
Abstract. Theoretical and experimental work relevant to iso-
topic (mass) effects in solids is reviewed. The effect of isotopic
composition on the phonon spectrum is discussed with particular
emphasis on chemically pure and nearly perfect semiconductor
single crystals. The fundamental role of polarization vectors in
polyatomic compounds is pointed out. Static atomic displace-
ments around isotopic impurities Ð an effect potentially lead-
ing to considerable phonon (and electron) scattering in strongly
anharmonic crystals Ð are also discussed.

1. Introduction

The characteristic properties of a chemical element are
determined by the charge of its nucleus. Most elements
possess a certain `primary group' composed of isotopes. The
isotopes of a given element are chemically identical and, in
general, they are also the same physically, with the exception
of those properties that depend directly on the atomic mass.
The isotopes may be stable or they may exhibit natural
radioactivity. There are also man-made (unstable) radio-
active isotopes. As far as stable isotopes are concerned, 21
chemical elements occur in only one configuration of protons

and neutrons (with the exception of beryllium, they all have
an odd number of protons). All other elements have from two
to ten stable isotopes. The isotope abundance in different
groups varies considerably (Table 1).

Many solids are composed of elements that have two or
more stable isotopes. The physical properties of solids to
some extent depend on the isotopic composition. As a rule,
the isotopic effects are relatively weak. In some cases,
however, the properties may vary in a considerable and even
dramatic way.

The first experimental studies of isotope effects in solids
date back to the 1930s. In 1935, Ubbelohde [2] noticed that
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Table 1. Natural isotopic compositions of certain elements [1]. The
isotopic abundances are given in at.%.

Isotope fi Isotope fi Isotope fi Isotope fi

1H
2H

6 Li
7Li

10B
11B

12C
13C

14N
15N

16O
17O
18O

19F

99.985
0.015

7.5
92.5

19.9
80.1

98.90
1.10

99.634
0.366

99.762
0.038
0.200

100

27Al

28Si
29Si
30Si

31P

32S
33S
34S
36S

35Cl
37Cl

63Cu
65Cu

64Zn

100

92.23
4.67
3.10

100

95.02
0.75
4.21
0.02

75.77
24.23

69.17
30.83

48.6

66Zn
67Zn
68Zn
70Zn

69Ga
71Ga

70Ge
72Ge
73Ge
74Ge
76Ge

74Se
76Se
77Se
78Se
80Se
82Se

27.9
4.1
18.8
0.6

60.108
39.892

21.23
27.66
7.73
35.94
7.44

0.89
9.36
7.63
23.78
49.61
8.73

75As

106Cd
108Cd
110Cd
111Cd
112Cd
113Cd
114Cd
116Cd

112Sn
114Sn
115Sn
116Sn
117Sn
118Sn
119Sn
120Sn
122Sn
124Sn

100

1.25
0.89

12.49
12.80
24.13
12.22
28.73
7.49

0.97
0.65
0.34

14.53
7.68

24.23
8.59

32.59
4.63
5.79



the replacement of one isotope in a solid with another alters
the vibrational and rotational spectra of molecules, but has
no significant effect on the structure of the interatomic
potential. Naturally, given the limited accuracy of measure-
ments and scarceness of the stable isotopes within the
researcher's reach, the first studies used the most accessible
isotopes of hydrogen Ð 1H and 2H (deuterium)Ðmainly in
complex hydrogen compounds, such as water, ammonia,
ammonium halides, metal hydrides, organic and other
compounds. Mainly studied were the isotope effects on the
structural properties. The isotopic composition was found to
affect the geometry of chemical bonds 1 and the phase
transition temperatures (in the case of polymorphous
transformations and ferroelectric phase transitions).

The rapid progress of nuclear science and technology
(including the technology of large-scale isotope separation)
for military applications during and afterWorldWar II led in
particular to the accumulation of stable isotopes of both light
and heavy elements in quantities sufficient for carrying out
experiments with simple compounds. In 1950s, such remark-
able effects were discovered as the isotopic shift of the
superconducting transition critical temperature of mercury
[4, 5] and a considerable (severalfold) increase in the thermal
conductivity of isotopically enriched germanium crystal [6].
The first of these effects was the key clue for Bardeen, Cooper
and Schrieffer [7] in their construction of the microscopic
theory of low-temperature superconductivity in 1957. Thus,
46 years after the discovery of superconductivity in mercury
byHKamerlingh-Onnes, one of themost difficult problems in
solid-state physics was finally solved. At the same time, the
isotopic effect on the thermal conductivity of germanium,
which very clearly demonstrated how strong the effect of
isotopic crystal lattice disordering can be, supported the theory
of Pomeranchuk [8] formulated as early as 1942. According to
his theory, it is the random isotope distribution over the lattice
that restricts the increase of thermal conductivity of dielectric
crystals at low temperatures. The exceptionally high thermal
conductivity of isotopically pure crystals shows promise for
adaptation to technology dealing with high thermal loads Ð
for example, in diamond monochromators for synchrotron
radiation or in microelectronics.

In subsequent years, systematic studies of isotopic effects
were performed with hydrides and deuterides, quantum
crystals, solutions of quantum liquids and crystals of 3He
and 4He. The investigations into other solid compounds were,
as a rule, incidental.

Hydrides and deuterides are heavily used in modern
technology, for example, in nuclear engineering as heat-
resistant moderators, for separation and storage of hydrogen
isotopes, in powder metallurgy, and in the chemical industry
as catalysts. Hydrides and deuterides are a unique and
peculiar object of physical studies. Isotopic substitution in
such systems considerably alters the electronic and phonon
spectra, as well as the magnetic and superconducting proper-
ties. The bulk of research has been done for hydrides and
deuterides of the transition and rare-earth metals. A review of
the experimental and theoretical works can be found, for
example, in monograph [9].

The conductivity and superconductivity of weak hydrides
and deuterides of s ± p-metals have also been studied experi-
mentally. Such compounds are obtained by forced saturation
of metals with hydrogen and deuterium. In the theoretical

aspect, these systems attracted a certain interest. The reason is
that atomic hydrogen in a metal loses its electron: the proton
is localized in the interstitial position, and the electron is
collectivized. The structure of the resulting impurity is
ultimately simple. As a result, weak hydrides make up simple
model systems, very convenient for theoretical speculations
(see, for example, monograph [10]).

Finally, it is well known that in sufficiently perfect
transition metals the hydrogen and deuterium atoms,
together with the mu-meson, are localized near the gaseous
impurities and migrate in a subbarrier way between adjacent
interstitial sites. Such tunneling atoms make up a typical
quantum-mechanical two-level system. In this case the
characteristic parameter of the problem Ð the difference in
energy between antisymmetric and symmetric states in the
`well' Ð by virtue of the Gamow factor exhibits an
exponential dependence on the mass of the light particle as�����
M
p

. Because of this, the properties associated with tunneling
show a strong dependence on the isotopic composition. The
situation is more complicated in metals where electron
screening of the tunneling particle takes place. For reviews
of this problem the reader is referred to monograph [11] and
papers [12 ± 15].

Bose and Fermi excitation branches coexist in 3He ± 4He
systems. Commonly used here is the technique for obtaining
extra low temperatures by diluting 3He in 4He. The physical
properties of 3He ± 4He systems have been discussed in a
number of reviews and monographs (see, for example, Refs
[16, 17]).

There is also a vast body of scientific literature on isotope
effects for the case of quantum crystals. Here we want to
mention the works of the Moscow group of I G Sadikov and
S N Ishmaev [18 ± 20], and the Khar'kov group of
V GManzheli|̄ [21 ± 24].

