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FROM THE HISTORY OF PHYSICS
Supersymmetry — 30 years ago
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Abstract. A personal history of the creation of the first four-
dimensional supersymmetric model is presented. It also covers
the author’s memoir of his cooperation with Yu A Gol’fand,
which pioneered supersymmetry studies. The preprint of the
author’s 1971 paper is published as the appendix.

These notes, based on my talk at the Conference “Thirty Years
of Supersymmetry’ held in Minneapolis on 13—15 October
2000, tell the story of how the first supersymmetric model in
four dimensions came into being [1]. I briefly review the
articles on this matter published in the early 1970s and discuss
some minor results which have been mentioned only in my
thesis for Candidate of Physicomathematical Sciences [2].
Also, some misconceptions and missed opportunities will be
addressed.

Early in 1968 I graduated from the Physics Department of
the M V Lomonosov Moscow State University (MSU), with
first class honors and already a co-author of two publications
[3, 4] on the possible effects of the violation of space-charge
symmetry in atomic nuclei. I dreamt of solving larger-scale
problems, which of course implied post-graduate studies, but
Yurii Mikhailovich Shirokov, who had directed my graduate
work, failed to secure me a post-graduate position either at
the V A Steklov Mathematical Institute of the USSR
Academy of Sciences where he worked or at the MSU
Physics Department where he taught. He therefore recom-
mended me to Yurii Abramovich Gol’fand, then at the
Theoretical Department of the P N Lebedev Physics Institute
of the USSR Academy of Sciences.

That was the place where the prominent Soviet physicists
— I E Tamm, V L Ginzburg, and A D Sakharov— worked in
the late 60s and early 70s. Yu A Gol’fand was only at the stage
of writing his thesis for doctorate at the time. He was a rather
short person which, allied with his quick gait and warm and
friendly smile, somehow leveled off our age and status
differences. He showed me several permutation relations
between the momentum and angular momentum operators
and some spinors and explained me that the consistency of
these relations was verified by the Jacobi identities. It was
these permutation relations which laid the foundation for
what six years later came to be known as ‘supersymmetry’ [5].

My task at the first stage of research was to establish
whether the proposed algebra was a unique one or whether
there was an alternative to it. To get an answer required
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solving a system of equations in algebra structural constants
which resulted from the Jacobi identities. I restricted myself to
a set of four complex spinor charges and came to the
conclusion that there are four varieties of such algebras, two
of which are now known as N = 1 and N = 2 superalgebras,
and in two others the momentum does not commute with
spinor charges (analogous to the de Sitter algebra). The
results obtained late in 1968 were not published until later
[6, 7] because their physical relevance was not at all clear at the
time. Of these algebras, the simplest, N = 1, algebra was
selected for further analysis.

Twice a week, before the Theoretical Department seminar
was to start, I reported to Gol’fand on my progress in
calculations and a discussion of my results followed. There
were textbooks on my work table on various aspects of group
theory applications in physics, but as to recent original papers
on the proposed subject, I found none. Nor was I lucky later
on, when reviewing the appropriate scientific literature for my
thesis. (In this connection, I have recently read with great
interest the historical study by M S Marinov in the book [8]).
Whether Gol’fand knew about F A Berezin’s and some other
similar works or not, I do not know. He might probably
consider me to be a person to whom he had communicated all
the essential information required for the work. His whole
behavior seemed to show to me — and possibly to some
others as well — that he and I were the only people whose
work really mattered. Still, as far as I saw it, he was in equable
relations with all his colleagues from the Theoretical Depart-
ment. He was very fond of joking and laughing — sometimes
with the gaps in my professional training as the target.

The central problem I had to solve was to establish the
relation between quantum field theory and the algebra to be
constructed. Nobody knew whether such a relation existed at
all and if it did, whether the algebra representations would be
finite. The reason I keep saying ‘algebra’ rather than ‘group’ is
as follows. Gol’fand and I considered a group with Grass-
mann variables as parameters and were able to establish how
supercoordinates transform under spinor translations. It did
not occur to us, however, that we could expand the superfield
in a power series of the Grassmann variables and thus
establish its relation to the set of ordinary fields entering the
supermultiplet. Accordingly, the superfield — as a concept
that did not after all yield a mechanism for constructing a
superinteraction — was not mentioned in our early publica-
tions and was only reflected in my thesis. In retrospect, the
route to success proved less elegant and hence more labor-
consuming. My idea was to search for the algebra representa-
tions in terms of the creation and annihilation operators for
the particles involved.

