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Abstract. Theoretical studies on more than three spatial dimen-
sions are currently showing a distinct shift toward the ‘brane
world’ picture, in which ordinary matter (with the possible
exceptions of gravitons and hypothetical particles interacting
very weakly with matter) is within a three-dimensional subma-
nifold — brane — embedded in a multi-dimensional space. The
extra dimensions may be large and indeed infinite and may show
up directly in current or future experiments. In the present
paper the basic ideas of the brane theory are presented in an
accessible way using simple field-theoretical models.

1. Introduction

The possibility that our space has more than three spatial
dimensions has been attracting interest for many years. A
strong motivation for considering space as multi-dimensional
comes from theories which incorporate gravity in a reliable
manner — string theory and M-theory: almost all versions of
them are naturally and/or consistently formulated in space-
time of more than four dimensions. In parallel to develop-
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ments in the fundamental theory, studies along more
phenomenological lines have recently lead to new insights
on whether and how extra dimensions may manifest them-
selves, and whether and how they may help to solve long-
standing problems of particle theory (the hierarchy problem,
the cosmological constant problem, etc.).

These phenomenological studies are often based on
simplified (even over-simplified) field-theoretic models, and
this approach has its advantages and disadvantages. An
advantage is that, by considering various models, one
reveals a whole spectrum of possibilities. A disadvantage is
that some (most?) of these models may have nothing to do
with fundamental theory, so it is unclear which of these
possibilities has a chance to be realized in nature. Further-
more, quantitative estimates are often at best order-of-
magnitude, and in many cases are not available at all, as
most of these models have free parameters. Still, the
phenomenological approach, which is the subject of this
mini-review, helps to understand how to search for extra
dimensions, if they exist.

An important issue in multi-dimensional theories is the
mechanism by which extra dimensions are hidden, so that the
space-time is effectively four-dimensional insofar as known
physics is concerned. Until recently, the main emphasis was
put on Kaluza—Klein type theories, where extra dimensions
are compact and essentially homogeneous. In this picture, it is
the compactness of extra dimensions that ensures that space-
time is effectively four-dimensional at distances exceeding the
compactification scale (size of extra-dimensions). Hence, the
size of extra dimensions must be microscopic; a ‘common
wisdom’ was that this size was roughly of the order of the



872 V A Rubakov

Physics— Uspekhi 44 (9)

Planck scale (although compactifications at the electroweak
scale were also considered, e.g., Refs [1—3]). With the Planck
length /p; ~ 1073 cm and the corresponding energy scale
Mp ~ 10! GeV, probing extra dimensions directly appeared
hopeless.

Recently, however, the emphasis has shifted towards the
‘brane world’ picture which assumes that ordinary matter
(with the possible exceptions of gravitons and other,
hypothetical particles which interact very weakly with
matter) is trapped to a three-dimensional submanifold —
brane — embedded in a fundamental multi-dimensional
space. In the brane world scenario, extra dimensions may be
large, and even infinite; we shall see that they may then have
experimentally observable effects.

Certainly, the potential detectability of large and infinite
extra dimensions is one of the reasons of why they are
interesting. Another reason is that lower-dimensional mani-
folds, p-branes, are inherent in string/M-theory. Some kinds
of p-branes are capable of carrying matter fields; for example,
D-branes have gauge fields residing on them (for a review, see
Ref. [4]). Hence, the general idea of a brane world appears
naturally in the M-theory context, and, indeed, realistic
brane-world models based on M-theory have been proposed |5,
6]. Even though the phenomenological models to be discussed
in this mini-review may have nothing to do with M-theory p-
branes, one hopes that some of their properties will have
counterparts in the fundamental theory. We note in this
regard that the term ‘brane’ has a quite different meaning in
different contexts; we shall use this term for any three-
dimensional submanifold to which ordinary matter is
trapped, irrespectively of the trapping mechanism.

The purpose of this mini-review is to expose, on the basis
of simple models, some ideas and results related to large and
infinite extra dimensions. We do not attempt to give a
comprehensive discussion of such constructions; our choice
of topics will thus be very personal, and the list of references
very incomplete. Nor are we going to present a historical
overview; a view of the history of the brane world scenario is
presented, for example, in Ref. [7].

2. Kaluza —Klein picture

To begin with, let us outline the basic idea of the Kaluza—
Klein scenario; this will serve as a point of reference for
further discussions. The simplest case is one extra spatial
dimension z, so that the complete set of coordinates in (4 + 1)-
dimensional space-time is (x#,z), u=0,1,2,3. The low
energy physics will be effectively four-dimensional if the
coordinate z is compact with a certain compactification
radius R. This means that z runs from 0 to 2nR, and points
z=0and z = 2nR are identified.

In other words, the four-dimensional space is a cylinder
whose three dimensions x !, x2, x3 are infinite, and the fourth
dimension z is a circle of radius R. Assuming that this cylinder
is homogeneous and that the metric is flat, one writes a
complete set of wave functions of a free massless particle on
this cylinder (e.g., solutions to a five-dimensional Klein—
Gordon equation),

¢p,n:exp(ip,tx")expl%z, n=0,+1,+£2,...

Here p, is the (3 + 1)-dimensional momentum and 7 is the
eigenvalue of the (one-dimensional) angular momentum.

Since ¢(x,z) obeys [(5)¢ = 0, these quantities are related,

n?

Pup" =53 =0. (1)

Hence, inhomogeneous modes with n # 0 carry an energy of
order 1/R, and they cannot be excited in low energy
processes. Below the energy scale 1/R, only homogeneous
modes with n =0 are relevant, and low energy physics is
effectively four-dimensional.

From the (3+ 1)-dimensional point of view, each
Kaluza —Klein (KK) mode can be interpreted as a separate
type of particle with mass m, = |n|/R, according to Eqn (1).
Every multi-dimensional field corresponds to a Kaluza-—
Klein tower of four-dimensional particles with increasing
masses. At low energies, only massless (on the scale 1/R)
particles can be produced, whereas at £ ~ 1/R extra dimen-
sions will show up. Since the KK partners of ordinary
particles (electrons, photons, etc.) have not been observed,
the energy scale 1/R must be at least in the few hundred GeV
range, so in the Kaluza—Klein scenario, the size of the extra
dimensions must be microscopic (R < 1077 cm). These
properties are inherent in all Kaluza—Klein type models
(with larger number of extra dimensions, compactifications
on non-trivial manifolds or orbifolds instead of a circle, etc.).

3. Localized matter

To see that it is indeed conceivable that ordinary matter may
be trapped to a brane, in this section we present simple field-
theoretic models exhibiting this property. Throughout this
section we neglect gravity; new possibilities emerging when
gravitational interactions are included will be considered later
on.

3.1 Localized fermions
It is fairly straightforward to construct field-theoretic models
with localized fermions. The simplest model of this sort has
one extra dimension z, with the brane being a domain wall [8]
(see also Ref. [9]). Namely, let us consider a theory of one real
scalar field ¢ whose action is
4 1 2
5, = [ atvaz | S @107 - o). o)

Here the subscript 4 denotes all five coordinates, and the
scalar potential V(¢) has a double-well shape with two
degenerate minima at ¢ = +wv, as shown in Fig. 1.

-v v @

Figure 1. Scalar potential in model (2).




September, 2001

Large and infinite extra dimensions 873

?.(2)

8}

Figure 2. Domain wall solution.

There exists a classical solution ¢(z), a kink, depending
on one coordinate only. This solution is sketched in Fig. 2. It
has asymptotics

(/)C(ZH+OO) =, (PC(Zi)ioO) =0
and describes a domain wall separating two classical vacua of
the model. Obviously, the field ¢ (z) breaks translational
invariance along the extra dimension, but leaves the four-
dimensional Poincaré invariance intact.

Let us now introduce fermions into this model. We recall
that fermions in five-dimensional space-time are four-
component columns, and that the five-dimensional gamma-
matrices can be chosen as follows,

=yt p=0,1,2,3,
FZ:ii'ysa

where y* and y> are the standard Dirac matrices of four-
dimensional theory.

Introducing the Yukawa interaction of fermions with the
scalar field ¢, we write the five-dimensional action for
fermions,

Sy = Jd“xdz (iPr*0,¥ — ho¥?¥P). (3)
Note that in each of the scalar field vacua, ¢ = +wv, five-
dimensional fermions acquire a mass

ms = hv.

Let us consider fermions in the domain wall background.
The corresponding Dirac equation is

ir*1o,4% — he (2)¥ =0. (4)

Due to unbroken four-dimensional Poincaré invariance, the
fermion wave functions may be characterized by a four-
momentum p,, and we are interested in the spectrum of
four-dimensional masses m? = p, p*. A key point is that
there exists a zero mode [10], a solution to Eqn (4) with
m = 0. For this mode one has y*p,¥¢ =0, and the Dirac
equation (4) becomes

p30.%) = ho (z) Vo .
The zero mode is left-handed from the four-dimensional
point of view,

ys¥Po = —Yo,

and has the form
"PO = eXp |:_ 4[0 dZ/h(pc(Z/):| l//L(p) ) (5)

where , (p) is the usual solution of the four-dimensional
Weyl equation. The zero mode (5) is localized near z = 0, i.e.,
at the domain wall, and at large |z| it decays exponentially,
P o< exp (—mslz]).

The spectrum of four-dimensional masses is shown in
Fig. 3. Besides the chiral zero mode, there may or may not
exist bound states, but in any case the masses of the latter are
proportional to v and are large for large v. There is also a
continuum part of the spectrum starting at m = ms; the
continuum states correspond to five-dimensional fermions
which are not bound to the domain wall and escape to
|z| = oo.

Massless four-dimensional fermions localized on the
domain wall, zero modes, are meant to mimick our matter.
They propagate with the speed of light along the domain wall,
but do not move along z. Of course, in realistic theories they
should acquire small masses by one or another mechanism.
At low energies, their interactions can produce only zero
modes again, so physics is effectively four-dimensional. Zero
modes interacting at high energies, however, will produce
continuum modes, the extra dimension will open up, and
particles will be able to leave the brane, escape to |z| = oo (if
the size of extra dimension is infinite) and literally disappear
from our world. For a four-dimensional observer (composed
of particles trapped to the brane), these high energy processes
will look like ete™ — nothing or ete™ — v + nothing. We
shall discuss later on whether these and similar processes are
indeed possible when gravitational and gauge interactions are
taken into account, whether they may lead to apparent non-
conservation of energy, electric charge, etc.

The above construction is straightforwardly generalised
to more than one extra dimension. This is done by consider-
ing, instead of the domain wall, topological defects of higher
codimensions: the Abrikosov —Nielsen —Olesen vortex in six-
dimensional space-time (D = 6, number of extra dimensions
d = 2), the 't Hooft—Polyakov monopole in D =7 (d = 3),
etc. In many cases, the existence of fermion zero modes in the
background of the topological defect is guaranteed by the
corresponding index theorem. Explicit expressions for fer-
mion zero modes in various backgrounds are given in
Refs [10—12]. As a bonus, the four-dimensional massless
fermions localized on topological defects are usually chiral.

m=ms = hv

const - v

m=20

Figure 3. Spectrum of four-dimensional masses of fermions in domain wall
background. The gap between zero mode (with m = 0) and non-zero
modes is of order hv. The continuum starts at m = ms = hv.
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Furthermore, the number of fermion zero modes may be
greater than one, so from one family of multi-dimensional
fermions one can obtain several four-dimensional families.
This possibility of explaining the origin of three Standard
Model generations has been explored in Refs [13, 14] where it
has been found that a reasonable pattern of masses and
mixings can be obtained in a fairly natural way.

