj�� ; �53�

which is zero for any integer l and m. In other words, in the
sum defining the function Cx

n either the function cnlm or its
derivative qcnlm=qy are zero at yr � yR � p=2.

The function Cy
n�R; r�, which is given by the sum in

formula (49), is also equal to zero for rkR, when the
azimuthal angles of these vectors are the same: fr�fR. The
sum in Eqn (49) can be written asX

lm

c�nlm�r�
qcnlm�R�

qfR

� i

2p

Xnÿ1
l�0

fnl�r� fnl�R�
Xm��l
m�ÿl

m
��NlmP

jmj
l �0�

��2 � 0 : �54�

The expression under the modulus sign in the last sum
depends only on the absolute value jm|. After multiplication
by m, the contributions to this sum from �jmj and ÿjmj
cancel out for any jmj, and hence the entire sum becomes zero.

Functions (49) are mutually orthogonal. The correspond-
ing integrals turn out to be proportional to expressions (53)
and (54), which are zero. The functions C x;y

n �R; r� for L � 1
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are also orthogonal to Cn�R; r� for L � 0, because they
belong to the states with different projections of the angular
momentum onto the internuclear axis. The integrals ofCnC x

n

andCnC y
n are proportional to the product of sines (53) and to

the sum (54), respectively.

2.3 Properties of Coulomb Green functions
and the complete basis of adiabatic wave functions
A Coulomb system possesses a symmetry which manifests
itself in the degeneracy of its energy levels [7, 21]. This
symmetry affects the properties of the Coulomb Green
function whose spectral expansion (5) can be written as

eG�R; r;E� �X
n

�������������
Qn�R�

p
Cn�R; r�

En ÿ E
; �55�

where the functionsCn�R; r� are given by formula (27).
For each principal quantum number n, the linear

combinations can be constructed from n2 wave functions of
degenerate states, which will become the wave functions in the
new representation. One of these functions is Cn�R; r� which
is present in the spectral expansion of the ionic function (26).
The remaining functions, designated as Cnlm

ÿ
R�t�; r�, take

the form

Cnlm

ÿ
R�t�; r� �X

l 0;m 0
C nlm

nl 0m 0 �R�cnl 0m 0 �r� �56�

and are not present in (55). The functions Cnlm�R; r� must be
orthogonal between themselves and orthogonal to the
function Cn. Consequently, the degenerate Coulomb basis
set can be reconstructed in such away that only one of the new
functions, viz. Cn�R; r�, will be present in the spectral
expansion of the Green function (5), while Cnlm�R; r� will be
absent in the expansion of interest.

Turning back to our problem, we see that since there are
no functionsCnlm�R; r� in the spectral expansion of the Green
function, the ionic term interacts only with one covalent state,
while the energies of the remaining degenerate states Cnlm do
not change and are equal to the unperturbed Coulomb
energies E 0

n � ÿZ 2=2n2. Nevertheless, the latter states are
not absolutely passive. They can be occupied during capture
processes (1) and (2), because their wave functions
Cnlm

ÿ
R�t�; r� are time dependent and because the matrix

element of the time derivative between them and the function
Cn�R; r� is nonzero. Thus, the complete basis set of adiabatic
states includes bothCn andCnlm states, and our goal now is to
construct the functionsCnlm.

The possibility of reconstructing the Coulomb basis set of
eigenfunctions to study electron scattering by a system
composed of many small-sized potential wells was explored
in works [17], but the specific algorithm for constructing an
orthonormal basis set was not discussed in previous papers
[3 ± 6, 17].

To find the reconstructed orthonormal Coulomb basis set
of eigenfunctions, we assume that one of the Coulomb
functions, say the function cnlm, is orthogonal to Cn�R; r�
from the outset, so that Jnlm�R� � 0. Let us consider the
function combinations (fl;mg 6� fl; mg):
L�0 : Cnlm�R; r� � cnlm�r� ÿ Jnlm�R�

�
Cn�R; r� � cnlm�r�

�
;

�57�
L�1 : C x;y;z

nlm �R; r��cnlm�r�ÿJx;y;z
nlm �R�

�
C x;y;z

n �R; r��cnlm�r�
�
:

�58�

Each of these functions is orthogonal to Cn (L � 0) or to
C x;y;z

n (L � 1). For the mutual orthogonality, for example, of
functions Cnlm�R; r� to be established, we must calculate the
integral of their product:�

Cnlm C�nl 0m 0 dr � dll 0dmm 0 ÿ 2Jnlm J �nl 0m 0

� Jnlm J �nl 0m 0
� ��Cn�R; r� � cnlm�r�

��2 dr : �59�

Since cnlm�r� is orthogonal to Cn�R; r�, the integral in the
right-hand side of relation (59) is equal to 2 (functions cnlm
and Cn are normalized to unity), and the sum of the second
and third terms in formula (59) is zero. The same is true for the
case of L � 1; therefore, each of the functions (57) and (58) is
normalized to unity and orthogonal to all the other functions:�

C �nlm�R; r�Cnl 0m 0 �R; r� dr � dll 0dmm 0 ; �60�� ÿ
C x;y;z

nlm �R; r�
��C x;y;z

nl 0m 0 �R; r� dr � dll 0dmm 0 : �61�

At l � l andm � m, the equalityCnlm � cnlm holds for the
functions entering into Eqn (57), because cnlm is orthogonal
to Cn �L � 0� and the second term in formula (57) is zero.
Therefore, the function (57) with orbital quantum numbers l
and m is not orthogonal to the functions (57) with l 6� l and
m 6� m. This is also true for the case of L � 1. Consequently,
for a given principal quantum number n, the number of
orthonormal functions Cnlm or C x;y;z

nlm is n2 ÿ 1. Together
with Cn or Cx;y;z

n , the total number of functions is n2, as
must be the case.

The proposed orthogonalization method [see formulas
(57) and (58)] is general in character. It is based on the
existence of the function cnlm which is orthogonal to the
active-state function Cn from the outset. For this method to
be applicable to our problem, it must be shown that the
function cnlm actually exists.

In the above-introduced coordinate system with the z-axis
perpendicular to the collision plane, the polar angle yR of
vector R is constant during the collision time and is equal to
p=2. The functions cnlm�R� and their derivatives with respect
to x and y are proportional to the associated Legendre
polynomials when cos y � 0, while the derivatives with
respect to z are proportional to the derivatives of these
polynomials. These polynomials and their derivatives at
y � p=2 are given by formulas (51) and (52), respectively.
Thus, we see that P

jmj
l �0� as well ascnlm�R� and its derivatives

with respect to x and y become zero at even l� jmj � 1, while
the derivative with respect to z is zero at even l� jmj (or odd
l� jmj � 1). The integrals Jnlm�R� entering into formulas (28)
and (49) vanish at these orbital quantum numbers l and m.
Consequently, the Coulomb functions cnlm�r� with even
l� jmj � 1 are orthogonal to Cn and C x;y

n but not orthogo-
nal to Cz

n. At odd l� jmj � 1, the functions cnlm�r� are
orthogonal toCz

n and not orthogonal toCn and Cx;y
n .

Thus, the functioncnlm�r� exists in our problem and is not
unique. For each n, the number of such functions is
approximately half the number of all degenerate states, i.e.
� n2=2. The states with these wave functions are strictly
passive (see below).

As we see, the solution of the orthogonalization problem
depends on the choice of the coordinate system. In the
coordinate system we chose, this solution proves to be
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simplest, because the polar angle yR of the vectorR equals p=2
during the entire collision for both rectilinear and curvilinear
trajectories. The trajectory must be merely planar, which is
the case for central forces. The proposed method of con-
structing a complete orthonormal basis set is also based on
the specific form of active-state functionsCn�R; r�.

Each principal quantum number n has its own set of
orthonormal functions fCn;Cnlmg. Any function from the set
relevant to n is orthogonal to any function from the set
pertaining to n0 (n0 6� n), because these sets are constructed
from different sets of Coulomb functions (from cnlm and
cn0lm, respectively) which are orthogonal between themselves.

The functions Cnlm given by formula (57) for L � 0
become zero at r � R: Cnlm�r � R� � 0. This fact is deter-
mined by the specific form of the active-state functionCn and
by its orthogonality to Cnlm. In other words, it results from
the degeneracy of Coulomb energy levels, which is attribu-
table to Coulomb field symmetry [7, 21].

The ionic wave functions (26) and (45) are constructed
from the wave functions of active states alone. Consequently,
the wave function Cnlm�R; r� of any passive state is orthogo-
nal to the ionic functions. By contrast, any active-state
function is not orthogonal to the ionic functions (26) and
(45). The integral of their product is equal to the coefficient
Cn�E� [see formulas (29) and (47)].

By using a procedure identical to that employed in
constructing the orthonormal system of functions
fCn;Cnlmg defined by formulas (57) and (58), here we
examine the construction of the functions

L�0 : eCn�R; r� � Cn�R; r�
ÿ Cn�E�

�
F�R; r� � cnl0m0 �r�

�
; �62�

L�1 : eC x;y;z
n �R; r� � Cx;y;z

n �R; r�
ÿ Cx;y;z

n �E��Fx;y;z�R; r� � cnl0m0 �r�
�
; �63�

wherecnl0m0 is orthogonal toCn andF (L � 0) or toCx;y;z
n and

Fx;y;z (L � 1) (the orbital quantum numbers l0; m0 differ from
l; m). The functions eCn and eCx;y;z

n are orthogonal between
themselves and to the ionic functions F and Fx;y;z and
orthogonal to the functions of passive states Cnlm or Cx;y;z

nlm

(l 6� l0; m 6� m0). In addition, the functions (62) and (63) are
normalized, because one has� �� eCn�R; r�

��2 dr � � ��Cn�R; r�
��2 dr � 1 ; �64�

and a similar relation holds for L � 1.
The adiabatic matrix elements of the time derivative

between the wave functions of active and passive states are
defined as follows

L � 0 : Vn; nlm�R��
�
Cnlm�R; r� dCn�R; r�

dt
dr

� dJnlm�R�
dt

; �65�

L � 1 : V
x;y;z
n; nlm�R� �

�
C x;y;z

nlm �R; r�
dCx;y;z

n �R; r�
dt

dr

� dJ
x;y;z
nlm �R�
dt

: �66�

Matrix elements (65) and (66) do not depend on quantum
numbers l; m. For l � l and m � m, matrix elements (65) and

(66) become zero, because for these states the integrals Jnlm�R�
and J

x;y;z
nlm �R� are equal to zero at any instant of time.

Consequently, the states with quantum numbers nlm are
strictly passive: their energies do not change in time and they
are not occupied in collisions (1).

2.4 Sums of Coulomb wave function products
over degenerate states and the properties of active-state
wave functions
Let us calculate the sums of products of the Coulomb wave
functions with negative energies, the sums taken over orbital
quantum numbers l;m. These sums are present in formulas
for adiabatic wave functions of covalent states, constructed in
previous sections. Here we consider first the sum

bQn�r;R� �
X
lm

c�nlm�r�cnlm�R� �67�

which is proportional to the wave function (27) of an active
state. This sum can be expressed through a quadratic form of
wave function of only one state with zero quantum numbers
l � m � 0, i.e. through the function cn0�r� [11 ± 13]. In
V A Fock's papers [21] devoted to the four-dimensional
symmetry of the atomic hydrogen, an analogous sum was
investigated but for the wave functions in the momentum
representation.

The sum (67) and a number of other sums can be
calculated by comparing the limit of the Hostler ± Pratt
Coulomb Green function (6) as E! En with the analogous
limit of the spectral expansion (5) of this function. The limit of
the Coulomb Green function (6) as E! En has been
discussed in paper [22] and has been used in calculations of
the Born cross sections for transitions between the excited
states of atomic hydrogen, which are caused by electron
impacts [23 ± 25]. In the linear combination (14), the first
term is the leading one asE! En, and the second term can be
neglected. In formula (15) the term G2 can also be neglected.

