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Abstract. The AdS/CFT correspondence establishes a relation-
ship between supersymmetric gravity (SUGRA) on anti-de
Sitter (AdS) space and supersymmetric Yang—Mills (SYM)
theory, which is a conformally invariant field theory (CFT).
The AdS space is the solution of the Einstein—Hilbert equa-
tions with a constant negative curvature. Why is this relation-
ship important? What kind of relationship is this? How does one
find it? The purpose of this paper is to answer these questions.
We try to present the main ideas and arguments underlying this
relationship, starting with a brief sketch of ‘old’ string theory
results and proceeding with the definition of D-branes and a
description of their main features. A demonstration of the
discussed correspondence and arguments in it its favor con-
clude the paper.

1. Introduction

A string description of Yang—Mills (YM) theory has been a
long standing problem in quantum field theory [1]. The
arguments are as follows. The mathematical description of
any phenomenon requires some exactly solvable approxima-
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tion to be found and some small parameter to exist which one
can expand over in order to approach the real situation. In the
case of YM theory, a suitable approximation at large energies
appears to be in terms of free vector particles. They carry
quantum numbers taking values in the adjoint representation
of a non-Abelian gauge group and the small parameter in
question is the coupling constant g2 [1].

However, there is a problem in this description because
quantum effects cause the coupling constant g2 to grow as
one approaches large distances or small energies. Further-
more, at some distance scale the description in terms of the
fundamental YM variables becomes invalid due to singula-
rities in the perturbative theory [1]. As a result, it is unclear
how to pass to low energies in YM theory. Thus the question
appears: What is the approximation to YM theory that can be
applicable at any energy?

The most promising approach to this problem is to
consider SU(N) YM theory as N — oo [1]. In this limit the
YM perturbation series drastically simplifies [2] and the only
graphs that survive look like ‘triangulations’ of a sphere. This
is one of the hints [1] suggesting that there could be a string
description of YM theory in this limit in the form of a two-
dimensional theory representing these ‘triangulations’. The
graphs that contribute to the ‘triangulations’ represent a
power series expansion in g2N (which is taken to be finite as
N — 00) rather than simply in powers of the YM coupling
constant g2 [2]. At the same time all graphs having topologies
of torus and spheres with more than one handle are
suppressed by powers of 1/N2. Here 1/N? appears to be the
small parameter over which one can expand to approach the
real situation.

Why does description in terms of string theory seem to be
preferable? The point is that string theory has a very well



956 E T Akhmedov

Physics— Uspekhi 44 (9)

developed and powerful apparatus for calculating the
amplitudes of various processes [1, 3, 4] and, moreover,
there are hopes to solve it.

In the case of ordinary YM, nobody has yet succeeded in
finding such a string description, but a considerable progress
in conformally invariant supersymmetric YM (SYM) theories
has recently been made [5—8]. It is worth mentioning that the
string description of conformal YM theories is of pure
academic interest since due to the conformal invariance the
dynamics of these theories is known at all distances. However
such a string description can potentially reveal some features
of string theory for the ordinary YM.

There are several non-anomalous and self-consistent
string theories which satisfy the supersymmetry (SUSY) in
the target space — the space where a string evolves. The target
space should be ten-dimensional, since otherwise there is no
well developed apparatus for calculating the superstring
amplitudes [1, 3, 4]. At the same time, the string world-sheets
are two-dimensional universes swept out by the strings during
their time evolution.

There are an infinite number of ways to excite the world-
sheet theory to give different quantum states of the string.
Each of them looks like a particle living in the target space.
Among these particles, there are a finite number of massless
ones, while all other particles have masses of the order of the
string tension, which is usually taken to be very high. So, at
distances larger than the characteristic string scale (exactly
when the strings appear as point-like objects) only the
massless particles survive which are described by a field
theory in the target space rather than by string theory.

Among the massless closed string excitations, there is a
symmetric tensor particle, which, due to the symmetry
properties of string theory, has exactly the same number of
the degrees of freedom as a graviton. The only large-scale
theory (containing the lowest powers of derivatives of the
fields) that could describe the graviton is Einstein— Hilbert
gravity in the target space. As can be shown rigorously [1, 3,
4], it is this theory (interacting with other massless string
excitations) that follows from string theory at large distances.
At the same time, in the case of superstring theory one obtains
SUGRA at large distances.

Itis also possible to obtain SYM interacting with SUGRA
by including open strings in the theory along with closed ones.
This is because the massless excitation of open string theory is
a vector particle which has the proper number of physical
polarizations to be a gauge boson.

Bearing this in mind, one could say that there is a string
theory for four-dimensional SYM. In the situation under
consideration, superstring theory provides a regularization of
SYM theory. In fact, superstring theory is finite and valid at
any distances, while at large distances it leads to a theory
containing SYM. But this is unsatisfactory because at the
characteristic string scale, when we get such a superstring
description of SYM, we also have to deal with quantum
gravity, and the dimensionality of space-time is ten rather
than four.

Fortunately, new ways have recently been found to add
open string sectors to the closed ones. They lead to new
ways of coupling SYM to SUGRA. To find them one has to
add a stack of N D-branes to the closed string theory in
such a way that it respects SUSY. The D-branes are multi-
dimensional sub-manifolds of the target space on which
open strings terminate [9], while closed strings can still live
in the bulk of the target space. So, in the world-volume of a

stack of N D-branes one gets a U(N) SYM theory at low
energies [10], while in the bulk the standard SUGRA is
valid.

Thus, the strings that could describe SYM theory are
attached to our four-dimensional world (D3-brane world-
volume) while fluctuating in the bulk of the target space [5, 9].
To specify the string description, one has to find the geometry
in which the strings fluctuate, and to do this one must probe
the D3-brane from the outside, i.e. from the bulk. At the same
time, the theory as seen by an observer traveling further and
further away from the D-brane could change uncontrollably,
since we do not know the full dynamics of string theory. To
overcome this difficulty, one has to force the D-branes to
respect some part of the SUSY transformations of superstring
theory. Let us explain why.

In quantum field theory and statistical mechanics, when
one goes from small to large distances, it is necessary to
average over all fluctuations in the theory with wavelengths
smaller than the distance scale in question. This could lead to
a change of parameters in the theory. For example, a charged
source placed in a plasma is screened because the opposite
charges to the source are attracted, whereas the charges of the
same sign are repelled. It is the simplicity of the system that
allows us to predict how the charge of the source will vary as
one approaches it. However, in YM theory the situation is
more complicated. In fact, how the charge of the theory varies
with respect to the distance is known only up to some low-
energy scale. As a result, a proper low-energy description of
strong interactions is still unknown. Similar things could
happen in any non-linear theory, such as gravity or string
theory.

The difference in the presence of SUSY is that bosonic
and fermionic degrees of freedom can be exchanged in the
theory [12]. It is this symmetry that causes the cancellation
between the screening and anti-screening due to fermions
and bosons. The latter happens only if a source respects
some part of the SUSY transformations, i.e. if it is a
Bogomol’nyi— Prassad — Sommerfeld (BPS) state [4, 11, 12].
Although not rigorously, we hope that the reader at least has
a flavor of how it works.

Thus, the presence of SUSY helps one find how the
geometry is curved in the D-brane background. For exam-
ple, the characteristic curvature of the D3-brane is propor-
tional to (g2N) /% in units of the string tension.

Let us now explain the new ideas that the D-branes can
provide in seeking a string description of YM theory in
contrast to the ‘old’ string theory. First, in this case one can
deal directly with four-dimensional SYM theory. Second, one
can vary the regularization energy scale for YM theory living
on a D-brane world-volume and make it much smaller than
the string one [5]. This works as follows: After a regulariza-
tion, we have suppressed the information about high-
frequency modes, and the high energy theory underlying the
one in question should contain this information. What
happens in the D-brane case is that high enough frequency
modes of the fields living on the D-brane world-volume could
escape to the bulk of the target space: They could create
closed strings living in the bulk [13]. However, closed strings
with energies smaller than the brane curvature can not escape
to infinity [14] but instead they stay in the throat region — the
strongly curved part of the bulk in the vicinity of the D-brane,
because they do not have enough energy to climb over the
gravitational potential and escape to the flat asymptotic
region.
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In conclusion, we only need the theory in the throat
region in order to respect unitarity [5, 6, 15]. Thus, if the
limit N — oo and g — 0 is taken in such a way that
g?’N <1, we have the full string theory in the throat
regularizing the SYM on the D-brane world-volume [6],
since in this limit the size of the D-brane throat is very small
and only string theory can apply. However, if limits N — oo
and g — 0 are taken so that g>N > 1 the classical gravity
can be used. In fact, the size of the throat is very big in this
situation. This means that in this limit the string theory for
SYM is described by the classical superstring in the throat
background, i.e. there is a string description of SYM before
gravity becomes quantized. Now, in the simplest situation,
SYM on the brane has A/ = 4 supersymmetries, hence its -
function is zero and it is conformally invariant. In the
corresponding gravity description, the geometry of the
throat of the brane is AdS.

This paper is organized as follows. Two chapters devoted
to string theory are included for self-consistency. In Section 2
the main ideas of string theory are presented using the
example of bosonic string theory. In Section 3 we proceed
with the definition of type II superstring theories and review
their massless spectrum. After presenting superstring theory,
the notion of D-branes is introduced in Section 4 and their
relation to gravity solitons ! and to SYM theory is shown. We
conclude with the AdS/CFT-correspondence. For complete-
ness, a discussion of the BPS states is included in the
Appendix.

Unfortunately, it is impossible to give the details of these
subjects even in a lengthy book, so our presentation has a
rather sketchy character. We hope however that it highlights
the main ideas and gives some food for thought about the
matter in question. We are not trying to fully review this
broad subject, and our reference list is therefore far from
being complete. A more or less complete set of references can
be found elsewhere [16].

2. Bosonic string theory

Only the first quantized string theory [1, 3, 4] is fully
constructed at present. This is the ‘quantum mechanics’ of
string world-sheets, which are two-dimensional spaces swept
by quantum strings during their time evolution inside the
target space. As for a relativistic particle, the action for a
relativistic string is proportional to the area of its world-
sheet:

S Jd20' vV —det ‘gab| ) 8ab = aag,u abguv (l)

where ¢, (a = 1,2) are coordinates on the world-sheet and
Xu(0) (0=0,...,d—1) are two-dimensional functions
describing the embeddings of strings into a d-dimensional
flat target space.