3.2 Localized gauge fields

Localizing gauge fields on a brane is more difficult. The
mechanism just described does not have a chance to work, at
least for massless non-Abelian fields. The reason is as follows.
If the gauge field had a zero mode whose wave function A(z) is
localized near the brane, the four-dimensional effective
interaction between this localized field and other localized
fields (say, fermions) would involve overlap integrals of the
form

[ az i@ a6 w0, (6)

where ¥ is the fermion zero mode. We have seen that
fermion zero modes may depend on various parameters
[e.g., the coupling constant / in the example of the previous
section: the width of the zero mode explicitly depends on /, see
Eqn (5)]. Therefore, the gauge charges in effective four-
dimensional theory would be different, at least in principle,
for different types of particles, and they would take arbitrary
values depending on the overlap integrals like (6). This is
impossible in non-Abelian gauge theories where the gauge
charge is quantized, i.e., it depends only on the representation
to which a matter field belongs, up to a factor common to all
fields.

Any mechanism of localization of (non-Abelian) massless
gauge fields must automatically preserve charge universality,
i.e., ensure that gauge charges of all four-dimensional
particles are the same (up to group representation factors)
irrespectively of the structure of their wave functions in
transverse directions or other details of the mechanism that
binds these particles to our brane. To the best of author’s
knowledge, in the absence of gravity !, the only field-theoretic
mechanism 2 of gauge field localization which ensures charge
universality is that of Ref. [15]. It has been proposed to
consider a gauge theory which is in confinement phase in the
bulk (outside the brane), whereas there is no confinement on
the brane. Then the electric field of a charge residing on the
brane will not penetrate into the bulk, the multi-dimensional
Gauss’ law will reduce to the four-dimensional Gauss’ law,
and the electric field on the brane will fall off according to the
four-dimensional Coulomb law, E o< 1/r2.

A dual analogue of this situation is an inhomogeneous
superconductor with superconductivity destroyed on a plane
(i.e., a Cooper pair condensate vanishing on the plane).
Magnetic monopoles placed far away from the plane will
experience confinement (there will be an Abrikosov vortex
connecting a monopole and anti-monopole), while mono-
poles residing on the plane will interact according to the two-
dimensional Coulomb law.

Charge universality in this setting is ensured by confine-
ment in the bulk. If charge is displaced from the brane, a

UIf gravity is turned on, other mechanisms may appear, as we discuss later.
2 An alternative mechanism proposed in Refs [16— 18] does not, in general,
preserve charge universality, and, therefore, it has problems in the non-
Abelian case. These will be discussed elsewhere.

\BE

Figure 4. Charge ¢, displaced from the brane, is connected to the brane by a
flux tube.

vortex connecting this charge to the brane and carrying all of
the flux will be formed as shown in Fig. 4. The gauge field
induced by this charge on the brane at large distances will be
independent of the position of this charge in extra dimensions
and will be identical to the three-dimensional Coulomb field
of a charge placed exactly on the brane.

This picture can be made explicit [19] by considering an
Abelian model of dual superconductivity in an arbitrary
number of dimensions, along the lines of Ref. [20]. The
corresponding calculations are rather involved, and we do
not reproduce them here.

It is worth noting that confinement in the bulk may imply
that all states propagating in the bulk are heavy. If the
corresponding mass gap is large enough, light particles
carrying gauge charges will be bound to the brane, and bulk
modes will not be excited at low energies. Hence, the
mechanism of Ref. [15] is simultaneously the mechanism for
trapping matter (fermions, Higgs bosons, etc.) to the brane,
alternative to that discussed in Section 3.1.

We would like to warn the reader, however, that it is not
known whether non-Abelian field theories, exhibiting con-
finement, exist at all in more than four space-time dimensions.
So, in the field theory context, the mechanism of Ref. [15] is
somewhat up in the air. On the other hand, the picture with
confinement in the bulk and no confinement on the brane has
a lot of similarities with the localization of gauge fields on D-
branes of string/M-theory.

4. Large extra dimensions

4.1 Size of extra dimensions
Localization of matter on a brane explains why low energy
physics is effectively four-dimensional insofar as all interac-
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tions except gravity are concerned. To include gravity, one
may proceed in different ways. One approach [21, 22],
hereafter called ADD, is to neglect the brane tension (energy
density per unit three-volume of the brane) and consider
compact extra dimensions. In this way the Kaluza—Klein
picture is reintroduced.

The size of extra dimensions R need not, however, be
microscopic (we assume for simplicity that the sizes of all
extra dimensions are of the same order). Indeed, the distances
at which non-gravitational interactions cease to be four-
dimensional are determined by the dynamics on the brane,
and may be much smaller than R. Only gravity becomes
multi-dimensional at scales just below R. The four-dimen-
sional law of gravitational attraction has been established
experimentally down to distances ? of about 0.2 mm [23], so
the size of the extra dimensions is allowed to be as large as
0.1 mm.

This possibility opens up a new way to address the
hierarchy problem [21, 22], the problem of why the electro-
weak scale (of order Mgw ~ 1 TeV) is so different from the
Planck scale (Mp ~ 10'® TeV). In multi-dimensional the-
ories, the four-dimensional Planck scale is not a fundamental
parameter. Rather, the mass scale of multi-dimensional
gravity, which we denote simply by M, is fundamental, as it
is this latter scale that enters the full multi-dimensional
gravitational action,

1
S=——— |dPx /o) RD) 7
lénG(D)J ¢ RO, ™)
where
1 1
Gy =303 = 3742

is the fundamental D-dimensional Newton’s constant,
d=D —4 is the number of extra dimensions, and
d’X =d*xd’z

In the ADD picture, the long-distance four-dimensional
gravity is mediated by the graviton zero mode (cf. Section 2)
whose wave function is homogeneous over extra dimensions.
Hence, the four-dimensional effective action describing long-
distance gravity is obtained from Eqn (7) by taking the metric
to be independent of extra coordinates z.

The integration over z is then trivial, and the effective
four-dimensional gravitational action is

Viay 4
=W 1d%/g@R®
Seff 167’EG(D)J Ve ’

where Vg ~ R is the volume of extra dimensions. We see
that the four-dimensional Planck mass is, up to a numerical
factor of order one, equal to

Mp = M(MR)"* . (8)

If the size of extra dimensions is large compared to the
fundamental length M~!, the Planck mass Mp; is much larger
than the fundamental gravity scale M.

3 Until recently, the distance down to which the Newton law had been
established experimentally was in the several millimeter range [24, 25], for
a review see Ref. [26]. The new round of experiments was stimulated
precicely by the idea that extra dimensions may be large.

One may push this line of reasoning to the extreme and
suppose that the fundamental gravity scale is of the same
order as the electroweak scale, M ~ 1 TeV. Then the
hierarchy between Mp; and Mgy is entirely due to the large
size of extra dimensions. The hierarchy problem now becomes
the problem of explaining why R is large. This is certainly an
interesting reformulation.

Assuming that M ~ 1 TeV, one calculates from Eqn (8)
the value of R,

Mo\ 24
R~ M™! (7”) ~ 1034 % 107" ¢m. (9)

For one extra dimension one obtains an unacceptably large
value of R.

An interesting case is d = 2 when roughly R ~ 1 mm. This
observation [21] stimulated recent activity in the experimental
search for deviations from Newton’s gravity law at sub-
millimeter distances. As we shall discuss later, a mass scale
as low as M ~ 1 TeV is in fact excluded, for d =2, by
astrophysics and cosmology; a more realistic value
M ~ 30 TeV implies R ~ 1—10 um. This motivates a search
for deviations from Newton’s law in the micro-meter range,
which is difficult but not impossible [27, 28].

For d > 2, Eqn (9) results in smaller values of R. For
example, for d = 3 and M ~ 1 TeV one obtains R ~ 107° cm.
A search for violation of Newton’s law at these scales appears
hopeless. For d =6 (the full dimensionality of space-time
D =10, as suggested by superstring theory), one has
R ~ 1072 cm, which is still much larger than the electroweak
scale, (1 TeV)~™! ~ 1077 cm. We note, however, that the
compactification scales of different extra dimensions are not
guaranteed to be of the same order; if some of these are much
smaller than the others, the situation with deviations from
Newton’s gravity in spaces with d > 2 may be similar to that
of d = 2. In other words, deviations from Newton’s gravity
law may occur in the micro-meter range even for d > 2.

4.2 Light KK gravitons:

colliders, cosmology and astrophysics

If the fundamental gravity scale is indeed in the TeV range,
one expects that extra dimensions should start showing up in
collider experiments at energies approaching this scale. In the
picture described in this section, extra dimensions are felt
exclusively by gravitons capable of propagating in the bulk.
Hence, the most distinctive feature of this scenario is the
possibility to emit gravitons into the bulk; this process has a
strong dependence on the center-of-mass energy of particles
colliding on the brane and has a large probability at energies
comparable to the fundamental gravity scale.

From the four-dimensional viewpoint, the emission of
gravitons into extra dimensions corresponds to the produc-
tion of Kaluza—Klein gravitons. One process of this type is
shown in Fig. 5.

Each of the KK graviton states interacts with matter on
the brane with four-dimensional gravitational strength.
Indeed, the quadratic action for each type of KK graviton,
and its interaction with matter on the brane are schematically
(omitting all indices, tensor structure, etc.) written as

Sa J dPX [0h(x) exp (iqnz)] " [0h(x) exp (iqnz)]

- 16TCG(D)

+ Jd“xh(x) T(x).
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KK-graviton

Figure 5. Emission of a graviton into extra dimensions (or, equivalently,
creation of a KK graviton) in the process e*e™ — vy + graviton. The
electron, positron and photon propagate along the brane; the graviton
escapes into the bulk.

where q, are the discrete momenta along the extra dimensions
[in the case of toroidal compactification with equal sizes of
extra dimensions one has q, =n/R, n = (ny,... ng)] and T,
is the energy-momentum tensor of matter on the brane. The
integration over z again gives the volume factor V() in front
of the first term, so the coupling of each type of KK graviton
is determined by the four-dimensional Planck mass.

Even though the coupling of every KK graviton is weak,
the total emission rate of KK gravitons is large at energies
approaching M due to the large number of KK graviton
states. The produced KK gravitons will fly away from a
detector, so typical collider processes will involve missing
energy, for example

e'e” — v+ Er (10)

or

qq — jet + £r. (11)

The cross section of production of a KK graviton of a
given type in process (10) is of order o/ M3, so the total cross
section is of order

_ o
a(e’e _"Y+ET)NWN(E)7
Pl

where E'is the center-of-mass energy, and N(E) is the number
of species of KK gravitons with masses below E. Since the
momenta along extra dimensions, q,, are quantized in units of
1/R, and the KK graviton masses are n1, = |q,|, one has

N(E) ~ (ER)". (12)

Making use of relation (8) one obtains

- o E d+2
st v+ B~ ()

Hence, the cross section indeed rapidly increases with the
center-of-mass energy, and at £ ~ M becomes comparable to
the electromagnetic cross sections.

The processes (10), (11) have been analyzed in detail in
Refs [29, 30]. It has been found that CERN LHC, as well as
e*e” collider with the center-of-mass energy 1 TeV, will probe
the fundamental gravity scale M up to several TeV, the precise
number depending on d, the number of extra dimensions.

Another effect of extra dimensions for collider physics is
the exchange of virtual KK gravitons [34, 29, 31—-33]. The
search for this effect at future colliders will also be sensitive to
the scale M in the multi-TeV range.

Light KK gravitons are an essentially model-independent
feature of the ADD scenario (see, however, Ref. [35]). If
M ~ 1 TeV isindeed the fundamental scale of the theory, one
may expect that the physics at this scale is very rich, in
particular, that there exist new particles with masses of
order M, either bound to the brane or propagating in the
bulk. These particles may be fairly strongly coupled to
ordinary matter; in particular, they may well carry gauge
charges, and behave like heavy electrons, quarks, vector or
scalar bosons. Their properties are more model-dependent,
but in any case, current and future collider searches for such
states are of interest from this point of view. The study of
manifestations of these heavy states has been performed, in
the string theory context, in Refs [36—38].

Coming back to light KK gravitons, one notes that they
may have important effects in cosmology and astrophysics. In
the early Universe, they can be produced at high enough
temperatures, and therefore may destroy the standard Big
Bang picture [34]. Consistency with the Big Bang nucleo-
synthesis, as well as the present composition of the Universe
impose strong bounds on the maximum temperature of the
Universe [34], as we shall now see.