Attention is drawn to the fact that crystals composed of
several isotopes of a given element are a particular case of
crystals with impurities. Because of this, the methods and
ideas developed for slightly imperfect systems are readily
adapted to problems that relate to isotopically disordered
crystals. The foundations of the dynamical theory of crystal
lattices with impurity atoms were laid down in the works of
A A Maradudin and E Montroll [25, 26] in the West, and
I M Lifshitz and Yu M Kagan [27 ± 29] in Russia. They
studied many features of the impurity deformation of the
phonon spectrum and their effects on various properties of
crystals. Today's views on the dynamics of systems involving
impurities have much benefited from the work of the
experimental group of N A Chernoplekov from the Russian
Research Centre `Kurchatov Institute' (Moscow) (see the
review in book [10]). Many issues of isotopic alloys and
crystals with impurities have a common nature.

To obtain reliable experimental data it is necessary to
compare samples that are identical in chemical composition
and structure, and only differ in the isotopic composition. A
very important experimental problem is the presence of
uncontrollable impurities in the samples that may disguise
the isotopic effects under investigation. In the optimal
situation, which often is very difficult to realize, the concen-
tration of chemical impurities and lattice defects is made so
low that their effects are much weaker than the isotopic
effects.

Great advances in the technology of fabricating ultra-
pure materials (primarily semiconductors) and the reorienta-
tion of the isotope production industry to peaceful purposes1 Such effects became known as Ubbelohde effects [3].
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after the end of the cold war in the late 1980s together allowed
the production of unique chemically and isotopically pure,
nearly defect-free (perfect) massive single crystals of simple
substances Ð diamond, germanium and silicon Ð that are of
considerable interest for the industry. Diamond crystals with
different isotopic composition were grown in the laboratory
of the General Electric Co. (USA) [30, 31] (several millimeters
across, and a few carats in mass m), and crystals of
germanium (� 15 cm in length, � 1 cm2 in cross section, and
m � 100 g in mass) were the result of joint efforts of the
Institute of Molecular Physics of the Russian Research
Centre `Kurchatov Institute' (Moscow) and the Lawrence
National Laboratory in Berkeley (USA) [32]. There are recent
reports on the production of isotopically enriched silicon
crystals (ranging from 1 to 10 grams) in the international
cooperation of scientists from Russia, Germany and Japan
[33 ± 35]. Photographs of these unique crystals are shown in
Figs 1 ± 3. Observe that the growth of these semiconductor
crystals and other crystals whose isotopic content is different
from natural is a quite formidable task, because it is necessary
to carry out chemical purification of a small quantity of the
initial isotope preparation and prevent `isotopic contamina-
tion' of the material at every stage of the crystal growth that
usually takes place at high temperatures [36].

It is interesting that such properties of synthetic isotopi-
cally pure 12C diamond as the exceptionally low fluorescence
in the visible spectrum (about an order of magnitude lower
than in natural diamonds), high purity and structural
perfection make it a practically ideal material for diamond
anvils in superhigh-pressure devices for spectroscopic studies
[37].

In this review we consider the isotopic effects in solids due
to the differentmasses of isotopes, based on recent theoretical
and experimental results. The main attention is paid to the
analytical treatment of recent experiments with semiconduc-

tor materials. The latter were used for carrying out complex
theoretical and experimental studies of the phonon and
electronic spectra, structural properties and the kinetic
coefficients. Left beyond the scope of this review are the
interesting isotopic effects in oxide materials (cuprates,
manganites, nickelates, titanates, etc.), fullerenes, borides
and the like. We do not consider lattice excitations associated
with the rotational degrees of freedom of atoms. Neither do
we discuss the physical phenomena related to the differences
in other characteristics of isotopes, such as, for example, the
magnetic and quadrupole moments of nuclei, neutron
absorption and scattering cross sections.

In solids, the parameters of the interatomic force interac-
tion practically do not depend on the isotope composition
because the configuration of the atomic electron shell is very
weakly correlated with the nuclear mass: the scale of this
effect is on the order of the electron mass to the nuclear mass
ratio, me=M � 10ÿ4. The dependence on the isotopic compo-
sition arises because the motion of an atom in the potential
created by surrounding atoms depends, among other things,
on its mass. Vibrations of atoms at the lattice points may be
regarded as their motion in the harmonic potential whose
parameters depend on the volume of the crystal unit cell Ð
the quasi-harmonic approximation. Then the frequency and
the square of the amplitude of atomic vibrations are
proportional toMÿ1=2.

Figure 1. Isotopically modified 1.2-ct diamond containing 99.5% of 13C

[by courtesy of Sci. News 138 5 (1990)].

Figure 2. Single crystal of an isotopically pure (99.99%) germanium

isotope 70Ge.

NeckSingle crystal

50 mm

Figure 3. Single crystal of an isotopically pure (over 99.9%) silicon isotope
28Si [34].
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Isotope (`mass') effects are usually divided into two types.
The first relates the properties of the solid to the average mass
Mc of an atom of each constituent chemical element
(Mc �

P
i ciMi, where ci and Mi are the concentration and

the mass of the ith isotope). The second type refers to the
dependence of solid properties on the degree of isotopic
disorder. In practically all solids (with the exception of solid
helium at low temperatures), the isotopes are generally
distributed in the lattice at random, and the measure of
isotopic disorder is given by

x2 �
X
i

ci

�
DMi

Mc

�2

; DMi �Mi ÿMc :

Such effects are not present in isotopically pure and
isotopically ordered solids.

Polyatomic lattices involving elements of considerably
different masses open up interesting additional possibilities.
In such lattices, the isotopic composition can be varied for
both light and heavy elements. As it turns out, this will
considerably modify the frequencies for certain phonon
branches in certain regions of the Brillouin zone, thus leading
to renormalization of the associated parameters. Secondly, in
such a situation the crystal is dynamically disordered with
respect to one sublattice, while remaining regular for the
other sublattice. This fact, for example, allows direct
investigation into the effects of elastic scattering of phonon
modes, attributable to isotopic disorder and related to
particular components of the compounds.

A direct manifestation of the effects of isotopic composi-
tion on the properties of the solid is the isotopic deformation
of the phonon spectrum. It should be emphasized that to a first
approximation the real crystal in which the isotopes are
randomly distributed over lattice sites may be considered
using the virtual crystal model. This model does not explicitly
take into account the isotopic disorder. It is assumed that the
masses of atoms in the unit cell are equal to the average
arithmetic masses for the particular composition of isotopes
[38, 45]. Then for a monatomic crystal the isotopic frequency
shift Do is inversely proportional to

�������
Mc

p
. For a polyatomic

lattice, the shift Do is additionally proportional to square of
the modulus of the corresponding polarization vector. We see
that even in the linear approximation with respect to the
isotopemass difference, the isotopic effects are directly visible
in the phonon spectrum, and indirectly through the electron ±
phonon interaction in the electronic spectrum. In the quasi-
harmonic approach, one can also assess the effects of the
isotopic composition on the temperature dependence of the
lattice constant and the elastic moduli. It turns out that the
parameters of materials with different isotopic compositions
are linked by universal relationships.

To the second-order approximation with respect to the
parameter x2 of mass fluctuation, the anharmonic renorma-
lizations are supplemented by additional contributions to
damping G and frequency shift Do of the phonon modes.
Recently such effects were studied for a number of crystals
using Raman and IR spectroscopy. For the frequencies of
optical phonons, deviations were observed from the linear
mass dependence as the isotopic composition was varied.
These experimental findings cannot be interpreted within the
virtual crystal approximation: one has to use a more realistic
model of lattice dynamics Ð for example, the coherent
potential approximation (a version of the mean field theory)
[40 ± 42] or the supercell method [10, 43 ± 45]. The recursion
method [46 ± 48] is efficient when one needs to find the one-

particle Green function (formed on the operators of dynamic
atomic displacements) averaged over the impurity configura-
tions.