However, the action (1) is nonlinear and, hence, difficult
to quantize. To make it quadratic in X,, one includes a new
dynamical variable in the theory — the string intrinsic metric
hay [1]. In this case, string theory is described by a two-
dimensional ¢-model interacting with two-dimensional

! Here and below all solutions of the equations of theory of gravity with a
finite tension or mass are referred to as solitons.

gravity:
1 1
Su=50) sza VR h® 8,5, 05 + Hsza i, ()
h=det |hg|, " =h,".

Here o’ is the inverse string tension. Usually it is taken to be
much smaller than any distance scale that has so far been
probed by experiments.

On the level of classical equations of motion /i, o< gu.
Hence, the action (2) is classically equivalent to that in
Eqn (1). On the quantum level, however, these two theories
are different at least naively (see, however, Ref. [1]). In fact,
the functional integral of theory (1) implies a summation over
all possible string world sheets, i.e. over embeddings x,. In
contrast, in theory (2) the sum is taken over all possible
metrics on each world-sheet and over the world-sheets
themselves.

From now on we will be dealing with theory (2). This
theory is invariant under the reparametrization transforma-
tions o, — f,(o), which represent general covariance on the
string world-sheets. Using this two-parametric symmetry one
could get rid of two components of the metric:

ds* = h® do, doy = exp [p(z,2)] dzdz,

where z = exp[o| +i0,]. For a world-sheet with spherical
topology this can be done unambiguously, while for the torus
and higher topologies, this can be done only up to a complex
structure [3, 4]. We do not explain the details of the complex
structure, because we are not going to use this notion (except
the fact that it exists) anywhere below.

After the above reparametrization, the gauge fixing our
action is still invariant under the conformal transforma-
tions:

2= f(2), expo(z,2) — 0./ ()] expo(z,2), 0:f(z)=0.

These transformations allow us to get rid of the internal
metric giving

1
2mo!

S; = szz 0:X, 0:x, + Faddeev—Popov ghost terms.

(3)

We do not discuss here what the Faddeev—Popov ghosts are
because we will not use this notion (except the fact that it
exists) anywhere below. A more or less complete discussion of
Faddeev—Popov ghosts within the string theory framework
can be found in Ref. [3].

Getting rid of the metric completely as in (3) is possible
only classically. In fact, after quantization of the g-model
(2) the so called conformal anomaly [1, 3, 4] appears
because the conformal symmetry is broken by quantum
effects. So ¢(z,z) becomes a dynamical field. It is necessary
to cancel the anomaly since otherwise it is not known how
to calculate string theory correlation functions [1]. Con-
tributions to the anomaly coming from %, (u=0,...,d —1)
and from the Faddeev—Popov ghosts cancel each other if
d =26.

Furthermore, there is a remnant of the reparametriza-
tion invariance on string world-sheets with higher topolo-
gies, which is referred to as modular invariance. The
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modular transformations act on the complex structures
[3, 4]. One must also respect this invariance, because
otherwise there could be problems with gravitational and
gauge anomalies in the target space, and hence the unitarity
would be violated.

2.1 Generating functional
Only if all these symmetries are respected can one properly
define the fundamental quantity of bosonic string theory:

Z2(G,B,®,T)=)Y Zg
G=0

G=0 n=0

4)

Here the measure HZ;(I) Dx, is as for d scalars, while [Dh)g
should be defined in accordance with the reparametrization,
conformal and modular invariances [1].

The sum in this formula is over the genus G of the string
world-sheets. This is an expansion over string loop correc-
tions which are present in addition to the aforementioned o-
model quantum corrections. If one considers only closed
strings, these corrections are represented by spheres with G
handles, otherwise they are discs with holes and handles with
the total number? G.

We start with a discussion of the closed bosonic string
theory. In this case the action in (4) is:

Sst(fc;u hap, Guv» Buw ?, T)

! 2 ab ~ ~u -
B Zna’Jd U{\/__hh Gy (X) 0,51 0pX

+ B,y (%) 0,51 05 %" + o'V ~h RO D(F) + V-hT(%)},
(5)

where ¢® is the completely anti-symmetric tensor in two
dimensions and R is the two-dimensional scalar curvature
for the metric tensor /.

Now we see that the dilaton’s VEV &, gives a coupling
constant for the string loop expansion:

Zg uexp{fi(i—:szavflzR(z)}

=exp [2(G — 1)®] = g2V, (6)

where the index ‘s’ distinguishes the string coupling constant
from that in YM theory. Furthermore, substituting
Gy =1, By =0, =0 and T =1 into (5), one gets the
former expression (2) for S;.

The physical meaning of Z(G, B, ®,T) is that it is the
generating functional for interaction amplitudes between
the smallest mass string states. In fact, we can obtain such
amplitudes by varying the functional Z over the sources G,
B, ®, and T. We are interested only in the smallest mass

2 It should be mentioned at this point that the open string theory contains
closed strings on its loop level. In fact, the annulus amplitude (the first loop
correction in the open string theory) is equivalent to the cylinder amplitude
(the tree level in the closed string theory). Besides, the unitarity demands
that the closed string excitations should be added to the open string ones.

d—1
J[Dhab]g H D/{'u eXp {_iSst (;ﬂu ha[n Gyw Buv’ ¢’ T)} .

states because we need to find a classical limit (large
distance behavior) of string theory. It is exactly this limit
where we can use what is known from our world. This is the
reason why we do not include any other sources, which
would correspond to massive states, in the functional
integral (4), (5).

2.2 Low energy spectrum

Why do the operators in (4), (5) with the sources G, B, @, and
T correspond to the smallest mass states? First, it is necessary
to explain how a two-dimensional operator is related to a
string state. The action of an operator on the vacuum of the
conformal theory (2) excites it. If we take a particular
harmonic of a source (for example, T = :exp [ipu fcﬂ]:), it
looks, from the target space point of view, like a moving string
in a particular quantum state. In fact, it is a plane wave inside
the target space.

Furthermore, it is not necessary to modify the func-
tional integral (4) to describe the interactions of string
states. This is one of the main differences between string
theory and a field theory describing particles. It relies upon
two fundamental facts: First, in contrast to the particle
paths, for any disconnected set of one-dimensional mani-
folds it is always possible to find a two-dimensional string
world-sheet that includes these manifolds in its boundary.
Such a world-sheet represents a Feynman graph for a string
amplitude, and the components of its boundary represent
the initial and final states of some process in the string
theory. Second, because of the conformal symmetry, one
can always ‘amputate’ external ‘legs’ in the string ampli-
tude. More specifically, by a conformal transformation it is
possible to refract the ‘external legs’ and to transform each
point of the one-dimensional boundary into a point on the
world-sheet in which the corresponding vertex operator
acts.

To show why the operators in question correspond to the
smallest mass excitations, let us consider an N-point correla-
tion function [1]:

N
AN:‘[HdZQ,‘<01()~Cﬂ(G])) ...ON()ZM(GN))>7 (7)
j=1

where the average (...) is taken using the functional integral
(4) with the action (2). O; are some operators with conformal
weights > A; equal to 2, so that the integrals over dzo,- are
conformally invariant. Appropriate operators include those
present in (5), such as:

O = Gy 0.5, 0:%,: . 8)

Og has a well defined conformal weight if G, =
fuv :€Xp [1py Xy]:, where fy, is some polarization from the
target space point of view.

In integral (7) there is a region where o; — 03 and close to
it the operator product expansion (OPE) can be used:

Jim [0:(61) 01 (02)] = Y _ Cijelor — 02| ¥4 4 Ox(01)
1—02 k
9)

where the sum in the RHS runs over a basis of local operators
in the world-sheet conformal theory. Using this OPE, one

3 The definition of the conformal weight A; of an operator O; is:
Oyla)) = 279 0(20)).
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finds [1]: {
R +4G"0,00,¢ — 1 Hy,
:J JHd 0;{O1(a2+1) O2(62) ... Op (on))
1 ' 1
+5 6" auTavT+§m%T2 +0(a',I'N). (12)
%Z 'J‘ d277 |7’ Ar—4
k
N This is a 26-dimensional dilaton gravity interacting with the
X [HdQJ,- <Ok(02) Os(03)...0n (O'N)> anti-symmetric .tensor H,; o< 0, B,;). Here I'v g2 2 g
j=2 the 26-dimensional Newton’s constant; from now on
(k) 4 k) O(a',I'ny) schematically represents a two-dimensional o-
+ less singular terms ~ Z A -2 A Ay model and string loop corrections. If you like, such correc-
. tions appear due to string massive modes.
+ less singular terms, (10) Equation (12) means that in the limit ¢’ — 0 (in units of
the characteristic scale given by functions G, B, @, and T)
where A3(k) x Cir x (O O, Or) and we have taken the the Z functional gives exactly the same Feynman vertices

integral over || up to a scale a that is smaller than all other
distances between g;’s.

Now we take into account that the operator T(X) =
rexp [ipy X,(0)]: has a conformal weight equal to o'p;/2.
One can find this weight using Wick’s theorem for the two-
point correlation function of this operator [1] and the
propagator for X, from the action (2). Furthermore, for G
proportional to :exp [ip, X,(c)]: we have the conformal
weight for the operator (8) equal to o p2/2 +2. The
operators from (5) have the same conformal welght provided
B and @ are proportional to :exp [ip, X,(c)]:. In a similar
way, for other sources [not present in (5)], also taken to be
proportional to :exp [ip, X,(d)]:, one obtains a'p?/2 + &,
where J; > 2 due to local operators which stand near sources
like the operator :0.X,0:X,: which stands behind G, in
Eqn (8).

Thus, in any channel where o; — ¢; we have on the RHS
of (10) a sum over all propagators of the string excitations,
each corresponding to some operator O:

AP AV,

AV G ()
In conclusion, there is a relation between the conformal
weights of operators Oy and the masses of the corresponding
string states m? = 2 (0x — 2)/o.’. Our observation shows that
T describes a tachyonic state with mj = —p? = —4/a’,
because 07 = 0. At the same time G, B and @ describe
massless states (d¢, g ¢ = 2), while all other operators corre-
spond to massive ones (Jx > 2).