At a high enough temperature, 7 > 1/R, the creation rate
(per unit time per unit volume) of one KK graviton species of
mass m, < Tis estimated as

T6

F ~ W 5

Pl
where the factor Mp? comes from the strength of the
graviton—matter interaction, and the dependence on tem-
perature is restored on dimensional grounds. Taking into
account the number of KK states, cf. Eqn (12), one obtains an
estimate for the total rate of creation of KK gravitons,

dn  T® ¢ (T
— ~— (TR ~ T* = 13
&~ gz (TR =) (13)
where the latter relation comes from Eqn (8).

Assuming that the Universe expands in the standard
way 4,

T2

H—i*,
MPI

(14)

4If KK gravitons were dominated the expansion of the Universe, Eqn (13)
would not hold. It is straightforward to see, however, that such a scenario
is not viable, so we do not consider this case.
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with My = Mp/1.66g)/% ~ 10" GeV, where g, is the
effective number of degrees of freedom, one finds the total
number density of KK gravitons created in the Hubble time
H™!,

T 2+d
n(T)~T2Mf§l(M> .

Even though the creation rate (13) is fairly small at 7' < M,
the total number of gravitons may be large because of the slow
expansion rate (14).

A stringent bound on the maximum temperature 7, that
ever occurred in the Universe after inflation, emerges if one
takes the ADD picture literally, i.e., assumes that KK
gravitons survive in the bulk. Most of the gravitons created
at temperature 7, have masses of order T.. Below this
temperature they are non-relativistic, and their number
density scales as T3.

Hence, in the nucleosynthesis epoch (Tns ~ 1 MeV) the
mass density of KK gravitons is of order

TNS 3 T 2+d
pun(Ts) ~ (28) 2o ~ i (32) - 19

Requiring this energy density to be lower than that of one
massless species (otherwise the standard Big Bang nucleo-
synthesis would fail), i.e., that p,,,(Tns) < Tg. yields

1/(2+d
T. < M(E> e ~ M x 10721/
Mj,
For d=2 and M =1 TeV one finds that the maximum
temperature should not exceed 10 MeV, and even for d =6
one obtains a fairly low maximum temperature, 7, < 1 GeV.

Even stronger bounds on 7, are obtained by requiring
that the present mass density of KK gravitons should not
exceed the actual energy density, which is close to the critical
density, and that decaying KK gravitons not produce too
much diffuse photon background [34]. For d = 2, the very
fact that the Universe underwent the nucleosynthesis epoch
[i.e., that T, = (a few) MeV] pushes the fundamental gravity
scale up to M = (a few) x 10 TeV.

A low maximum temperature of the Universe (say, in the
range 10 MeV —1 GeV) does not directly contradict cosmo-
logical data: we know for sure that the Universe underwent
the standard hot Big Bang evolution in the nucleosynthesis
epoch, but have no observational handle on higher tempera-
ture epochs 3. With low T, however, one has to invoke fairly
exotic mechanisms of baryogenesis and inflation, which are
possible but not very appealing.

We note in passing that we have assumed in the above
discussion that KK gravitons do not decay before the
nucleosynthesis epoch. This is correct if nothing happens to
gravitons emitted into the bulk: the width of a graviton with
mass of order T, with respect to decay into ordinary particles
(photons, e"e™-pairs, etc.) is of order T}/Mp, which, for
T. <1 GeV (and even for substantially larger T,), is much
smaller than the expansion rate before and during nucleo-
synthesis, H ~ Tg/ My,

One might invent mechanisms of faster decay of KK
gravitons into something massless in the bulk (or on a
different brane). Then the energy density of the latter would

3 This has been explored in detail in Ref. [39].

scale as T#, and the cosmological constraints on T, would be
weaker. Still, T, is required to be rather low. Indeed, instead
of Eqn (15) one would have

Tns\? T4 (T, 2+d
pextra(TNS) ~ < T. ) T*I’Z(T*) ~ ,;jks MPI M .

Requiring again that pgy, (Tns) < T, one obtains

M\ VD)
E$M<*> .
My,

For M ~ 1 TeV and d = 2 one again obtains 7T, < 10 MeV,
whereas for d =6 one has T, <10 GeV. This model-
independent estimate shows that the maximum temperature
must be rather low irrespectively of the fate of emitted KK
gravitons.

Light KK gravitons are potentially dangerous for astro-
physics as well, as they may be produced by stars or
supernovae, take away energy, and hence contradict observa-
tional data [34]. Strong bounds on the fundamental scale M
are obtained in this way for d = 2 only, as for a larger number
of extra dimensions, the number of KK graviton states with
small masses is suppressed, cf. Eqn (12). As an example, by
requiring that the emission of gravitons during the collapse of
SN1987a is not the dominant cooling process (otherwise no
neutrinos would be produced, in contradiction to observa-
tions), one obtains [34, 40 —42]

M >30TeV,

which is comparable to the cosmological bounds.

Note, however that this bound is obtained without any
assumptions concerning the lifetime of KK gravitons. As we
already mentioned, with such a high scale M, the deviations
from Newton’s law are only allowed well below 1 mm — more
realistically, at distances at most in the 1 to 10 um range. An
even stronger bound is obtained in Ref. [43] under the
assumption that KK gravitons produced during supernovae
collapses decay into ordinary photons (and not, say, into
particles residing on other branes).

Thus, the ADD picture predicts interesting phenomena at
the TeV energy scale: its model-independent feature is the
existence of light KK gravitons which would show up on
colliders either directly, in processes (10), (11), or indirectly,
through contact interactions induced by the exchange by
virtual KK gravitons. Model-dependent features include
heavy partners of ordinary particles. Cosmology in the
ADD scenario is not, however, very appealing: the maximum
temperature of the Universe must be below 10 GeV, so one
has to rely upon fairly exotic mechanisms of baryogenesis and
inflation.

4.3 Sterile neutrinos in the bulk

Besides gravitons, there may exist other light fields not bound
to the brane and freely propagating in the bulk. The large
number of their KK states of very small masses will be
phenomenologically acceptable only if these fields are
neutral under the Standard Model gauge group
SU(3), x SU(2); x U(1). An interesting candidate is a
neutral fermion which couples to conventional left-handed
neutrinos and the Standard Model Higgs field, both trapped
to the brane. This interaction induces naturally small Dirac
neutrino masses [44, 45].
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The D-dimensional action involving D-dimensional fields
V¥, and H, whose zero modes describe a four-dimensional
flavor neutrino and Higgs boson, respectively, and a neutral
bulk fermion ¥ is

Sy = Jd“xddz‘i’FAaA‘P - KJd4xddz‘i’vH‘P +he +...
(16)

where dots denote terms without the neutral fermion W. The
coupling constant has dimension (mass)_‘l/2

Let us consider the effective four-dimensional theory of
the usual neutrino and Higgs field interacting with KK modes
of the bulk fermion. For ¥, and H we write

W, (x,z) = v(x)o(2),

H(x,z) = h(x)Ho(z), (17)
where v(x) and H(x) are four-dimensional fields and ,(z)
and Hy(z) are wave functions in transverse dimensions. The
latter concentrate near the brane, z = 0, and are normalised
to unity.

For the neutral bulk fermion, we have KK decomposition

inz

¥ie) Y g on(g ).

where the factor R~“/? is introduced for canonical normal-

ization of the four-dimensional fermion ,(x). The effective
four-dimensional theory is then described by the effective
action

o0 _ _ K:/ B
Setr = Jd“x <l//n“/” O — ma¥a¥n— 2o VLh‘//n,R> o
n=0
(18)

where m, ~ |n|/R and we assume that the neutrino zero mode
is four-dimensionally left-handed (which is necessary for
realistic phenomenology and is natural in field-theoretic
models, as discussed in Section 3).

The coupling k' involves the overlap integral of y,(z) and
H(z) which does not contain R-dependent factors, and hence
is naturally of order one, so that

K ~K.

Once the Higgs field / acquires the vacuum expectation value
v ~ Mgw, the last term in Eqn (18) induces the Dirac neutrino
mass

K'v
my LR = W .

(19)

Forn = 0 (the lowest KK state of the bulk fermion), this is the
only mass term in the effective theory; this implies that if
my, g < 1/R(i.e.,my g < my forn # 0), then the KK modes
with n # 0 are irrelevant at very low energies, and the four-
dimensional theory reduces to the theory of a Dirac neutrino
with mass (19), plus other sterile fermions which decouple.
Since the Dirac mass (19) is suppressed by the size of extra
dimensions, it is naturally small. Taking, as a crude estimate,

K',NK:N M*d/z’

where M is again the fundamental gravity scale, one finds

v

My LR~ ————7> -
v (MR)d/Z

Recalling relation (8), one obtains

My LR~ 77—
Mp;’

which is of order 10™* eV for M ~ (a few)x TeV. This
estimate suggests that the neutrino masses may naturally fall
in the ballpark suggested by solar and atmospheric neutrino
data.

It is worth noting that the reason for the smallness of the
neutrino masses in this picture has precisely the same origin as
the smallness of the four-dimensional Newton’s constant: the
bulk fields spread over the whole space of extra dimensions,
and thus interact very weakly with matter residing on the
brane.

Refinement of this picture has lead to a number of
interesting effects [45-50]. The Yukawa coupling in
Eqn (16) is not, in general, flavor-diagonal. This property,
and especially the mixing of flavor neutrinos v, v, v; with
higher KK states i, induce neutrino oscillation patterns
which are often very non-trivial. It has been found that over
a reasonably wide region of the parameter space, these
patterns are consistent with experimental data on neutrino
oscillations, and that this mechanism may be discriminated,
in future experiments, from conventional four-dimensional
mechanisms. There are, however, strong constraints on this
scenario, notably, coming from SN 1987a [48, 49]. These and
other issues are reviewed, e.g., in Ref. [51].

4.4 Unification of couplings

A nice property of the four-dimensional Minimal Super-
symmetric Standard Model (MSSM), and many of its
extensions, is that the gauge couplings o;, i = 1,2, 3, corre-
sponding to the gauge groups U(1),, SU(2), and SU(3),,
respectively, unify at the Grand Unification scale
Mgyt ~ 10'® GeV (o is actually defined as (5/3)ay). This
occurs through the logarithmic running of these couplings
according to the renormalization group. Gauge coupling
unification is a very strong argument in favor of both
MSSM and Grand Unification. In theories with large extra
dimensions, this argument is apparently lost, as gravity
becomes strong at relatively low energies, so completely new
physics (strings) is to set in many orders of magnitude below
Mgur.

The situation is not so hopeless, however. At least two
possibilities have been discussed to obtain gauge coupling
unification in theories with large extra dimensions. One of
them exploits power-law running of couplings in higher-
dimensional theories [52], another invokes massless fields
propagating in two large transverse dimensions [53—55] and
leads to logarithmic unification.

The idea of power-law unification is as follows. Suppose
that there exists an energy scale y, at which extra dimensions
open up for gauge, Higgs and possibly quark and lepton fields
of MSSM. In other words, suppose that MSSM particles can
leave our brane provided they have an energy exceeding u.
Then below this scale, MSSM is effectively four-dimensional,
whereas above this scale it is D-dimensional. In four-
dimensional language, each MSSM particle has its KK
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partners whose masses start at y,. The fundamental gravity
scale M should then be considered as an ultraviolet cut-off for
the D-dimensional MSSM.

Since MSSM is non-renormalizable in more than four
dimensions, the low energy values of the gauge couplings
depend strongly (as a power law) on M and p,. In this sense
the gauge couplings exhibit power-law running at scales
above . The question is whether there exist M and p, both
very roughly in the TeV range, such that the gauge couplings

unify at the cut-off scale,
u (M) = 0r(M) = 03(M) = oyt (20)

and yet their low energy values are equal to the experimentally
measured ones,

3

ay' (Mz) =983, ie o'(Mz)= E ay'(M7z) =59.0,
ay {(Mz) =296, (21)
ay ' (Mz) =8.5

Relation (20) would then substitute the conventional unifica-
tion of couplings and suggest that there is a Grand Unified
Theory above the fundamental scale M. It is the power-law
running of couplings that makes this possibility not incon-
ceivable.