In the calculation of the Green function limit we shall use
the following expression for the gamma-function in the
resonant limit when Zn! n [84]:

G�1ÿ Znÿ� ! �ÿ1�nZ 2

n3�nÿ 1�!
1

Eÿ En
: �68�

Using this expansion we obtain for the resonant term:

G�r;R;E! En� � 1

Eÿ En

X
l;m

c�nlm�r�cnlm�R�

� 1

Eÿ En

Z 2

pn3n!�nÿ 1�!
n

xÿ y

�
q

q�Zy� ÿ
q

q�Zx�
�

�Wn; 1=2

�
Zx

n

�
Wn; 1=2

�
Zy

n

�
; �69�

whence it follows that

Q̂n�r; R� �
X
l;m

c�nlm�r�cnlm�R�

� Z 2

pn3n!�nÿ 1�!
n

xÿ y

�
q

q�Zy� ÿ
q

q�Zx�
�

�W�

�
Zx

n

�
W�

�
Zy

n

�
: �70�
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In the limit E! En (Zn! n), the Whittaker function
Wn; 1=2 becomes proportional to the Coulomb wave function
fn0 with zero orbital quantum numbers l � m � 0:

Wn; 1=2�r� � �ÿ1�n�1n!

��������
4pn
Z

r
fn0�r� ; fn0�r� � r

fn0�r�������
4p
p :

�71�

This relation follows, for example, from the comparison of
the asymptotic expressions of the functions WZn; 1=2�r� and
fn0�r� as r!1. Substituting formula (71) into (70) we
obtain for the sum (67) [11, 12]:

Q̂n�r;R� �
X
l;m

c�nlm�r�cnlm�R�

� 4Z 2

n2
f0n0�ty�fn0�tx� ÿ fn0�ty�f0n0�tx�

tx ÿ ty
; �72�

where

tx � ZR

n
�1� x� ; ty � ZR

n
�1� Z� ;

and x; Z are the elliptic coordinates introduced in Section 2.1.
By analyzing a Taylor expansion of the sum (72), we can

obtain the sums of products of the arbitrary-order derivatives
of Coulomb eigenfunctions with respect to the internuclear
distance R at r � R [8, 13]:

Qi;j
n �R� �

X
l;m

dic�nlm�R�
dRi

djcnlm�R�
dRj

: �73�

To calculate the sum (73), let us consider the passage to the
limit of relation (72) for r! R, when the point rmoves along
the vector R and when tx � 2ZR=n � const, ty � 2Zr=n, and
tx ÿ ty � 2Z�Rÿ r�=n. The expansion of the sum entering
into Eqn (72) in a Taylor series in powers of �rÿ R� takes the
formX

l;m

c�nlm�r�cnlm�R� �
X
l;m

��cnlm�R�
��2

� �rÿ R�
X
l;m

dcnlm�R�
dR

c�nlm�R� � . . .

� �rÿ R�k
k!

X
l;m

dkcnlm�R�
dRk

c�nlm�R� � . . . �74�

and the analogous expansion of the right-hand part in
formula (72) is

f0n0�r�fn0�R� ÿ fn0�r�f0n0�R�
Rÿ r

�
�

dfn0�R�
dR

�2

ÿ fn0�R�
d2fn0�R�

dR2
� . . .� �rÿ R�kÿ1

k!

�
�
f0n0�R�

dkfn0�R�
dRk

ÿ fn0�R�
dk�1fn0�R�

dRk�1

�
� . . . �75�

Comparing these two expansions and equating the terms at
the same powers of �rÿ R� one arrives at

Q�0; j�n �R� �
X
lm

c�nlm�R�
djcnlm�R�

dRj

� 1

j� 1

�
f�j�1�n0 �R�f�1�n0 �R� ÿ f�j�2�n0 �R�fn0�R�

�
; �76�

where f�j�� d jf= d jR.

For the special cases of j � 0 and j � 1 we obtain from
relation (76) two sums:

Q�0;0�n �R� �
X
l;m

��cnlm�R�
��2 �Xnÿ1

l�0

2l� 1

4p
f 2nl�R�

� ÿf0n0�R��2 � 2

�
En � Z

R

�
f2
n0�R� ; �77�

Q�0;1�n �R� �
X
lm

c�nlm�R�
dcnlm�R�

dR

�
Xnÿ1
l�0

2l� 1

4p
fnl�R� dfnl�R�

dR
� ÿZc2

n0�R� : �78�

The sum Qn�R�
ÿ � Q

�0;0�
n �R�� is shown in Fig. 3.

The above-calculated sums make it possible to investigate
the properties of the wave function of an active state:

Cn�R; r� � 2Z

n

f0n0�ty�fn0�tx� ÿ fn0�ty�f0n0�tx�
jRÿ rj �������������

Qn�R�
p : �79�

At the point r � R, the denominator in formula (79) comes to
nought but the function Cn does not go to infinity, because
the numerator in Eqn (79) is also equal to zero at this point.
Indeed, at the point r � R, the variables tx and ty are equal:
tx � ty � 2ZR=n, and the numerator in formula (79)
becomes the Wronskian of the same function fn0.

For investigating in detail the properties of the wave
function (79) we use the following expression for the normal-
ized function fn0:

fn0�t� �
��������
Z

4pn

r
t exp

�
ÿ t
2

�
F �ÿn� 1; 2; t� : �80�

The function (79) depends on two-center elliptic coordi-
nates x; Z. The first center is placed at the nucleus of the
positive ion, and the second center Ð at the nucleus of the
negative ion. This function is not symmetrical relative to the
plane which is perpendicular to the internuclear axis R and
goes through the positive ion nucleus (see Fig. 4).

1

2

3

Z � 2

n � 6

10ÿ2

Q
�j; j�
n �R�

10ÿ4

10ÿ6

10ÿ8

10ÿ10

0 10 20 30 40 50
R, Â.u.

Figure 3. SumsQ
�j; j�
n �R� as the functions of distance R from the nucleus of

He�;��n�: 1ÐQn�R�, 2ÐQ
�1; 1�
n , 3ÐQ

�2; 2�
n [equations (77), (89) and (90),

respectively].
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At internuclear distances which are much larger than the
size of the nth Coulomb orbit rn � 2n2=Z, viz. R4 rn, the
elliptic coordinates x; Z are close to the parabolic coordinatesem � r� z, en � rÿ z in the vicinity of the positive ion:

x � 1ÿ en
R
� . . . ; Z � ÿ1� em

R
� . . .

At these distances, the function (79) of the active state is
transformed in the vicinity of the positive ion to the Coulomb
eigenfunction in parabolic coordinates.

Indeed, at large R the variable tx is also large and,
consequently, for the function fn0�tx� we can take advantage
of the asymptotic expansion into a series in inverse powers of
R:

R!1 : tx � 2ZR

n
� Z~n

n
� . . . ;

fn0�tx� � exp

�
ÿ Z~n

2n

�
fas
n0

�
2ZR

n

�
;

�81�

where we set

fas
n0

�
2ZR

n

�
� 1

n!

��������
Z

4pn

r �
2ZR

n

�n

exp

�
ÿ ZR

n

�
;

and the asymptotic expansion of the derivative yields
f0n0�tx� � ÿfn0�tx�=2. Asymptotic expansion of the func-
tion fn0�ty� is not possible, because the variable ty is not
large as R!1, and we then have

Cn�R; r� � Z

nR

1�������������
Qn�R�

p fn0

�
2ZR

n

�

�exp
�
ÿ Z~n

2n

��
2f0n0

�
Z ~m
n

�
� fn0

�
Z ~m
n

��
: �82�

Hence it follows that at large R the active-state function
Cn�R; r� was transformed to a product of functions depend-
ing on parabolic coordinates ~n and ~m. Coulomb wave
functions in parabolic coordinates are linear combinations
of spherical functionswith Clebsch ±Gordan coefficients [30].

By inverse transformation of these combinations, the wave
functionCn�R; r� can be expanded in terms of eigenfunctions
expressed in parabolic coordinates at any value of R.

In order to proceed to the limit of this expansion as
R!1, we should investigate expression (82) in more
details. Making use of the asymptotic limit of the sum:

Qn�R� ! nc2
n0�R� �

1

�n!�2
Z 3

pn2

�
2ZR

n

�2nÿ2

� exp

�
ÿ 2ZR

n

�
; R!1 ; �83�

we transform expression (82) to the form

Cn�R; r� � Z

n
���
n
p exp

�
ÿ Z~n

2n

�
�
�
2f0n0

�
Z~m
n

�
� fn0

�
Z~m
n

��
; R!1 : �84�

For subsequent transformations we calculate the deriva-
tive of function (80) and take advantage of the functional
relations 9.212.2, 9.212.3, 9.213 between confluent hypergeo-
metrical functions compiled in the handbook [84]. As a result
we found that the function Cn�R; r� transforms in the limit
R!1 to the wave function of a Stark state with quantum
numbers n, m � 0, n1 � nÿ 1, n2 � 0:

Cn�R; r� � cn;m;n1
�~m;~n� � Z 3=2

n2
���
p
p exp

�
ÿ Zr

n

�
� F1

�
ÿ n� 1; 1;

Z~m
n

�
: �85�

This state possesses the maximum dipole moment
dmax
n � 3n�nÿ 1�=2Z [7] and the center of the electron charge

in this state is displaced to the negative ion.
Function (79) and its limiting expression (85) are shown in

Fig. 4 as a function of distance z (reckoned from the nucleus
of the positive ion) along the internuclear axis. Function (79)
is plotted for three values of distance R. It follows from this
figure that for large internuclear distances R4 rn function
(79) is asymmetric relative to the point z � 0 and is close to its
limit defined by Eqn (85).

Stark states constitute Rydberg states of atomic hydrogen
and hydrogen-like ions perturbed by a weak uniform electric
field F [7]. In these states, electrons have dipole moments
dn � ÿ3n�n1 ÿ n2�=2Z and their energy level shifts are the
linear functions of F: Eÿ En � � 3Fn�n1 ÿ n2�=2Z. If
hydrogen Rydberg atoms are perturbed by a positive atomic
ion with charge eZ, then at large internuclear distances the
electric field of the ion is F � eZRÿ2 and the shifts of Rydberg
energy levels are Eÿ En � 3n eZ�n1 ÿ n2�=2ZR2 [15].

In the case under consideration the Rydberg atoms are
formed in the final states accompanying collision (1), when
there is no electric field. For example, in the collision
Hÿ �He�� � H�1s� �He�;��nlm�, final Rydberg states of
the helium ion interact with atomic hydrogen in the ground
state. Nevertheless, in our approach the wave function of the
active state Cn�R; r� is transformed as R!1 to the wave
function of the Stark state which has the maximum dipole
moment for a given principal quantum number n. This fact is
the consequence of the degeneracy peculiar to Coulomb
energy levels that manifests itself in specific features of the
Coulomb Green function.

We also emphasize that because of the specific feature of
the active wave function, pointed out above, a couple of

0.05

Cn�R; z�

0

ÿ0.05

ÿ0.10

ÿ10 ÿ5 0 5 10 15 20
z, Â.u.