2.3 A relation between gravity and string theory
Bearing the above considerations in mind, we can consider
string theory at distances (set by G, B, @, and T') much bigger
than /o’ First, in this case one can replace separate quanta
(8) by smooth fields, as in passing from photons to radio
waves. Second, in this situation massive string excitations are
decoupled. This means that at these scales we should obtain a
field theory rather than a string theory. In fact, a free string is
equivalent to infinitely many free particles: the string
propagator is just an infinite sum of particle propagators
(11). Hence, forgetting about massive particles reduces the
sum in (11) to a finite number of the smallest mass excitations.
In this way at the scales considered and for d = 26 one
finds [17]:

1
l6nl'n

Z(G,B,®,T) = Jd%x —G exp [-29]

and propagators as the leading contribution in the RHS of
(12). Unfortunately, this fact can be explicitly established
only for the simplest background fields G, B, @, and T, such
as the flat metric with constant fields B and @. Problems
appear because there are no well developed methods for
quantization of the non-linear g-model (5) with arbitrary
sources G, B, @, and T. The best that has been established
so far is that the vacua in the LHS and RHS of (12) are
equivalent. Indeed, the conformal invariance of the o-model
(5) imposes conditions on the sources [1, 3]: it is necessary to
have vanishing fp-functions for the sources G, B, ¢, and T.
These conditions are nothing but equations of motions for
the action (12).

There is a way to intuitively understand why one should
obtain this particular action (12) from string theory. The
action (5) is invariant under infinitesimal transformations of
G and B fields given by:

G,uv - G;Lv + a(ﬂé") ) B,uv - B,uv + a[u pv] ) (13)
of which the first is nothing but the general covariance of
the graviton field. It is necessary (but not sufficient) to
respect these invariances to maintain the unitarity of the
theory. Now the goal is to find a long-range effective action
for the sources in Z which would be invariant under the
transformations in question. It is easy to see that the action
(12) is the only low energy one which obeys these
conditions and includes interactions with the dilaton @.
The reason why ‘Z = S(sources)’ rather than ‘Z=
exp[—iS(sources)]’ is that we are dealing with first
quantized string theory.

2.4 Open bosonic string theory

Now let us consider open bosonic string theory. To maintain
Poincaré invariance in the target space, one naively (see
Section 4) could think of using only the Neumann
boundary conditions on the coordinates X, of the open
strings.

As we have already mentioned, open string theory
contains closed string theory at the loop level. Hence, open
bosonic string theory contains all the same sources in its
generating functional as in (4). In addition it includes sources
for its own excitations. Furthermore, at the open string ends
one can add quantum (Chan-Paton) numbers (indices),
taking values in the fundamental representation of a gauge
group.

Thus, following the same reasoning as above, the massless
open string vertex operator can be found to be a path-ordered
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Wilson exponent *:

TrP exp{iJ dra,(x) GLSC“}7
boundary

where 0, is a tangential derivative to the string’s boundary and
7 is some parameterization of the latter. The presence of the
operator (14) in (4) means that the ends of the strings are
charged with respect to a,. It is a gauge field taking values in
the adjoint representation of the gauge group. In fact,
Eqn (14) is invariant under the gauge transformations:
ay — a, + 0,4 +ilay, ).

As for closed bosonic string theory, the open string
generating functional is equivalent at large distances to 26-
dimensional dilaton gravity (12) interacting with YM theory
for the gauge field a,.

(14)

2.5 On the unification of gravity and Yang—Mills theories
Let us briefly discuss the possible relation of string theory to
quantized Einstein gravity and its unification with gauge
interactions. The action (12) is written using the so called
string metric. From the latter one can pass to the standard
Einstein metric through the rescaling Gg = Gexp [—4®].
Hence, the 26-dimensional Einstein — Hilbert action appears
as a part of the large distance or classical approximation to
quantum string theory. Moreover, both gauge and gravity
theories can be treated on the same grounds: as approxima-
tions to string theory.

Furthermore, one can derive a four-dimensional theory
via so called compactifications [3, 4]. In order to do that, one
considers the 26-dimensional world as the product of a non-
compact four-dimensional space with some very small
compact 22-dimensional one. Both spaces should be solu-
tions to the equations of motion following from (12).

All that seems to be promising. However, the closed
bosonic string theory contains a tachyonic excitation 7 with
m2 = —4/a'. This is a pathological excitation. Its presence
means that during the quantization an unstable vacuum has
been chosen. In fact, the tachyon is a negative mode excitation
over the vacuum, moreover, in closed bosonic string theory
higher self-interaction terms for the tachyon apparently do
not seal this instability. So in bosonic string theory the form of
the true vacuum is unknown and it is unclear even whether it
exists at all.

3. Type 1I superstring theory

To obtain a self-consistent string theory one should consider
supersymmetric generalizations of bosonic string theories [3,
12]. There are several non-anomalous types of superstring
theories. Here we are going to discuss only the closed type II
strings in the Neveu—Schwarz— Ramond (NSR) formalism.
In this case SUSY is added to bosonic string theory via anti-
commuting y, fields which are world-sheet super-partners of
X, In principle one must take into account the world-sheet
metric field and its super-partner as well. However, as in the
case of the bosonic string, by fixing symmetries of superstring
theory, we could get rid of the fields in question.

Thus, as a starting point we have an N =1 two-
dimensional SUGRA interacting with conformally invariant
matter, represented by X and y [1, 3, 4]. This is a SUSY

4 Note that there is also an open string tachyon which we do not consider
here.

extension of the theory described by (2). Due to the presence
of the conformal symmetry, the SUSY reparametrization
invariance of the action is enhanced to superconformal
symmetry. As we discuss below, it is necessary to do some
extra work to obtain SUSY inside the target space.

We consider here a Hamiltonian quantization of type II
superstring theories [3], which is more convenient for our
purposes than the functional integral approach [1]. Free
superstrings are described by the action:

1
Ssst = W[dzZ (a;x“ 65)@, +yt azl,bﬂ + C~C~)

+ Faddeev—Popov ghost terms,

(15)
where we have eliminated the world-sheet metric field and its
super-partner via SUSY reparametrization and superconfor-
mal invariances.

In theory (15) one must impose the standard periodic
boundary conditions on X,: X,(01, 02 4+ 21) = X,(01,02). At
the same time, to respect the aforementioned modular
invariance, the quantum theory of superstrings should
contain sectors with two types of possible boundary condi-
tions for the world-sheet fermions [1, 3, 4]. The first type of
boundary condition is due to Ramond:

z=-explo) +1ioz],

V(o2 +2m) =y, (02) (R), (16)
while the second one is due to Neveu and Schwarz:
l/lu(ﬁz +2n) = —lpu(az) (NS) (17)

with the same conditions for IZI” in both cases.

Therefore, there are two kinds of mode expansions for
solutions of the free two-dimensional Dirac equation
Oz, = 0:

b
R =

u
cn+1/2
Vi) = Zzn+l/2

n

(R),

(NS). (18)

There is a similar but independent expansion for /() as well.
Itis the conformal invariance that allows us to treat the left (z)
and right (2) sectors independently: in a conformal field
theory they do not interact with each other.

We omit the mode expansion for X, because the
corresponding creation operators do not yield massless
excitations in superstring theory.

3.1 Quantization and massless spectrum
To quantize superstring theory (15) one imposes the standard
commutation (anti-commutation) relations on its bosonic
(fermionic) fields. Then the modes b, and ¢, /, with positive
and negative n’s become annihilation and creation operators,
respectively. At the same time, the zero modes ¥ generate the
algebra of Dirac y-matrices:
{Vo vot =n", (19)
where n#" is Minkowski metric.
Superstring states are constructed by multiplying the
states from the left sector by the states from the right sector
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that satisfy a level matching condition. Thus, since the
boundary conditions can be independently imposed in the
left and right sectors, there are four kinds of states:

NS—N/SV7 NS_I; (20)

R-NS, R
In order to find the masses of excitations in this theory it is

necessary to use the two-dimensional energy-momentum
tensor:

. 1 1
T(Z) =Ty +Txn 2T = —E(azxﬂ)2 5 W0, (21)

in the left sector. The energy-momentum tensor in the right
sector 7 (Z) is the complex conjugate of (21). The correspond-
ing conserved Hamiltonians are Ly = [dz7 (z) in the left
sector and similarly Ly in the right sector

Ly = sz T(z), Lo= szi(f) .

Hence, the total Hamiltonian is
H=Ly+ Ly + const,
where the constant comes from the normal ordering and has

different values in the R- and NS-sectors [3, 4]. With such a
Hamiltonian one finds the smallest mass states [3, 4]:

mass NS R
m?==2/o' |0) - (22)
m2=0 cf1/2\0> |0}, ngm), é‘ 0l0), ...

and similarly in the NS- and R-sectors. The vacuum |0) in the
R-sector is defined below, while |0) in the NS-sector is the
standard vacuum for fermions.

Furthermore, in order to maintain the modular invariance
one must project both the left and right sectors to an eigen-
state of the operator (—1)7 [1, 3, 4]. Here f counts the world-
sheet fermion number in superstring theory, i.e. this operator
anti-commutes with all fermionic creation and annihilation
operators. That is to say that one must take the partition
function in superstring theory to be

Z=Tr{[(-1)" £ 1] exp (—H)}

with either a plus or minus sign rather than just

Z =Tr [exp (—H)].

This is the so called GSO projection.
If one includes only those states that obey

[(—1)7 +1]|state) = 0

then the tachyon state |0) in the NS-sector decouples from
the spectrum, while the ¢*, ,|0) state survives 3. Thus, in the
NS —NS-sector we have c71/25j1/2|0, 0) as a massless state,
whose symmetric, anti-symmetric and trace part are related

3 1t is this kind of GSO projection that leads, after taking account of both
left and right sectors, to the appearance of SUSY in the target space. After
the projection, the off-diagonal elements in (20) yield the target-space
superpartners for the diagonal ones [3, 4].

to the familiar G,,, B,, and @ eXcitations in superstring
theory.