Let us consider a theory in d flat extra dimensions
compactified on a torus, as we did before in this section.
Consistent embedding of MSSM in a higher-dimensional
theory requires additional particles above the scale u,. A
minimal extension [52] is that the KK tower has effective
N = 2 supersymmetry: from the four-dimensional viewpoint,
there is an N = 2 vector supermultiplet for each gauge group,
an N = 2 hypermultiplet for the two Higgs fields, and 7
families of N = 2 hypermultiplets of quarks and leptons.

With this matter content, the one-loop relation between
the low energy values of the gauge couplings and their values
at the cut-off is [52]

Fram () 1]

where (by, by, b3) = (33/5,1,—3) are the usual MSSM one-
loop p-function coefficients, and

(22)

o 3
(b1,b2,b3) = (§+4n, —3 44, —6—1—4'1)

are ‘f-function coefficients’ of higher-dimensional theory.
The power-law dependence of o, !'(Mz) — o, '(M) on M
and y, which is evident from Eqn (22), is just the power-law
running of couplings; it reflects their dimensionality in
D = d + 4 dimensions.

Somewhat miraculously, the unification of couplings
indeed takes place [52], as shown schematically in Fig. 6.
This occurs irrespectively of the number of extra dimensions,
d, and the number of bulk quark-lepton generations, #.
Namely, for given M (and fixed d and 75), the parameter g,
can be chosen in such a way that Eqn (20) is satisfied. Like in
the four-dimensional MSSM, this property is non-trivial in
higher-dimensional theories: by choosing one parameter y,
one satisfies two equations simultaneously. The unification

o (M) |
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|
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|
[
[
[
[
|
[
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|
M
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Figure 6. Schematic plot of the unification of gauge couplings in the
presence of extra dimensions. For fixed o;;(Mz), the gauge couplings at the
cut-off scale M, depend on this scale (logarithmically at M, < u,and asa
power law at M, > ). Unification occurs at M, = M, where M is
interpreted as the fundamental scale.

occurs for u, just (within about an order of magnitude) below
M — the couplings run very fast above f,.

The gauge coupling at the unification point is safely
smaller than unity,

OC,‘(M) = aé}UT <1.

It has been argued in Ref. [52] that this picture is unchanged
when higher loops are taken into account. Thus, contrary to
the naive expectation, the property of coupling constant
unification may be inherent in theories with large extra
dimensions, although instead of logarithmic unification, one
may have faster, power-law unification in these theories.

It is worth noting that in theories with large extra
dimensions, unification of gauge couplings does not, gener-
ally speaking, require supersymmetry. In a number of non-
supersymmetric higher-dimensional extensions of the Stan-
dard Model, gauge couplings exhibit power-law unification
as well [52]. Hence, both motivations for supersymmetry —
stabilization of the electroweak scale and gauge coupling
unification — are not as strong in theories with large extra
dimensions as they are in four-dimensional theories.

The power-law unification has its problems, however. A
technical problem is that this picture is generically unstable
against the effects of possible non-renormalizable operators
added at the cut-off scale. Aesthetically, it is not appealing
that the ‘old’ unification is given up: the logarithmic
unification inherent in MSSM appears a pure accident.

The logarithmic ‘running’ of gauge couplings in theories
with large extra dimensions may occur in the following, rather
unexpected way [53-55]. Suppose, in the spirit of string
theory, that the gauge couplings are in fact massless scalar
fields o, ~! (z) which propagate in two large extra dimensions °.

6 The actual number of large extra dimensions need not be equal to two; it
isimportant only that the scalar fields are effectively two-dimensional [55].
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Suppose also that besides our brane, there exists another
brane which serves as a source for these fields and at which the
couplings are unified,

a,‘_l(zsource) = C‘()_1 ) = la 27 3.

Naturally, the distance between our and the source branes
is of the order of the size of extra dimensions R. Since the two-
dimensional propagator is a logarithm, the values of ;7! (z) at
the position of our brane 7 are

“iﬁl(zour) = %—1

i
- ﬁ 111 (|Zour - Zsource|M) (23)
with some constants ¢;, where the fundamental scale M
appears in the logarithm on dimensional grounds. For
|Zour — Zsource| ~ R ~ Mp/M? [as given by Eqn (8) with
d = 2] the logarithmic term here is

¢y Mp

SR Pt
2n M

(24)
which is almost the same logarithm as In (Mgut/MEgw) that
occurs in conventional Grand Unification.

Unlike conventional renormalization group evolution,
the ‘running’ described by Eqn (23) is an infrared effect.
Still, it works in the right direction: the values of gauge
couplings in our world differ from the ‘fundamental’ value
o, ! by large logarithms. The most miraculous thing is that in
certain stringy brane constructions, the constants in Eqn (23)
are precisely the f-function coefficients of the theory localized
on our brane!

The discussion of this property and its relation to string
dualities goes far beyond this mini-review; the reader may
consult Ref. [55] and references therein. We stress only that
this property opens up a way towards gauge coupling
unification, not merely logarithmic ‘running’ of couplings.
Although a phenomenologically acceptable model with
MSSM on our brane has not been constructed along these
lines yet, this mechanism is certainly promising, as it suggests
that the logarithmic unification existing in MSSM may have a
close counterpart in theories with large extra dimensions.

4.5 Problem with proton stability
The above discussion brings us to one more problem with
large (and also infinite) extra dimensions — the potentially
too fast proton decay. This problem is apparent if one takes
the attitude of the previous subsection and considers the
unification of gauge couplings as a signal of Grand Unifica-
tion of strong and electroweak interactions at the scale M.
In conventional Grand Unified Theories, dimension six
operators lead to proton decay with a life-time of order®

o1 (M GUT) !
P
aGur Mp \ My
With Mgyt ~ 10'¢ GeV, this is consistent with experimental
limits on the proton instability, but if Mgy is shifted to M

(which is roughly in the TeV range in the ADD scenario
discussed in this section), this estimate allows a too small

(25)

7 Here, the energy scale for oz[’l (Zour) and oy !'is the fundamental scale M.
8 In supersymmetric GUTs, proton decay also occurs due to dimension
five operators. We consider the contribution of (25) merely as an
illustration.

proton life-time. Grand Unification at the scale M should
somehow occur in such a way that the proton width is
suppressed by many orders of magnitude, as compared to
the dimensional estimate.

More generally, global quantum numbers, such as the
baryon and lepton number, may not be conserved when
quantum gravity effects are included. With the fundamental
gravity scale Mp; ~ 10'° GeV, a dimensional estimate similar
to Eqn (25), i.e.,

1 Mp\*
=, ()
p P
shows that the proton instability due to gravity effects is not
phenomenologically dangerous. However, if the fundamental
gravity scale is in the TeV range, the same estimate gives an
unacceptably small proton life-time. Hence, one has to invoke
special mechanisms (such as discrete gauge symmetries [56 —

60]) to forbid proton decay in theories with large extra
dimensions.

5. Non-factorizable geometry

5.1 Warped extra dimension

Until now we have ignored the energy density of the brane
itself, i.e., the gravitational field that the brane produces. Here
we shall see that a gravitating brane induces an interesting
geometry in multi-dimensional space, and that a number of
novel properties emerge.

When considering distance scales much larger than the
brane thickness, one may view the brane as a delta-function
source of the gravitational field. In the simplest case, the
gravitating brane is characterized by just one parameter, the
energy density per unit three-volume ¢. This quantity is also
called the brane tension. We shall mostly discuss the case of
one extra dimension, so the five-dimensional gravitational
action in the presence of the brane is

1
= |d*dz4/e®) RO
S IMG@J rerve
—AJd4xd2\/g(5)—0Jd4X gW,

where A is the five-dimensional cosmological constant, and
the integral in the last term is evaluated along the world
surface of the 3-brane with g,ﬂﬁ) being the induced metric.
The resulting field equations are straightforward to
obtain. In the bulk, these are the standard five-dimensional
Einstein equations with the cosmological constant A, while
the last term in Eqn (26) gives rise to the Israel junction
conditions [61] on the brane surface (for pedagogical
presentation of the Israel conditions see, e.g., Ref. [62]).
Notably, this set of equations allows for a solution preser-
ving four-dimensional Poincaré invariance. This fact was
extensively discussed in the D-brane context (see, e.g,
Ref. [63] and references therein) and its relevance for
phenomenological models has been stressed in Refs [64—67].
The existence of a four-dimensionally flat solution
requires fine-tuning between A and o: the five-dimensional
cosmological constant must be negative and equal to [66]

(26)

4
A= 7?1-[ G(S)O'z. (27)
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(Note that the parameters here have dimensions [A] = M?,
[6] = M*, [G(s)] = M ~?). This fine-tuning is very similar to
fine-tuning of the cosmological constant to zero in conven-
tional four-dimensional gravity; indeed, if Eqn (27) does not
hold, the intrinsic geometry on the brane is (anti-)de Sitter
rather than flat.

With relation (27) satisfied, the four-dimensionally flat
solution has the form [66]

ds* = a*(2) Ny dxFdx” — dz?, (28)
where 7,,, is the four-dimensional Minkowski metric and the
‘warp factor’ has the form

4
k:—nG(S)G.

a(z) = exp (—klz]), 3 (29)

The brane is located at z = 0.
To see that this is indeed a solution to the complete system
of Einstein equations, we write for the metric (28)

(30)

where a prime denotes the derivative with respect to z. It is
then straightforward to see that metric (28) is a solution to the
Einstein equations

G = 81‘EG(5)/1g!ES) + 8TCG(5>O'g!E€) (S(Z) ,
qu =0,
G;z = 81'EG(5)/1gZ(ZS)

provided Eqn (29) is satisfied, and

4n
2
k == _? G(S)/l7

which is equivalent to Eqn (27).
Note that Eqn (29) comes from the requirement

[a]

-3 — gl(us,) = 8nG<5)ag(€) , z=0,

A

a u
where [a'] denotes the jump of a’ at z=0. The latter
requirement is essentially the Israel condition in the case
considered.

Metric (28) is non-factorizable: unlike the metrics appear-
ing in the usual Kaluza—Klein scenarios, it does not
correspond to a product of the four-dimensional Minkowski
space and a (compact) manifold of extra dimensions. This
metric rather corresponds to two patches of anti-de Sitter
space of radius 1/k glued together along z = 0, i.e., along the
brane. The four-dimensional hypersurfaces z = const are flat;
in particular, the metric induced on the brane is the
Minkowski metric 5 e

At this point it is worth mentioning one property of metric
(28). Due to four-dimensional Poincaré invariance, every field
in this background can be decomposed into four-dimensional

plane waves,
¢ o< exp (ipux”) d,(2) .

The coordinate four-momentum p, coincides with the
physical momentum on the brane, but from the point of view
of an observer residing at z # 0, the physical four-momentum
is larger,

1

hys

PR (z) = =P (klz]) py - (32)
The modes which are soft on the brane become harder away
from the brane. This scaling property is behind many
peculiarities of physics in the background (28).

5.2 Two-brane set up

There are several approaches which make use of solution (28).
One of them [66] is to make the extra dimension compact by
introducing two branes: one with positive tension ¢ at z = 0,
and the other with negative tension (—o) located at distance
z., see Fig. 7. Allowing the negative tension brane to vibrate
freely is dangerous, as this will give rise to physical excitations
of arbitrarily large negative energy (see Ref. [68] for detailed
discussion).