Z � 2

n � 4

1

2
3

Figure 4. Wave function of the active state Cn�R; z� [L � 0, formula (79)]

forZ � 2 and n � 4 (orbit size rn � 2n2=Z � 16) versus the distance z from

the nucleus He�� along the internuclear axis R for three values of

internuclear distance R: 1 Ð R � �4rn � �64 (thick solid line); 2 Ð

R � rn � �16 (dotted line); 3 Ð R � rn=2 � �8 (thin solid line);

diamonds mark asymptotic limit (85).
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atoms are formed in the recombination reaction (1), one of
which possesses a dipole moment. The interaction energy of
electrons in such atoms is increased at large distances R. For
example, at the collision Hÿa �H�b , the system
Ha�1s� �H�b�n� is formed after the outer electron exchange.
The interaction energy between the core 1s-electron of the
atom Ha�1s� and the dipole moment of the Rydberg atom
H�b�n� is inversely proportional to the internuclear distance
squared, viz.' Rÿ2. However, the proton of the atomHa also
interacts with the dipole moment of the atomHb and the term
� Rÿ2 is absent in the total interatomic interaction energy (in
the molecular term).

The dipole moment of the quantum system is defined as

dn�R� �
� � �

z
��C�R; r���2 d3r : �86�

Dipole moments dn�R� of active states Cn�R; r� [L � 0,
formula (79)] and C x; y; z

n �R; r� [L � 1, formulas (95) and
(96)] have been calculated numerically on the basis of
integral (86). The calculated results are shown in Fig. 5.
Dipole moments are present in this figure as functions of an
internuclear distance R for the Rydberg states with principal
quantum number n � 4 and for the chargeZ � 2 of a positive
ion.

Integral (86) can be calculated analytically; the result of
this computation is described by a sum over the orbital
quantum number l. Making use of the radial matrix element
hn; lÿ 1jrjn; l i � ÿ�3n=2Z�

��������������
n2 ÿ l 2
p

[31] and the integral of
the associated Legendre polynomials product [32] we obtain
the dipole moment for the stateCn�R; r�:

dn�R��ÿ 3n

4pZQn�R�
Xnÿ1
l�0

l
��������������
n2 ÿ l 2
p

fn; l �R� fn; lÿ1�R�: �87�

Dipole moments calculated using this sum are shown in Fig. 5
as a function of distance R. It is clearly seen that the results
derived with integral (86) and with sum (87) are the same. In
the limit of large distancesR!1, the dipole moment for the
active state Cn�R; r� indeed has a maximum value for n � 4
and Z � 2: d as

n � 3n�nÿ 1�=2Z � 9 a.u.

The sums Q
�0; j�
n with arbitrary j can be expressed through

quadratic forms involving only the function fn0�r� and its
first derivative f0n0�r�. These sums with j � 2ÿ5 have been
taken in papers [8, 13].

The sums of products of wave function derivatives are
obtained by differentiating equation (76) with respect to R:

Q�1; j�n �R� �
X
l;m

dc�nlm
dR

djcnlm�R�
dRj

� f�2�n0 �R�f�j�1�n0 �R�
j� 1

ÿ f�1�n0 �R�f�j�2�n0 �R�
j� 2

ÿ fn0�R�f�j�3�n0 �R�
� j� 1�� j� 2� ; �88�

Q�2; j�n �R� �
X
l;m

d2c�nlm
dR2

djcnlm�R�
dRj

� f�3�n0 �R�f�j�1�n0 �R�
j� 1

ÿ jf�2�n0 �R�f�j�2�n0 �R�
� j� 1�� j� 2�

ÿ 2f�1�n0 �R�f� j�3�n0 �R�
� j� 1�� j� 3� ÿ 2fn0�R�f� j�4�n0 �R�

� j� 1�� j� 2�� j� 3� : �89�

By continuing the differentiation, we can take the sums Q
�i; j�
n

with arbitrary values of i and j. However, the expressions
quickly become unwieldy.

When investigating collisions (1) and (2) we need to know
the following sums:

Q�1;1�n �R� �
X
l;m

���� dcnlm�R�
dR

����2 �X
l

2l� 1

4p

�
dfnl�R�
dR

�2

� 2

3

��
En � Z

R

�
Q�0;0�n �R� ÿ Z

R

d

dR

�
f2
n0�R�
R

��
; �90�

Q�2;2�n �R��
X
l;m

���� d2cnlm�R�
dR2

����2�X
l

2l� 1

4p

�
d2fnl�R�
dR2

�2

� 4

5

���
En � Z

R

�2

� 2Z

R3

�
Q�0;0�n �R�

ÿ Z

R3

�
8

�
En � Z

R

�
ÿ Z

R
ÿ 2

R2

�
f2
n0�R�

� 2Z

R2

�
En � Z

R
ÿ 2

R2

�
fn0�R�f0n0�R�

�
; �91�

which are determined through the use of expressions (88) and
(89) during calculation of higher-order derivatives of the
function fn0�r�.

Differentiating relation (90) with respect to R we obtain a
simple expression for the sum with i � 1, j � 2:

Q�1;2�n �R� �
X
l;m

dc�nlm�R�
dR

d2cnlm�R�
dR2

� 1

2

d

dR
Q�1; 1�n �R�

� ÿZc0 2n0�R� : �92�
The differentiation of relation (91) gives the simple expression
for the sum with i � 2, j � 3:

Q�2; 3�n �R��
X
l;m

d2c�nlm�R�
dR2

d3cnlm�R�
dR3

� 1

2

d

dR
Q�2; 2�n �R�

� ÿZc00 2n0 �R� ÿ
4Z2

5R4

ÿ
f2
n0�R�

�0
: �93�

d as
m�0 � 9
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m�1 � 6

2
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Z= 2
n � 4
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d
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u
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Figure 5. Dipole moments dn�R� of active covalent states for Z �2, n � 4

as a function of internuclear distance R. The lines were calculated by

means of sums (87), (104) and (108); crosses, squares and diamonds Ð by

numerical integration with formula (86). Curve 1 Ð the state Cn�R; r�
defined by formula (79); curve 2Ð the stateCz

n�R; r� specified by formula

(95), and curve 3 Ð the stateC x;y
n �R; r� defined by formula (96).
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Using relations (78), (92) and (93) we can express the sums
Qn(� Q

�0; 0�
n ), Q

�1; 1�
n and Q

�2; 2�
n through the following inte-

grals:

Qn�R� � 2Z

�1
R

c2
n0�r� dr ;

Q�1; 1�n �R� � 2Z

�1
R

c0 2n0 dr ;

Q�2; 2�n �R� � 2Z

�1
R

�
c002n0�r� �

4Z

5r4
ÿ
f2
n0�r�

�0�
dr : �94�

The sums Qn�R�;Q�1; 1�n �R� and Q
�2; 2�
n �R� are shown in

Fig. 3 as a function of the internuclear distanceR. These sums
are present in the normalization factors of wave functions of
active states for negative ions with orbital momenta L � 0, 1
and 2. They do not have zeros at finite values of R and
decrease by steps when R is increased. It follows from
relations (78), (92) ± (94) that the derivatives of these sums
are equal to zero at the central point of each step. The
calculated sums are interesting for the physics of negative
and positive ion collisions and for the physics of highly
excited Rydberg atoms [26], specifically, for investigations
into the broadening and shift of spectral lines corresponding
to radiative transitions involving Rydberg states.

The expressions for wave functions of active states in a
negative ion with an orbital momentum L � 1 participating
in collisions (1) were obtained from the analysis of the limit of
Coulomb Green function derivatives at E! En [8]. These
wave functions are as follows

C z
n �R; r� �

X
l;m

c�nlm�r��������������������
Q
�1; 1�
n �R�

q dcnlm�R�
dR

� 4Z 2 cos yb

n2jrÿ Rj
�������������������
Q
�1; 1�
n �R�

q
�
�
n2

�������������
Qn�R�

p
4Z 2

Cn�R; r� ÿ f0n0�tx�f0n0�ty�

�
�
1

4
ÿ n2�Rÿ r�
2ZR�Rÿ z�

�
fn0�tx�fn0�ty�

�
; �95�

C x; y
n �R; r� �

X
l;m

c�nlm�r�������������������
Q
�y;y�
n �R�

q qcnlm�R�
qfx; yg

� 4Z 2 sin ybfcosfb; sinfbg
n2jrÿ Rj

������������������
Q
�y;y�
n �R�

q
�
�
n2

�������������
Qn�R�

p
4Z 2

Cn�R; r� ÿ f0n0�tx�f0n0�ty�

�
�
1

4
ÿ n2�r� R�
2ZR�r� z�

�
fn0�tx�fn0�ty�

�
; �96�

where Cn�R; r� is given by formula (79). The functions (95)
and (96) are regular at r � R. The sum Q

�1; 1�
n �R� was

calculated above.
The sum Q

�y;y�
n assumes the form

Q�y;y�n �R� � 1

R2

X
l;m

���� qcnlm�R�
qy

����2
y�0

: �97�

This sum cannot be calculated by leaning upon the Coulomb
Green function analysis. We should analyze the derivative of

the associated Legendre polynomials at y � 0. Making use of
the appropriate formulation of these polynomials [84] we
obtain that for any orbital momentum l the derivative of the
polynomial with respect to angle y is not equal to zero at y � 0
only for the projections m � �1 of an orbital momentum.
This derivative is defined in the following way:

dP1
l �cos y�
dy

����
y�0
� ÿ 1

2
l�l� 1� : �98�

With the last derivative we transform the sum (97) to the
form

Q�y;y�n �R� � 1

8pR2

X
l

�2l� 1� l�l� 1� f 2
nl�R� : �99�

The subsequent calculation of the sum (99) is connected with
the calculation of the following sum:

P
l;m l�l�1���cnlm�R�

��2.
By means of the addition theorem for spherical harmonics
(31), the latter sum can be written in the form

Q�l; l�1�n �R� �
X
l;m

l�l� 1���cnlm�R�
��2

� 1

4p

X
l

�2l� 1� l�l� 1� f 2
nl�R� : �100�

The sums (99) and (100) differ in the multiplier 1=2R2 which
does not depend on the quantumnumbers l;m. Consequently,
after calculation of the sum (100) we shall also find the sum
(99).

For taking the sum (100) we express the product l�l� 1� fnl
through the fnl, dfnl= dR and d2fnl= dR

2 using the wave
equation for the radial wave function fnl [7]. Then the sums
(99) and (100) are expressed through those sums calculated
above and we obtain

Q�l; l�1�n �R� � 1

4p

X
l

�2l� 1� l�l� 1� f 2nl�R�

� 4R2

3

�
En � Z

R

�
Qn�R�

ÿ 2Z

3

�
f2
n0�R�
R

� 1

2

df2
n0�R�
dR

�
; �101�

Q�y; y�n �R� � 1

8pR2

X
l

�2l� 1� l�l� 1� f 2nl�R�

� 2

3

�
En � Z

R

�
Qn�R�ÿ Z

3R2

�
f2
n0�R�
R

� 1

2

df2
n0�R�
dR

�
: �102�

These sums can also be obtained by the expansion of function
(96) in a power series of jrÿ Rj in the limit r! R, but this way
is much more complicated.

The sum Q
�y; y�
n �R� defined by formula (102) is shown in

Fig. 6 as a function ofR in comparison with the sumQ
�1; 1�
n �R�

presented by formula (90). Both the sums are positive for all
R. However, the sumQ

�1; 1�
n decreases stepwise in the region of

classically allowedmotion,R4 rn, whereas the sumQ
�y; y�
n �R�

has no steps. Most other sums also show a peculiar behavior
as a function of R [13]. All the sums were calculated both by
means of derived quadratic forms of the function fn0 and by
means of direct summation over l with the use of Coulomb
functions fnl [7]. The calculated results coincided every time.