As long as we were dealing with algebra operators alone,
our main concern had been with properly treating the gamma
matrices and carefully changing the sign at certain places in
the Jacobi identities when working with anticommutators.
Having changed to field theory, it was very hard to get used to
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the fact that one and the same multiplet contained both
bosons and fermions, and harder still to conceive how they
transformed one into another as a result of spinor transla-
tions. Surely there was nowhere to crib from, unlike in my
practice on Marxist-Leninist philosophy examinations. “Not
God but man makes pot and pan”, Gol’fand used to say to
encourage me. The only thing which was clear from the very
first was that the particles in a supermultiplet all have the
same mass — not much to be upbeat about either.

Finally, late in 1969, the superspin operator and two
irreducible algebra representations (a chiral multiplet with
spins 0 and 1/2, and a vector multiplet with spins 0, 1/2, and
1) were constructed and the following general properties of
the representations were established:

e First, in each irreducible representation the maximum
spin differs from the minimum one by no more than unity.
This was found by expanding the group (not superfield)
operator as a Taylor series in the Grassmann variables of
spinor translations. The expansion was truncated — hence
the representations were finite!

e Second, the numbers of boson and fermion degrees of
freedom in each multiplet are equal, so that the vacuum
energies of the boson and fermion states add up to zero.

While I was very keen to publish the results immediately,
Gol’'fand did not feel they would attract much attention.
Besides, he did not perhaps wanted me to waste time on
preparing a manuscript. The result was that the foundations
of the supersymmetric free-field theory were issued only in
1971 [9] (see Preprint No. 41 below). In 1969, in the meantime,
I addressed myself to the construction of the supersymmetric
interaction between the multiplets obtained.

At the time, a task was assigned to post-graduate students
to analyze and assess the inventions that were mailed to the
Academy of Sciences. In a rocket design I had to examine
within that program, a liquid flowed within a closed tube
inside the rocket: along a straight line in one direction and in a
zigzag manner in the opposite, and the idea was that a force
arising from relativistic effects might propel the rocket. The
mere argument that this is at odds with the conservation of
momentum would of course be lost on the author who was
most definitely unaware of the law. It took me quite a while to
debug the poor devil’s reasoning, and to repeat his mistake
and sin against a certain conservation law has been my
perpetual fear since then.

While the psychological barrier due to the Fermi—Bose
medley was overcome, some technical difficulties arose. The
point is that in the interaction construction technique which
was employed the spinor generators of an algebra were
expressed not only in terms of the second power of the
fields, but also of the third, after which a Hamiltonian
commuting with the generators of spinor translations was
calculated algebraically. The result was a set of equations in
which the number of unknown constants was about a dozen
depending on the field combinations.

Today, I routinely solve systems of hundreds of nonlinear
equations, and computer problems only arise when I go
beyond a thousand — a far cry from 1970, when my ball-
pen and rolled sheets of waste draft blueprints were all [ had at
my disposal. It is an easy matter solving an exercise problem
when you know for sure that a solution exists and all you need
is to find it. But in those days, when one of my equations was
inconsistent with the others, I did not know whether my
arithmetic was wrong or whether the problems had no
solution at all. In the meantime, the completion date of my

post-graduate studies was approaching. It was time to think
about the defense of my thesis, and there was the problem of
employment hovering in the distance, so I considered it as
nothing short of a miracle when I saw that the constants
calculated from some of my equations satisfy the others.
Furthermore, it turned out that the unknown constants of the
fourth powers of the fields in spinor translation operators
could be set equal to zero. The system of equations was
solved, and the first supersymmetric interaction — now
known as massive supersymmetric electrodynamics — was
constructed.

So setting the results in order began. I thought of one big
comprehensive paper, but Gol'fand decided otherwise.
Because preparing a paper for print usually took quite a
time in our journals, his idea was to publish a short note [1] in
Pis’'ma Zh. Eksp. Teor. Fiz. (JETP Lett.). He therefore cut my
manuscript ruthlessly to squeeze it into the standard letter
volume, allocating the cuts to other publications [6, 7, 9]. At
the same time I was busy constructing the self-action for a
vector multiplet. I succeeded in constructing only the tri-
linear part of the interaction, however, which is the reason
why this result was reflected only in my dissertation [2].