Let us now discuss what happens in the left R-sector
(consideration of the right R sector is similar) [4]. We change
the basis of the zero modes /) to

1 : 1 i i .
dOiZ\/—E(I,D(I):Fll,bg), dﬁf:\/—z( FEYTh, i=1,...,4.
(23)
Then from (19) one gets:
df,d;y=06,, L1J=0,...,4. 24
159

These dif generate 2° =32 Ramond ground states
|s) =1£1/2,...,£1/2) as:

1 1
o, k7)) =
27 ) 2> 07

One can verify that fixing the SUSY reparametrization
gauge yields Super-Virasoro conditions on the physical states
of superstring theory [3, 4]. They appear as the standard
conditions of Dirac’s approach to the Hamiltonian quantiza-
tion. These conditions are:

7 |state) =0,
0%,y [state) =0,

~ _T|state> =0, (26)
0:%, Y, [state) =0,

which are nothing but the conditions of superconformal
invariance of superstring theory. To cancel the anomaly in
this case one should take d = 10 rather than d = 26.

Now from the first condition in the second row of (26) it
follows that p,y [state) =0. At the same time, in the
reference frame, where p* = (p° p°0,...,0), pyl =
V2pd,". Hence, so = +1/2, which leaves only s; = +1/2
(i=1,...,4), i.e. 16 physical vacua: 8 with an even number
of (—1/2) and 8 with an odd number of (—1/2) [3]. These &
and 8. states compose spinor representations of the ten-
dimensional Lorentz group with different chiralities [3, 4]. In
fact, 3 generates the algebra of ten-dimensional Dirac
matrices (19) and 8. and 8; are its two irreducible representa-
tions.

The GSO projection keeps one of these states (8. or 8;)
and removes the other. Taking into account that there are two
possibilities for the vacuum:

(27)

one concludes that there can be two types of theories. If we
choose opposite signs for the vacua in the R- and R-sectors,
we obtain a non-chiral type ITA theory. If we choose the same
sign, then we have a chiral type IIB theory.

In conclusion, in the R and R-sectors the massless states
(25) have target space fermionic quantum numbers [3, 4]:
depending on a choice (27), they are ten-dimensional
fermions of either one chirality |$) or another |f). Schemati-
cally, this means that in the R —R sector there are states such
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as

(yle .y rmal) s 12B) (LAY,
(ylmoyrantd) 126) (11B),

where y, are ten-dimensional Dirac matrices in the Weyl -
Majorana representation. These states correspond to the
bosonic tensor fields 4, ., with the field strengths
Fu . =04, Apy..n,)- Now we see that due to the chirality
properties of the massless states, in the type IIA theory there
are only odd rank A fields. At the same time in the type IIB
theory only even rank A fields are present.

Type II string theories are invariant under two SUSY
transformations in the target space (Q and Q), which
correspond to the left and right sectors on the world-sheet,
respectively [3, 4]. This is the reason why one refers to these
string theories as type II.

(28)

3.2 Type IIB superstrings at large distances

Below we mostly consider type IIB string theory (type IIA
theory is very similar) with its bosonic massless excitations.
Besides the standard NS—NS fields G, B, and @, this theory
contains R — R fields which are the scalar 4, two-form tensor
potential A,,, four-form tensor potential A4,,s and their
duals. In fact, by construction, among the fields described in
(22)—(28) there are various duality relations:

FH]---M; = iy a#mA ’
= Hg Ho Mg
Fﬂ]”'.“7 = €y F ’
= He---f10
Fﬂ]---:uS = €y F .

(29)

Here ¢, .., is the completely anti-symmetric tensor in ten
dimensions.

As in bosonic string theory, the superstrings contain the
target space SUGRA at large distances. In the case of the
superstring theory it is known how to calculate its generating
functional only if d = 10, when the superconformal anomaly
is canceled. Thus, the bosonic part of the large distance type
1IB ten-dimensional SUGRA action is [3, 4]:

1 10
Sitp = 16TcFNJd *

1
x V-G {exp [—29) {R +4G" 0,00, — va}}
1l Gma, a4 P2 4L p2
2 pE Y myy o T Py Hs

1
+ 5 eﬂlmﬂlo Al’lmﬂAHﬂs HéthHs Hy Hio

+ fermions + O(a', I'n) , (30)
F wy = Fuy — AHpy
- 1 1
Fupons = Fuyoons — B} Al i H g g ) +§ By iy Fy g i) -

Here I'n = 8n 6gszoc’4 is the ten-dimensional Newton’s con-
stant. Furthermore, in this action one must impose the self-
duality condition on the R — R four-form field as shown in the
last row of (29). There are also various dual versions of the
type IIB SUGRA, which are expressed through the dual
tensor fields from (29).

Thus, we see that superstring theories are self-consistent
and lead at large distances (the classical limit) to SUGRA
theories. Now we are ready to discuss various solitons in
SUGRA and string theories.

4. D-branes and SUGRA solitons

In SUGRA theory there are many different solitons [4, 19]. In
ten dimensions they can be particle-like black holes or
different types of branes (membranes etc.) which are multi-
dimensional analogues of four-dimensional black holes.
Their singularities live on multi-dimensional sub-manifolds
of the ten-dimensional target space and are surrounded by
multi-dimensional event horizons. They can be neutral or
charged with respect to some tensor gauge fields (like By, or
the R—R fields discussed in the previous section) just as
point-like black-holes can be charged with respect to gauge
vector fields: one could surround the locus of a soliton by a
multi-dimensional sphere and then find the flux of the
corresponding tensor field.

Now, keeping in mind that string theory suggests the
quantization of gravity, one can ask what are the quantum
counterparts of these solitons? Besides being of academic
interest, the answer to this question can reveal some features
of black hole thermodynamics [4, 18]. Furthermore, as we
discuss below, it gives a relation between SYM theory and
SUGRA.

The problem is that in order to pass from large distance
gravity to microscopic string theory, one needs to vary the
parameters o’ (measured with respect to some characteristic
scale) and g in string theory. It happens that during this
variation, when the background fields are turned on, the
corrections O(a’, I'y) in (30) can become more relevant than
the leading large distance contribution. As we briefly
discussed in the introduction, these corrections can even
change the form of the background completely. First, this
destroys the event horizon, which appears to be a low energy
global characteristic [4, 6]. Geometrically it is seen when the
size of the horizon of a soliton becomes smaller than the
characteristic string scale. Second, a variation of the para-
meters in question can lead to an uncontrollable renormaliza-
tion of the charge and tension of a soliton or even to a change
of the fundamental degrees of freedom in the theory. In fact,
we do not have complete knowledge of the string theory
dynamics.

However, in the presence of SUSY one can control the
renormalization of the low energy (large distance) action.
Furthermore, there are solitons in SUSY theories for which
the renormalizations of their mass and charge are under
control [11]. They are referred to as BPS solitons and respect
at least some part of the SUSY transformations in such
theories. Note that arbitrary excitations do not respect any
symmetries, while the fact that SUSY is respected imposes
strong restrictions on possible dynamics [12].

Furthermore, of all BPS solitons in string theory,
quantum counterparts are known only for those which are
charged with respect to the R — R tensor fields. For only in the
latter case does a good two-dimensional conformal field
theory description exist. Although historically R—R BPS
SUGRA solitons were found first [19] and only after that
did their quantum D-brane description appear [9], we start
our discussion with the definition of D-branes. Then we
explain their relation to SUGRA solitons and to SYM theory.
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4.1 Definition of D-branes

One could wonder if it is possible to consider open string
sectors in closed type Il superstring theories. It appears that to
avoid anomalies [4] open strings in these sectors should have
both Neumann (N) and Dirichlet (D) type boundary
conditions on string coordinates [9]:

anx"7:07 wm:ilpmﬁ ’n:()’?p (N)7 (31)

xi:Civ l//i:$l//i7 l:])+17,9 (D)v
where C; are some fixed numbers and 0, is a normal derivative
to the string boundary.

Therefore, in such a situation the ends of open strings can
freely move only along directions labeled by ‘n’. In fact, they
are confined to (p + 1)-dimensional sub-manifolds placed at
x; = C; in a ten-dimensional target space. These sub-mani-
folds, completely filling the ‘p’ directions and situated at
x; = C;, are referred to as Dp-branes. At the same time in
the bulk of the target space there are ordinary type II closed
strings.

The Dp-branes have several features which are relevant to
our further discussion. First, they break Poincaré invariance
inside the target space

P(10) — P(1 4 p) x SO(9 — p).

Hence, to maintain P(10), one should consider these Dp-
branes as dynamical excitations in superstring theory.
Second, to respect SUSY one must consider p = 0,2,4,6,8
for type IIA and p = —1,1,3,5,7 for type IIB theories® [4]
(see below). Third, because of the boundary conditions (31),
the Dp-branes can not respect more than a half of SUSY
transformations in type II string theories. In fact, the two
SUSY transformations (due to Q and Q) are related to each
other: the left and right sectors on the string world-sheets are
no longer independent due to the boundary conditions.

Interactions of a Dp-brane with the massless closed string
excitations are described by [9]:

Z(G,B,®,{A},a, ¢, fermions)
= Z J[Dhab]g DX, D(fermions)
G=0

x exp { —iSpst(Xus hap, Guvs By, D, {A}, a, ¢, fermions) },
(32)
Sost(Xus fap, Gy Buy, @, {A4}, a, ¢, fermions)

1 2 ab < = ~v
=5 Jd o {\/ —hh® G (X)0,5" 0pX

+ P B (%) 0,50, % + '/ —h R<2><15(5c)}
+ R — R-fields + Jdr (X)) Ot X,
+ Jdr ¢;(%m) OnX; + fermions.

Here t is some parametrization of the boundary. As usual,
closed strings appear at the loop level in the open string

6 The case p = —1 describes the so called D-instanton, which is a D-brane
whose ‘world-volume’ is just a point in the ten-dimensional Euclidean
target space. This D-instanton is described by open strings with Dirichlet
type boundary conditions in all ten directions.

theory. In this functional we have fixed a light-cone gauge:
¢ (X) = X, where ¢, = (¢,,,, ¢;) describes the embedding of
the Dp-brane into the target space.

Let us clarify the meaning of the quantity (32). If one puts
Guy = 1y, By = 0, ® = 0and all R — R fields with fermions to
zero, then equation (32) describes the time evolution of a
quantum state in a two-dimensional conformal field theory.
In fact, taking a time slice we fix the initial conditions and the
boundary conditions (31) and integrate over all fields in the
theory with these boundary and initial conditions. This is by
definition a quantum state. Adding time gives us the time
evolution of this state. In the case when all background fields
are non-trivial, Eqn (32) describes interactions of the
quantum state with these fields. Moreover, we show below
that (32) at large distances describes the interactions of a
SUGRA soliton — the classical limit of the quantum state in
question — with the aforementioned SUGRA fields.