Sums (101) and (102) simplify the investigation of the
asymptotics (as R!1) of the active-state wave functions
(95) and (96) for negative ions with an orbital momentum

January, 2002 Electron transitions in slow collisions of negative and positive atomic ions 13



L � 1. The asymptotic limit of the sum Q
�1; 1�
n equals

Q�1; 1�n �R� ! Z 2

n2
Qn�R�

� 1

�n!�2
Z 5

pn4

�
2ZR

n

�2nÿ2
exp

�
ÿ 2ZR

n

�
: �103�

We can neglect the first terms in square brackets in formulas
(95) and (96), because in comparisonwith other terms they are
of orderRÿ1 at large internuclear distancesR. Thenwe obtain
that as R!1 the function C z

n �R; r� goes over, similar to
function Cn�R; r�, to the Stark wave function with the
maximum dipole moment for a given principal quantum
number n, i.e. the limiting expression of the function
C z

n �R; r� is given by formula (85).
The electron dipole moment in the stateC z

n is represented
in the following way:

dz
n �R� � ÿ

3n

4pZQz
n�R�

Xnÿ1
l�0

l
��������������
n2 ÿ l 2
p dfn;l�R�

dR

dfn;lÿ1�R�
dR

:

�104�
The result of this dipolemoment calculation is shown in Fig. 5
together with the calculated result for the integral (86) in the
range of internuclear distances 04R4 20. It follows from
the figure that at large R the dipole moment of the state
C z

n �R; r� is close to the maximum (for n � 4 andZ � 2 ) value
of dz

n � 9 a.u. However, at R � 0 this dipole moment is not
equal to zero (see below).

In order to investigate the function C x; y
n �R; r� limit as

R!1, we should examine the asymptotic limit of the sum
Q
�y; y�
n �R� which decreases at large Rmuch more rapidly than

the sums Qn�R� and Q
�1; 1�
n �R�. Only the fifth term in the

expansion of expression (102) is nonzero.
The asymptotics of the sum Q

�y; y�
n �R� can be found easily

by taking the sum over orbital momentum l, which is present
in formula (102) and appears as the definition of the function
Q
�y; y�
n �R�. Substituting the asymptotics of radial functions

fnl�R� [7] into this sum, we arrive at the following result for
R!1:

Q�y; y�n �R� �
Xnÿ1
l�0

2l� 1

4p
l�l� 1�
2R2

f 2nl�R�

! 2Z 5

pn6
S�n�

�
2ZR

n

�2nÿ4
exp

�
ÿ 2ZR

n

�
; �105�

S�n� �
Xnÿ1
l�0

�2l� 1� l�l� 1�
�n� l�! �nÿ lÿ 1�! �

n2�nÿ 1�
�n!�2 : �106�

Now substituting expression (105) into formula (96) we
obtain that the functions Cx; y

n are transformed in the limit
R!1 to the wave functions of Stark states with the
projection m � �1 of an orbital momentum:

C x; y
n �R; r� ! cn; jmj; n1�m; n;f�

� Z 5=2

�����������������
2�nÿ 1�p
n3

r exp

�
ÿ Zr

n

�
� F

�
ÿ n� 2; 2;

Zm
n

� fcosf; sinfg���
p
p ;

n; jmj � 1; n1 � nÿ 2; �107�
where r � �����

mn
p

is the distance from the nucleus of the positive
ion along the direction perpendicular to the internuclear axis.
These Stark states have the maximum dipole moment among
states with principal quantum number n and with orbital
momentum projection jmj � 1:

dn; jmj�1 � 3n
�nÿ 2�
2Z

:

For Z � 2 and n � 4, the value of this dipole moment runs
into dn; jmj�1 � 6 a.u.

For arbitraryR, the dipole moments corresponding to the
Cx; y

n �R; r� states are the same and equal to

dx;y
n �R� � ÿ

3n

8pZR2 Q
x;y
n �R�

�
Xnÿ1
l�0

l�l 2 ÿ 1�
��������������
n2 ÿ l 2
p

fn;l�R� fn;lÿ1�R� : �108�

The dipole moment dx; y
n �R� is plotted in Fig. 5 as a

function of R and has been computed by formula (86) and
by sum (108) for Z � 2 and n � 4. The results of interest
coincide and at large R the dipole moment is really equal to
6 a.u.

The presence of dipole moments of excited Rydberg
electrons is extremely important for the physics of Rydberg
molecules [27]. Vibrational states of such molecules are of the
order of 2n2 in extent, so that for n � 30 one obtains 1800 a0.
Rydberg molecules with large electron dipole moments are
very sensitive even to relatively weak laser radiation that
makes it possible to control the appropriate molecular states
with high accuracy [27].

The limiting expressions of sums Qn�R� as R! 0 are the
following:

Qn�0� � Z 3

pn3
;

Q�1; 1�n �0� � Z 5�4n2 ÿ 1�
3pn5

; �109�

Q�y; y�n �0� � Z 5�n2 ÿ 1�
3pn5

:

The wave function of an active state for L � 0 is
transformed at R � 0 to the Coulomb spherical wave
function of an S-state:

Cn�R � 0; r� � cn0�r� �
1������
4p
p fn0�r� ; �110�

10ÿ4

Q
�y;y�
n �R�

10ÿ5

10ÿ6

10 20 30
R, Â.u.

2

1

Z � 2

n � 6

Figure 6. Sums Qn�R� (curve 1) and Q
�y; y�
n (curve 2) as functions of the

distance R from the ion He�;��n� nucleus [equations (90) and (102),

respectively].
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and functions Cx; y
n (L � 1) for jmj � 1 are transformed to

Coulomb spherical wave functions of P-states:

Cx; y
n �R � 0; r��

������
3

4p

r
fn;1�r� sin y fcosf; sinfg : �111�

The function C z
n �R; r� (L � 1, m � 0) has a more inter-

esting limit at R � 0, being represented by the linear
combination of the wave functions of S- and P-states:

C z
n �R � 0; r� � C0cn;0�r� � C1cn;1;0�r�;

cn;1;0�r� �
������
3

4p

r
fn;1�r� cos y �112�

with coefficients

C0 � ÿ
���������������
3n2

4n2 ÿ 1

r
; C1 �

���������������
n2 ÿ 1

4n2 ÿ 1

r
; C 2

0 � C 2
1 � 1:

�113�

In the state with the wave function (112), the electron
possesses the dipole moment

d z
n �0��

�
z
��C z

n �0; r�
��2 dr � 2C0C1

�
zcn;0�r�cn;1;0�r� dr

� 3n2�n2 ÿ 1�
Z�4n2 ÿ 1� : �114�

For Z � 2 and n � 4, this dipole moment takes the value
d z
n �0� � 120=21 � 5:714 . . ., while the numerical integration

yielded dn;z�0� � 5:712 . . . (see Fig. 5, curve 2).
The wave functions (57) and (58) of passive states

constructed in Section 2.3 are orthogonal to the wave
functions of active states at any internuclear distance R.
Therefore, most likely that these functions are also trans-
formed (as R!1) to the wave functions of Stark states.
However, this question has not been investigated in detail.

The existence of the above-discussed sums of the Cou-
lomb wave function products signifies that there exist
corresponding relationships among confluent hypergeo-
metric functions. These relationships are very complicated
and are missing from available reference books [28, 29].

2.5 The distant crossing approach
In the preceding sections, the energy E and internuclear
separation R in the Aÿ � BZ� system were assumed to be
independent parameters. The Coulomb Green function,
which is the wave function of the outer (or weakly bound)
electron, was investigated on the entire half-plane fE;Rg. In
this section, we calculate the energy E as a function of the
internuclear separation R.

In the zero-order approximation, this electron energy
follows the law (12). For internuclear separations R � Rn

[see formula (25)] close to distant term crossings, where Rn is
larger than the size of the corresponding Coulomb orbit for a
covalent state, thematrix element taken between the ionic and
covalent states is small compared to the difference between
the Coulomb terms, viz. Z 2=n3. In this case, the two-level
approximation may be used for the description of an
adiabatic wave function:

F�R; r� � B�E�F0

ÿjRÿ rj�� Cn�E�Cn�R; r� : �115�
Within this consideration, the ionic stateF0 interacts with the
active adiabatic state Cn�R; r� that belongs to only one
principal quantum number n.

If the ionic term is close to the covalent term En, then in
expansions (26), (45) only the coefficient Cn ' 1 and all other
coefficients Cn 0 (n

0 6� n), are small. Using this property and
relations (29) and (47) between the coefficients Cn and the
function B, the normalization of the function (115) yields

1 � B2
n�E� � C 2

n �E� � B2
n�E�

�
1� DE 2

n �R�
�Eÿ En�2

�
; �116�

jEÿ Enj5 jEn ÿ En�1j � Z

n3
;

where the quantity DEn�R� for the case L � 0 takes the form

DEn�R� � 2pN0

�������������
Qn�R�

p
; L � 0 : �117�

For negative ions with an orbital momentum L � 1, the
quantity DEn�R� in formula (116) and in all subsequent
formulas should be replaced by DEx;y;z

n �R� equal to

DEx;y;z
n �R� � N

�1�
0

������
3p
p

g

������������������
Q

x;y;z
n �R�

q
; L � 1 : �118�

Equalities (117), (118) follow from formulas (27), (46), while
the sums Qn�R� and Qx;y;z

n �R� were calculated in the previous
section.

From equality (116) we obtain the relationship for the
function Bn�E�, and its substitution into Eqns (29) and (47)
yields the coefficients Cn�E� and Cn0 �E� as a function of the
energy near crossings:

Bn�E� � �Eÿ En�
��Eÿ En�2 � DE 2

n �R�
�ÿ1=2

; �119�

Cn�E� � ÿDEn�R�
��Eÿ En�2 � DE 2

n �R�
�ÿ1=2

; �120�

Cn 0 �E� � ÿDEn 0 �R� Eÿ En

En ÿ En 0

��Eÿ En�2 � DE 2
n �R�

�ÿ1=2
:

�121�

The subscripts n of all the coefficients signify their belonging
to the nth avoided crossing: E � En, n

0 6� n.
Let us write the relations (119) ± (121) making use of the

zero approximation (12) for the energy. For any n, the
difference E0�R� ÿ En can be represented in the form

xn�R� � E0�R� ÿ En � Z
Rÿ Rn

RRn
; �122�

which is an exact expression free of any simplifying assump-
tions. Substituting this finding into Eqns (119) ± (121) we
derive the coefficients Bn�R�, Cn�R�;Cn0 �R� as functions of
the internuclear distance R but not the energy:

Bn�R� � �ÿ1�nÿnmax�Rÿ Rn�
��Rÿ Rn�2 � DR2

n�R�
�ÿ1=2

;

�123�

Cn�R� � ÿ�ÿ1�nÿnmax DRn�R�
��Rÿ Rn�2 � DR2

n�R�
�ÿ1=2

;

�124�

Cn 0 �R� � ÿ�ÿ1�nÿnmax DRn0 �R� E0�R� ÿ En

En ÿ En0

� ��Rÿ Rn�2 � DR2
n�R�

�ÿ1=2
; �125�

January, 2002 Electron transitions in slow collisions of negative and positive atomic ions 15



where

DRn�R� � RRn

Z
DEn�R� : �126�

Notice that the quantity DRn�Rn� � DEn�R�=Fn at R � Rn,
where the `force' Fn � Z=R2

n.
Representing the coefficients B and C as functions of R

allows the two-level approximation under consideration to be
compared with the exact calculation described in Section 2.1.
The function B�R� calculated in the two-level approximation
with formula (123) is compared in Fig. 7 with the result of the
exact calculation for the collision Hÿ �He�� atR � R4. The
agreement between the results is very nice, so the two-level
approximation proves to be very close to the exact computa-
tion. For R � R5 and R � R3, the two-level approximation is
equally close to the exact evaluation.