The title of the dissertation was so weird that it took the
academic secretary a great deal of effort to read it at the thesis
defense session in September 1971. This was probably in line
with how poorly we ourselves understood the problem: we
believed, mistakenly, that constructing a supersymmetric
interaction by expanding group generators as a power series
in the coupling constant was dictated by the specifics of the
supersymmetry. Nevertheless, summarizing what had been
done in those three years under the constant support from
Gol’fand I feel safe to say that I did solve the problem he had
formulated — that is, I did demonstrate a quantum-field
realization of supersymmetry for a specific case. Admittedly,
neither our seminar reports nor the defense of the dissertation
generated much interest in scientific circles. As a matter of
fact, even the huge bunch of flowers my supervisor brought to
the banquet was not for me, a pathfinder and hero — it was
for my wife who stayed at home to take care of our infant in
arms.

Now there was no working position for me at FIAN,
and it was not until late in 1971, after half a year of job
hunting, that I was given a job in the Physics Department at
the All-Union Institute of Scientific and Technical Informa-
tion. It was quite a problem for me to find time there for
continuing my research into the Fermi—Bose symmetry — a
situation which even prompted one theoretician to compare
me with Einstein. As to Gol’fand, he found himself in even
greater straits at the time: indeed, his dismissal from FIAN’s
Theoretical Department in 1972 left him only casual
earnings to live on. Such — shall I say — recognition of
our work showed how much the ideas of new symmetry
were at odds with the scientific world outlook of those then
at the helm of Russian — then Soviet — physics. It was only
in 1989 that things changed, and upon the recommendation
of L B Keldysh — head of FIAN’s Theoretical Department
and of FIAN as a whole — we were awarded the I E Tamm
Prize for Theoretical Physics by the Russian Academy of
Sciences for our work on supersymmetry.

I wonder now, what was it that made Gol’fand address the
problem in the first place? Clearly not any specific experi-
mental finding — the constancy of the speed of light, for
example, or the approximate equality of the neutron and
proton masses. Nor was it about removing any internal
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inconsistencies in a theory, like those involved in developing
GR or posing the Weinberg—Salam model. What actually
inspired him I think were the numerous achievements which
the use of various symmetry principles had produced in
physics throughout the twentieth century altogether.

With the thesis defended and the employment issue
resolved, I was now able to take a closer look at what had
been done and it occurred to me that the cancellation of
vacuum energy singularities — the result I had demonstrated
for free fields — might have some relevance to interacting
fields as well. Knowing the field interaction constants
involved in the supersymmetric electrodynamics model had
been obtained, it was not difficult to see that in the one-loop
approximation the boson field mass singularities are not
quadratic but — like those in a fermion field — also
logarithmic. This result did not inspire any enthusiasm in
Gol’'fand: he considered it to be just a freak of chance.
Perhaps his intuition let him down, or maybe other — totally
nonscientific problems — filled his head at the time. The
analysis of the effects of spinor translations on the S matrix
led me to the conclusion that the cancellation of singularities
was no accident and should occur in higher approximations
as well. But — alas — the singularities did not disappear
completely. If only the nonrenormalized model would
become renormalizable! Unfortunately, the model building
technique I used did not allow me to study nonrenormalizable
models.

In 1974, at a suggestion of I V Tyutin, I read with great
interest the paper of Wess and Zumino [5]. The linear
representations resulting from the presence of auxiliary
fields, and the covariant derivatives with respect to Grass-
mann variables — all this was very beautiful and allowed easy
construction of a superinteraction. Salam and Strathdee [10]
integrated over the Grassmann variables — a procedure
whose postulates were formulated by F A Berezin in 1965
[11] — thereby putting both types of superfield arguments
once and for all on equal footing. Using this technique, I
developed two models, one with Abelian [12] and the other
with non-Abelian [13] massive vector fields, and showed them
to be renormalizable. I was also able to show that renormaliz-
ability admits an alternative proof, one using the standard
mechanism of spontaneous violation of gauge symmetry. The
question of whether there is some link between supersymme-
try and high-energy physics remained an open one.