Let us explain, following [10], the origin of the sources a,,
and ¢, in (32). As we have already noted, string theory should
be invariant under the transformations described by (13). For
a closed string they are respected, but when a string world-
sheet has a boundary, boundary terms appear after such
transformations. To cancel the first of the transformations in
(13), one must add a field ¢; at the string boundary. It should
transform as ¢; — ¢, — &;/a’ to compensate (13). At the same
time the boundary term appearing as a result of transforma-
tion (13) along the Dp-brane vanishes since Poincaré
invariance is respected there.

Hence, ¢, would appear as pure gauge degrees of freedom
if there were no breaking of Poincaré invariance in the
presence of a Dp-brane. Furthermore, from this considera-
tion it is clear what the physical meaning of these fields is:
They represent transverse fluctuations of the Dp-branes
around their positions C;. In other words, C; are just VEV’s
of the fields ¢;: ¢, + C; — ¢;.

Likewise, to maintain the second invariance in (13), the
string boundaries should be charged with respect to an
Abelian gauge field a,. In this case the boundary term
appearing after the second transformation (13) is compen-
sated by a shift a,, — a,, — p,,/o’. (This shift is different from
the ordinary gauge transformation a,, 4+ 0,,4 of the field a,,.)
The physical meaning of the fields a,, is that they describe
longitudinal fluctuations of the Dp-branes.

4.2 D-branes at low energies
At energies much smaller than 1/v/a’ the functional (32)
takes the following form [20]:

Z(G,B,®,{A},a, ¢, fermions)

= Su(G, B, @, {4}, fermions)

+ m, Jd”“x exp [~ D)/ — det(gum + by + 27" frn)

+0, ‘[df’“xeomp Ay, + fermions + O(a', I'n),  (33)

where ¢, is the (0... p)-component of the (p + 1)-dimen-
sional totally anti-symmetric tensor, and

f;-nn = a[man] y &mn = Glj am¢,‘ and)j + Gi(man)(bj + G )

34
by = Bij am¢i anqu + Bi[man] ¢j + Bun ( )

are the field strength for a,,, the induced metric, and the B
field on the Dp-brane world-volume. Note that in the action
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(33) we maintain all powers of f,, while neglecting its
derivatives.

In Eqn (33) Sp is the type II ten-dimensional
(Si o [dx...) SUGRA action. In the case of type IIB
string theory Sy is given by the leading contribution in (30).
The second contribution in (33) is the so called Dirac—Born—
Infield (DBI) action for non-linear (p + 1)-dimensional
(< [dPT'x...) electrodynamics. Its coefficient is the mass
per unit volume of the Dp-brane and can be found to be equal
[4] to

m, = r (420"~ PH1/2

&s

The third term shows that Dp-branes are sources for the R — R
tensor fields 4. In other words, Dp-branes are charged with
respect to the (p + 1)-tensor R—R fields with charges 0, [9].
Taking into account the special properties of R—R fields
[discussed after equation (28)], it is clear why there can be only
Dp-branes with p=20,2468 in type IIA and
p=—1,1,3,57in type IIB theories [4].

What is important for our further discussion is that the
action (33) is SUSY invariant. In fact, Dp-branes (32) respect
a half of the SUSY invariance in type II string theories, and
obey

mﬂ = Qﬂ ls:<p+l> )

Iy ~ Vo' (35)
The force between any two equivalent and parallel Dp-branes
vanishes [4]. This is because the repulsion due to the R—R
tensor field compensates the gravitational attraction. This is
called the ‘No force condition’ and is important for our

further considerations.

4.3 D-branes as sources for R—R SUGRA solitons

Now let us probe a Dp-brane at large distances, when
r=+/x;x' > /o' [note that g, — 0 to suppress the correc-
tions O(a’, I'n)]. We reiterate that it is the SUSY invariance
of the action (33) that allows us to go easily from large to
small r (and vice versa) and the leading contribution in (33)
does not change. Hence, when passing to large r we can just
forget about the Dp-brane excitations a,, and ¢,. This means
that a large distance observer does not feel them and one can
substitute their classical values a,,, = ¢, = 0in (33) if there are
no sources for these fields. Thus, if there are no non-trivial
background fields G, B and &, we have:

Z = Su+m, Jd”“x +0, Jdp“xgomp Ao, + 0, IN).
(36)
The second and the third terms in this equation are just

sources for the curvature and the corresponding R-R field.
They can be rewritten as

Jdﬁ*‘x... o Jdloxa"*ﬁ(x,- -C)...,

so solutions of the classical equations of motion for (36) with
these sources appear to be BPS R—R SUGRA solitons:

ds? :‘]‘[',’1/2 dx,, dx™ +fp1/2(dr2 +r2 dQép) ,

exp[-20] = f,\" V"2, £ -1,

AOH.p: -

where p =0,2,4,6,8 intype [IAandp = —1,1,3,5,7 in type
IIB theories [19]. These solutions are the states in SUGRA
that are classical limits of the states (32) in string theory. This
is how one finds a relation between the Dp-branes and R—R
Dp-brane SUGRA solitons. At the same time, Eqn (36)
describes low energy fluctuations around these SUGRA
solutions.

All the solutions (37) are BPS and for any function f, they
preserve a half of the SUSY transformations in SUGRA
theory. The equations of motion of SUGRA theory (36)
(related to the closure of the SUSY algebra) imply [19] that f,
should obey

NP1 (r) = mpd° P (x — Ci) . (38)
Here A°7 is the Laplacian for the flat metric in the directions
p+1,...,9. Hence, one gets:

(" T 1
Jo=1+ " ) rp“@»

Note that one can neglect string corrections to (36) in the case
rp > V!

We now consider N Dp-branes parallel to each other and
placed atrg, s = 1,..., N. We can do that safely because of the
“No force condition’. At low energies (large distances) such a
system of N Dp-branes corresponds to a R—R Dp-brane
soliton (37) with a charge Q, oc N and

N ’ T-p
_ P
=1 )
s=1 S

The tension of the soliton is M, = Nm,,. Note that when one
puts all the Dp-branes on top of each other (r; = 0 for all s)

(39)

(40)

R

T=p
fr=1+ (T”> . RI7=Nr]7. (41)

In this case one can neglect string theory corrections to (36),
(37), (41)if R, > Vo',

Solitons (37) are multi-dimensional analogs of the four-
dimensional critical Reissner—Nordstrom black hole. Note
that the event horizon of these solutions is at r = 0.

4.4 D-branes and SYM

Now let us probe a Dp-brane at small distances r < R, as
gs — 0. In this case one can forget about long wavelength
fluctuations of the bulk fields G, B, @, and {A4}. Hence, these
fields are equal to their classical values, i.e. to zero in the
absence of external sources. Thus, expanding (33) in powers
of a small f,,,, one obtains:

Z = Su + Ssqep + O(o', '),

p+1 l 2 l i2 (42)
SSQEDO( d? " x 2f;ml+2|am¢| +...p.

The dots in the second row stand for the fermionic super-
partner terms. The latter could be recovered from the fact that
this supersymmetric QED (SQED) is maximally supersym-
metricin ( p + 1) dimensions. In fact, we know from (31), (32)
the number of SUSY transformations under which the theory
(42) is invariant. This number is 16 — half of 32, which is the
total number of components of supercharges in type II string
theories.
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There is also another way to find the number of SUSY
transformations under which (42) is invariant. One could
consider ten-dimensional N' = 1 (maximally supersymmetric:
there are 16 components of supercharges) SQED:

1 ., 12

szfm,+2‘lfa'l’, (43)
where ¥ are Majorana— Weyl spinors and the super-partners
of a,. Then one can make a reduction of the theory to (p + 1)
dimensions. That is when one considers all the fields in the
theory to be independent of (9 — p) coordinates [12].

This way, changing the notation from a; to ¢; (i=
p+1,...,9), one gets the theory (42) with the proper
fermionic content. Furthermore, during this procedure the
number of SUSYs is increased with respect to AV = 1 in ten
dimensions [12]. In fact, the ten-dimensional fermions ¥ are
rearranged into representations of the smaller Poincaré group
P(p+1). Hence, from a single ten-dimensional fermion we
obtain several lower-dimensional ones.

The low energy action (42) can also be found by another
approach [10]. At low energies the strings that terminate on
Dp-branes look like massless vector (a,) and scalar (¢;)
excitations — the massless excitations in open string theory
[3]. Furthermore, in the limit g¢ — 0 the coupling of open
strings attached to Dp-branes with closed strings in the bulk is
suppressed. At this point one finds that the low energy theory
for such excitations is SUSY QED — the only supersym-
metric and gauge-invariant action containing the smallest
number of powers of the field derivatives.

The last point of view is helpful in understanding the low
energy theory describing a bound state of Dp-branes [10]. Let
us consider N parallel Dp-branes with the same p. In this
situation in addition to the strings which terminate on the
same Dp-brane, there are strings stretched between different
branes. Furthermore, because the strings are oriented, there
can be two types of strings stretched between any two Dp-
branes. The strings attached with both ends to the same Dp-
brane yield familiar massless vector excitations living on the
brane. On the other hand, the stretched strings yield vectors
with masses proportional to the distances between corre-
sponding Dp-branes. They are charged with respect to the
gauge fields living on the Dp-branes at their ends. Therefore,
the latter vector excitations are similar to the W*-bosons in
gauge theories with spontaneous symmetry breaking. They
acquire masses through a kind of Higgs mechanism —
splitting of Dp-branes — and become massless when the Dp-
branes approach each other.

Hence, the world-volume theory on the bound state of N
Dp-branes is nothing but the U(N) maximally supersym-
metric SYM theory [10]:

S M Oclz Jder])CTI. {fmn + |Dm(£i |2 + Z[(ﬁi’ (ﬁj]z +.. }
>

. s L (44)
ﬁ?m = a[man] + l[am’ an] 5 Dm = am + l[anh ] .
Dots in this action stand for fermionic terms. Furthermore,
all possible positions of the Dp-branes, composing this bound
state, are given by VEV’s of the U(N) matrix ¢,;. Note that the
potential in the action (44) has flat directions. These flat
directions are not lifted by quantum corrections due to the
SUSY invariance of the action (44). Thus, the U(1) factor in
the decomposition U(N) = SU(N) x U(1) describes the
center of mass position of the Dp-brane bound state.