In this review the isotopic effects in the phonon spectra are
discussed in Section 2.

In crystals with isotopic disorder, the mean square of
dynamic atomic displacements hu2i (with respect to equili-
brium positions) is not the same when we move from one unit
cell to another. Such dynamic disordering even to the first
order with respect to DM gives rise to fields of static
displacements (deformations) of the lattice near the `impur-
ity' isotopes that break the local symmetry of the lattice.
Static displacements also modify the local force parameters.
The superposition of random fields induced by static
displacements near the isotopes gives rise to a fluctuating
component in the interatomic distances in crystals, whichmay
be considerable even for traditional crystals.

We call attention to the fact that when the nucleus
displays an electric quadrupole moment, the chaotic distribu-
tion of the crystal electric field may downgrade the symmetry
of the electric field from the side of the environment of the
nucleus and lead to splitting of the set of nuclear energy levels.
The study of NMR spectra in this situation may, in principle,
reveal the particular configurations of the fields of static
displacements and their temperature dependences. Such
studies have recently been performed with germanium
crystals. The issues related to the static displacements of the
lattice atoms near the isotopic impurity are discussed in
Section 3.

In the immediate future we are planning to discuss the
effects of isotopic disorder on the kinetic coefficients of
semiconductors and metals. Of great importance are also the
results of investigations into the isotopic effects on the
structural properties of single crystals and on their electronic
spectrum.

2. Phonon modes

As noted above, variation of the isotope composition in the
crystal lattice may give rise to effects of first and second order
with respect to the isotope mass difference DM. Here we
discuss the theoretical and experimental results related to the
appropriate renormalizations in the spectra of phonon
modes. First we appeal to the virtual crystal approximation
to analyze the isotopic frequency shift for polyatomic and
monatomic compounds. Then we consider the effects of
isotopic disorder (an effect proportional to � DM 2) on the
lifetimes and frequencies of the phonon modes. Theoretical
evaluations are made in the framework of perturbation
theory using the instrument Green functions; we also rely on
the coherent potential method and the supercell method. We
pay attention to the strong dependence of the parameters of
isotopically disordered systems on the polarization vectors of
the phonon modes. The theoretical part ends with a brief
summary of the phenomenological models available for the
ion-covalent-bonded crystals, and the schemes of phonon
spectrum calculations from first principles.

As regards the experimental material, we discuss the most
recent optical measurements with monatomic and diatomic
semiconductors. In the case of monatomic systems, we
analyze the results for the Raman one-phonon spectra, and
for the Raman and IR two-phonon spectra. Effects linear and
quadratic in DM are clearly identifiable in these spectra.
Positively established for diatomic compounds is the depen-
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dence of the isotopic frequency shift on the modulus squared
of the corresponding polarization vector. Concrete models of
the dynamic interatomic interaction are therewith verified,
and we also discuss the anomalous behavior of transverse
optical (TO) phonons, observed in the Raman spectra of GaP
and CuCl. This behavior is interpreted as a manifestation of
Fermi resonance (the anharmonic type of interaction of a TO-
phonon with a biphonon). Analysis of the TO-spectrum
distortion caused by the variation of isotopic composition
allows one to identify the individual contributions of modes
associated with the atoms of compound components in a
particular anharmonic process.

2.1 Isotopic shift of phonon frequencies
in a polyatomic crystal
In this section we discuss the isotopic frequency shift of the
vibrational mode in a crystal whose unit cell contains atoms
of different elements. The mean values of atomic masses are
used for the elements. The masses of the isotopes of the
same element are assumed to be close to each other. We
consider the effect linear with respect to the isotope mass
difference Ð that is, our treatment is confined to the virtual
crystal approximation. In this approximation, the point
symmetry group of the crystal lattice generally speaking
remains unchanged Ð as a consequence, the vibrational
spectrum does not change, and the degeneracy is not
removed. In reality, in a crystal lattice with isotopic
disorder there appear fields of static atomic displacements
because the zero-point oscillations of various isotopes are
different (see Section 3). With the exception of the case of
quantum crystals, however, the static atomic displacements
are very small compared with the distance between the
atoms. This allows us to disregard them in the present
context.

2.1.1 Isotopic frequency shift. Let us reproduce here the main
equations of the dynamical theory of regular crystals (see, for
example, Refs [26, 38, 49, 50]). Consider the crystal lattice of
N unit cells, each of which in the general case contains r atoms
of different elements. The cells are numbered with a subscript
n, and the positions of atoms within the cell are numbered
with a superscript k. The dynamic matrix F�c�aa0 �kk 0j q� of a
virtual crystal is defined by a relationship of the type

F�c�aa0 �kk 0jq� �
1

N

1����������������������
M
�k�
c M

�k 0�
c

q
�
X
n n0

jaa0 �nk; n0k 0� exp
�
iq�R�0�n ÿ R

�0�
n0 �
�
: �2:1�

Here, jaa0 �nk; n0k 0� is the matrix of the second-order force
parameters, and a, a0 are the Cartesian indices. The average
atomic mass of an element k taken over an isotopic
composition c is

M �k�
c �

X
i

c ki M
�k�
i : �2:2�

In addition, R �0�n is the vector of the equilibrium position of
the nth unit cell. The dynamic matrix is a Hermitian matrix of
3s�3s dimension Ð that is, the following equality holds:

F�c�aa0 �kk 0j q� � F��c�a0a �k 0kj q� : �2:3�

The eigenvectors e�c��kjl � (or the polarization vectors) and the
eigenvalues o�l � of this matrix satisfy the equation

o2�l �e�c�a �kjl � �
X
k 0; a0

F�c�aa0 �kk 0j q�e�c�a0 �k 0jl � ; �2:4�

where the index l is the aggregate fq jg of the wave vector q
and the polarization index j (14 j4 3r) for the lth vibrational
mode. Because F�q� is Hermitian, the polarization vectors
satisfy the conditions of orthonormality and completeness of
the formX

k;a

e��c�a �kj q j�e�c�a �kj q j 0� � dj j 0 ; �2:5a�

X
j

e��c�a �kj q j�e�c�a0 �k 0j q j� � dk k 0daa0 : �2:5b�

As is well known, the calculation of an eigenvalue, correct
to a certain order of magnitude with respect to perturbation,
requires knowledge of the eigenfunctions up to the nearest
lower order. Accordingly, when the isotopic composition is
varied over the component k1, the change of the eigenvalue
(the square of frequency) in the first approximation is equal to
the corresponding diagonal element of the perturbation
energy, taken with respect to the unperturbed states (see, for
example, Refs [51, 52]). We have then�

Do2�l �
DM�k1�

�
c

�
X
k; a

X
k 0; a0

e��c�a �kjl �
�
DF�c�a a0 �k k 0j q�

DM�k1�

�
c

e
�c�
a0 �k 0jl � :

�2:6�

Using the definition of the dynamic matrix (2.1), it is easy
to find that�

DF�c�a a0 �kk 0j q�
DM�k1�

�
c

� ÿ 1

2
F�c�a a0 �kk 0j q�

�
dkk1
M
�k�
c

� dk1k 0

M
�k 0�
c

�
: �2:7�

Now we substitute expression (2.7) into equation (2.6). Since
the change of the average mass, generally speaking, proceeds
continuously, we may replace the difference D with the
differentiation sign, and get

d lno2
c�l�

d lnM
�k�
c

� ÿ
X
a

��e�c�a �kj l ���2 : �2:8a�

From the last equation we immediately see that in a
polyatomic crystal the frequency shift of the vibrational
mode, caused by the change of the average atomic mass of
one of the compound elements, is proportional to the
modulus squared of the appropriate polarization vector. In
the case of a monatomic crystal, when the lattice unit cell
contains atoms of one and the same element, in place of Eqn
(2.8a) we have

d lno2
c�l �

d lnMc
� ÿ1 : �2:8b�

Equations (2.8a) and (2.8b) constitute the basic equations
of the virtual crystal model. To the best of our knowledge,
these equations were first put forward in work [53] dealing
with the effects of isotopic composition on the properties of
fullerenes.