The coefficients B and C in formulas (119) ± (121) are the
functions of energy. To determine the system's energy as a
function of the internuclear separation R, we may take
advantage of the fact that closer inspection of the two-level
approximation enables us to consider the adiabatic wave
functions c1; 2 as linear combinations of the wave functions
f1; 2 defined in the zero-order approximation [7, 33]:

c1 � af1 � bf2 ; c2 � ÿbf1 � af2 ; �127�

a �
� ����������������

x2 � D2
p

� x

2
����������������
x2 � D2

p �1=2
; b �

� ����������������
x2 � D2

p
ÿ x

2
����������������
x2 � D2

p �1=2
;

where the difference between the diagonal matrix elements x
and twice the nondiagonal matrix element D is written in our
notation as

x � E 0
1 � V11 ÿ E 0

2 ÿ V22 � E0�R� ÿ En ; D � 2jV0nj :

The equality Bn � Cn � 1=
���
2
p

with Eÿ En � DEn�R�
follows from formulas (119) and (120). In turn, relationship
(127) shows that these coefficients correspond to a minimum
energy difference between two avoided crossing terms, when
x � 0. Thus, for the Aÿ � BZ� system under study, we can
write down an expression for the nondiagonal matrix element
in the form

V0n �


F0jV jCn

� � DEn�R� ; �128�

and the expression for the energies of the two avoided
crossing terms as

E��R� ÿ En � 1

2

�
E0�R� ÿ En

� ÿ�E0�R� ÿ En�2 � 4DE 2
n �R�

�1=2�
; �129�

because the diagonal matrix element for the ionic state is

Ĥ00 � E0�R� � e0 ÿ Z

R
; �130�

and because the shifts of covalent terms may be neglected by
assuming that Ĥnn � En. Substituting the expressions (129)
for energy into Eqns (119) and (120), we arrive at relation-
ships (127).

In equation (129) for the energy levels, the energy terms
DEn�R� are present. According to relations (117), (118) these
terms are expressed through the sums of Coulomb wave
function products Qn;Q

�1; 1�
n ;Q

�2; 2�
n and Q

�y; y�
n calculated in

the preceding section. These sums were shown in Fig. 3. As
follows from these figures, the Qn;Q

�1; 1�
n ;Q

�2; 2�
n and Q

�y; y�
n

sums, and, hence, the nondiagonal matrix elements V0n are
nonzero at all finite internuclear separations R for negative
ions with any orbital momentum L. Therefore, within the
limits of our approximation we have avoided crossings but
not direct crossings of energy levels. The energy splittings at
avoided crossings are equal to 2DEn�Rn� 6� 0. In Tables 1 and
2, the values of these splittings are quoted for the systems
Hÿ �H� and Hÿ �He��.

In the d-potential approach, the energy levels of the
system Aÿ � B� for the negative ion Aÿ with zero angular
momentum (L � 0) may be found from the solution of the
transcendental equation with the logarithmic derivative of the
Coulomb Green function [3]:

q
qjrÿ Rj lnG

ÿjrÿ Rj� � 2G�1ÿ Zn�
n

�
W 0
��t�M 0�t�

�
�
ÿ 1

4
� Zn 2

2R

�
W��t�M�t�

�
t�2Rn

� ÿg : �131�

In Fig. 8, the energy level behavior near the avoided
crossing with a covalent level n � 4 is illustrated for the

1.0

B�R�

0.5

0

ÿ0.5

ÿ1.0

16 17 18 19 20 21 22 23

R, a.u.

R4 � 20.56 Â.u.

Figure 7. Function B�R� versus the internuclear distance R for the

Hÿ �He�� system near the crossing of the ionic term with the covalent

n � 4-term: solid line Ð the exact numerical calculation with formulas

(22), (24); diamonds Ð the distant crossing approach resulted in formula

(123).

Table 1.Orbit sizes rn, avoided crossing positions Rn and energy splittings
dEn�Rn� � 2DEn�Rn� for the Hÿ �H� system.

n rn, Â.u. Rn, Â.u. dEn�Rn�, Â.u.

1
2
3
4

2.0
8.0

18.0
32.0

2.117
10.279
35.921

283.005

1.652ÿ1

1.876ÿ2

2.318ÿ4

7.123ÿ27

Table 2.Orbit sizes rn, avoided crossing positionsRn and energy splittings
dEn�Rn� � 2DEn�Rn� for the Hÿ �He�� system.

n rn, Â.u. Rn, Â.u. dEn�Rn�, Â.u.

1
2
3
4
5
6
7
8

1.0
4.0
9.0

16.0
25.0
36.0
49.0
64.0

1.01
4.23
10.28
20.56
38.25
71.84

152.67
566.01

5.108ÿ1

1.059ÿ1

3.126ÿ2

7.429ÿ3

7.179ÿ4

5.089ÿ6

3.556ÿ12

5.148ÿ50
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system Hÿ �He�� with R4 � 20:56a0. The results (solid
lines) obtained using the logarithmic derivative (131) are
very close to those (crosses and diamonds) found in the
distant crossing approach (129).

Thus, the procedure drawn for normalizing the Coulomb
Green function as the wave function and analyzing the results
allows us to calculate the nondiagonal matrix elements and to
determine the behavior of the terms for each crossing, i.e. this
procedure allows the behavior of the Aÿ � B� system to be
completely described.

For calculation of the electron capture cross sections in
collisions (1) and (2), the system of adiabatic equations [34]

danlm�t�
dt

�
X

n0; l 0; m 0
an 0 l 0 m 0 �t�

�
d

dt

�nlm

n 0 l 0 m 0

� exp

��t
E n�1
n

ÿ
R�t 0��dt 0� �132�

was solved in Ref. [8]. In these equations, the adiabatic energy
levels are defined as

En�1
n �R� � 1

2

E0�R� � En�1 ÿDn�1�R� ; R5Rn�1
n ,

E0�R� � En �Dn�R� ; R4Rn�1
n ;

�
�133�

Dn�R� �
ÿ
x2n�R� � 4DE 2

n �R�
�1=2

; Rn�1
n � 1

2
�Rn � Rn�1� ;

and xn�R� is specified in formula (122). AtR < Rn, the energy
En�1
n �R� is close to the Coulomb energy En, and at R > Rn�1

to the energy En�1. In the range between avoided crossings,
viz. at Rn < R < Rn�1, this energy is close to the zero-
approximation ionic energy E0�R�.

The system of adiabatic wave functions was constructed
in the form [8]

Fn�1
n �R; r�

� Cÿn�1�R�F0

ÿjRÿ rj��C�n�1�R�Cn�1�R; r� ; R5Rn�1
n ;

C�n �R�F0

ÿjRÿ rj�ÿCÿn �R�Cn�R; r�; R4Rn�1
n ;

(
�134�

where the coefficients C�n and the function Bn�1
n �R� are

determined in the following way:

C�n �R� �
�
Dn�R� � xn�R�

2Dn�R�
�1=2

;

Bn�1
n �R� �

Cÿn�1�R� ; R5Rn�1
n ;

C�n �R� ; R4Rn�1
n :

�
�135�

The coefficients C�n; n 0 �R� describing the contributions to the
function Fn�1

n of the states with principal quantum numbers
n0 6� n are

C�n; n0 �R� � �
DEn0 �Rn�
En ÿ En 0

C�n �R� : �136�

At R < Rn, the function Fn�1
n is close to the function Cn,

because in this region jCÿn j � 1 and C�n � 0. At the avoided
crossing R � Rn, the function F n�1

n is a linear combination of
the functions Cn and F0. At the next avoided crossing
R � Rn�1, this function is a linear combination of the
functions F0 and Cn�1. In the region between crossings, viz.
at Rn<R<Rn�1, the function Fn�1

n is close to the unperturbed
wave function F0 of the negative ion, in so far as the
amplitude Bn�1

n �R� is close to unity, and all C�n are small. At
R > Rn�1, the functionFn�1

n is close toCn�1, because here one
finds jC�n�1j � 1 and Cÿn�1 � 0.

In the coordinate system the z-axis of which is perpendi-
cular to the collision plane, only the absolute value of an
interionic distance R and azimuthal angle fR of the vector R
depend on time. The polar angle is unchanged and equal to
yR � p=2. Therefore, the time-dependent derivative can be
written in the form

d

dt
� _fR

d

dfR

� _R
d

dR
:

The adiabatic matrix elements between two avoided crossing
states exhibit only radial coupling. They only depend on the
derivatives with respect to R and are equal to

Vn
nÿ1
ÿ
R�t�� � � d

dR

�n; n�1

nÿ1; n

�
�
Fn

nÿ1�R; r�
dFn�1

n �R; r�
dt

dr� Cÿn
dC�n
dR
ÿ C�n

dCÿn
dR

� Z

R2

2pN0�������������
Qn�R�

p Qn�R� ÿ xn�R�R2Q0n�R�=2R
x2n � 4�2pN0�2 Qn�R�

: �137�

Thesematrix elements are nonzero in narrow rangesDRn near
the points Rn of avoided crossings, and their absolute values
are large at R � Rn:

Vn
nÿ1;max

ÿ
R�t���� d

dR

�n; n�1

nÿ1; n

�����
R�Rn

� Z

4R2
n DEn�Rn� : �138�

Near the nth crossing, the matrix elements taken between
the active crossing states and the other active states Cn0 that
are not involved in the nth crossing, i.e. for n0 6� n, are also at a
maximum.Using the coefficientsCn0 defined by formula (121)
we obtain

Un0
nÿ1
ÿ
R�t�� � � d

dR

�n 0

nÿ1; n
� dCÿn; n 0

dR
� ÿDEn 0 �Rn�

En ÿ En 0

dCÿn
dR

;

Un0
n

ÿ
R�t�� � � d

dR

�n 0

n; n�1
� dC�n; n 0

dR
� DEn 0 �Rn�

En ÿ En 0

dC�n
dR

;

�139�

ÿ0.110

E, Â.u.

E4 � ÿ0.125 Â.u.

ÿ0.120

ÿ0.125

ÿ0.130

18 20 22 24
R, a.u.

R4 � 20.56 Â.u.

Figure 8. Energy levels of the Hÿ�He�� system near the avoided crossing

of the ionic energy level with the covalent n � 4-level. Energies are shown

as a function of the internuclear distance R. The dotted line is the ionic

energy in a zero approximation: E0�R� � e0 ÿ Z=R, defined by equation

(12); solid lines Ð the results of the solution of the transcendent equation

(131) with the logarithmic derivative of the Coulomb Green function;

crosses and diamonds Ð the results of the distant crossing approach

introduced by formula (129), produced with the use of expression (117) for

DEn�R� and expression (77) for the sum Qn�R�.
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dC�n �R�
dR

� �4
���
2
p

p2N2
0

Z

R2

Qn�R� ÿ xn�R�R2 Q0n�R�=2R
D

5=2
n �R�

ÿ
Dn�R� � xn�R�

�1=2 :
�140�

The maximum absolute values of these matrix elements are
reached at R � Rn:

dC�n; n0 �R�
dR

����
R�Rn

� � DEn 0 �Rn����
2
p �En ÿ En 0 �

Z

4R2
n DEn�Rn� : �141�

These values are a factor of DEn 0 �Rn�=
ÿ ���

2
p �En ÿ En 0 �

�
smaller than the maximum values (138) of matrix elements
(137) between the wave functions of active states for a given n.
The matrix elements (137) and (139) are depicted in Figs 9
and 10.

For negative ions with an orbital momentum L � 1, the
sumQn�R� in formulas (137) ± (141) should be replaced by the
sum Q

�1; 1�
n or by the sum Q

�y; y�
n �R�. Similarly, the energy

splitting DEn�R� should be replaced by DEx; y; z
n �R�.