To circumvent this problem, the branes are placed at fixed
points of an orbifold; in our case, this means that all bosonic
fields, including gravity, are required to be symmetric under
reflections with respect to both z., the position of the negative
tension brane, and z = 0, the position of positive tension one
(fermion fields may have more complicated symmetry proper-
ties). Metric (28) is still a solution of the complete set of
Einstein equations in the presence of the two branes; the extra
dimension is compact, as the coordinate z runs now from
z=0toz =z,

ze[0,z].
The orbifold boundary conditions (reflection symmetry)

project the undesirable negative energy modes out, and there
remain only positive energy excitations.

ag —0

Figure 7. Two-brane set up: branes of positive and negative tensions and
the warp factor between them.
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Let us consider small perturbations about the metric (28).
To make a long story short, one can use the gauge

gs=-1, g5,=0,

i.e., consider a perturbed metric of the form

ds? = [az(z)nm, + hw(x,z)} dx#dx’ —dz2.

If there are no sources of the gravitational field except for the
bulk cosmological constant and the two branes, one can
further specify the coordinate frame (i.e., fix the gauge), so
that 4, are transverse and trace-free in the bulk,
Ouhy =0, hy=0.
For all types of perturbations but one, this frame is at the
same time Gaussian normal with respect to both branes. This
means that the positions of the branes are still z=0 and
z = z.. Then all components of /,, obey the same equation
(we omit the subscripts)
2

m
h” —4k2h—02(z) h=0, (33)
where
m* =" p.p,

is the four-dimensional mass of the perturbation. The
junction conditions on the branes are (assuming the orbifold
symmetry)

h'+2kh=0 at (34)
Equations (33) and (34) determine the mass spectrum of KK
gravitons, where the mass is defined with respect to the
positive tension brane, cf. Eqn (32).

Before considering this spectrum, let us point out that
there exists one scalar mode which cannot be treated in the
above way. This mode — the radion — is massless and
corresponds to oscillations of the relative distance between
the two branes. Its properties are discussed, e.g., in Refs [69,
70, 68]. In many phenomenological models based on this set
up, a massless radion is unacceptable (we shall briefly discuss
this point below). Giving the radion a mass corresponds to
stabilizing the distance between the branes; field theory
mechanisms for this stabilization are suggested, e.g., in
Refs [71, 72]. We shall not consider the radion mode in what
follows, assuming that the distance between the branes is
stabilized in one way or another.

Let us now turn to the graviton spectrum, i.e., solutions to
Eqns (33) and (34). There exists a zero mode, m? = 0, whose
wave function, up to normalization, is

ho(z) = exp (—2kz). (35)
This mode describes the usual four-dimensional gravity.
Unlike in the Kaluza—Klein theories with factorizable
geometry, the zero-mode wave function depends on z non-
trivially, and decreases towards z = z.. This suggests that the
gravitational coupling between particles residing on the
negative tension brane is weak compared to the positive
tension brane. We shall discuss this feature in more detail
later on.

Solutions to Eqn (33) obeying the boundary condition
(34) at z=0 (not yet at z = z;) are, again up to normal-
ization,

I(z) = Ny (%) A (% exp (kz))

—-Ji (%) N, (% exp (kz)) ,

where N and J are the Bessel functions. The mass spectrum is
determined by the boundary condition (34) at z = z.. One
obtains that the mass splitting between the KK modes is of
order

(36)

Am ~ kexp (—kz.) . (37)
The phenomenological interpretation of these results depends
on whether the Standard Model particles are bound to the
brane of positive or negative tension.

5.3 Matter on negative tension brane and hierarchy

Let us first consider the possibility that ordinary matter
resides on the negative tension brane (RS1 scenario [66]).
We are interested in gravitational interactions of this matter
at large distances; then the dominant contribution to the
gravitational attraction is due to the zero graviton mode. It is
convenient to rescale the four-dimensional coordinates in
such a way that the warp factor is equal to 1 at the negative
tension brane (i.e., at z = z.),

a(z) = exp[k(z. — 2)] .

Similarly, it is convenient to normalise the zero mode so
that it is equal to 1 at the negative tension brane. Then the
massless gravitational perturbations are described by the field

hy(x,2) = exp[2k(zc — )] h®(x).

A (38)
The coordinates x* are now the physical coordinates on the
negative tension brane, and the four-dimensional graviton
field h,ﬁ) (x) couples to the energy-momentum of the ordinary
matter in the usual way,

Sint = Jd“xh,gf)wv. (39)

The strength of gravitational interactions is read off from
the quadratic part of the action for hp(,f). This is obtained by
plugging expression (38) into the five-dimensional gravita-
tional action (26). Schematically, one has

_ 1 % dZ 4 2
Sg B 16TCG(5) J,ZC az(z) dx (aﬂh)

_ “d 2z — 2)] | d*x (0,0 @)?
SEG(S)JO Zexp[ (= Z)},[ X(l )

_exp (2kze) —

1
d*x (0,h¥)? 40
enoe ) 4x (@) (40)

[the factor a~2 in the first integral can be either obtained
directly, or inferred from the structure of Eqn (33)].

The integral in the last expression is the quadratic action
for four-dimensional gravitons. Hence, the four-dimensional
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Newton’s constant is
1

-Gk —
G = Gy exp (2kz.) — 1"

(41)
which means that at relatively large z., the gravitational
interactions of matter residing on the negative tension brane
are weak.

This observation opens up a novel possibility to address
the hierarchy problem. Indeed, one can take the fundamental
five-dimensional gravity scale, as well as the inverse anti-de
Sitter radius k to be of the order of the weak scale,
Mgw ~ 1 TeV. As is clear from Eqn (41), the effective four-
dimensional Planck mass is then of order

Mpl ~ €Xp (kZC) MEW s (42)

which indicates an exponential hierarchy between the Planck
mass and the weak scale: for z. only about 37 times larger than
the anti-de Sitter radius k ~!, the value of Mp;/ MEgw is of the
right order of magnitude.

One may wonder whether the low energy theory of gravity
obtained in this set up is indeed the conventional four-
dimensional General Relativity. It has been shown explicitly
in Refs [73, 74] that this is indeed the case, provided the radion
is given a mass (see also Ref. [69]). Otherwise the radion
would act as a Brans—Dicke field with an unacceptably
strong (TeV scale) coupling to matter.

Let us now turn to KK gravitons. The mass splitting (37)
refers to the masses measured by an observer on the positive
tension brane. According to Eqn (32), the physical masses
measured by an observer on the negative tension brane are of
order

Mgray ~ k.

Hence, KK gravitons have masses in the TeV range, in clear
distinction to ADD scenario. In particular, the cosmological
difficulties inherent in the ADD picture do not appear here:
the maximum temperature of the Universe is allowed to be
just below the TeV range.

Unlike the zero mode, the coupling of KK gravitons to
matter residing on the negative tension brane is characterized
by the fundamental mass scale (of order Mgw). To see this, we
write the massive modes as follows [for m somewhat larger
than kexp (—kz.)]

h,2) = exp | L2 sin (7 exp k) = 0, ) 140 ).
@)

This expression is valid at (m/k)exp (kz) > 1, while the KK
wave functions decrease towards z = 0. The pre-factor in
Eqn (43) has been chosen in such a way that the four-
dimensional fields h,g?(x) couple to matter at z = z. with
unit strength, cf. Eqn (39).

In the same way as Eqn (40) one obtains the quadratic
action

1 dz
Sgm = ——=— d4 athm :
& 16nG(5>Ja2(z) X (@ufim)

1 J'Zc J 4 4)\2
= dz exp[—k(z. — z)] | d*x (0,4
811',G<5) o p[ ( )] ( u )
1 —exp(—kzo) [ ,4 4)\2
= 0h ). 44
e LRCT (44)

Hence, the mass scale determining the interactions of KK
gravitons with matter is of order

Mm ~ ; 5

G5k
which is of order Mgw. The interaction of matter and KK
gravitons becomes strong in the TeV energy range.

Thus, the RS1 scenario leads to an exponential hierarchy
between the weak and Planck scales. Similarly to ADD,
gravity becomes strong at TeV energies; manifestations of
this phenomenon in collider experiments will be quite
different in the RS1 model compared to ADD [75]. The
reason is of course that the graviton spectra are entirely
different; a distinctive feature of the RS1 collider phenomen-
ology is that TeV scale graviton resonances are quite strongly
coupled to ordinary particles. For further discussion of the
RS1 phenomenology see Ref. [76] and references therein.

5.4 Matter on positive tension brane

Another option is that the conventional matter resides on the
positive tension brane. An analysis similar to that leading to
Eqn (41) shows that in this case the effective four-dimensional
Newton’s constant is

1

= k——— .
G = Gy 1 —exp (—2kz.)

(45)
If one does not introduce a huge hierarchy between the
fundamental five-dimensional gravity scale and the inverse
anti-de Sitter radius k, the fundamental scale must be of the
order of Mp;. This does not mean, however, that an
exponential hierarchy between the scales cannot be gener-
ated.

There is a possibility that electroweak symmetry breaking
and/or supersymmetry breaking occur due to physics on the
negative tension brane, and are transferred to ‘our’ brane by
some or other mechanism [77]. In that case the electroweak
scale and/or supersymmetry breaking scale in our world are
naturally exponentially smaller than the Planck scale, essen-
tially because of the scaling relation (32), and the exponential
hierarchy (42) is again generated. Concrete models of this sort
have been discussed in Ref. [77], and their phenomenology
turned out to be quite interesting. Note that the masses of KK
gravitons are again in the TeV range: these are given by
Eqn (37) with k ~ Mp,.

6. Infinite extra dimensions

6.1 Localization of gravitons
The graviton zero mode (35) that appeared in the model of
Section 5, is normalizable for z, — oo, i.e., for a negative
tension brane removed away. This means that gravity is still
localized if there exists a single positive tension brane only,
and the extra dimension is infinite [67]. Hence, one is lead to
consider a model, called RS2 [67], with matter residing on the
positive tension brane and experiencing a four-dimensional
gravity law at large distances due to the exchange of the
graviton zero mode.

The fact that gravity is four-dimensional at large distances
is also clear from Eqn (45): in the limit z, — oo, the four-
dimensional Newton’s constant tends to a finite value

G =Gk
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Obviously, in this simple model, unlike in the constructions of
Sections 4 and 5, the hierarchy between the Planck and weak
scales is not explained by the physics of the extra dimension,
and one has to rely upon other, more conventional mechan-
isms (we shall mention another option later on). The interest
in this simplest set up with an infinite extra dimension is, on
the one hand, due to potentially interesting physics at low
energies, and, on the other hand, due to its connection to the
AdS/CFT correspondence (for a brief review of AdS/CFT
see, e.g., Ref. [78]).

One property of the anti-de Sitter geometry in the bulk is
worth mentioning. Although the distance from the brane to
z = oo measured along the z-axis is infinite, it is straightfor-
ward to see that z = oo is in fact a particle horizon. Indeed, let
us consider, as an example, a massive particle that starts from
the brane at 1 =0 and x = 0 with zero velocity, and then
freely moves along the z-axis. The corresponding solution to
the geodesic equation is [79, 80]

z(f) = % In(1+k%?).

The particle accelerates towards z — oo, its velocity tends
to the speed of light. According to Eqn (28), the proper-time
interval is determined by

2
de? = a?(z(1)) dt* — <%) de*.

The particle reaches z = oo at infinite time ¢, but finite proper
time

T_r" dt _
o 1 HE22 2k

Hence, z = oo is indeed the particle horizon. When consider-
ing the physics in the background (28), one has to impose
certain boundary conditions at the horizon z = co (which in
principle may affect the physics on the brane); it is usually
assumed that nothing comes in from ‘behind the horizon’.