Stiff competition and the absence of support from any
quarters had the consequence that after publishing these two
papers I actually gave up my work on supersymmetry and
started secking a research area of my own. The most
important lessons I drew from my cooperation with
Gol’'fand were: few assumptions, a simple construction, and
nontrivial — if at first sight unrealistic — results. On the other
hand, my PC skills now allow me to address problems of
uncertain solvability. From what I know, it is a highly risky
business to seek a black cat in a dark room — especially if
there is none there. Still, what I am currently doing is the
numerical analysis of the Born—Infeld model of electrody-
namics for a finite-size membrane with a bounding string —a
situation in which the divergences of electrical energies cancel
those of magnetic ones. This cancellation is not the goal in
itself, though. It turns out that, on the one hand, a certain
combination of mass, magnetic moment and electrical charge
is independent of two unknown dimensional constants of the
model; on the other hand, this combination relates to a well-
known observable quantity — the fine-structure constant. As

of now, the solutions I obtain converge rather poorly as the
number of lattice cells is increased — indicating perhaps that
the problem has no solutions; or that I should find a better
way to stretch the lattice over space; or, finally, that some
unknown symmetry in the equations of motions should be
found to enable a preliminary analytical treatment.

In concluding, I would like first of all to express my
gratitude to the organizers of the ‘Thirty Years of Super-
symmetry’ Conference for their financial support and for the
opportunity they gave me to present my own view of the
events happened thirty years ago. And finally, and most
importantly, I see Yurii Abramovich Gol’fand as a person
who not only taught me a profession but who also developed
in me a taste for the risky business of following unbeaten
tracks.
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Irreducible representations
of the bispinor generator extension
of the algebra of Poincare group generators

E P Likhtman

1. Introduction

In Ref. [1], a specific extension of the algebra P of Poincaré
group generators by introducing spinor translation genera-
tors W, and W/g has been considered:

[M;tw Mo'/l}f = i(é,quvl + 5W1M,ua - 5/1/1Mw - 5WTM;M) )
[Pu: Pv], = 07 [M;wy P/l], = i(éu).Pv - 5»’).1);1) 3

1 _
(M, W] =2 DWW = Wy, (la)

(W, W), =3Py, (W, W], =0, [P,W]_=0, (Ib)
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+
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where we have omitted spinor indices. Hereinafter it will be
understood that d,d, stands for dydy — dyd|— drd> — dzds. In
the same paper a specific implementation of this algebra,
with a Hamiltonian describing the interaction of quantized
fields, was built up. That example has shown that algebra (1)
imposes severe limitations on the types of interaction
between quantized fields. In constructing the example, two
linear irreducible representations of algebra (1) were
employed, whose derivations were not given in the paper.
In this work we present these derivations as well as
constructing — and examining the properties of — other
representations of algebra (1).

2. Space of states and invariant subspaces

In order to identify in which space the representations of
algebra (1) act, note that algebra P is a subalgebra of that
defined by Eqns (1). Accordingly, any representation of
algebra (1) is also a representation of P, and the spaces
where these representations act coincide. However, an
irreducible representation of algebra (1) will be a reducible
one for P. This reducible representation breaks down into a
series of irreducible representations, each of which may occur
several times. We will label these irreducible representations
with numbers y to distinguish between them.

Of physical interest are those of the representations of
algebra (1) which are reduced along irreducible representa-
tions of P and are characterized by mass and spin. Therefore,
the basis vector of the space in which to build representations
of algebra (1) can be written as

¢ 2 Js . %) (2)

where » is the mass, p; is the three-dimensional momentum,
j is the spin, m the projection of the spin onto axis z, and the
number y labels irreducible representations of an algebra P.

In a space with basis vectors (2) there are subspaces
invariant under the action of the operators of algebra (1).
According to the Schur lemma [2], in order to find invariant
subspaces one must search out invariant operators which, by
definition, commute with all the operators of algebra (1). Itis
easily seen that the operator Pﬁ has this property. Therefore,
a space whose basis vectors correspond to particles with one
and the same mass » will be an invariant subspace. The spins
of vectors in this invariant subspace cannot be all the same
because the square of the spin operator is not an invariant
operator of algebra (1):

1
r,=-=

(I, Wi #0, 5

guv).JMwlPo‘ .
An invariant operator in algebra (1) will be the operator Di
introduced according to

PP, —
1’;2‘ Wva), P?