Unfortunately, we do not know any rigorous derivation
of (44) from first principles such as the definition of the Dp-
branes, though, there is a non-canonical way to formulate the
non-Abelian version of (32), (33), and hence of (42) [24],
which can be useful for the derivation of (44).

Anyway, to sharpen the reader’s understanding we give
one more argument in favor of the appearance of SYM on the
Dp-branes. When one has a stack of Dp-branes, the strings
which terminate on them carry Chan—Paton indices, enu-
merating these Dp-branes. Hence, one obtains sources like
(14) for their massless excitations, where & — ¢, (i=
p+1,...,9). This, as we know, leads at large distances to
SYM theory and shows that the theory (44) is the reduction of
ten-dimensional ' = 1 SYM to (p + 1) dimensions.

It is worth mentioning at this point that one can also
consider BPS bound states of different types of Dp-branes
(with different p’s) [4]. However this lies outside the scope of
our discussion.

5. AdS/CFT-correspondence

We see that the Dp-branes allow two different descriptions
depending on the distance from which one looks at them.
From far away, the D-branes look like sources for gravity
solitons, while at small distances one observes their quantum
fluctuations described by SYM theory. It seems that both
limits are unrelated to each other; however, this is not so. To
understand why, from now on we are going to discuss one of
the simplest situations.

We consider a stack of N D3-branes in a ten-dimensional
type IIB SUGRA. The D3-branes are on top of each other at
X4 = = x9 = 0 and occupy 0, ..., 3 directions. The corre-
spondmg SUGRA soliton is the self dual R—R D3-brane
(29), (37), (41) with

R} = 4ngNo'*, Q3 x N. (45)
Note that the classical SUGRA description is applicable
when R; > o/, that is when gN > 1 (note that g3 — 0).
Otherwise string theory corrections are relevant and deform
the soliton (37).

The geometry of the D3-brane soliton is as follows: It
has asymptotically flat boundary conditions at spatial
infinity, as at r> R; the ratio (Rs/r)* becomes much
smaller than unity. At the same time, near the position of
the source (r =0) there is an infinite throat region of a
constant curvature:

2

ds?*= (dx,, dx™) +

R2
R2 r—; dr? + R} dQ2, exp[—®] = const.

(46)

By definition the throat is the region where r < Rj, so that in
(41) the unity can be neglected with respect to (R3/ r)4. In this
way one obtains (46) from (37)—(41).

As one can directly check, the metric (46) has a constant
scalar curvature equal to R3. The curvature does not diverge
and the D3-brane is a non-singular soliton. In fact, the metric
(46) has the geometry of AdSs x Ss, where AdSs is a five-
dimensional Anti-de-Sitter space and Ss is a five-sphere — de-
Sitter space. Both of these manifolds are known to have
constant scalar curvatures: Ss has a positive while AdSs has a
negative curvature. They are both solutions to five-dimen-
sional Einstein equations with positive and negative cosmo-
logical constants, correspondingly.
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We now describe the geometry of AdSs space. There are
many ways to present AdSs space (see, for example, Ref. [8]),
but we find the following description convenient. Algebrai-
cally AdSs space can be represented as the universal cover of a
sub-manifold in a six-dimensional flat space (W, V, X, where
q =1,...,4) with signature (—, —, +, +, +, +). The equation
defining this sub-manifold is [8]:

4

2 2 2

w=+V —E X, X, =Ry,
g=1

(47)

where Rj is the radius of the sub-manifold and of AdSs space.
Thus, AdSs admits the natural action of the global SO(4,2),
which is its isometry group.

The metric on the ambient flat six-dimensional space is:

4
ds* = —dW? —dV? + > dx,dx,.
q=1

(48)

The metric on the universal cover of the manifold (47) can
be found by solving equation (47):

V= Rsrt,

(49)

Substituting this solution into equation (48) we obtain the
metric for AdSs space:

P r2 2 3 R% 2
ds® = ( —dr +> dx, dx, +odr?, (50)
3

q=1

which coincides with the metric for the AdSs part in (46) if
Xm = (t,x4), whereg=1,...,3.

Now let us define the boundary of AdSs space. If W, V, X,
(where g =1,...,4) tend to infinity, after dividing the
coordinates by a positive constant one obtains an equation
defining the boundary:

4
W2+ V?>=> X, X, =0.

q=1

(51)

The boundary is a four-dimensional manifold, because (51) is
invariant under the scalings W — AW, V — AV, X, — AX,
for a real non-zero A.

Making use of the scaling with a positive 4, one can map
(51) into the locus:

4
Wrrr=> XX, =1, (52)
q=1

whichisa copy of (S' x §3)/Z;. In this space, we must factor
over Z, because there is a remaining symmetry under
W—-W,V— -V, X, - —X, transformations. The uni-
versal cover of (47) has the universal cover of (52) as a
boundary, which is R! x S3. The latter manifold is a
conformal compactification of the four-dimensional Min-
kowski space R>!. Indeed, for the conformal compactifica-
tion of R*! one adds a point at the spacelike infinity.

In terms of metric (50) this could be clarified as follows.
There are two parts of the AdSs boundary: the first one is at
r — oo, which is a four-dimensional Minkowski space (¢, x,)
where ¢ = 1,...,3; the second part of the boundary is the
point r = 0. These considerations imply that there is a natural
action of SO(4,2) on the conformal compactification of the
Minkowski space. This group now defines four-dimensional
conformal transformations. Note that under a generic
conformal transformation the point r = 0 is mapped to a
point inside R>!. That is the reason why the compactification
of R¥! is referred to as conformal.

Note that SUGRA on AdSs space is invariant under a
global SO(4,2) symmetry. Furthermore, SUGRA on the
throat (46) of the D3-brane is invariant under A" = 8 SUSY.

Now let us consider the SYM description of the D3-brane.
This description is applicable when g — 0, and as follows
from (44), the description is given by A" = 4 four-dimensional
SYM:

1 (. Loy 1 an I o

S JdXTr{Efnln+§‘D”1¢i| +§Z[¢z7¢/]

74T[g5 i>j

. 4 . . . . . N
+3 ;‘I’ID‘P,f%‘P’[qu‘I’J} +c.c,},

(53)

where ¢,; = ¢,7}, and y/ are six-dimensional Dirac matrices.

One can see from this formula that 4ng, = g2, and so
when gy — 0 the perturbative expansion of SYM is well
defined. The theory (53) has a vanishing f-function because
of the perfect cancellation of quantum corrections due to
bosons and fermions. Hence, g is just a non-renormalizable
constant, which is in accordance with the fact that
gs = exp [2@] = const. Furthermore, at any value of g the
theory is invariant under four-dimensional conformal trans-
formations given by the SO(4,2) group. The conformal
symmetry extends the A/ =4 SUSY invariance of SYM
theory in question to N/ = 8 SUSY.

This shows that SO(4,2) is naturally realized both on the
SYM and SUGRA sides, which is a good sign that N’ =4
SYM theory should be related to type IIB SUGRA on the
AdSs x Ss space with a self-dual R—R four-form flux 7 [6].
Note that the classical type IIB SUGRA description is valid
when R3/v/a’ — oo, which corresponds, according to (45), to
taking N — oo as well as ggN — oo (note that g — 0). Hence,
strongly coupled N' =4 SYM theory in the large N limit is
applicable in absolutely the same situation as type IIB
SUGRA on an AdSs x Ss background. These naive con-
siderations favor a relation between the two theories which
will be given further support below.

5.1 ABC of the AdS/CFT-correspondence

We now wish to present in a formal way the relation which we
are going to study below. The relation is between N' = 4 four-
dimensional SU(N) SYM and type IIB SUGRA in an
AdSs x Ss background with an R—R four-form flux [7, 8].
It establishes that as ggN — oo, while gg — 0 and N — oo:

<exp {—iZJd“x J(x) O } >

J

~exp {iS[(ASs)y x (Ss)y], | L} (54

7 The self-dual R—R four-form flux is present because the AdSs x Ss
geometry appears from the D3-brane which is charged with respect to this
field.
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The average on the LHS is taken in strongly coupled large
NSU(N), N = 4 SYM theory; {0/} is a complete set of local
operators, which respects the symmetries of the problem. On
the RHS of (54) S™" is a type IIB SUGRA action in an
AdSs x Ss background with a self-dual R—R four-form flux.

The action is minimized on classical solutions for all its
fields: note that as Rs/v/a’ oc ggN — oo string theory correc-
tions to this SUGRA theory are suppressed. The classical
solutions in SUGRA are represented schematically as J;: for
example, j can contain tensor indices. These solutions take
values J/|, =Jj at the four-dimensional hyper-surface
r=u < Rz in the AdSs space and display some asymptotic
behavior as u — Rj3 [8]. These values Jj serve as sources in the
LHS.

Thus, we see that type IIB SUGRA in the bulk of the AdSs
space is related to SYM theory living on four-dimensional
hyper-surfaces (r = u for an arbitrary u) inside the space in
question. This is the so called holography phenomenon [21 —
23] in quantum field theory.

Relations between the different parameters on both sides
of (54) are:

R} = AngNo”

g2 = 4mg, = const,

R;
Myv =—,
o

number of units of R — R four-form flux

= rank of the gauge group = N x Q3,

energy scale in the SYM theory = 1, ,
o

where Myy is the UV cutoff for SYM. Indeed, the generating
functional of the SYM correlation functions [the LHS of (54)]
has UV divergences and needs to be regularized. Hence, the
SYM generating functional evolves under the renormaliza-
tion group (RG) flux. This is despite the fact that there are no
quantum corrections to the classical action (53) of four-
dimensional ' = 4 SYM theory. AdSs SUGRA needs to be
regularized as well, as we discuss below, and the natural
regularization parameter is again R; [7, 8].

Before discussing the meaning of relation (54) let us
emphasize that it is similar to relation (12) between string
theory and gravity. In this case SUGRA theory appears as an
effective theory of SYM. One of the differences from the
string theory statement (12) is that now we get
‘Z = exp [—i1S(sources)]” because SYM is a second quantized
theory.