To substantiate the claim that gravity experienced by
matter residing on the (positive tension) brane is effectively
four-dimensional at large distances, let us consider the
Kaluza—Klein gravitons. According to Eqn (36), the spec-
trum of KK gravitons is continuous and starts from zero m>.
In this situation, the wave functions of KK gravitons are to be
normalised to a delta-function [again with the measure
a~2(z), see Eqn (40)],

dz /
Jaz—(z) hm(z) hm’(z) = 5(}’}’[ —m )

Making use of the asymptotics of the Bessel functions, one
obtains that the properly normalised KK graviton wave
functions are

hon(2) = \/% {Jl (%) N (% exp (kz)>
@z
()

(46)

At large z, these wave functions oscillate,

m

hm(z) = const - sin (k exp (kz) + (pm) ,

whereas they decrease towards small z and are suppressed at
z=0,

m
hn(0) = teg/—.
(0) = cons \/;

The wave functions (46) correspond to gravitons escaping
into the extra dimension, i.e., towards z — oo (or coming
towards the brane from z = 0o). The coupling of these KK
gravitons to matter residing on the brane is fairly weak at
small m, so their production at relatively low energies (and/or
temperatures) is unimportant (for details, see Ref. [82] and
references therein). Likewise, the contribution of virtual KK
gravitons into low energy processes is small.

As an example, let us consider the contribution of KK
graviton exchange to the gravitational potential between two
unit point masses placed on the brane. Each KK graviton
produces a Yukawa type potential, so the total contribution is

o exp (—mr
AVkk (1) = =G5 J dm ’/1,,1(0)|2 ¥
0

Gk o
= —% - const - Jo dm g exp (—mr)

G4) const

r k22

(47)

Hence, the gravitational potential, including the contribu-
tion of the graviton zero mode, is [67]

G const
V(}’):—T ]+k2r2 .

The correction to Newton’s law has a power law behavior at
large r, in contrast to theories with compact extra dimensions
where the corrections are suppressed exponentially at large
distances. However, this correction is negligible at distances
exceeding the anti-de Sitter radius k£ ~'. It has been explicitly
shown in Refs [73, 74] that the tensor structure of the
gravitational interactions at large distances indeed corre-
sponds to (the weak field limit of) the four-dimensional
General Relativity. Note that the radion excitation is absent
in the RS2 model.

We have already mentioned that in the RS2 model with
one brane, an extra dimension does not help solve the
hierarchy problem. It was pointed out, however, that modest
extension of this model leads to an exponential hierarchy even
if the extra dimension is infinite [§1]. Instead of assuming that
our matter is bound to the ‘central’ brane, one may introduce
one more, ‘probe’ brane which is placed at a position z. in the
extra dimension and, for simplicity, has zero tension. Metric
(28) on this probe brane still has four-dimensional Poincaré
invariance. If our matter is put on the probe brane, the
exponential hierarchy (42) is generated in much the same
way as in the RS1 model discussed in Section 5.

6.2 Escape into extra dimensions
If one or more extra dimensions are infinite, one naturally
expects that particles may eventually leave our brane and
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escape into the extra dimension. In the RS2 model, this
process is certainly possible for gravitons, as the excitation
of a KK mode is interpreted precisely as the escape of a
graviton towards z — oo. If other fields have bulk modes, the
corresponding particles may also leave our brane. As an
example, even in the absence of gravity, fermions bound to
the brane by the mechanism presented in Section 3.1, are
capable of leaving the brane provided they are given enough
energy. As we discussed in Section 3.1, this would show up as
a process like ete™ — nothing which would be possible at
high energies.

A novelty of the bulk with an anti-de Sitter metric is that
such processes also become possible at low energies [83]. The
ultimate reason is again the scaling property (32): energies
which are low if measured at the brane position, become high
if measured at large z. Low energy physics on the brane is high
energy physics away from the brane.

Quantitatively, this feature is manifest in a peculiar
property of the KK continuum for fields having bulk
modes: the continuum starts from zero m? irrespectively of
the dynamics near the brane. Suppose now, that in the
absence of gravity, a field has a bound state of a non-zero
mass, whose wave function concentrates near the brane and
hence corresponds to a four-dimensional particle. When
gravity is turned on, this would-be bound state becomes
embedded in a continuum of KK modes, which describe
particles capable of escaping to z — oo. Hence, this would-be
bound state becomes quasi-localized (there are no true bound
states embedded in continuum, unless the potential is very
contrived): its energy obtains an imaginary part which
determines its (finite) probability of tunneling to large z. The
particle on the brane becomes metastable against escape into
an extra dimension.

To illustrate this fairly general phenomenon, let us
consider a real scalar field in the presence of the brane, with
the action

Sy :Jd4xdz\/§ {%gAB@Ad)anﬁ—% V(z)¢*|, (48)

where x4 = (x*, z) are coordinates in five-dimensional space-
time. The effects of the brane are encoded in the potential
V(z), which is assumed to tend to a (possibly, non-zero) non-
negative constant as z — oo (we assume the orbifold
symmetry z — —z for simplicity).

If gravity is switched off, the field ¢ obeys the Klein—
Gordon equation

0+ 02— V(z)p=0.

The spectrum of four-dimensional masses is determined by
the potential V(z),

puptd=mihp = [+ V(). (49)
An interesting case is when the operator on the right hand side
of this equation has discrete eigenmodes which correspond to
particles trapped to the brane. This situation is shown in
Fig. 8. The continuum starts at m? = V(c0).

When the gravity of the brane is turned on, the situation
changes. The action in the background metric (28) is

Sy = [d4xdza4 [;—2 n* 0,40, *%(a_vd’)z *% V() ¢?|,
(50)

Dn(2)

Figure 8. Binding potential ¥(z) and bound state with m? # 0 in the
absence of the warp factor.

where, as before, a(z) = exp (—klz[). Since a 2(z) grows at
large z, the first term in the integrand of Eqn (50) dominates
away from the brane over the potential term, and the
continuum of KK modes starts from zero. The eigenvalue
equation for four-dimensional masses reads now

2
L0 0.) V) b+ =0, (51)

It is useful to note that the normalization condition for the
eigenfunctions ¢,,(z) is

[dza%z) D(2) o (2) = S (52)

Indeed, the eigenvalue equation (51) can be written in the
form

_al(a4 al(bm) + a4V(Z) ¢m = m2a2¢m .

The operator entering the left hand side is Hermitian, so the
eigenfunctions are orthogonal with the measure a?(z). This is
precisely the same measure as multiplies the kinetic term in
the action, i.e., the first term in the integrand of Eqn (50).

At large z, the second term in Eqn (51) is negligible
compared to the third one. Effectively, this means that the
binding potential gets modified and tends to zero as |z| — oo,
see Fig. 9. The wave functions at z — oo are

3kz

¢(z) = const - exp <7) sin <% exp (kz) + <Pm)

Figure 9. In anti-de Sitter space, the effective binding potential gets
modified, and the would-be bound state with m? # 0 becomes quasi-
localized. The particle has the finite probability of escaping the brane via
tunneling.
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(these are normalised to a delta-function with weight a?). The
point is that the continuum spectrum is determined by the
large-z asymptotics of Eqn (51), and it starts from m? = 0
irrespectively of the form of V(z) (provided that V(z) does not
rapidly increase as z — oo). As there are no bound states
embedded in the continuum, the massive bound states of
Eqn (49) now become resonances, i.e., quasi-localized states
having finite widths of decay (finite probability of escape
from the brane to z = o0). These widths depend on the
potential V(z) binding the particles to the brane.

It is worth noting that in the RS2 model, a massless scalar
field has a zero mode even without the potential V(z) [84]. Its
wave function is ¢ = const, and it is normalizable with the
appropriate weight a?(z). Once this field is given a mass, the
would-be bound state becomes metastable against escape into
an extra dimension. For example, for constant V(z) = u?, the
mass of the four-dimensional particle is equal to [83]

_*
m—\/57 (53)

and its width of escape to z = co is

2
T [(m

The latter formula illustrates a general feature of these decays:
for small mass of the would-be bound state, the probability of
its decay into an extra dimension is small, the reason being
that the decay occurs through tunneling, and hence it is
naturally suppressed.

The above general arguments imply that the metastability
of massive particles against escape into the extra dimension
should be characteristic to all kinds of matter, including
fermions, provided these have bulk modes. The calculation
of the life-time of a fermion bound to the brane by the
mechanism of Section 3.1, has been performed in Ref. [83].
This life-time depends not only on the fermion mass and anti-
de Sitter radius, but also on other parameters, so quantitative
estimates are premature at this stage.

Yet another interesting property of anti-de Sitter bulk has
to do with virtual KK states. With massive four-dimensional
bosons only, the potential between sources is of Yukawa type.
Once there exist arbitrarily light KK states, one expects the
potential to have a long ranged tail. For example, in the scalar
field model (50) with constant V(z) = u?, one finds the
potential between two distant sources of the scalar field, ¢;
and ¢, located on the brane [83]

xp (—mr)

e
V(r) = —nqi1q2k P . — 60mq1¢> (54)

km4 r7’
where m is given by Eqn (53). The first (Yukawa) term here is
due to the exchange by a massive quasi-localized mode,
whereas the second one is due to the exchange by the KK
continuum states. In a model meant to describe a massive
four-dimensional particle, the potential has a power-law
behavior at large distances!

The assumption that the field has bulk modes, which has
been crucial for the above discussion, is not, in fact, an
innocent one, especially if the particles are charged. Indeed,
if gauge fields are localized by the mechanism of Section 3.2,
charged particles are confined in the bulk, so they do not have
bulk modes. In this scenario, the escape of a charged particle
from the brane into an extra dimension is impossible. Later
on we shall describe another mechanism of gauge field

localization, which will allow for a charged particle to escape
toz — oo.

6.3 Holographic interpretation
Is it possible to describe the low energy physics on the brane
entirely in four-dimensional language? Certainly not, if one
thinks in terms of the usual weakly coupled theories allowing
for a particle interpretation: continuum KK modes do not
correspond to particles traveling in four-dimensional space-
time along the brane. On the basis of AdS/CFT correspon-
dence [85—87] it has been argued [88, 89], however, that the
RS2 scenario may be described by a strongly coupled four-
dimensional conformal field theory (CFT) with an ultra violet
cut-off, interacting with conventional gravitational field.
The correction (47) to Newton’s gravity law is then
interpreted as coming from the ‘one loop’ contribution of
conformal matter to the graviton propagator [88, 89, 76].
Indeed, in conformal field theory language, this correction to
the graviton propagator is given by the diagram of Fig. 10 and
has the following form (indices are omitted),

3G(x — y) = const - Jd4u d*vD(x — u) (T(u) T(v)) D(v — ),

where D(x — y) is a free four-dimensional graviton propaga-
tor, and 7'(u) is the energy-momentum tensor of conformal
fields. Hence,

0,0, (8G(x — »)) = const - (T(x) T(y)) .

Now, the correlator of the energy-momentum tensor of a
conformal field theory is

(T(x) T())y = 2
(x—y)
so that
5G(x — 1) — const .
ED LTy

The contribution to the gravitational potential is the time
integral of this expression, which immediately gives

AV(r) _ cor;st

r

in agreement with Eqn (47). This is the most straightforward
check of the interpretation of KK gravitons in terms of four-
dimensional conformal field theory; there are a number of
other checks.

Likewise, the escape of a particle into an extra dimension
has a CFT interpretation as a decay into conformal modes,
now interacting with matter fields, whereas the power-law
correction to the Yukawa potential, Eqn (54), is again due to
the exchange by these modes.

T# v TZ p

u v y

Figure 10. One-loop correction to the graviton propagator due to
conformal matter in the four-dimensional equivalent theory. Thin lines
denote free graviton propagators, the thick line corresponds to the two-
point function of the energy-momentum tensor in CFT.
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Another way to see how effective conformal matter shows
up in four-dimensional theory is to consider the gravitational
field of a massive point-like particle which sits on the brane
until some moment of time (say, ¢t = 0) and then leaves the
brane and escapes into the extra dimension along the geodesic
normal to the brane [80, 90]. The four-dimensional gravita-
tional field induced by this particle is straightforward to
calculate in linearized five-dimensional theory. One finds
that outside the light cone, i.e., at (x> —¢2) > 0, the four-
dimensional gravitational field induced on the brane is still
described by the linearized Schwarzschild metric (in other
words, the four-dimensional gravitational field does not
change outside the light cone, in accord with causality).
Inside the light cone, the induced four-dimensional metric is
flat. If one defines the effective four-dimensional energy-
momentum tensor by

1
8nG4) Tﬂ(eff) =Rr@& __

(4R
v - uv 2 g,uv R )

where g,(ﬁ) is the four-dimensional metric induced on the
brane, then T,ffff) corresponds to a thin shell of matter
expanding along the four-dimensional light cone and dis-
sipating as 1/r2. This is precisely the behavior of energy-
momentum expected in any conformal field theory [91].