. =
a

1/—
D,u - F# +§ (W'J)HW—

There seem to be no other invariant operators in algebra
(1). We do not know a priori, exactly which vectors (2) form
the basis of an irreducible representation of algebra (1) since
we do not know the properties of the operator Dﬁ. However,
in addition to their having equal masses, it is also possible to
argue that the difference between the maximum and mini-
mum spins in the irreducible representation of algebra (1)
does not exceed unity. In other words, there are no more than
three different spins in an irreducible representation of

x> >0.
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MOCKBA — 1971

Facsimile of the title page of Preprint No. 41.

algebra (1). Otherwise, acting by operators of algebra (1)
successively on a state vector with spin jj, one could obtain a
vector whose projection onto the state vectors with spin j, for
|j1 — j2] > 1 would be nonzero. To see that this is not possible,
we notice that the successive action of operators of algebra (1)
can generally be presented as the action of a polynomial in
powers of the elements of algebra (1), which in view of the
permutation relations (1) we represent as

where C “i/i ..... are numerical coefficients.

The product of an arbitrary number of operators M. w and
P; does not change a spin of the state. The number of
operators W (and W) in each term may only equal unity or
two: the product of a larger number of operators W (and W)
vanishes because of the anticommutation relations in Eqn (1).
For the same reason, the product of two operators, W, Wp, is
nonzero only for o # f§— but this operator does not change a
spin of the state. And only a single operator W (or W)
changes the spin by a half, whereas the product W, W can
change the spin by unity. Thus we conclude that an invariant
subspace can contain only the spins j, j + %, j+ 1.To build an
irreducible representation of algebra (1), it is necessary to find
the transition matrix elements of the operators of algebra (1),
taken between these states.

3. Equations for reduced matrix elements
The matrix elements of the ordinary translation operator are
written out clearly as

<%7 phjamax P,u|%7p/{7j,am/a}f,>

- (5u0 \/ %2 +PA2 + 5;12])/1)5(]711 —P;/) 5jj’5mm’5zx’ s (3)
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where 4 = 1,2,3. Also, the operator M, will have its usual
form. We shall be interested in the matrix elements of the
operators W, and ng, diagonal in % and p, in view of
relations (1). It is readily seen that the operators sW
and W s obey only trivial permutation relations, so we
restrict the discussion to those representations' for which
sW =W s = 0. Without any loss of generality we choose a
y-matrix representation with a diagonal ys. The operators
W, and Wy then become two-component. Next, knowing
spinor transformation properties under Lorentz transfor-
mations and assuming that » > 0, we go over to the frame
of reference with p;, = p; = 0. In this coordinate system we
can apply the Wigner— Eckart theorem [4], according to
which

(2,0, j,m, 7S Wi, 0, j',m’ 1"
A _
=7 2 T )=V D@+ G
m o —m'
<%707jamaXW§[f|%’Oaj,7ml,X,>
P .
=7 2 N EYTVE D@ Gt
m' B —-m
4)
where
o1 .,
J B J
m o —m'

are the Wigner symbols, |j—j'| = 1/2, {(jy|f|j'x) are the
reduced matrix elements, and

i+ 12"+ 1)

is a convenient normalization factor. This representation (4)
secures correct commutations with the momentum operator
and three-dimensional rotation operators. In order to
satisfy the remaining relations of algebra (1), we substitute
Eqns (3) and (4) into Eqn (1b) and take account of the
following formulas for summing 3j-symbols over spin
projections [4]:

Z(_l)j’+m oo JN\(AR e T
m my m' my my —m'

m'

_ Z(_l)2j4+J+M(2J+ 1)

JM

A g\ I\ g
j3 j4 J ms mp M mp my -M )’

where
o !
BoJa J

! Desisting from this requirement requires introducing an indefinite
metrics [3].

is the 6j-symbol. The result is as follows

ST (=DM )
JMI'/Z/
g 11 o
T Y AV L
X Iy 2 2 m 71’}’1”
Y - a M

x (<1 @ D@+ D@+ 1)
x (<jx|f\j’x/><j’x/|f*|j”x”>

0TI Gl 1 1) = 5 dn
(5)

(A similar formula is obtained by substituting Eqn (4) into the
relation [W, W], = 0.) We now proceed by using the values
of the 6j-symbols [4]:

Vi) J3
| | L 1
5 J3 3 J2 5

= (- { Nts =) +h-i+1) }1/2
22+ 122 +2)23) 25+ 1]
Juoh J3
| |
y 375 273

(1) {(1‘1 +j2+j3+ D2+ —m} 2
(2/2) 212+ 1)(23) (253 + 1)

Equation (5) then becomes

2i"+ 1
Z( L )((J’xlfl.i’x’><j’x’|./'+\j”x”>

J'r!