August, 2001 Effect of isotopic composition on phonon modes. Static atomic displacements in crystals 789



Notice that relations (2.8) give direct information about
the polarization vectors of phonons, if their frequencies and
isotopic frequency shifts are known from experiment. This
allows them to be used in the analysis of the efficiency of
various dynamic models descriptive of the force interactions
between the atoms.

2.1.2. Model of a two-atom linear chain. Let us consider the
example of a linear chain of atoms of two different elements
with masses M �1� and M �2� (M �1�5M �2�), which occupy
alternating positions. Assume that the dynamic forces only
act between the adjacent atoms. With such a lattice, the
vibrational spectrum has two branches: acoustical ( j � 1),
and optical ( j � 2). Their frequencies o�l � and the squares of
the polarization vectors

��e�kjl ���2 are given by the following
formulas

o2�qj� � o2
0

�
1ÿ E1 j f�q�

�
; o2

0 �
g
m
; �2:9a�

f�q� �
�
1ÿ 4M �2�=M �1�ÿ

1�M �2�=M �1��2 sin2 qa

�1=2

; �2:9b�

��e�kjqj���2 � 1

2

�
1� E1kE1j

1ÿM �2�=M �1�

1�M �2�=M �1�
1

f�q�
�
: �2:10�

Here, a is the lattice constant, g is the effective force
parameter, and m is the reduced mass:

m � M �1�M �2�

M �1� �M �2� : �2:11a�

In the above equations, the symbol q denotes the wave vector:

q � pZ
a
; ÿ 1

2
4Z4

1

2
: �2:11b�

The function E1k� j� � 1 if k� j� � 1, and E1k� j� � ÿ1 if k� j� 6� 1.
The following relations hold for the model in question,

with due account for Eqn (2.10):��e�1jq1���2 � ��e�2jq2���2 ; ��e�1jq2���2 � ��e�2jq1���2 : �2:12�
Besides, on the upper spectrum edge at qb � p=2a we have��e�kjqb j ���2 � 1

2

ÿ
1� E1kE1j

�
: �2:13�

From equations (2.12) it follows that the complete behavior
pattern of

��e�kj l ���2 is established if one has an opportunity to
analyze the moduli squared of polarization vectors for only
one atom.

Let us first consider the situation when the masses of
atoms in the unit cell are drastically different: M �1�4M �2�.
As follows from relations (2.9) ± (2.12), the square of polar-
ization vector je�2jq2�j2 corresponding to the vibrations of a
light atom in the optical range exhibits a weak dependence on
the wave vector and is close to 1. For the heavy atom,
however, the modulus squared of the polarization vector is
close to 1 within the band of the acoustic lattice vibrations
(k; j � 1). At the same time, j e�2jq1�j2 and j e�1jq2�j2 are
much less than 1. This is a reflection of the fact that the light
atom vibrates mainly on the optical branches, and the heavy
atom on the acoustic branches.

In the general case, when the atomic mass difference
between the compound components is not large, the value of
j e�kj l �j2 is finite over the entire vibrational spectrum and
depends on the wave vector, for which reason the value of the

derivative d lno�l �= d lnM �k� is considerably different from
ÿ1=2.

To illustrate this conclusion, Fig. 4 shows o2�l � and
j e�2j l �j2 for the light atom as functions of the wave vector
and the atomic mass ratioM �1�=M �2�.

In this way, from formulas (2.9), (2.10) it follows that
when the atomic masses of the compound components are
essentially different, the partial vibrational spectra of the
heavy and light atoms practically do not overlap. If the
isotopic composition is varied over one of the components,
only the respective partial spectrum is renormalized. When
the atomic masses of the compound components are close to
each other, then both the partial spectra are varied but in an
asymmetrical manner with one changing more strongly than
the other.

2.2 Shift and damping of the phonon modes owing
to the isotopic disorder
2.2.1 Perturbation theory. Let us now discuss the problem of
renormalization and decay of vibrational mode frequencies in
a diatomic crystal, caused by isotopic disorder. We will take
into account the effects both linear and quadratic with respect
to the isotope mass difference in the framework of perturba-
tion theory. For the sake of simplicity we assume that only
one element in the compound has several isotopes.

In the harmonic approximation, the crystal lattice vibra-
tions are described by the Hamiltonian

H �
X
n k

�p a
n k�2

2M
�k�
n

� 1

2

X
n k; n 0k 0

jab�nk; n0k 0�uan kubn0k 0 : �2:14�

Here we have used the following notation: pn k and un k are the
operators of momentum and dynamic displacement of an
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atom with the mass M
�k�
n , occurring at the nth lattice point

and occupying the kth position in the cell (k � 1; 2), and
jab�n k; n0k 0� is the second-order force parameter; hereinafter
the summation is taken over the twice repeating Cartesian
indices a and b. For definiteness, we shall assume that the
element having several isotopes occupies position number one
(k � 1) in the unit cell, and the element with the single isotope
occupies position number two (k � 2).

The series expansion of the atomic displacement in the
lattice in terms of the Bose amplitudes bq j and b�q j is as follows

unk �
X
q j

����������������������������
�h

2NM
�k�
n o�q j�

s n
e�kj q j� exp�iqR�0�n � bq j

� e��k 0jq j� exp�ÿiqR�0�n � b�q j

o
; �2:15�

where R�0�n is the equilibrium position vector of the nth cell.
With the help of formula (2.15), the original Hamiltonian can
be brought to the diagonal form.

To find the parameters of the phonon modes in the
isotopically disordered lattice, we introduce the retarded
Green function constructed in terms of operators of the
atomic displacements:

eD ab
n k; n0k 0 �t� � ÿiy�t�

D�
uan k�t�; u b

n0k 0 �0�
�E
: �2:16�

From here on, the angle brackets h. . .i denote averaging over
the equilibrium thermodynamic distribution.

Making use of the commutation relations for the displace-
ment andmomentum operators, one can express the equation
of motion for the Green function eD (2.16) in the form

ÿ d2

dt 2
eD ab
n k; n0k 0 �t� ÿ

1

M
�k�
n

X
n1; k1 ; g

jag�nk; n1k1� eD gb
n1k1; n0k 0 �t�

� 1

M
�k�
n

d�t� dab dn k; n0k 0 : �2:17�

After Fourier transform, equation (2.17) becomesX
n1; k1; g

�
o2M �k�

n dag dn n1dkk1 ÿ jag�nk; n1k1�
� eD gb

n1k1; n0k0

� dabdn n0dk k0 : �2:18�

The last equation can be rewritten in the symmetrized formX
n1; k1; g

�
o2dagdnn1dkk1 ÿ

1����������������������
M
�k�
n M

�k1�
n1

q jag�nk; n1k1�
�

�
�����������������������
M
�k1�
n1 M

�k 0�
n0

q eD gb
n1k1; n0k 0 � dab dnn0dkk 0 : �2:19�

Observe that the solution D�c� of Eqn (2.19) in the virtual
crystal approximation is expressed via the frequencies and
polarization vectors of the corresponding dynamic matrix.
We have then

eD �c�abn k; n0k 0 �o� �
1����������������������

M
�k�
c M

�k 0�
c

q 1

N

X
q j

e�c��a �kj q j� e�c�b �k 0j q j�

� exp
�ÿiq�R�0�n ÿ R

�0�
n0 �
�

o2 ÿ o2
c�q j� � id

� 1����������������������
M
�k�
c M

�k 0�
c

q D
�c�ab
n k;n0k 0 �o� :