The holographic approach is useful for analyzing aspects
of phenomenology of the RS2 model [74, 90, 76] and sheds
new light on cosmology with infinite extra dimensions (see,
e.g., Refs [92—-94] and references therein). Conformal field
theory language is useful, to a certain extent, also in the RS1
scenario with two branes and a compact extra dimension (see,
e.g., Ref. [76] and references therein). In that case, the four-
dimensional interpretation is based on strongly coupled
theory with broken conformal invariance.

These examples show that four-dimensional conformal
field theories, weakly coupled to ordinary matter, may emerge
naturally in various multi-dimensional contexts. Irrespec-
tively of extra dimensions, it is of interest to understand the
phenomenological implications of the possible existence in
nature of a conformal sector with broken or unbroken
conformal invariance.

6.4 More than one extra dimensions.
Localization of gauge fields by gravity
One approach to extend the construction outlined above to a
space-time of more than one extra dimension is to consider
intersecting branes of codimension one [95]. In (3 + n)-
dimensional space, each of these branes has dimension
(34+n—1), so none of them by itself is a candidate for our
world. However, an intersection of (n — 1) of these branes is a
three-dimensional manifold, to which our matter may be
bound. Furthermore, gravity is naturally localized on this
intersection manifold, so this set up is phenomenologically
viable [95].

Localizing gravity on a genuine three-brane embedded in
a space with more than one extra dimension is more difficult.
For many solutions of the Einstein equations in space-time of
more than one transverse dimension, the gravitational effect
of the brane vanishes at large distances. To some extent, the
situation here is similar to classical solutions in electrody-
namics: while the electric field of a charged plane extends to
infinity, the electric fields of a charged line and a charged
point decay as 1 /rand 1/r?2, respectively. Similarly, with more
than one extra dimension, the gravitational field of a massive
brane often decreases towards infinity in transverse space, So

there is no reason for the localization of a graviton on the
brane.

One interesting exception is the geometry with compact,
but warped, additional dimension(s). In the case of two extra
dimensions, the metric of such a set up, away from the brane is

ds? = a’(z) [11/”. dx*dx" — dHZ} —dz?, (55)
where z is the coordinate along a single non-compact extra
dimension, 0 is a compact extra coordinate running from 0 to
2R and the warp factor is still

a(z) = exp (—klz) .

This metric is an asymptotic solution to the (4+1+1)-
dimensional Einstein equations with negative bulk cosmolo-
gical constant and a three-brane with an appropriately tuned
energy-momentum tensor [96] (see Refs [97, 98] for related
solutions). The brane itself is a sort of cosmic string. The
generalizations of this construction to more than two extra
dimensions have been found in Refs [99, 100]. Another way to
obtain metrics of the type (55) is to consider a (3 + n)-brane
embedded in a (3 + n + 1)-dimensional space [101]. In other
words, one considers a brane of codimension one, as in the
RS2 model, but now in (5 4 n)-dimensional space-time. Then
the metric

ds? = a*(2) [nw dx*dx’ féideid()j] —dz? (56)
which is a straightforward generalization of Eqn (28), obeys
the full Einstein equations with essentially the same fine-
tuning conditions as in the original RS2 model. One then
takes 0° to be compact coordinates, 0' € (0,21R;), so that
these dimensions are invisible at low energies in complete
analogy to the Kaluza — Klein picture.

In either case, there exists a graviton zero mode which is
independent of 07 outside the brane and decreases at large z as
exp (—2k|z|). Gravity is localized on the brane in the same
way as in the RS2 case.

A novel feature of this model is the localization of gauge
fields by gravity [102, 101]. With appropriate normalization,
the action of the gauge field in the background (56) is

1 do’
Sg‘duge = _ZJ i TR, dZd4x\/§gACgBDFABFCD.

At low energies, E < 1/R;, the relevant gauge field
configurations are independent of 8. We shall be interested
in the four-vector part of the gauge field, so we choose the
gauge A. = 0 and set 4, = 0. Then the linearized gauge field
equations are

1 n 1 v
_aZ‘H’ az(aH azAu)"_aizn a/vau :Ov (57)
0:(n"" 0, 4,) = 0. (38)

In complete analogy to Eqn (52), the eigenfunctions of
Eqn (57) are to be normalised with the measure

sza” .

For n > 0 (one or more compact warped dimensions), there
exists a zero mode, which is independent of z,

(59)

Ay =Au(x).
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This mode is normalizable with the measure (59) and
corresponds to a massless vector boson localized on the
brane.

The fact that the zero mode of the gauge field is constant
over extra dimensions, ensures charge universality, which
otherwise would be an obstacle for gauge boson localization,
as discussed in Section 3.2. With constant gauge boson zero
mode, the overlap integrals like Eqn (6) become the norms of
matter zero modes, whose values do not depend on the shapes
of the zero modes. This way to get around the charge
universality problem relies, of course, entirely on special
geometry in the bulk.

Besides the zero mode, gauge fields in the background
(56) have arbitrarily light bulk modes; the gauge theory is
not in the confinement phase in the bulk. This is in sharp
contrast to the mechanism discussed in Section 3.2. Further-
more, the gravitational mechanism of the gauge field
localization allows the electric charge, and other gauge
charges, to leak into extra dimensions. This would mean
effective non-conservation of gauge charges in our world
[101]. A process ‘e~ — nothing’ would be a clear signature of
infinite extra dimensions.

A problem [103] with the model with warped compact
dimension(s) is that metric (56) has a singularity at z = oc.
Indeed, the sizes of compact dimensions, R;exp (—k|z|), tend
to zero as z — oo. Although the proper distance to the
singularity along the z-axis is infinite, the proper distance
along time-like geodesics is finite. This implies that the
physics near the singularity may affect physics on the brane.
Possible resolutions of this singularity and their effects on the
physics on the brane have been discussed recently in
Ref. [103].

7. Further developments

Both versions of the brane world picture — with large and flat
extra dimensions, and with warped extra dimensions — have
been developed along many different lines. Without pretend-
ing to give an account of any degree of completeness, let us
briefly discuss a few of them.

7.1 Cosmological constant

In the brane world context, the cosmological constant
problem may be reformulated as a problem of why the
vacuum energy density has (almost) no effect on the
curvature induced on our brane. This reformulation sounds
suggestive, as it implies that the vacuum energy density may
affect the overall geometry of multi-dimensional space-time,
but this may occur in such a way that the metric induced on
our brane is (almost) flat. Off hand, it seems plausible that, in
the case of a non-factorizable geometry, the vacuum energy
density may induce a non-trivial warp factor, while the four-
dimensional Poincaré invariance remains intact. The latter
possibility may exist irrespectively of the brane world picture
[104, 105]. Recent attempts [106, 107] to solve the cosmologi-
cal constant problem in the framework of brane world and a
warped extra dimension, combine these ideas with the
suggestion, put forward in a similar context in four-dimen-
sional theories [108—110], that a hypothetic scalar field
conformally coupled to our matter may play an important
role. This field is taken to be a bulk field, so the action is a sum
of the bulk and brane contributions,

S = Sbulk + Sbrane .

Here the bulk term is
1 b
= 4 6) [ _ ) L P _aB
Sbulk JdZd x\/g ( 2 R +t38 aA¢aB¢> ;

where x5y = 8nG(s), b is an arbitrary constant and the space-
time is five-dimensional. The brane contribution is assumed
to have the following structure,

Sbrane = Jd“x \/ gW exp (415 $(0))

x £ (g exp (s 6(0)) )

where £ is the complete Lagrangian of matter on the brane,
stands for all fields on the brane, g,sf) is the induced metric and
¢(0) = ¢(x,z = 0) is the induced scalar field.

In the absence of real particles on the brane, the brane
Lagrangian reduces to the vacuum energy, with all quantum
effects included, interacting with gravitational and scalar
fields

Sbrane = —€vac J d*x \/g “) eXp (416(5)(#(0)) :

It is clear now, that the magnitude of ¢, is unimportant, as it
can be compensated by a shift of ¢: if for some ¢, there exists
a solution with four-dimensional Poincaré invariance, then
such a solution exists for any €y, of the same sign.

There indeed exist solutions to the resulting system of
equations, which have four-dimensional Poincaré invariance
[106, 107]. In particular, for b = 3, these are the only solutions
with maximum four-dimensional symmetry [106]: solutions
with four-dimensional de Sitter or anti-de Sitter symmetry are
absent. For b = 3, the explicit form of the metric is

& = (2 et — A2, ()

where the warp factor is

) N\ 14
a(z) = (1 -5 |z| exp (2x(5) (;50)) ,
3K(5)

and (}SO is an arbitrary parameter of the solution related to the
value of ¢p(z = 0) as follows,

S 1 8/3
(p() - ¢(0) +T(5) In (évac K(5) ) .

The induced metric on the brane is flat irrespectively of the
value of ¢y,c.

One problem with this mechanism is that metric (60) has a
naked singularity at a finite proper distance from the brane,

3 23
=5 K(5/> exp (—2k(s)) -

|Zsing

It has been argued that a possible resolution of this singularity
reintroduces the cosmological constant problem [111-113].
As an example, if one introduces another brane placed at
|z| < |zsing| (and imposes the orbifold symmetry), the singu-
larity will be absent between the branes, i.e., in the entire
orbifold. However, the tension of the second brane has to be
fine-tuned for the metric (60) to remain the solution of the
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complete set of Einstein equations. This fine-tuning is no
better than the usual fine-tuning of the cosmological constant
in four-dimensional theories.

Another potential difficulty, common to many attempts
to solve the cosmological constant problem, is that in the
presence of matter, the energy density (in our context, energy
density on the brane) contains the vacuum contribution and
the contribution of real matter. It is hard to find any
distinction between the two; in other words, the same
mechanism that compensates for the cosmological constant
will tend to modify the gravitational interactions of ordinary
matter. This causes doubts that the gravitational interactions
in these models reduce to four-dimensional General Relativ-
ity at large distances, and, in particular, that any compensa-
tion mechanism will be cosmologically viable (see, however,
Ref. [114]).

7.2 Gravity at ultra-large distances

In the relatively simple models discussed in Sections 5 and 6,
the gravity on the brane is effectively four-dimensional at
large enough distances due to the presence of the graviton
zero mode. One may wonder whether in other cases the
graviton spectrum may be more complicated, and, in
particular, whether four-dimensional gravity may be mod-
ified at ultra-large scales.

Original (and failed, see below) proposals [70, 115, 116],
exploring this possibility, invoked dynamical negative tension
branes (and one extra dimension). One of them [115] was to
consider two positive-tension branes of equal tensions ¢ and a
negative-tension brane of tension (—o) in between the two.
For simplicity, the positive-tension branes are placed at fixed
points of an orbifold; in any case, the extra dimension is
compact.

With the negative bulk cosmological constant tuned
according to Eqn (27), the warp factor has a minimum at the
position z_ of the negative-tension brane,

a(z) =exp (klz—z_|), 0<z<=z,

where z =0 and z = z. are positions of the two positive-
tension branes. In the limit z;, — oo, z_ — 00, 2z, — z_ — o0,
all three branes are infinitely far apart, and there exist two
graviton zero modes concentrating near z =0 and z = z,
respectively.

At finite, but fairly large z_ and 2z, namely
Ze,Z_,Zc — z_ > k~!, the degeneracy between the graviton
modes is lifted, as is usually the case in quantum mechanics.
One linear combination of the modes remains massless,
whereas another linear combination acquires a mass mi,
which is much smaller than the masses of KK excitations,
mxx . Hence, at intermediate distances, my . < r < my I both
the lightest and massless gravitons contribute to the four-
dimensional Newton’s law, while at ultra-large distances,
r> mg”, only the massless graviton does (in fact, the
situation is more subtle, as there exists a ‘ghost’ massless
scalar mode that also contributes to interactions at ultra-large
distances, see below). The four-dimensional gravity gets
modified at a distance m, !, which may be naturally of order
100 Mpc or larger.