In Fig. 11, the total cross section of the ion ± ion
recombination Hÿ �He�� � H�He��n� is shown. It has
been derived by solving the system of close coupling
equations (132) including the covalent states with principal
quantum numbers 14 n4 10 (385 states) [8]. The results of
this calculation are compared with experimental results [35 ±
38] and with those of variational calculations [35, 39]. We see
that the calculated results [8] coincide with the measurement
data [35].

At the same time, the experimental cross section from
paper [35] and the cross section calculated in paper [8] are in

1.3 ± 1.6 times larger than the cross sections found by
measurement [36] and in variational calculations [35, 39].
This difference is explained as follows. In calculations [35, 39]
only the states n � 2ÿ5 were taken into account. In paper [8]
it was found that the maximum populated states are states
with principal quantum numbers n � 4ÿ6 and this finding is
in agreement with the variational calculations [35, 39].
However, taking into account the states n � 7ÿ10 is also
necessary.

The population of each of these highly excited states is
significantly smaller than the populations of n � 4ÿ6-states
but their contribution to the total cross section measures
about 50 ± 60%. An appreciable population of the states
n � 7ÿ10 occurs at the moment when the system passes
crossings with n � 4; 5 levels. The coupling between states
with n � 7ÿ10 and n � 4; 5 is given by matrix elements (139).
The same effect takes place at the collision Hÿ �A3� [40 ±
42]. It should be emphasized that in paper [43] the electron
capture (1) has been interpreted as the tunneling electron
transition through the potential barrier from a negative ion to
a positive ion.
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3. Collisions of two negative ions

The electron detachment processes proceeding at the collision
of two negative ions are of considerable interest in connection
with the problem of nuclear fusion plasma heating by neutral
atomic hydrogen beams. It is convenient to generate the
beams of fast neutral atoms by accelerating and neutralizing
the negative ions in view of the relatively large cross section of
their neutralization in targets. However, the collisions of
negative ions inside high-intensity beams, which occur due
to the spread in their velocities, effectively suppress the
intensity of such beams. The electron detachment in the
collision of two atomic hydrogen negative ions, Hÿ �Hÿ,
was studied earlier both experimentally [44, 45] and theoreti-
cally [46 ± 52].

Three processes of weakly bound electron detachment are
possible in a collision of two negative ions:

Aÿ � Bÿ � A� Bÿ � e ; �A�
� Aÿ � B� e ; �B�
� A� B� 2e ; �AB�

whose probabilities strongly compete with one another.
Reactions (A), (B), and (AB) were investigated in work [46]
for the following three collision pairs: Hÿ �Hÿ, Hÿ � Csÿ

and Csÿ � Csÿ.
The two-negative-ion collision is similar in some details to

the negative ion collision with a negatively charged classical
point particle: with the electron regarded as a classical particle
[53, 54], and with the antiproton [55, 56]. However, essential
discrepancies between these collisions also exist. If the system
of a negative ion and antiproton can be considered as a one-
electron one, then the two-negative-ion system is a two-
electron one.

The adiabatic wave function of the weakly bound electron
in the negative ion ± antiproton system is given by formula
(11) with the Coulomb Green function for the repulsion field.
But for the two-negative-ion system, formula (11) is not
applicable. The two-negative-ion wave function can be
written as a product of the two Coulomb Green functions.
However, this representation is rather complex and we do not
apply it.

The cross sections of reactions (A), (B) and (AB) are
sufficiently large and we shall take into account the transi-
tions of only weakly bound electrons. Then the complete set
of two-negative-ion states is expressed as follows

c�ÿ�a �r1a�c�ÿ�b �r2b� exp
ÿÿi�ea � eb�t

�
; �142�

ce
a�r1a�c�ÿ�b �r2b� exp

ÿÿ i�eb � e�t� ; �143�

c�ÿ�a �r1a�ce
b�r2b� exp

ÿÿ i�ea � e�t� ; �144�

ce
a�r1a�ce 0

b �r2b� exp
ÿÿ i�e� e0�t� ; �145�

where c�ÿ�a; b are the wave functions of weakly bound electrons,
and ce

a; b are the wave functions of the system involving a
neutral atom and an electron in the continuumwith an energy
e. Expression (142) relates to the wave function of the system
formed by two negative ions, i.e. the wave function of the
initial state; expressions (143) and (144) describe the state in
which the electron of one of the ions, A or B, is detached and
resides in the continuum, while expression (145) identifies the
state with two detached electrons.

3.1 Small collision velocities. Auger decays
If the distance between two negative ions decreases slowly,
then the total binding energy of weakly bound electrons goes
up to the continuum as a result of the interelectron repulsion.
This energy crosses the continuum boundary at very large
internuclear distance R because the negative ion binding
energy is small. At distances smaller than the crossing
distance Ra;b, a few Auger decay channels become open.
One or two weakly bound electrons are detached as a result
of these Auger decays [46, 47].

At large R, the interelectron repulsion can be expanded in
a power series of the inverse degrees of R:

1

jr1 ÿ r2j �
1

R
� z1a

R2
� 3z21a ÿ r21a

2R3
� r1az1a�5z1a ÿ 3r1a�

2R4

� . . .� z2b
R2
� 3z22b ÿ r22b

2R3
ÿ r2bz2b�5z2b ÿ 3r2b�

2R4

� . . .�W�r1a; r2b� � . . . ; r1a; r2b 5R ; �146�
where r1, r2 are the radius vectors of electrons 1 and 2 in an
arbitrary coordinate system, and r1a, r2b are the vectors of
electrons 1 and 2 positioned relative to atomic a and b nuclei,
respectively.

The correlation term W�r1a; r2b� is the function of the
product of the coordinates of both electrons:

W�r1a; r2b� � r1ar2b ÿ 3z1az2b
R3

� . . . ; �147�

while the remaining terms in expression (146) depend on the
coordinates of only one of the electrons. Then the expansion
(146) can be written down as

1

r12
� ÿ 1

R
� 1

jRÿ r1aj �
1

jR� r2bj �W�r1a; r2b� ; �148�

r1a; r2b 5R :

Using the last relation we can write the wave equations for
weakly bound electrons in the form�

ÿD1

2
�Ua�r1a� � 1

jRÿ r1aj ÿ
1

R
ÿ Ea�R�

�
c�ÿ�a �r1a� � 0 ;

�149�

�
ÿD2

2
�Ub�r2b� � 1

jR� r2bj ÿ Eb�R�
�
c�ÿ�b �r2b��0; �150�

where Ua;b�r� are the interaction potentials of the weakly
bound electrons a and b with their own atomic cores. The
energies of these electrons are described by the following
expressions:

Ea�R� � ea ÿ aa
2R4
� . . . ; Eb�R� � eb � 1

R
ÿ ab
2R4
� . . . ;

�151�

where ea;b are the unperturbed binding energies of negative
ions, and aa;b are their polarizibilities. For large internuclear
distances R, viz.

R >
1

g
; �152�

January, 2002 Electron transitions in slow collisions of negative and positive atomic ions 19



the polarization terms in formula (147) can be neglected and
then the total energy of the two negative ions equals

E�R� � Ea�R� � Eb�R� � ea � eb � 1

R
: �153�

Formally, equations (149) and (150) are independent of
one another. In reality, however, the negative ions are not
independent in our approach. Indeed, the term ÿ1=R in
equations (149) and (150) can be attributed either to an
electron a or to electron b. We should consider both the
system of equations (149), (150) and the system with
permuted subscripts: a$ b, because the electrons are indis-
tinguishable. With the use of a many-electron wave function
which is symmetrized over electron permutations, this system
property is taken into account automatically. Subsequently,
we shall use directly the representations (149), (150), whereas
the alternative representation a$ b will be taken into
account by analogy.

Equation (150) describes the negative ion b placed in the
field of a classical negatively charged point particle (for
example, an antiproton �p). If R4Rb � 1=jebj, then the
energy of an electron b is in the continuum (Eb > 0) and
electron b can tunnel through the potential barrier into the
continuum. At R < Ra � 1=ea, the same situation occurs for
electron a. The rate of through-barrier tunneling, Gsq (the
subscript `sq' marks the abbreviated form of a squeezing out),
was calculated in Ref. [53] and it takes the form

Gsq; �a;b��R� �
B2
a;b

2ga;bR2
exp

�
ÿ 4

ga;b
y f�y�

�
; �154�

f�y� � arcsin
���
y
p�����������������

y�1ÿ y�p ÿ 1 ; y � R

Ra;b
4 1 ; Ra;b � 1

jea;bj :

The decay rate Gsq;�a;b��R� � 0 at R5Ra;b, because at
these internuclear distances the energy of the tunneling
electron is negative [Ea;b�R� < 0] and the tunneling itself is
forbidden. For the collision Hÿ �Hÿ, we have
Ra � Rb � 36 a0. In paper [47], the probability of squeezing
out was calculated with the use of the Coulomb Green
function for the case of repulsion and the same result was
obtained for the decay rate, viz. expression (154).

If the electron a (or b) is tunneling at R4Ra;b, then the
electron b (or a) cannot tunnel to the continuum, because in
the system A� Bÿ (as in the system Aÿ � B) there is no
Coulomb interelectron repulsion. The simultaneous tunnel-
ing of both electrons is also impossible. Thus, in a two-
negative-ion collision, several processes of electron detach-
ment are in cut-throat competition. This very competition is
the origin of the distinguishing difference between the two-
negative-ion collision and the collision of one negative ion
with a classical negatively charged point particle, for example,
with an antiproton.

The following expression for the wave function of an
unperturbed negative ion [9, 10, 57]:

c�ÿ�0 �r� � B�g; b�
������
g
2p

r
exp �ÿgr� ÿ exp �ÿbr�

r
; �155�

B�g; b� � �1� g=b�1=2
1ÿ g=b

;

where e � ÿg2=2, was used in the calculation of the electron
tunneling probability. The binding energies of negative ions

Hÿ and Csÿ are equal to eHÿ� ÿ 0:75421 eV (gHÿ � 0:23544)
and eCsÿ � ÿ0:4716 eV (gCsÿ � 0:1862), respectively [58].

In papers [9, 10], the wave equation, to which the function
(155) satisfies, was considered. The potential energy in this
equation was fitted to the static potential of neutral atomic
hydrogen in the ground state and the result was obtained for
the ion Hÿ: bHÿ � 2:66. Then, with the use of equation (155),
we found the value of the coefficient B equal to 1.145. This
finding is very close to the value B � 1:183 which was
obtained in book [57] by utilizing the Chandrasekhar wave
function [59] of the ion Hÿ. For Csÿ it was obtained by the
method developed in works [9, 10]: bCsÿ � 1:45 (see also
Ref. [60]) and BCsÿ � 1:22.

If the electron b possesses an excess energy 1=R, then this
electron can transfer the excess energy to the electron awhich
will be detached at R4Ra. Electron b in this case remains in
the bound state so that this process is a one-electron Auger
decay. The rate of this decay is determined by the matrix
element W�r1a; r2b� of the correlation interaction. If we
calculate this matrix element using the unperturbed wave
function (155) of the electron b, this matrix element comes to
zero.

Actually, the state of the electron b is perturbed by the
interelectron repulsion before the decay and its wave function
appears to be polarized and equal to [46]

c�ÿ�b � c�ÿ�b0 �r2b�
�
1ÿ r22b cos y

2gbR2
�O

�
r32b
R3

��
: �156�

The wave function of electron b in the continuum assumes the
form [46]

ce
b�r� �

������
2

pk

r
1

r

�
sin �kr�

kr
ÿ cos �kr�

�

�
������
3

4p

r �
cos y; sin y cosj; sin y sinj

	 �157�

with three components of the angular function:
cos y; sin y cosj and sin y sinj. The z-axis of the coordi-
nate system introduced is perpendicular here to the collision
plane.