The relation between the two theories in question should
be understood as follows: there is a quantum type IIB
superstring theory on AdSs x Ss with a R—R background,
which is valid at any energies and yet to be found. This
string theory is weakly coupled when g; — 0, so to keep gsN
fixed one should take N — co. At energies smaller than
Rz /o’ the superstring theory in question has two degenerate
limits, one of which happens when g?N o« g,N < 1. It is
described by weakly coupled N' =4 SYM at large N, which
is a well defined theory. Another case is when
Ri/a'> x ggN> 1. In this limit one must deal with a
strongly coupled SYM theory whose definition is not
known. Then the proper description for gsN > 1 is given
by a weakly coupled (classical) type IIB SUGRA on the
background under consideration.

5.2 Interpretation

Consider now type IIB string theory in an AdSs x Ss back-
ground with R—R flux corresponding to a D3-brane. This
theory is quantum gravity, therefore, one should average over
all metrics with the asymptotically AdS boundary conditions.
As a result, the correlation functions in this theory are
independent of the choice of the metric. Hence, the correla-
tors are independent of the coordinates of the operators
acting in the bulk of AdSs. Thus, in the theory all correlators
for operators placed in the bulk of AdSs are trivial. Moreover,
because AdSs space does not contain any asymptotically flat
part, SUGRA in an AdSs background is always strongly
coupled in the sense that there are no asymptotic states.

Thus, in AdSs SUGRA it is natural to consider a quantity
that generates correlation functions of operators acting at the
boundary of AdSs space. This quantity is nothing but a wave-
functional in the SUGRA theory. The operators in question
should be those that create or annihilate various SUGRA
particles at the boundary. The classical limit of such a
generating functional is the RHS of (54). It is important that
correlations between operators acting at the boundary of
AdSs are non-trivial. In fact, after fixing the boundary in
AdSs space, there is a natural [8] choice of metric on the
boundary within the conformal class given by the bulk
metric 8 (50).

In other words, gravity in AdSs is entirely described by an
SO(4,2) (conformally) invariant field theory living only on its
boundary, or on any four-dimensional hyper-surface with
r = u < R3. The generating functional considered above for
AdSs gravity theory is equivalent to the generating functional
of a four-dimensional conformal field theory °. The question
to be answered is what kind of conformal theory is living on
the four-dimensional hyper-surfaces in the AdSs space?

Now that we have established how the correspondence
(54) can be understood from the bulk theory point of view, let
us clarify how the things are seen from the boundary theory
point of view. Defining the classical limit of the gravity
generating functional at the boundary, one can find (via
SUGRA equations of motion) its value at any hyper-surface
r = u. On the boundary theory side this is seen as a RG flux
from the cutoff Rs/a’ to the energy scale u/a’. In fact, the
LHS of (54) is nothing but the Wilsonian effective action for
the boundary theory, which is defined at the energy scale
r=u.

At the same time, the asymptotic behavior of sources
(coefficient functions) Jy as r = u — Rj3 is given by perturba-
tive f-functions in the boundary theory. Note that coefficient
functions of the Wilsonian effective action depend not only
on u but also on the coordinates of the four-dimensional space
time (x,,). This fact is necessary for Holography to be valid
from the point of view of the theory confined to the boundary.

To explain this consider that it is Holography which
allows one to find the generating functional in the boundary
theory at the energy scale u/o’ if one knows the value of this
functional at any other energy scale, independently of
whether it is bigger or smaller than u/a’. For example, if one
knows the generating functional of the boundary theory at
the energy scale u/a’ < Rs/o’, then it is possible to find its
value at the cutoff scale R3/a’.

8 The boundary metric is obtained by multiplication of Eqn (50) by 1/r>
and taking r — oo.
9 Compare this statement with (54).
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Now we temporarily forget about the AdS/CFT-corre-
spondence and just look at what happens to the boundary
theory. In the RG evolution of this theory we integrate over
high energy modes. If in this integration one was only keeping
information about divergent counter-terms in the limit
R3 /0’ — oo, there would be no way to recover the UV
theory from the IR one. In fact, there could be many different
UV theories which would flow to the same IR one. However,
this clearly contradicts the principle of Holography.

To restore Holography one must keep all information
about high energy modes in the RG evolution of the theory.
This is done by keeping all counter-terms, even those which
are finite as R3/o’ — oo. In this way all information about
high energy modes is encoded in terms of all sources Jj
provided the latter are only functions of x,,. Specifically, we
mean that in the latter case any variation of the fields in the
theory can be compensated by a variation of the sources
Jo(x). Thus, if one knows the values of all Jj (i.e. one knows
the SYM generating functional) at some r = u it is possible to
find them at any other r = u.

Unfortunately, there is no rigorous derivation of the
equality (54) and one can not straightforwardly trace the
‘boundary’ theory. Hence, the best that can be done now is to
present different points of view and to give some self-
consistency arguments in favor of the correspondence.

Below we explain why SUGRA on the asymptotic flat
space of the whole D3-brane soliton should decouple from
relation (54); why AdSs SUGRA is related to SU(N) SYM
rather than to U(N); why the limits N — co and gsN — oo
should be taken; why R3 /o’ (u/a") plays the role of the UV cut
off (energy scale) in SYM theory; what specifies which field in
SUGRA is related to which operator in SYM and vice versa.

5.3 Qualitative notes

Let us consider what is going on with an N D3-brane bound
state at very low energies as measured by an observer at
infinity [6, 16]. According to (42) in this limit the observer sees
free (non-interacting) ten-dimensional SUGRA in the bulk:
all interactions are suppressed, because I'y is small with
respect to the characteristic scale in the theory. In fact:

SocLJdlox\/fGRJr...
I'n

x Jd‘ox (@ + VT @+ (56)

Here we have parametrized the metric as G = + /I'N &,
where 7 is the flat metric and 4 represents small fluctuations
around it.

Because all interactions are suppressed, free SUGRA
decouples from the D3-brane excitations which are described
by SU(N) SYM (53). Of all D3-brane excitations described by
U(N) = SU(N) x U(1) SYM those that correspond to the
U(1) part are not decoupled from free SUGRA. In fact, they
describe the center of mass degrees of freedom and corre-
spond to the source for the corresponding D3-brane soliton.
Hence, these excitations are coupled to the bulk SUGRA even
in the low energy limit.

That is only one way of looking at things. Another point
of view is that according to (36) and (37), free SUGRA seen
by the observer at infinity is decoupled from the SUGRA
living in the throat region (46) of the R — R D3-brane. In fact,
the bulk massless particles decouple from the throat region,

because their low energy absorption cross section by the D3-
branes scales as [13]:

o ox o’RY, (57)

where o is the energy of an in-going scalar particle as
measured by an observer at infinity. The cross section
vanishes as o decreases. This behavior can be understood as
follows: in the low energy limit the wavelengths of particles in
the bulk become much bigger than the typical gravitational
size of the brane R3. Hence, long wavelength fluctuations do
not see regions of size ~ Rj.

At the same time, (57) is equivalent to the grey-body
factor for the D3-brane soliton. In this language the behavior
of the grey-body factor (57) can be understood as follows: As
we lower the energy (as measured by a distant observer) of the
excitations whose wave-function is centered close to the
position of the brane (r < Rj), these excitations find it harder
and harder to climb up the gravitational potential of the D3-
brane and escape to the asymptotic region. As a result, the
throat region and asymptotic one do not interact with each
other in the low energy (as measured by a distant observer)
limit.

In conclusion, there are two pictures describing the same
phenomenon. In both cases we have two decoupled theories
in the low energy limit from the point of view of a distant
observer. In both cases one of the decoupled theories is free
SUGRA in the ten-dimensional flat space. So, it is natural to
identify the other two systems which appear in both
descriptions [6]. The latter systems are A/ = 4 four-dimen-
sional SU(N) SYM and type IIB SUGRA in an AdSs x Ss
background with a self-dual R —R four-form flux.

What is most important for the whole picture is that the
two theories possess finite (non-zero) energies [6]. In fact, their
energy scales are those which are seen by an observer in the
throat (at a fixed r less than Rj3) rather than those which are
seen by an observer at infinity. Note that the g, component of
the D3-brane metric is not constant. Hence, the energy E, of
an object as measured at a constant position r and the energy
E., measured by an observer at infinity are related by the red-
shift factor:

Ex =f, 'E,. (58)
This implies that the same object, having a fixed finite energy,
as being brought closer and closer to r = 0, will appear to
have a smaller and smaller energy to an observer at infinity.

5.4 Additional arguments
In this subsection we present more calculations in favor of the
correspondence (54).

1. First, we explain how one finds relations between
operators on the LHS and fields on the RHS of (54). For the
massless excitations in SUGRA one can use (33) or its non-
Abelian generalization [24]. Take for example the dilaton
field. It couples to SYM as follows:

AgS x Jd“x exp [—D(xm, §,)]

6
X |: n12n + Z ‘am¢i|2 + fermions| . (59)
i=1

Note that the dilaton field depends on the ¢, fields in addition
to x,,. In other words the dilaton field is a function of all ten
coordinates rather than only of four x,,.
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We are going to consider small fluctuations of the dilaton
field around the background (46). Hence, we expand exp [— @]
in powers of the dilaton field and the field itself in powers of
¢;. Then from (59) we obtain:

Ao S, o Jd4x6il L0 45(¢i,x)‘/) .

6
X [4;,.1 ...d),-n<mzn—I—Z\@mqﬁif—i—fermionsﬂ. (60)
i=1
We can see from this that the n-th spherical harmonic of the
dilaton field in S5 (i.e. a KK mode in Ss) couples to the
operator

6
O (s am) < ¢y, ... ;. (fmzn + Z Omi|* + fermions).

i=1

The non-Abelian generalization of this operator is:

6
O;;p [(l)i’ dm} oc Tr |:¢(i1 iy (fmzn + Z ‘Dmd’i|2

i=1

+%Z[q}i,43j]2+fermions>} (61)

i>j

One can conclude from this that the zero mode of the dilaton
field (n = 0) couples to the SYM action (53). Similarly from
(33) one can find that the zero mode of the graviton field
Gun(x,¢; =0) couples to the SYM energy-momentum
tensor.

In general the method of finding relations between
SUGRA fields and SYM operators is based on matching
their symmetry properties under the group SO(4,2) [16].
Remarkably, it appears that for each SUGRA field in the
chiral representation of (the SUSY extension of) SO(4,2)
group there is a SYM operator which transforms in the
same representation [16] and vice versa.

It is worth mentioning at this point that there are other
symmetry arguments in favor of the validity of the AdS/CFT-
correspondence [16, 25], though we are not going to discuss
them here.