�2:20�

The atomic mass of the element that has different isotopes at
the position k � 1 of the unit cell obeys the equality

M �k�
n �M �k�

c �
ÿ
M �k�

n ÿM �k�
c

�
dk1 : �2:21�

From Eqns (2.18), (2.19) and (2.21) we get the standard
equation for the Green function ~D � �1=M�D introduced in
Eqn (2.20):

Dab
n k; n0k 0 �o� � D

�c�ab
n k; n0k 0 �o�

� o2
X

n1k1; n2k2

D
�c�ag
n k; n1k1

�o�V gg1
n1k1; n2k2

�o�D g1b
n2k2; n0k 0 �o� ;

�2:22�
where

V ab
n k; n0k 0 � o2

ÿ
M �k�

c ÿM �k�
n

�
dnn0dkk 0dk1dab : �2:23�

Taking advantage of the fact that the masses of the
isotopes are close, one can seek an approximate solution of
Eqn (2.22) by an iterative procedure. In so doing it is
necessary to perform averaging over the isotope distribu-
tion. This operation restore the translational symmetry of the
crystal lattice. Concrete calculations are done for the spatial
Fourier component of the Greenian. The series expansion of
D in each order in V involves terms of the type
Vm�o2 ÿ o2�q j��ÿ�m�1�. Let us carry out summation for the
pole terms in the series. In the case of a cubic crystal, for the
averaged Green function we get


D ab
n k; n0k 0 �o�ic �

1

N

X
q j

exp
�ÿiq�R�0�n ÿ R

�0�
n0 �
�

� e�c��a �kj q j�e�c�b �k 0j q j�
hÿ
D�c�q

�ÿ1 ÿPiso�q�
iÿ1
j j 0
: �2:24�

Here h. . .ic denotes averaging over the different configura-
tions of the isotopes of the `first' kind. Then one findsÿ

D�c�q
�
j j 0 � dj j 0

�
o2 ÿ o2

c�l�
�ÿ1

: �2:25�

Recall that l � fq jg. By Piso we denoted the mass operator
associated with the isotopic disorder, which obeys the
following relations

Piso�q jj 0;o� � o4�l �x2�k � 1�D�c�01;01�q jj 0;o� ; �2:26�

D
�c�
01; 01�q jj 0;o�

�
X
g;g 0

e�c�g �1j q j�
�

1

N

X
l1

e
�c�
g �1jl1� e�c�g 0 �1jl1�
o2 ÿ o2

c�l1� � id

�
e
�c�
g 0 �1j q j 0� :

�2:27�

The frequency shift Diso�l;o� of the phonon mode and its
decay Giso�l;o� due to the elastic scattering by the mass
fluctuations with the rate tÿ1iso�l;o� are expressed via the real
and imaginary parts of the mass operator Piso:

Piso�l;o�
2o

� Diso�l;o� � i
1

2
Giso�l;o� ; �2:28�

Diso�l;o�
� p

6
o3

c�l �
X
k

x2�k��� e�c��kjl ���2 1

p

�om

0

do 0
rk�o 0�
o2 ÿ o 02

dk;1 ;

�2:29�
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Giso�l;o� � tÿ1iso�l;o�

� p
6
o2

c�l �
X
k

x2�k��� e�c��kjl ���2rk�o�dk;1 ; �2:30�
where rk�o� is the partial density of the phonon states for the
atoms of the kth sublattice:

rk�o� �
1

3N

X
l

��e�c��kjl ���2d�oÿ oc�l �
�
: �2:31�

From equations (2.29), (2.30) we directly see that in the
polyatomic compounds, as opposed to the monatomic ones,
the shift and damping of the phonon mode under the isotopic
substitution depend both on the frequency and on the
polarization vectors. It should be emphasized that the
dependence on the polarization vectors is very strong,
because

Diso and Giso � j e�c��kjl �
��4 :

In the case of monatomic compounds, from Eqns (2.29) ±
(2.31) we find the standard formulas for the frequency shift
and damping of the phonon modes that do not depend on the
polarization vectors:

Diso�l;o� � p
6
o3

c�l �x2
1

p

�om

0

do 0
r�o 0�

o2 ÿ o 02
; �2:32�

Giso�l;o� � p
6

o2
c�l �x2r�o� ; �2:33�

r�o� � 1

6N

X
l

d
�
oÿ oc�l �

�
: �2:34�

It is interesting to note that, by contrast to the monatomic
compounds, for the polyatomic compounds with consider-
ably different masses of components, by varying the isotopic
composition over one of the components, one can effectively
control the lifetime of vibrational modes in either the
acoustical or optical ranges of the phonon spectrum. In this
way it is possible, for example, to dramatically change the
thermal conductivity at either low or high temperatures.

An expression of the type (2.30) for tÿ1iso has been derived in
different ways (see, for example, monograph [26]). Tamura
[54] inferred the expression for tÿ1iso up to the fourth order with
respect to the isotope mass difference.

Notice that for the different models of interatomic force
interaction the phonon frequencies in the symmetrical direc-
tions are, as a rule, practically the same. At the same time,
unlike the frequencieso�q j�, the polarization vectors e�kj q j� in
such models can behave quite differently. (In particular, this
implies that the definition of themodel parameters of the force
interaction between the atoms requires complete knowledge
of the phonon spectrum Ð that is, one needs to know both
o�q j� and e�kj q j�.) Because of this, in the case of polyatomic
crystals the pulse dependences of tÿ1iso , especially in the short
wave range of the spectrum, are in principle very sensitive to
the nature of the interatomic interaction. This can be
illustrated with the results produced by Tamura [55], where
Eqn (2.30) was turned to account for the quantitative analysis
of the peculiar patterns of the acoustic mode relaxation times
for the diatomic crystals GaAs and InSb. The phonon modes

were described using the deformable dipole model [56 ± 59]
and a version of the shellmodel [60 ± 62]. In bothmodels of the
interatomic force interaction, the frequency spectra are in
fairly good agreement between themselves and with the
experimental findings (Fig. 5), while the polarization vectors
are considerably different (Fig. 6). The profound effect of the
interatomic interaction on the frequency dependence of the
isotopic scattering time tiso in the case ofGaAs is illustrated in
Fig. 7.

The shell model [63 ± 66] implies that the ions with the
intertialess charged shell, bound by elastic forces, reside at the
lattice sites. By assumption, each ion interacts both with the
adjacent ions and with their shells. Pair interactions between
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the electron shells of adjacent ions are also taken into
account. In this model, concrete mechanisms are proposed
for describing the polarizability and mutual deformability of
ions. As a matter of fact, what is considered is the adiabatic
motion of the electron density with respect to the atoms. In
principle, the shell model takes into account the many-
particle interionic interaction. In addition to the short-range
non-Coulomb and the long-range Coulomb interactions, the
deformable dipole model takes detailed account of the lattice
polarization. Then the dipole moment of the crystal is
determined by three contributions that arise because of the
displacement of the ion equilibrium charge, the action of the
electric field of the lattice on the ion, and the ion deformation
by the Coulomb type forces. Unlike the shell model, the
deformable dipole model only takes into consideration some
part of the short-range interactions. Both these models were
widely utilized in the 1970s. Currently, the bond-charge
model is often used as the phenomenological model (see
Section 2.2.3 and Appendix).