After the calculation of the matrix element we obtain the
rate G1ab of the one-electron Auger decay [46]:

G1; ab�R� � 2pjWifj2 � g8aB
2
aB

4
b

6
���
2
p

�
ga
gb

�4 �1ÿ x�3=2
�2x�15=2

; �158�

x � R

Ra
< 1

with the detachment of an electron a from the negative ionAÿ

by the negative ion Bÿ. Similarly, the rate G1ab of the one-
electronAuger decay with the detachment of an electron from
the negative ion Bÿ by the negative ion Aÿ is given by [46]

G1; ba�R� � g8bB
4
aB

2
b

6
���
2
p

�
gb
ga

�4 �1ÿ y�3=2
�2y�15=2

; �159�

y � R

Rb
< 1 ; Rb � 1

jebj :

If the internuclear distance R4Rab � jea � ebjÿ1
(Rab � 18a0 for the collision Hÿ �Hÿ), then two-electron
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Auger decay becomes possible. The rate Gab�R� of the two-
electron Auger decay can be calculated using the unperturbed
wave functions of the initial state for the system of colliding
negative ions and of their states in continuum (157). The
electron momenta after Auger decay are confined within
some limits set by the energy conservation law:

k2a � k2b � 2

�
1

R
ÿ jea � ebj

�
:

The total rate of the two-electron Auger decay is described as
follows [46]

Gab�R� � 210gagbB
2
aB

2
b

3pR2
ab

�1ÿ x�4
x2

�1
0

�1ÿ t 2�3=2
�1ÿ �1ÿ x�2t 2�4 dt;

Rab � 1

jea � ebj ; x � R

Rab
< 1 : �160�

The rates of all Auger decays are shown in Fig. 12 as a
function of internuclear distance R for the collision
Hÿ � Csÿ. The squeezing out rate Gsq�R� has a maximum
value in the range of distances 2 ± 34R4 35 which make the
main contribution to the one-electron detachment cross
section at not very low energies. However, the rate of
squeezing out exponentially decreases when the negative
ions are parted. At distances R > 35, the squeezing out rate
becomes smaller than the rate of one-electron decay G1 which
is the power function of R. Therefore, at a small collision
energy the one-electron detachment is determined by the
one-electron Auger decay [46]. As a result, the energy
dependence of the one-electron detachment cross section
essentially changes near the threshold [46]. This effect takes
place for all investigated collisions Hÿ �Hÿ, Hÿ � Csÿ and
Csÿ � Csÿ [46].

The initial state of the two-negative-ion system Aÿ � Bÿ

decays through five different channels with the formation of
three different final states: (A), (B) and (AB). The probabil-
ities of such a decay must be calculated using a multichannel
scheme. LetP0�%; t� be the probability of finding the system in
the initial state at the instant of time t for a collision with the
impact parameter %, and Gtot

ÿ
R�t�� be the total probability of

the decay via all channels. These quantities are connected
through the relation

P0�%; t� � exp

�
ÿ
�t
ÿ1

Gtot

ÿ
R�t 0�� dt 0�: �161�

The probability of decay through the ith channel is given
by expressions

Pi�%; t� �
�t
ÿ1

P0�%; t 0�Gi

ÿ
R�t 0�� dt 0

�
�t
ÿ1

Gi

ÿ
R�t 0�� exp�ÿ�t 0

ÿ1
Gtot

ÿ
R�t 00�� dt 00�dt 0 ; �162�

whereGi

ÿ
R�t�� is the rate of the decay via the ith channel. The

total decay rate is defined as

Gtot �
X
i

Gi � Gsq; a � Gsq; b � G1; b � G1; a � Gab : �163�

The total probability of the system being in any of the final
states is equal toX

i

Pi�%; t� � 1ÿ exp

�
ÿ
�t
ÿ1

Gtot�t 0� dt 0
�
:

The sum of this probability and the probability (161) of
finding the system in the initial state is equal to unity, as it
should be.

The cross sections sA and sB of one-electron detachments
from ions Aÿ and Bÿ are described as

sA � 2p
�1
0

ÿ
Psq; a�%� � P1; a�%�

�
% d% ;

sB � 2p
�1
0

ÿ
Psq; b�%� � P1; b�%�

�
% d% ;

�164�

P0�%� � P0�%; t � �1� ;

and the cross section sAB of two-electron detachment

sAB � 2p
�1
0

Pab�%�% d% �165�

has been calculated with the use of Coulomb trajectoriesR�t�,
so that the behavior of cross sections near the thresholds has
been reproduced correctly. The repulsion of the negative ions
Aÿ and Bÿ controls these peculiarities.

The cross sections of the electron detachments in the
collisions Hÿ �Hÿ, Hÿ � Csÿ and Csÿ � Csÿ are shown in
Figs 13 ± 15. The comparison with the measurement results
is drawn in Fig. 13 for the example of the Hÿ �Hÿ

collision.

3.2 High collision velocities. Dynamic detachment
At high collision velocities, the processes (A), (B), (AB) occur
as a result of a direct transfer of part of the nuclear kinetic
energy to weakly bound electrons. In paper [46], the system of
equations for the coupling of the initial state with the
continuum of states has been reduced in the dipole approx-
imation to one integro-differential equation for the amplitude
a0�t� of the initial state:

da0
dt
� ÿSA�t� ÿ SB�t� ÿ SAB�t� ; �166�
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Figure 12. Partial decay rates as functions of internuclear distance R for

the collision Hÿ � Csÿ: Gsq;Hÿ and Gsq;Csÿ are the rates of electron

squeezing out from ions Hÿ and Csÿ, respectively, defined by formula

(154); G1;Hÿ and G1;Csÿ Ð the rates of one-electron Auger decays with

electron detachment from Hÿ and Csÿ, respectively, described by

formulas (158) and (159), and G2 Ð the rate of two-electron Auger

decay, determined by formula (160).
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where the following notation is used:

SA;B�t��
�t
ÿ1

a0�t 0� exp
ÿ
iea;b�tÿ t 0��KA;B�t; t 0� dt 0;

�167�
SAB�t� �

�t
ÿ1

a0�t 0� exp
ÿ
i�ea � eb��tÿ t 0��KAB�t; t 0� dt 0:

�168�

Equation (166) has been derived by the integration of the
equation for the amplitude a�e; t� of the continuum state with
energy ewith respect to time and the substitution of the result
into the equation for the initial state amplitude a0�t� [46]. In
the integro-differential equation (166), the kernels KA;B�t; t 0�
are equal to

KA;B�t; t 0� �
��1
0

VA;B
0e �t�VA;B

e0 �t 0� exp
ÿÿie�tÿ t 0�� de ;

�169�

KAB�t; t 0� �
��1
0

��1
0

VAB
0ee0 �t�VAB

ee00 �t 0�

� exp
ÿÿi�e� e0��tÿ t 0�� de de0: �170�

Equation (166) has been solved numerically for every recti-
linear trajectory of the atomic nuclei [46].

In the dipole approximation, the matrix elements VA;B�t�
were calculated with the wave functions (155), (157) and
kernels KA;B;AB�t; t 0� turned out to be equal to [46]

KA;B�t; t 0��
4B2

a;b

3pjea;bj
cos
ÿ
jR�t� ÿ jR�t 0�

�
R2�t�R2�t0� F

ÿjea;bj�tÿ t 0��;
�171�

KAB�t; t 0� � 16B2
aB

2
b

3p2jeaebj
3 cos2

ÿ
jR�t� ÿ jR�t 0�

�ÿ 1

R3�t�R3�t 0�

� F�jeaj�tÿ t 0��F�jebj�tÿ t 0��; �172�

where the spectral function is defined as

F�x� �
�1
0

y3=2 exp�ÿixy�
�1� y�4 dy : �173�

The total cross sections of one- and two-electron detach-
ments were calculated at high collision velocities with the use
of rectilinear trajectories for the systemHÿ �Hÿ. These cross
sections are shown in comparison with the measurement
results in Fig. 13 [44, 45, 49]. For a symmetrical collision,
the total cross section of one-electron detachment is equal to
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Figure 14.Cross sections of one- and two-electron detachments, calculated

in the decay approach for the collision Hÿ � Csÿ: curves 1 and 2Ð cross

sections of one-electron detachment from the Csÿ and Hÿ ions, respec-

tively; dotted curve Ð cross section of one-electron detachment by
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of two-electron detachment Hÿ � Csÿ � H� Cs� 2e.

103

s,
1
0
ÿ1

6
cm

2 102

101

100

100 101 102 103 104 105

Ec:m:, eV

Csÿ+Csÿ

1

2

Figure 15.Cross sections of one- and two-electron detachments, calculated

in the decay approach for the collision Csÿ � Csÿ: curve 1 Ð total cross

section of one-electron detachments with the formation of Cs� e� Csÿ

or Csÿ � Cs� e systems, and curve 2 Ð cross section of two-electron

detachment Csÿ � Csÿ � 2Cs� 2e.

Hÿ+Hÿ1b

1 (e)

1a

6

2 (2e)

3 (e)

3b
BB
5

1

7

3a
3
6

4 (2e)

s,
1
0
ÿ1

6
cm

2

102

101

100 101 102 103 104 105

Ec:m:, eV

Figure 13. Cross sections of one- (e) and two- (2e) electron detachments in

the Hÿ �Hÿ collision as a function of the collision energy Ec:m: in the

center-of-mass system, obtained in the decay approach (curves 1 and 2)

and in the dynamic approach (curves 3 and 4) [46]. Dotted curves: 1a Ð

electron squeezing out calculated for the collision Hÿ � �p [46, 53], and

1b Ð the double antiproton cross section 1a; squares and inclined

crosses Ð double cross section of electron detachment from Hÿ in

collision with antiproton, obtained in classical Monte Carlo approach

(two different calculations) [55, 56]; dotted curve 3a Ð cross section of

electron detachment by antiproton impact in dynamic approach [46];

dotted curve 3b Ð double antiproton cross section; curve BB Ð double

Bethe ±Born cross section of one-electron detachment [46, 53]; diamonds

and crosses Ð measured cross sections of one- and two-electron

detachments, respectively [44, 45, 49]; curves 5 and 6 Ð theoretical

estimates of the total cross section of a one-electron detachment with the

use of the double antiproton cross section [49, 52], and curve 7 Ð total

cross section of one-electron detachment calculated within the classical

Monte Carlo approach [44].
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the sum of the cross sections of the processes (A) and (B). This
cross section calculated in the dynamic approximation is in
good agreement with the results of experimental findings. We
note that the experimental points are widely scattered.

The cross section of two-electron detachment, calculated
in the dynamic approximation, is 15 ± 20% smaller than the
experimental one. This discrepancy is explained by the
contribution of the process Hÿ �H! H�H� e to the
experimental cross section [49]. This reaction, theoretically
investigated for the first time in paper [61], takes place after
the one-electron detachment and leads to the detachment of
two electrons. Both the cross sections of dynamic detach-
ments, calculated in work [46], exponentially decrease at
adiabatically small collision energies Ec:m:4 2ÿ3 keV.