2. Second, bearing the above considerations in mind, let us
examine relation (54) in more detail. Following [7, 8], we
consider the zero mode of the dilaton. The action for a dilaton
field in the AdSs background in the linear approximation is
[7, 8

2p8
_nR3

S(@) = 32N

Jd“x dz 213 [(0:0)* + (0,®)°] +...  (62)

Here the metric on the AdSs space is taken as:
R} R}
ds? :Z—g(dzz—kn"’”dxmdx,,), 2273.

(63)
In this metric the boundary of AdSs space consists of the
Minkowski space in the region z = 0 plus a point in the region
Z — OQ.

Action (62) is divergent for those classical solutions which
are regular on the boundary and fall off for large z [7, 8]. To
regularize this divergence it is naturally to cutoff AdSs space
at z = ¢ o< a’/R;. This is an infrared (IR) regularization of
AdS SUGRA. Now any classical solution with
&(z =¢,x) = Py(x) can be expanded in terms that obey

&(z = ¢, x) = exp [ik,,x"], where k,, is the four-momentum
[8]. The unique normalizable [7, 8] solution with the latter
boundary condition and which is regular as z — oo is [7, 8]:

(kz)* K, (kz)

exp [ikm Xm] ) k= |kn|. (64)

Here K, is the modified Bessel function.
The action for this solution is [7, 8]:

S™ (&) o N* Jd4de4y Do (x)Po(v)

4
X (62 + |xm - Ym|2) + 0(52) ) (65)

where @y (x) = exp [ik,,x™]. The prefactor N2 in the integrals
(65) emerges because R} o< N2. There is no contribution to
(65), which is of the order of 0502, from higher order
corrections in (62).

At the same time, the generating functional in the SYM
picture is:

Z(®y) = JD&W ...exp {7?Jd4x Tr [.fmzn +.. ]

+éjd4x By (x) Tr | nfﬁ---}}- (66)
Dots in this equation stand for the superpartners of a,,. Now
&y (x) is the source for the operator that is the SYM classical
action. According to (54) and (33) it should be equal to the
dilaton’s boundary value @(z = ¢, x).

Integrating over the SYM fields in (66), we get:

Z(®g) = const - exp {—const : in4de4y Do (x)Po ()

X <Tr[f,,2n(x)+...} Tr [fn;(y)+...}>+...} (67)

up to the quadratic order in the dilaton. Because of
restrictions imposed by N' =4 SUSY invariance we know
the exact value of the correlator:

2

(Tr[j2) + T [f20) + .. ]) . (68)

|xm _ym‘g

Here N? appears as the number of degrees of freedom in SYM
theory. In fact, N =4 SYM theory is superconformal and,
hence is not confining: the degrees of freedom are the same at
all scales.

Now in Eqns (67), (68) a UV divergence appears when
x = y. It can be regularized via point splitting. Concisely, this
means that all distances in four-dimensional space-time must
be larger than some regularization parameter ¢’. In this
regularization scheme we have:

(T [f200+. T [720)+.. 1)
N2
B (6 2 + |xm —ym\Z)

7 +contact terms. (69)

In conclusion, if we equate ¢’ = ¢, we find an agreement
between the LHS and RHS of (54). Furthermore, we find that
the IR regularization on the SUGRA side is related to the UV
one in SYM [7, 8]. Thus, Rs/a’ plays the role of a UV
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regularization on the SYM side. Note that one can vary the
SYM UV regularization parameter as well as the position of
the boundary of the AdSs space by SO(4,2) transformations.
In other words, one can place the hyper-surface on which
SYM lives at any position r = u inside AdSs space using an
SO(4,2) transformation.

The check we just performed can also be extended to other
SYM operators and SUGRA fields [16].

3. Third, at this point one could ask: What is the meaning
of string theory for ' =4 SYM? Normally such a string
representation means confinement in the theory [1]. In fact,
consider the Wilson loop:

W(C) = TrPexp {i 1;6 dx a] . (70)

In this formula C is some contour inside four-dimensional
space-time and the trace is taken in the fundamental
representation of the gauge group.

The string representation of YM theory means that the
Wilson loop expectation value can be represented as a sum
over string world-sheets X ¢ having C as their boundary:

(W(C))y=> exp [-iS(Z()] (71)

for some string theory action S(Z¢). If one takes a large loop
C in Euclidean space this becomes:

(W(C)) o exp [-A(ZZ™M], (72)

where A(X2™) is the area of the minimal surface T»"
spanned by C. This suggests a linear potential between the
sources in the fundamental representation of the gauge group
and hence confinement [1].

One can use the AdS/CFT-correspondence in Euclidean
space [26 —28] to find a representation like (72) for the Wilson
loop expectation value in A" =4 SYM. The answer for
strongly coupled SYM theory is the same as in (72), but now
A(ZXin) is a regularized [26, 27] area of the minimal surface
spanned by the contour C. The latter now lives on the
boundary of AdS space. At the same time, the string world-
sheet lives inside AdSs space.

Note that no confinement is expected for a conformal
theory, because in such a theory one has the same degrees of
freedom at all scales. Thus, the question appears: why does an
answer like (72) for the Wilson loop average in N’ = 4 SYM
theory not lead to confinement? In other words, as the area
enclosed by C on the boundary is scaled up, why is the area
A(ZXn) not scaled up proportionately? It is the AdS
geometry that is helpful [28].

In fact, the answer to this question is clear from SO(4,2)
invariance: If we rescale C by x,, — tx,,, with a large positive
¢, then by conformal invariance we can rescale ™", by
Xm — tx, and z — ¢tz [see (63)], without changing its area A.
Thus the area A need not be proportional to the area enclosed
by C on the boundary. Since, however, in this process we had
to scale z — 7z with a very large ¢, the surface X g‘i“ which is
bounded by a very large circle C should extend very far away
from the boundary of AdSs space. This is perfectly consistent
with AdS geometry. Direct calculation in Refs [26, 27] shows
that these considerations are correct.

There exist other arguments in favor of the validity of the
AdS/CFT-correspondence [16], but we shall stop here, since

we hope that this is enough to convince the reader that the
AdS/CFT-correspondence is justified.

6. Conclusions

Thus we see that the AdS/CFT-correspondence provides the
first example of a string theory description of SYM. It is
worth mentioning that analogues of the AdS/CFT-corre-
spondence can also be established for SYM theories in other
dimensions [29]. Moreover, it can be generalized to conformal
YM theories with less SUSY [30, 31]. There are general-
izations of the AdS/CFT-correspondence for non-conformal
theories [28, 32, 33].

Furthermore, as is usual for such statements, which relate
two seemingly unrelated theories, this correspondence is
useful for both of its constituents [16]. Besides the fact that
the correspondence suggests a string description of SYM, it
gives a quantum description of gravity in terms of SYM. We
mean that at distances much smaller than the characteristic
string scale (when g>N < 1) we have a SYM description of
quantum gravity: as we mentioned the AdS SUGRA appears
as an effective theory for SYM. Also, as we noticed above, the
AdS/CFT-correspondence gives an explicit example of the
Holography phenomenon, which can be important for
understanding quantum gravity.

For integrity we would like to criticise the status of the
whole subject. First, we see that it is possible to find a string
description of YM theory only in the most simplified
situation. In fact, the string description is found when YM
theory is maximally supersymmetric, when the large N limit is
taken and it is more or less testable only for the strong
coupling g>N — oo. Second, even in the latter situation the
correspondence is not rigorously derived from first principles.

My understanding of the D-brane physics and of the AdS/
CFT-correspondence was formed during discussions with
Anton Gerasimov. I would like to thank him for sharpening
my understanding of the subject. I am also indebted to
N Hambli, M Laidlow, A Losev, J Maldacena, A Marsha-
kov, A Morozov, T Pilling, R Scipioni, G Semenoff and
K Zarembo for useful comments and discussions.

This work was done with the support of an NSERC
NATO fellowship grant and the partial support of grants
INTAS-97-01-03 and RFBR 98-02-16575.

7. Appendix. BPS states

In this appendix we define BPS solitons for completeness. We
present here a standard simple exercise [11] which can, as we
hope, help understand why BPS solitons are so special.
Let us consider a two-dimensional scalar SUSY theory:
1 i< 4 1 _
S = sza [5 Q) +% POV — - V2 (¢) — 3 V() ¥,
(73)

where W is a Majorana fermion, and V(¢) is an arbitrary
function (it could be V' = —A(¢* — ¢5) or V() = —sin ¢, for
example). The theory is invariant under SUSY transforma-
tions with conserved Neuther current:

sC= @)y Y +iV(d) Y. (74)

Working with the chiral components ¥+ of the Fermi
field, the chiral components QF of the SUSY charge can be
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written as follows:

0= = [doa| (016 £ 020) W 5 V() ¥ . (75)
In this notation the SUSY algebra is:
Q?L =D+ QE =r-,
(76)

0
Q+Q7+Q7Q+=2Jdoz V() a%,

where p+ = p; + p>. The RHS of the third equality here is the
so called central charge Z of the SUSY algebra. It is
proportional to the topological charge in the theory. In fact,
for example, if V(¢) = — sin ¢, then

—+00 0
Z= J_DO doy 90 (2cos¢p).

The latter is non-zero only for (anti-) kink solutions.
From the algebra (76) one finds that:

pitp-=Z+(04 — 0 =-Z+(0++0.), (77)

hence, p. + p_ > |Z|. For a single particle state with mass M
at rest this implies
1

p-=pr=M2=5|2|. (78)
This bound is saturated for the BPS states, when as seen from
(77)

(04 +0-)BPS)=0 or (Q;—0-)|BPS)=0.

For example, this condition is satisfied for all kink and anti-
kink solutions of this theory. Thus, the BPS states compose
small representations of the SUSY algebra: some combina-
tion of supercharges acts trivially on the state, and hence does
not generate superpartners [12].

The last feature of the BPS states is crucial. In fact, if
SUSY is not broken (which can be checked from the
beginning by calculation of the Witten index for the theory),
adiabatic variations of the theory parameters do not change
representations of the SUSY algebra. Hence, if Eqn (78) holds
at some values of the parameters, it always holds and the BPS
states survive quantum corrections. Moreover one can
control the renormalization of the mass and charge using
Eqn (78), and if there is enough SUSY neither mass nor
charge are renormalized at all.
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