One of the present authors (A P Zh) dealt with the
description of force parameters for the anisotropic diatomic
metal zinc [67, 68], using complete [knowledge of o�q j� and
e�kj q j�] and incomplete [knowledge of only o�q j�] experi-
mental data on the phonon spectrum. In particular, the shape
of the microcontact spectra of the electron ± phonon interac-
tion in Zn single crystals depending on the orientation of the
microbridge with respect to the crystallographic axes was
analyzed. By definition, these spectra exhibit a significant
dependence on the polarization vectors e�kj q j� [69].

2.2.2 Coherent potential and supercell methods. Coherent
potential method. It is well known that in the theory of crystal
lattices with impurities the standard methods of series

expansion of the scattering matrix in terms of the concentra-
tion of the scattering centers do not work well when the
concentration is large. The main reason is that the configura-
tion-averaged expressions are not symmetrical with respect to
the replacement of the matrix atom by the impurity atom.
Proper relations can be obtained by the coherent potential
method. This method is a version of the mean field theory,
similar to the molecular theory of field in magnetism or the
chaotic phase approximation used in the description of the
Coulomb interaction between the electrons. It has been
described in a number of monographs and reviews (see, for
example, Refs [10, 40 ± 42].

Let us find in the framework of the coherent potential
approximation the one-particle Green function with due
account for multiple scattering. Its mass operator is found in
a self-consistent way from the condition that the scattering T-
matrix attributed to isotopic disorder is, on average, equal to
zero. It is important that this theory allows the diagram
technique to be used, thus giving a better understanding of
which scattering processes were taken into account andwhich
were neglected.

We confine ourselves to the most simplified assumption
that the states at one lattice site do not depend on the other
sites in the effective medium. This is the so-called single-site
approximation, and it should be applicable to isotopic alloys
as long as the static distortion of the crystal lattice can be
neglected. Observe that the effective medium is described by
the complex eigenvalues whose imaginary part characterizes
the lifetime of the single-particle states.

In the single-site approximation in the monatomic crystal
lattice, themass operator is given by an expression of the form
(see, for example, Ref. [41])

PCPA�o� � eP�o� �X
i

ciEio2

1ÿ �Eio2 ÿ eP�o��D�o� ; �2:35�
where

D�o� � 1

N

X
l

1

o2 ÿ o2
c�l � ÿ eP�o� ; Ei � 1ÿMi

Mc
; �2:36�

i is the number of an atomic position, andMi is themass of the
appropriate isotope. Note that in Eqns (2.35) and (2.36) we
have made corrections for the multiple occupation of lattice
sites (thus precluding the possibility of one site being occupied
by two or more isotopes). By replacing the zero Green
function D�0� with the complete function D in Eqn (2.35), we
took into account the embedded one-site diagrams.

The expression for the imaginary part of the Green
function that explicitly includes the frequency shift and
damping of the phonon mode is given by

ImD�l;o� � 1

p
Im

1

o2 ÿ o2
c�l � ÿ eP�o� ; �2:37�

with

eD�o� � 1

2o
Re eP�o�; eg�o� � 1

2o
Im eP�o� : �2:38�

It should be noticed that the coherent potential method
has been extended to the many-site approximation (see, for
example, Refs [70 ± 72]). In principle, this approximation is
suitable for describing the local ordering effects in solid
solutions.
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Supercell method. According to this method, the crystal is
divided into extended cells. The sites of an extended cell
contain N 3

c atoms, and its unit cell holds Nc atoms. This
effective cell is employed for constructing the dynamic matrix
of the crystal, using the data about the force parameters that
describe the interatomic interaction. The eigenfrequencies
and eigenvectors are found by diagonalizing the dynamic
matrix of the supercells. To find the spectrum of the
disordered system, one has to do calculations for all
potentially feasible impurity configurations in the extended
cell. Such a procedure gives the distribution of the phonon
state number for the given vector q Ð that is, the imaginary
part of the Green function for the phonon mode q.

The method is essentially based on the fact that the
phonon spectrum is effectively self-averaged when the
number of particles is large, i.e. the ensemble distribution of
a random quantity for a particular system is the same as that
for the ensemble with the same statistical structure (see, for
example, Refs [10, 46, 47, 73, 74]).

The effects of the isotopic composition on the phonon
spectrum present the simplest case of violation of the crystal
lattice translation invariance because of disordering. In the
case of isotopes, the disorder does not affect the interatomic
interaction which can thus be treated with a high degree of
accuracy on the basis of approaches developed for regular
crystals. One only has to take account of the existence of an
atomic distribution with respect to their masses in the
dynamic matrix. This approach is exact in the framework of
the harmonic theory.

Observe that the concepts of frequency shift Diso and
mode damping Giso are pertinent to the perturbation theory.
The quantities Diso and Giso represent corrections to the
spectrum. They arise because of the elastic phonon ± phonon
interaction brought about by the `mass' defects. On the other
hand, in the supercell method we `simply' diagonalize the
dynamic matrix, and the arising phonon states have zero
width. In this situation, the phonon shift and broadening arise
because of the spread of 3Nc eigenvalues obtained for each
particular isotope distribution. In other words, the finite
widths and shifts of spectral distributions are associated here
with the realizations of discrete state distributions which are
averaged over the numerous distributions of isotopes.

Of the three approaches used for the description of
isotopic effects in the phonon spectra of crystals, the most
accurate and consistent is the purely numerical supercell
method. Perturbation theory is better suited for concrete
calculations in the qualitative treatment. It should be
emphasized that all approaches give quantitatively similar
results, when the disorder parameter x2 5 1.

2.2.3 Phonons in ion-covalent-bonded crystals. Rapid progress
is currently being achieved in the `first-principle' theory of
phonon spectra, developed in the framework of themethod of
the density functional. In the first place, this approach is
based on the exact microscopic expressions for the dynamic
matrix of force parameters (see Refs [75, 76] and review [77]).
Then the problem reduces to finding the matrix of micro-
scopic electron susceptibility w�q� B; q� B 0�. Observe that
the initial equations pertain to the system of `bare ions plus all
electrons'. In real calculations, generally speaking, the
contribution from the core electrons is included in the
electron interaction energy. In this case the density r�r� of
nonuniform gas is determined by the valence electron
distribution function. Dielectric screening and variational

linear response methods were developed for the direct
determination of the w-susceptibility matrix. The dielectric
screening method involves straightforward calculation of the
static permittivity e�q� B, q� B0�. This requires solving a
Kohn ± Sham type equation with local pseudopotentials, and
finding the one-electron eigenfunctions and energy values.
The dynamic matrix therewith contains a factor eÿ1, and the
main difficulties are associated with the inversion of high-
dimension eÿ1-matrices.

We emphasize that the macroscopic electric field exists in
ion-covalent-bonded crystals. Because of the existence of
such a field, the theory makes use of the effective Born
charges Z �k . These charges are expressed in terms of the
nondiagonal elements of the matrix eÿ1:

Z �k � ÿ
O

4pe2
lim
q! 0

SB
eÿ1�q; q� B�
eÿ1�q; q� q�q� B�Vk�q� B� :

�2:39�

According to the known acoustic rule of sums [78], the master
dynamic equation for eigenfrequencies and polarization
vectors has three solutions � j � 1; 2; 3� for q ! 0 with the
frequencies oj�q� ! 0. One can demonstrate that this rule is
satisfied if the condition of electrical neutrality in the formP

k Z
�
k � 0 holds for the unit cell. In his way, the nondiagonal

elements of the matrix eÿ1 must be taken into account as a
matter of principle in compounds with polar bonds, since this
will ensure the local electrical neutrality of the compound and
the existence of acoustic branches.