In a collision of two negative ions, the electron detach-
ment from one of the ions is in competition with the electron
detachment from the other ion. Therefore, the probability of
electron detachment, for example, from the ion Hÿa must be
estimated by the product Pa�1ÿ Pb�, where the 1ÿ Pb is the
probability of the ion Hÿb not being destroyed. The quantities
Pa;b are the probabilities of the ions Hÿa;b being destroyed in
the collision with an antiproton. Then the total probability of
one-electron detachment isPa�1ÿ Pb� � Pb�1ÿ Pa�. At large
collision energies, the main contribution to the detachment
cross section is made by collisions with large impact
parameters, when the detachment probabilities are small:
Pa;b 5 1 and 1ÿ Pa;b � 1. In this case, the total probability
of one-electron detachment is equal to the sum Pa � Pb of
probabilities of one-electron detachments and the total cross
section comes out to sa � sb.

At the collision energies Ec:m:4 10 keV, the probabilities
Pa;b of one-electron detachments in collisions with antiproton
are sharp functions of the impact parameter %. At large r
(%4 1) they are close to zero, and over a narrow range d% they
increase from zero to unity and remain close to unity at
smaller %. In this case the sum of probabilities is close to 2
(Pa � Pb � 2) over the main region of impact parameters r;
therefore, for collisions of two negative ions neither prob-
abilities nor cross sections can be added. The electron
detachment from ion a is in competition with the electron
detachment from ion b. As a result, in a collision of the like
negative ions, the probability of electron detachment from
one of the ions is two times smaller than that of the electron
detachment in a collision with an antiproton. The total cross
section of one-electron detachment is close in this case to the
cross section of one-electron detachment in a collision with an
antiproton, but not to the double cross section (see curve 1b,
Fig. 13).

An analytical expression for the cross section of the
electron detachment from Hÿ by electron impact was
obtained in Ref. [53] using the Bethe ±Born approximation.
In order to compare this formula with the cross section of
one-electron detachment in the collision Hÿ �Hÿ, we must
consider the double Bethe ±Born cross section, viz. the curve
BB which is shown in Fig. 13. It can be seen from this figure
that the Bethe ±Born approximation overestimates a one-
electron detachment cross section by two times in the peak
region. Only at energies Ec:m:5 100 keV this approximation
has an acceptable accuracy.

In a collision of two different ions Aÿ � Bÿ, the electron
detachment from the ion with the smaller binding energy is
more probable. The cross section of electron detachment
from the ion Csÿ in the collision Hÿ � Csÿ (curve 1 in
Fig. 14) is larger than the cross section of electron detach-

ment fromHÿ and is very close to the cross section of electron
detachment from Csÿ by antiproton impact (the dotted curve
in Fig. 14). At the same time, the cross section of ion Hÿ

destruction (curve 2) is about two times smaller than the cross
section of electron detachment from one of the ions in the
collision Hÿ �Hÿ (see Fig. 13).

The cross sections of electron detachments in the
collision Csÿ � Csÿ are shown in Fig. 15. Comparing
Figs 13 and 15 we may conclude that the total cross
sections of one-electron detachment are inversely propor-
tional to the square of the binding energies of negative ions.
While the cross section of two-electron detachment very
weakly increases when the binding energy of the colliding
negative ions decreases.

4. Symmetrical collisions

In a symmetrical collision, the two-electron process of the
ionization transfer is very interesting. In the collision
Hÿ �H�, the following processes take place:

Hÿa �H�b ! Ha�1s� �H�b�n� ; �A1�
! Ha�1s� �H�b � e ; �A2�
! H�a �Hb�1s� � e : �A3�

Process A1 presents the capture of a weakly bound electron
discussed in the first section. The cross section of this process
is the largest. Process A2 comprises electron detachment by
proton impact. The cross section of this process is 2 ± 4 times
smaller than the cross section of electron capture. The third
process A3 consists in ionization transfer. The cross section of
this process is an order of magnitude smaller than the cross
section of electron capture. In this section we discuss process
A3.

Process A3 has been investigated experimentally [62] and
has been interpreted as electron Auger decay from the excited
repulsive molecular states which are responsible for the
process of the associative ionization in the collisions
Hÿ �H� and H� �H at low energies [63]. However, the
process of associative ionization is effective at collision
energies 0.01 eV ± 5 eV, and at energies 10 eV ± 10 keV
studied in Ref. [62] the cross section of associative ionization
is very small. Therefore, another interpretation of process A3
has been proposed in paper [10]. Process A3 was considered
there as a sequence of two processes: the detachment A2 with
the sequential transition of the core 1s-electron from the atom
Ha to the atomHb. It is very well known that the cross section
of the last transition, viz. the charge exchange process, is fairly
large up to energies 25 keV [64].

In paper [10], the detachment channel in the system of
close coupling equations has been described by an integro-
differential equation similar to the description of electron
detachments in a collision of two negative ions [46] (see
previous section). The following system of equations has
been solved numerically:

da0
dt
� ÿSg�t� ÿ Su�t� ÿ i

X
n

an�t�V0; n�t� exp
ÿ
iw0n�t�

�
;

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �174�
dan
dt
� ÿi a0�t�Vn; 0�t� exp

ÿÿ iw0n�t�
�
:
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where the notation was used as follows

w0n�t� �
�
e0 ÿ En ÿ v

2

2

�
tÿ JCoul�t� ;

Sg;u �
�t
ÿ1

a0�t 0� exp
ÿ
ifg;u�t� ÿ ifg;u�t 0�

�
Kg; u�t; t 0� dt 0;

�175�
fg; u�t� � e0tÿ

�t
ÿ1

�
Eg; u

ÿ
R�t��ÿ E1s

�
dt 0 ÿ JCoul�t� ;

JCoul�t� �
�t
0

1

R�t 0� dt 0 :

The kernels Kg; u in the dipole approximation are

Kg; u�t; t 0��ag; u
4N2

0

3pje0j
cos
ÿ
jR�t�ÿjR�t 0�

�
R2�t�R2�t 0� F

ÿje0j�tÿ t0��;
�176�

where

ag; u �
�
1� J�R�

2

�1=2
;

J�R� � hc1s; ajc1s; bi �
�
1� R� R2

3

�
exp �ÿR� :

Quantities Sg; u and Kg; u describe the detachment of the core
1s-electron to the g and u states of the ion H�2 with energies
Eg; u�R�.

After detachment of the weakly bound electron, the core
1s-electron can be bound with the atom Ha or with the atom
Hb. The probabilitiesPa; b of detachment of the weakly bound
electron, accompanied by the core 1s-electron transition to
atoms Ha;b, are defined as

Pa�%� � Re

���1
ÿ1

�
1� exp

�
ÿ i

��1
t

Dgu�t 0� dt 0
��

� �a�0�t�Sg�t� � a0�t�S�u�t�
�
dt

�
; �177�

Pb�%� � Re

���1
ÿ1

�
1ÿ exp

�
ÿ i

��1
t

Dgu�t 0� dt 0
��

� �a�0�t�Sg�t� � a0�t�S�u�t�
�
dt

�
; �178�

where Dgu

ÿ
R�t�� � Eg

ÿ
R�t��ÿ Eu

ÿ
R�t��.

The probability of process A3 is Pb. We see from the
above expression that the probability of process A3 depends
on the energy difference between the g and u states of the
molecular ion H�2 . This dependence is similar to the
dependence of the resonance charge exchange probability in
the collision Ha�1s� �H�b � H�a �Hb�1s� [64]. If the energy
difference of the g and u states is equal to zero (Eg ÿ Eu � 0),
then the probability of process A3 also comes to zero: Pb � 0.

The system of equations (174) has been solved numerically
[10]. The energies Eg; u�R� of the ion H�2 were taken from
paper [65]. The cross section of process A1, derived in these
calculations, is shown in Fig. 16 (curve 1). This cross section
has been previously measured [66 ± 69] and calculated [70 ±
82].

The cross section of process A3, calculated in paper [10]
and shown in Fig. 17, is smaller than the experimental one.

At large collision energies (Ec:m: > 1ÿ2 keV), the discre-
pancy is larger. This may be explained by the contribution
of the process of the two-electron exchange
Hÿa �H�b � H�a �Hÿb , which was neglected in the calcula-
tions [10]. The probability of this process is not relatively
small [83]. Electron detachment from the ion Hÿb after this
electron exchange leads to reaction A3. Notice that the
theory of two-electron exchange [83] should be recon-
structed for the case of collision Hÿ�H�, because of the
presence of one-electron resonances.

At energies smaller than 1 keV, the following sequence of
transitions leading to reaction A3 should be taken into
account [83]:

Hÿa �H�b ! Ha�1s� �H�b�nlm� ! H�a�nlm� �Hb�1s�
! H�a �Hÿb ! H�a �Hb�1s� � e :

150
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Figure 16. Cross section of mutual neutralization Hÿ �H� �
H�1s� �H��nlm� as a function of the collision energy in a center-of-mass

system. Theory: curves 1 ± 8. Crosses and squares are the results of

experimental investigations by merged beam method [66]: crosses for the

Hÿ �H� collision and squares for the Hÿ �D� collision at the same

collision velocity as that for Hÿ �H�. Results of measurements carried

out before the appearance of work [66] are not shown in the figure in view

of their large uncertainties.
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Figure 17. Cross section of the process Hÿa �H�b � H�a �Hb�1s� � e as a

function of the collision energy in the center-of-mass system. Solid lines

represent theoretical calculations: curve 1 Ð result of the autoionization

model [62], and curve 2 Ð result of calculations [10]. Results of

experimental studies [62]: diamonds Ð results of the group in Louvain-

la-Neuve, and crosses Ð results of the Giessen group.
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The first step in this sequence is the one-electron capture the
probability of which is not small. The second step consists in
the resonance exchange by excitation, which is effective at
small collision velocities. The third step presents the reaction
which is the reverse of the one-electron capture, and its
probability is not small. As a result, the three first steps give
rise to two-electron exchange. The subsequent electron
detachment leads to reaction A3. This reaction sequence has
not been investigated in details.

5. Conclusions

A detailed analysis of the exact expression for the Coulomb
Green function is made in this review. This Green function
was found by Hostler and Pratt as far back as 1963. Our
analysis has permitted us to obtain new rich information
about very well-known Coulomb systems: atomic hydrogen
and hydrogen-like ions. In particular, sums of products of the
Coulomb wave functions over degenerate manifolds, i.e. over
orbital quantum numbers fl;mg for a given principal
quantum number n, have been obtained in a closed form.
Such sums turned out to be equal to the quadratic forms of
the wave functions with zero orbital quantum numbers
(l � m � 0).

Wave functions of active covalent states of a Rydberg
electron perturbed by a neutral atom, i.e. wave functions of
the system Aÿ � B�, are expressed through the sums
discussed. The investigation of these sums shows that the
Rydberg electron in such systems possesses a dipole moment.
In the limit of large internuclear distances (R!1), the
Rydberg electron wave functions are transformed to Cou-
lombwave functions in parabolic coordinates, i.e. to the wave
functions of Stark states of atomic hydrogen placed in a
uniform electric field.

Adiabatic exchange matrix elements between ionic and
covalent states of the Aÿ � BZ� system are expressed through
analogous sums of Coulomb wave function products which
depend on R. These sums do not come to nought at a finite
value of R, and thus all crossings of ionic and covalent states
are avoided crossings.

In this review we constructed the complete orthonormal
basis of adiabatic wave functions for the Aÿ � BZ� system.
The results are used for investigating collisions of negative
ions having orbital momenta L � 0 and L � 1 with positive
ions. The cross sections of electron captures in the collisions
Hÿ �H� and Hÿ �He�� were calculated and discussed.

Collisions of two negative ions were also investigated. The
colliding system Aÿ � Bÿ is a two-electron one. Therefore,
the calculations were carried out for a doubled set of quantum
states describing the one-electron detachments: A� e� Bÿ

and Aÿ � B� e.
This study was supported by the Council for Grants of the

President of the Russian Federation and State Support for
Leading Scientific Schools (grant No. 00-15-96526).
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