Another set up [70, 116] contains a brane of positive
tension ¢ and another brane of negative tension (—o/2). The
bulk cosmological constant between the branes is again tuned
as in Eqn (27), but 4 is set equal to zero outside the negative-
tension brane. Then the four-dimensionally flat solution has a

non-trivial warp factor between the branes,

a(z) =exp (—klz[), 0<z<z_,
whereas the five-dimensional space-time is flat outside the
negative-tension brane,

a(z) =const, z>z_.

This set up has an infinite extra dimension.

In the limit z_ — oo, this set up reduces to RS2, and the
graviton zero mode exists near the positive-tension brane. For
finite z_, this would-be zero mode becomes a resonance of
small but finite width I'; [116 - 118], i.e., the four-dimensional
graviton becomes metastable against escape into the extra
dimension. At intermediate distances, k! < r < I . ! grav-
ity on the positive-tension brane is four-dimensional. At
ultra-large distances, r > I'y !, Newton’s gravity law is no
longer valid; in fact, attraction between masses changes into
repulsion at r ~ I'; ' [119, 120].

The problem [121] with these two scenarios (as well as with
intermediate ones [122]) is the existence of dynamical
(‘vibrating’) negative-tension brane(s). It has been shown
explicitly [68], in the context of the second set up, that
among the excitations about the classical solution, there
exists a four-dimensional scalar field with a negative kinetic
term, i.e., that energy is not positive-definite and, further-
more, is not bound from below. At the quantum level,
spontaneous creation of negative energy quanta is possible,
so the whole set up is unstable.

Another way [118, 123] to see that modification of gravity
at ultra-large distances is difficult, is to recall the van Dam —
Veltman—Zakharov phenomenon [124, 125]. Namely, the
effective four-dimensional description of gravity with non-
trivial properties at ultra-large distances would involve tensor
field(s) with small but non-vanishing mass (or width).
However, the propagator of the massive tensor field in the
flat background does not coincide with the massless propa-
gator even for p > m: the (relevant part of the) former is

11 1
G;(t:,z)p(p > Wl) = ]? |:§ (17/1./‘, Myp + L nv}.) - g s '/I/lp:| )

whereas the latter has another tensor structure,

0 1[1 1
G;(wjip = [ﬁ |:§ (’/Iu/l 7va + r]up ’7\@) - i n,uvrl/lp:| .

Hence, even at intermediate distances, a theory with a
massive graviton differs from General Relativity; in particu-
lar, the former would lead to a wrong (and phenomenologi-
cally unacceptable) prediction for the bending of light [118,
123]. In a flat background, the correct tensor structure may be
restored by adding a ‘ghost’ scalar field with a negative kinetic
term, which interacts with the trace of the energy-momentum
tensor with appropriate strength (1/6). This is precisely what
happens in the above scenarios.

A way out is to consider curved four-dimensional back-
grounds. As an example, a theory with a massive gravitonina
four-dimensional anti-de Sitter space-time has the correct
tensor structure of the propagator, provided the graviton
mass is smaller than the inverse AdS radius [126, 127] (see,
however, Ref. [128]). In the context of extra dimensions,
curved four-dimensional space-time emerges when condition
(27) is relaxed. Indeed, it has been found in Refs [129, 130]
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that even in models with positive-tension branes only,
relaxing condition (27) leads to four-dimensional gravity
which differs from General Relativity at ultra-large scales
(‘behind the horizon’). It remains to be understood whether
this property has observable and/or cosmologically signifi-
cant consequences.

7.3 Approximate Lorentz invariance

Extra dimensions provide, among other things, a framework
for studying whether a small violation of Lorentz invariance
is possible, and what phenomenological consequences it may
have. It has been understood long ago [131] that the geometry
of the multi-dimensional space-time may not have four-
dimensional Lorentz invariance, and yet the four-dimen-
sional geometry induced on ‘our’ brane may be invariant
under Lorentz symmetry.

As an example, in five dimensions, the warp factors of
time and three-dimensional space may be different, so the
metric may have the form

ds? = a*(z)dt? — b?(z) dx* — dz?. (61)
Classical solutions with a(z) # b(z) have been found in
Refs [131—135]; these involve additional matter in the bulk.
The four-dimensional coordinates may be chosen in such a
way that at the brane position, z = 0, the warp factors are

a(0) = b(0) = 1

and the four-dimensional metric induced on the brane is
Minkowskian.

If the wave functions of ‘our’ particles have zero width
along the fifth direction, it is this Minkowski metric that
governs the dynamics of these particles, so the effective four-
dimensional theory is exactly Lorentz-invariant. If, however,
the wave functions have finite extent in extra dimension, the
deviations of a(z) and b(z) from 1 are felt by particles on the
brane, and the four-dimensional Lorentz invariance is only
approximate. This, in particular, applies to gravitons: if a(z)
[not necessarily b(z)] decreases sufficiently rapidly towards
z — 00, gravitons are bound to the brane by essentially the
same mechanism as in the RS2 model, and the wave function
of the graviton zero mode has finite spread in the fifth
dimension.

One Lorentz-violating effect that occurs at relatively low
spatial momenta is that the dispersion relation gets modified:
instead of the usual w? = m? + p* (where w and p are energy
and three-momentum of a particle on the brane), the
dispersion relation is now

w?=m?+c’p?,

(62)
where the parameter ¢ depends on the spread of the wave
function in the fifth dimension [133, 134]. The form of the
dispersion relation (62) is in accord with the general analysis
of Ref. [136].

To see how Eqn (62) appears, let us again consider a
prototype model of a scalar field with action (48), but now in
the background metric (61). The equation for the wave
function ¢ and energy w is now

3 zZ
02— a0 b 0 + H() b,

H = —0.(ab®d,) + ab’V(z).

(63)

Note that H is Hermitian. Let us assume that at p =0,
equation (63) has a discrete eigenvalue w? =m?; the
corresponding wave function ¢,,(z) concentrates near the
brane.

At small but non-vanishing p, one considers the first term
on the right hand side of Eqn (63) as a perturbation, and
obtains the lowest order correction to the energy,

Aw? = c2p?,
where
CZ — jdzab|¢m(z)|2 )
[dz (03/a) |, (=)

For a(z) # b(z) , the parameter ¢ is non-universal, as it
depends on the shape of the wave function ¢,,. For narrow
wave functions, one has
2
Jdzz]$,,(2)|
5
Jdz|d,(2)]

The violation of Lorentz invariance is small provided the
correction to the relation ¢ = 1 is small °. The graviton wave
function is not, however, narrow in this set up, so the
violation of Lorentz invariance in gravitational sector may
be substantial. Note that the modification of the dispersion
law may take place for both massive and massless particles.

Another effect [135] occurs if a(z) and b(z) have different
asymptotics as |z| — co. Suppose that a(z) decreases faster
than b(z), i.e.,

¢ =1+2[a’(0) —b'(0)]

a(z)

a(z) —» 0, )

—0 as |z] - 00.

Suppose further that V(z) tends to a constant as |z| — oo.
Then, in complete analogy to Section 6.2, the continuum
spectrum of eigenvalues w? of Eqn (63) starts from zero (the
term proportional to V(z) is irrelevant at large |z| since
ab’V < (b*/a)w? at |z| — oo for arbitrarily small w?). For
p2 =0, there may exist a localized zero mode which would
describe a massless particle residing on a brane. Unlike in
subsection 6.2, however, the continuum also starts from zero
for p2 # 0: the term involving p? in Eqn (63) is also negligible
compared to (b*/a)w? at large |z|.

On the other hand, the zero mode gets lifted: the real part
of its energy is equal to w = c|p|. Hence, this mode becomes
quasi-localized for p? #0 (there are no bound states
embedded in the continuum). This means that even massless
particles are metastable in this set up against escape into the
extra dimension, provided the corresponding fields have bulk
modes. The larger the three-momentum |p|, the larger the
width I'(Jp|) [135]. This mechanism of metastability of
moving particles in theories with broken four-dimensional
Lorentz invariance may have interesting phenomenological
consequences, especially for the physics of ultra-high energy
cosmic rays.

7.4 Creation of a brane Universe
At the late stage of the evolution of the Universe, correspond-
ing to temperatures well below the maximum temperature 7',

9 Another possibility is that the wave functions of all particles bound to the
brane are very similar.
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in the ADD scenario or well below TeV in the RS1 and RS2
models, brane cosmology is governed by the same four-
dimensional laws as the standard FRW cosmology [137—
139] (in the case of RS1, this assertion holds only if the radion
is stabilized, otherwise the late cosmology is very unconven-
tional [140, 141]). An important assumption here is that the
bulk is empty, and, in the case of infinite extra dimensions,
that the horizon ‘does not shine’ on our brane. Are these
assumptions reasonable? Is it conceivable that our world with
all its rich structure is merely a brane embedded in an empty
multi-dimensional space?

This brings us to the problem of the beginning of the brane
Universe. The requirement that the bulk should be essentially
empty suggests a picture of spontaneous creation of ‘our’
brane in a multi-dimensional space which initially has neither
branes nor other excitations [142]. A model in which this
possibility is realized is a five-dimensional theory of four-
form field (four-index anti-symmetric tensor field) B and
branes, both charged and neutral with respect to this field.

Just like a charged particle couples to a vector field
through its world-line, Sj, = efA,l dx*#, a charged brane
couples to the four-form field through its four-dimensional
world-volume,

Sint = QJ dQ*5P B ypep .

The picture is then as follows. Suppose that the initial state of
a five-dimensional Universe contains a B-field of constant
field strength,

Hpcpe = 04 Bpepr) = /g capcpe -

If it were not for the charged branes, the field Bwould act asa
five-dimensional cosmological constant, as its field equations
would require that

h = const.

For non-vanishing 4, charged branes are created sponta-
neously [143], much in the same way as e*e -pairs are
spontaneously created by the background electric field.
Furthermore, a neutral brane has a chance to be created in
between the charged ones [142]; it is this neutral brane that is
interpreted as our Universe. The system of three branes at the
moment of their materialization is shown in Fig. 11. After
spontaneous creation, the three-volumes of all the branes
increase, the junction between the neutral and charged branes
moves away, and most of the neutral brane becomes a
homogeneous three-dimensional space. The bulk surround-
ing it remains empty.

If & is not large, the probability of brane creation is
exponentially small. So, it is natural that other branes,
which may be created in the five-dimensional space, are
extremely far away from ‘ours’. Also, with a sufficiently
complicated theory on ‘our’ brane, it is conceivable that its
initial state is such that a period of the usual four-dimensional
inflation on this brane occurs after it is created. Hence, the
model of Ref. [142] is capable of reproducing the conven-
tional cosmological picture, with our Universe being a brane
embedded in empty bulk. This model certainly represents an
interesting twist in the discussion of the origin of our
Universe.

Charged brane

RS-brane

Charged brane

Figure 11. Spontaneously created system of two charged branes with a
neutral (RS) brane between them.

8. Conclusions

Theories with large and infinite extra dimensions look rather
exotic, at least for the moment. Yet they lead to important
insights on what unusual phenomena may occur both at the
energy scales accessible to future accelerators, and at low
energies, the domains of possible rare effects. They also
provide a framework for addressing a number of phenomen-
ological issues, like the consistency of apparent non-con-
servation of energy and electric charge, the naturalness of a
small violation of Lorentz invariance and possible manifesta-
tions of a strongly coupled conformal sector which interacts
weakly with the Standard Model fields. Furthermore, new
ideas emerge in approaching fundamental problems, such as
the cosmological constant problem or the beginning of our
Universe.

All this makes the subject interesting and lively. The
question is whether Nature follows any of the routes being
explored in this context.
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write this mini-review. He thanks numerous colleagues at
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