The situation with the application of a variational theory
of linear response to finding the electron contribution to the
force parameters is as follows. In the first place, a methodical
approach known as the Hellmann ±Feynman theorem [79,
80] is efficient in calculating the derivatives of energy with
respect to the displacements u (the theorem is actually
formulated so that it is possible to differentiate the desired
function with respect to any variable parameter; in Ref. [81],
the theorem was extended to the case of third-order
derivatives). Then the force parameters are calculated at
once by the perturbation theory [82, 83]. Namely, when the
displacements u are small enough, the increments of the
eigenfunction, DCnk, and energy, DEnk, which enter the one-
electron Kohn ± Sham equation, are linear functions of u. It
was found that one can deduce a linear differential equation
in DCnk and the increment DVeff of the pseudopotential. The
quantity DVeff is then expressed via the increment of the
electron density Dr Ð that is, via DCnk. It is important that
these equations only describe the occupied valence states,
whereas the electron-free states are not involved explicitly.
This theory was developed for the case when the effective
pseudopotential includes the sum of the norm-conserving
ionic pseudopotentials, and the wave functionC is defined as
a plane-wave expansion (see the review [77]). A modified
variational method was developed by Savrasov [84], where
the formalism ofMT-orbitals is used. Now let us sum upwhat
has been said so far. The variational theory of linear response
allows one to calculate the frequencies and polarization
vectors of phonons for arbitrary values of wave vectors
without the need for inverting a high-dimension matrix of
dielectric constant.

The direct method of `frozen-in' phonons, based on the
direct comparison of energies attributed to the equilibrium
and deformed systems, has also been developed and widely
used. It is important that for the deformed crystal (with the
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frozen normal vibration l � fq jg) its effective unit cell
(because of the lowered symmetry) is much bigger in size
than the analogous cell in the equilibrium crystal. A
straightforward self-consistent procedure of energy calcula-
tions is only possible for the wave vectors of modes q
commensurate with the reciprocal lattice vectors (in the
symmetrical directions [85 ± 88]). A modification of this
method by introducing the one-electron reduced density
matrix (in the context of perturbation theory) made the
calculations much easier [89]. The linear response of the
system to an external force is found in a self-consistent way
by solving the set of equations that involve the values for the
equilibrium crystal with nondisplaced ions. In this case there
is no need to find the matrix of electron susceptibility w. It is
also possible to do calculations with nonlocal pseudopoten-
tials. We emphasize that the frozen-in phonon method allows
us to analyze the contributions from different microscopic
interactions to the formation of particular vibrational modes.

Such a method of calculating the phonon spectra from
first principles, based on the formalism of a matrix of
microscopic permittivity in the context of self-consistent
perturbation theory for a linear response as applied to
covalent semiconductors and semiconducting III ±V com-
pounds with weak ionicity has been detailed in Refs [90, 91].
In doing so, not only the phonon dispersion curves, but also
such dynamic parameters as elasticity moduli, partial GruÈ -
neisen parameters, thermal expansion coefficients, etc. were
analyzed. We ought also to mention here the work [92]
dealing with the detailed experimental (neutron diffractome-
try) and theoretical analysis of the polarization vector
behavior for silicon. In semiconducting II ±VI compounds,
the energies of cation d-electrons are about 10 eV less than
those of s-electrons. Such d-electrons form a weakly disperse
band whose energy is higher than for the anion s-band. As a
result, the d-electrons have a considerable effect on the
shaping of the valence band. The theory has been extended
to the case of such systems by Corso et al. [93]. We would also
like tomention studies concernedwith the dynamic properties
of the physically interesting and technically promising
materials GaN [94], SiC [95], and CuCl [96].

Along with the calculations from the first principles,
phenomenological models are actively used for the analysis
of phonon spectra as well. These include the rigid ion model,
shell type models (including the proper shell model, the
overlapping valence shell model, and the `breathing' shell
model), the deformable dipole model (see, for example,
monograph [97], review [98], and overview [99]), and finally
the bond-charge (BC) model. In the Appendix, we use the BC
model for defining the dynamic matrix for diatomic com-
pounds, and give a summary of the parameter values for
many semiconductor crystals. The six-parameter BC model
and probably the shell model involving 14 parameters are
physically sensible and give a very satisfactory description of
the frequencies and polarization vectors of phonon modes.

2.3 Experimental optical studies of phonon modes
In recent years, the techniques of Raman scattering of light
and IR absorption were used for detailed studies of isotopic
effects in phonon spectra. In the first place, optical measure-
ments were taken for the homeopolar crystals. The spectra for
high-quality diamond single crystals were obtained and
analyzed over the entire range of isotopic compositions from
pure 12C to pure 13C [100 ± 104] as well as for isotopically
enriched germanium crystals and ultimately, isotopically

`contaminated' samples 70Ge0.5 76Ge0.5 [105, 106]. Also
studied were a-Sn [107] and silicon [108]. Then measurements
were carried out for phonons in diatomic semiconductors.
The group of M Cardona (Stuttgart) studied the compounds
CuCl (using the isotopes 63Cu, 65Cu, 35Cl, 37Cl) [109], GaN
(14N, 15N) [110], ZnSe (64Zn, 68Zn, 76Se, 80Se) [111], SiC (28Si,
30Si) [112], GaP (69Ga, 71Ga) [113, 114], and CuCl [109]. Let
us discuss the main results obtained by optical methods.

2.3.1 Homeopolar crystals. One-phonon processes. The crys-
tals of diamond, silicon and germanium belong to the
symmetry group O7

h. Their primitive cell contains two
atoms. The crystal lattice may be regarded as involving two
mutually penetrating face-centered cubic lattices shifted one
with respect to the other in the direction of the diagonal of the
cube. The lattices are displaced by one-fourth of the diagonal
of the unit cube. The photon ± phonon interaction in the case
of one-phonon inelastic processes may only encompass
phonons with the wave vector q � 0.

For the crystals under consideration, the symmetry group
of point G (the center of the Brillouin zone) coincides with the
group of directions Oh. In the case of Raman scattering, the
phonons are scattered from the fluctuations of the electron
polarizability induced by atomic vibrations in the crystal
lattice. The optically active mode in first-order Raman
spectra is the mode with the F2g symmetry (Fig. 8). This
mode is three-fold degenerate, and is often denoted as
LTO(G). In the scattering processes involving this mode the
components P

�1�
xz , P

�1�
yz of a polarization tensor are nonzero.

The first-order Raman spectrum consists of separate delta-
shaped lines. As far as IR scattering is concerned, the optical
modes q � 0 corresponding to the displacement of two
similar atoms do not give rise to an electric dipole moment
parallel to the photon electric field vector, and so there is no
light absorption.

By definition, in the virtual crystal approximation, the
LTO-mode frequency at the point G is oLTO /M

ÿ1=2
c . In the

single-isotope samples, the mode lifetime t depends on the
anharmonic phonon interaction. In this case the dependence
of phonon anharmonic damping Ga � tÿ1a is found from the
following considerations. At T � 0, the quantity Ga is

F2g

Figure 8. Basis vectors of the F2g irreducible representation at the point

GÐ the center of the Brillouin zone for an LTO-phonon.
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proportional to the parameter squared of the anharmonic
interaction (�Mc

ÿ3=2) and to the density of two-phonon
states (�M

1=2
c ), so that Ga �Mÿ1

c . In the region T5TD=3,
owing to the temperature dependence of the occupation
numbers (� T=TD), we have Ga � TM

ÿ1=2
c . A similar

dependence on the mass is exhibited by the phonon
frequency shift owing to anharmonism [115] (see also recent
paper [116]). Thus, one obtains

oLTO�M;T� �
aMÿ1=2 ÿ bMÿ1 ; if T5TD ;

aMÿ1=2 ÿ b1TM
ÿ1=2 ; if T >

TD

3
:

8<:
In crystals made up of different isotopes, one needs to take

into account the processes of elastic phonon scattering by
isotope impurities. They give rise to an impurity-related
frequency shift Diso and to additional damping Giso. Since
the theory contains the small parameter x2, it is possible to
provide a satisfactory quantitative description of the experi-
ments even in the Born approximation of perturbation
theory. In this situation, Diso and Giso are described by
relations (2.32) and (2.33).