+ YT ) = #05500m

(6a)

> =1 (i

v
= YT\ ) =0 (for j#0), (6b)
S GG 1) =0

il !

JI

FliHG

£

(except for the case j=j" =0). (6¢)

These are precisely the desired equations whose solution
will give us the explicit form of the operators SWand W s.
Notice that the solutions to Eqns (6) describe the representa-
tions in which the invariant operator Dﬁ may or may not be a
multiple of the unit operator, i.e. they generally describe the
reducible representations of algebra (1).

4. The number of particles in algebra (1) representations,
and some solutions of Eqns (6)

First of all, we will employ formula (6) to derive restrictions
on the number of particles in a representation of algebra (1).
For this purpose we multiply Eqn (6a) by (—1)2’(2j+ 1)/2
and sum the product over j =" and y = y”. The left-hand
side of the equation then vanishes. To make sure that this is
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the case, it is sufficient to permute the cofactors under the
spur sign in the second term and to take advantage of the fact
that (—1)¥ = (—1)211“ [see formulas (4)]. Then the second
term will differ from the first only in sign. The right-hand side
of Eqn (6a) also must be zero, leading to the following
restriction on the number n; of particles of spin j in an
algebra (1) representation:

S (=1¥(@j+ 1) =0. (7)
J

In relativistic quantum field theory, it is well known [5]
that reducing the operator of a particle free energy to its
normal form gives rise to an infinite term interpreted as
vacuum energy. It is also recognized that the sign of this
term is different for particles obeying Bose and Fermi
statistics. According to Eqn (7), an algebra (1) representation
involves particles with different statistical properties, with
boson and fermion states always present in equal numbers.
Then it follows that in any algebra (1) representation the
infinite positive energy of the boson states is canceled by the
infinite negative energy of the fermion states.

After these preliminary remarks we proceed directly to the
solution of Eqns (6). Let us try to find representations
involving particles with only two spin states. In this case j’
in formulas (6) assumes only one value, and there is in fact no
summation over j’. Making use of this fact, we multiply
Eqn (6b) by (—1)’ (2j' + 1)/2 and add equation (6a) to the
result. In the right-hand side of the resulting equation we will
have a nonsingular matrix operating in the space of the
variable y (at , j/ and j” fixed). The matrix on the left will be
nonsingular only when j # 0 [see Eqn (6b)], so that a two-spin
algebra (1) representation can involve only spins 0 and 1/2. In
this case the simplest solution of the system (6) with ny = 2
(x =1,2)and n;;, = 1 (x = 1) is easily shown to be as follows

0 0]1
Gulfli'y =y {0 010 |, (8)
0 1]0

where the matrix on the right acts on the state

a
b

4

I

with the amplitudes a and b describing particles with spin 0,
and ¢, with 1/2.

For representations with three spins, viz. j, j+ 1/2, and
j+ 1, the smallest spin j is arbitrary. The simplest solution for
np=1(G=1),n,=2(=12),andny; =1(y=1)can
be written in a form analogous to formula (8):

0o 110
. . 10 011
010 =110

Representations (8) and (9) are irreducible. This can be
seen without even calculating the eigenvalues of the invariant
operator Dﬁ. Suffice it to note that no representations with a
fewer number of particles satisfy the necessary condition (7).
Whether there are irreducible representations of algebra (1)
other than those we have found is a question which needs

further consideration.

5. Second quantized relativistic representations

of algebra (1)

In this section we will show how representations (8) and (9)
that operate in the space with basis vectors (2) can be
transformed to their relativistically covariant form operating
in the space of the occupation numbers. Algebra operators in
such representations must be expressed in terms of second
quantized free fields with equal masses but different spins.
Because a relativistically invariant equation for spin-1/2
particles describes both particles and antiparticles, it is
necessary that antiparticles also be introduced into represen-
tation (7). The algebra operators will then be expressed in
terms of non-Hermitian free scalar fields ¢(x), (x) and the
spinor field ¥, (x). Let us show that the operator

wo— S0 %J[(p*(x) B8 () + () Bobu ()]

(10)
(where the superscript ‘0’ indicates that the operator is
bilinear in field operators, and ‘c’ denotes charge conjuga-

tion) satisfies the permutation relations (1)2. Thus, for
example, one finds

0 7570
W= W,

. " oo+ . =
=i [[ ety [0 (087,10, D6 - 1) 800)]

i [@ s [0t 87,10, D6 - 1) 8,07 0)]
+1J Bxddy [](y)Ex 0, D(y — X) 0y, 51, (x)}
i [@ s [55095 8, 00 - 28,5050

- Jdax [w*(x)augow(x)] X f;u

+%Jd3x [lﬁl(\) gO?le(x)} X %

i

b3 | @ preamem] <3,

:Jd3xT#o(x) X 7y (11)

In doing the calculations, the Fierz identities, equations of
motion, and permutation relations for free fields have been
used. Note also that the energy —momentum tensor 7, is not
generally symmetric in the case of a spinor field. If, however,
one of the indices is zero, then we obtain

Ty = Tou,
and the integral in the right-hand side of Eqn (11) becomes the
energy —momentum operator for the fields ¢(x), w(x), and

¥ (x). The remaining relations in the set (1) are proved in a
similar fashion. The action of the operator W° on field

2 The operator W is defined to within a phase factor (see Ref. [3]).
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operators reduces to a linear transformation of these fields.
This transformation can be written schematically as follows

P(x) = ¥ (x) = o(x) =0,

o"(x) = ¥¥(x) = ¢"(x) = 0.

We now proceed to generalize representation (9) to
include the case of quantized fields. We restrict our considera-
tions to the case in which the smallest spin j is zero, and two
spin-1/2 particles may be considered coupled by the charge
conjugation operation. Then the operators of algebra (1) in
this representation are expressed in terms of the Hermitian
scalar field x(x), the Hermitian transverse vector field 4,(x),
and the spinor field 1, (x). This irreducible representation
may be distinguished from the irreducible representation (10)
by the mass of the particles, and must differ by the eigenvalues
of the invariant operator D;. The operator W’ in this
representation has the form

SWO = LJ[/((x) 5’0 §¢2(x) + A4, 5}07/4%“)] dx.

wo = 7
(12)

The verification of formula (12) is done along the same
lines as in the case of formula (10):

1 (s 3 2,
== [ ety [Ba05x 8,00 - ) S0
1 3 3 iy g ) ! 0, 0
+i d*xd”y [ () 7, Oy #V+F Yy
o
x D(y — x) ax(,hl//z(x)]

=53] [ 8 ato)] i x5,

1

N + = + +
— EJ{A,J(X) 9 aaAv(x)] d3x x Vu¥u¥u = VuPu, (13)

where u # 01is the mass of the fields y(x), 4,(x), and /,(x). In
this representation, the action of the operator W? on free
fields can be patterned schematically as follows

/ 2(x) .
N Ay(x) 4

In the intermediate results involved in the derivation of
formula (13), the field mass u occurs in the denominator and
hence cannot be set equal to zero. A passage to the case of zero
mass is performed by abandoning the condition of a
transverse character of the vector field and changing to the
diagonal pairing:

¥ (x) Ya(x) = 0.

[Au(x), 4(0)]_ = 1 Ouw D(x—).

1

The field ,(x) in this case becomes two-component
(?1//2 = 0), the first term is no longer needed in derivations
leading to Eqn (13), and there is therefore no need to
introduce a scalar field y(x). For g =0, the operator W?°

takes the form

1

w0 =50 = [[ 4,00 200 . (14)

The analysis of the properties of nonzero-mass represen-
tations in Sections 2—4 has shown that the numbers of the
fermion and boson states in an algebra (1) representation are
equal, implying that the operator PS is automatically
represented in its normal form. This is also seen from the
fact that the action of the operators W% and W on vacuum
always gives zero and that

P =5Sp (7, W W°L,).

Therefore, representation (14) also possesses this property,
and the massless vector and spinor particles can only reside in
two states with opposite spirality.

6. Conclusions
We have found several irreducible representations for algebra
(1), in which ordinary fields unite into certain multiplets. The
question arises whether these multiplets can be identified with
some observable particles. The main difficulty in answering
this question is that the particles in the multiplet all have the
same mass, while at the same time differing in spin. At
present, therefore, algebra (1) and its realizations should be
viewed as a certain Hamiltonian formulation of quantum
field theory.

In conclusion 1 express my sincere gratitude to
Yu A Gol'fand for continual encouragement and many

stimulating discussions 3.
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