Calculations based on the coherent potential method and
the supercell method give similar results. The inclusion of
elastic impurity scattering in samples with isotopic disorder
should lead to a departure from the linearity of shift and
damping as functions of the average massMc.

Let us discuss at greater length the experimental results for
C, Si, Ge, and a-Sn crystals. As found later [106], in the early
experiments with germanium [105, 107] the quality of surface
polishing and the presence of surface oxide film prevented one
from getting sufficiently reliable data. The results of subse-
quent experiments [106] turned out to be in very good
agreement with the theory (the coherent potential approx-
imation, supercell method), including such a delicate issue as
the description of second-order effects with respect to the
isotope mass difference. It was found that compared with the
isotopically pure 70Ge crystal, the additional frequency shift
Diso of an optical phonon at the point Gwas 0:34� 0:04 cmÿ1

for germanium samples with a natural isotopic composition,
and 1:06� 0:04 cmÿ1 for the artificially prepared maximally
disordered isotopic composition, containing approximately
50% of 70Ge and 50% of 76Ge. Since for germanium at the
point G the density of phonon states is r � 0, we thus have
Giso � 0. A similar pattern of the phonon shift and damping
was found with Si [108] and a-Sn [107].

Experimental findings for the Raman frequency and
damping as functions of the mean mass for different isotope
compositions in Ge [106] and a-Sn [107] are shown in Figs 9
and 10. The phonon frequencies vary as aMÿ1=2. Slight
deviations for the isotopically pure samples are associated
with anharmonic effects. Deviations in samples with isotopic
disorder are much more pronounced. From these diagrams
we also see that the isotopic disorder leads to additional
phonon damping. It is easy to prove that the standard
anharmonic shift according to the experiment is approxi-
mately one order of magnitude greater than Giso.

Diamond is an exception. For this material, the ultimate
optical phonon frequencies are shifted with respect to the
center of the Brillouin zone, so that the density of states at the
pointG is nonzero. It was found that upon transition from the
composition 12C0.35

13C0.65 to the natural composition, the
values of shift and damping renormalizations for the Raman
mode are Diso � 2 cmÿ1 and Giso � 6 cmÿ1, respectively [100,

o � 2595.73Mÿ1=2 cmÿ1

G � 45.6 Mÿ1 cmÿ1

a

b

0.34 cmÿ1
1.06 cmÿ1

natGe

natGe

70=76Ge

70=76Ge

310

R
am

an
fr
eq
u
en
cy
,c
m
ÿ1

308

306

304

302

300

298

70 71 72 73 74 75

Atomic mass, a.m.u.

0.70

0.68

0.66

0.64

0.62

0.60

0.58

P
h
o
n
o
n
li
n
ew

id
th
,c
m
ÿ1

Figure 9. Frequency (a) and linewidth (b) of an optical phonon as

functions of the mean atomic mass for isotopically enriched and dis-

ordered germanium samples at 10 K. The theoretical value of the phonon

linewidth for isotopically pure germaniumwith an atomic massM � 72:6,
calculated from first principles [118], is marked with a circle [107].
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the anticipated anharmonic behavior of isotopically pure samples [108].
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101, 119 ± 121]. Figure 11 shows the values of experimental
frequencies and linewidths for several isotopic compositions
12C1ÿx13Cx, as well as the corresponding theoretical magni-
tudes obtained by the supercell method [48, 122].

We ought also to mention the works [104, 124] concerned
with studying Raman scattering of light in diamond and
germanium with different isotopic compositions at high
pressure (up to 14 and 10 GPa, respectively). The results
indicate that the interatomic forces in diamond and germa-
nium act differently. It was found that in the case of diamond
the frequency ratio o�12C�=o�13C� starts to deviate from the
classical value given by �M�12C�=M�13C��ÿ1=2 with increasing
pressure, decreasing by several percent from its value at
P � 0. The authors suggested that this deviation is asso-
ciated with the manifestation of Coulomb type forces. In the
case of germanium, the dependenceo�P� for isotopically pure
samples is described by the common curve oM 1=2

c . At the
same time, for natural germanium the relevant curve does not
coincide with theoM 1=2

c line because of the isotopic disorder.
Two-phonon processes. Absorption and scattering of

photons may also occur via two-phonon processes, when
their total momentum is q1 � q2 � 0. In a two-phonon
process, either two phonons are produced with equal and
oppositely directed wave vectors, or one phonon is created
and the other annihilated. This mechanism is associated with
the terms of type P �2�, standing for the crystal polarizability,
which are proportional to the second degree of mode
coordinates. In the case of IR radiation scattering, the two-
phonon processes also bring about the formation of contin-
uous second-order spectra. Then the first phonon distorts the

charge distribution of adjacent atoms and induces the electric
charge, while the second phonon displaces the charge, thus
giving rise to the electric dipole moment.

Knowing the behavior patterns of the phonon mode
frequencies and their concrete values, one can find the
density of the two-phonon combination states:

r2�o� �
X
j1 j2

�
dsj1 j2

H
�
o�q j1� � o�q j2�� ; �2:40�

where the relation o�q j1� � o�q j2� � const defines a surface
element dsj1 j2 in the q-space. It is important that the
distribution r2�o� exhibits analytical singularities (peaks
and points of inflections). These critical points are defined
by the following condition:

H
�
o�q j1� � o�q j2�� � 0 :

The critical points under consideration fall into three
groups:

(1) H
�
o�q j1�� � H

�
o�q j2�� � 0. These are the well

studied van-Hove singularities for separate phonon branches.
(2) H

�
2o�q j1�� � 0. This condition is satisfied by the

high-symmetry points of G, X,W, and L type.
(3) H

�
o�q j1��� ÿH�o�q j2�� 6� 0. This condition holds

for diamond type crystals in the direction S.
In the analysis of spectra one has to take into account the

selection rules that reduce the number of the overtones
realized (both modes have the same symmetry type) and
combination tones (the modes have different symmetry
types). For example, in the case of Raman scattering the
polarizability is characterized by the symmetrical tensor of
the second order, which is transformed on the basis of the
representation �F1u��2�. Then we have the resolution of the
form

�F1u��2� � A1g � Eg � F2g

which determines the active modes. In the case of IR
absorption, the electric dipole moment vector has the
symmetry F1u. We find the corresponding active modes by
resolving representations �Gn�2 (the case of overtones) and
Gn 
 Gn (combination tones) into irreducible states.
Observe that for IR radiation scattering all overtones are
forbidden.

The second-order Raman and IR spectra for high-quality
diamond samples with natural isotopic composition and
those samples rich in 13C (1.3% 12C and 98.7% 13C) were
experimentally studied in detail by Vogelgesang et al. [125]
(see also Ref. [103]). The corresponding diagrams are shown
in Figs 12 and 13. It is interesting to note that the spectra for
13C and natC practically coincide to the smallest detail, if we
scale the frequencies in terms of the average mass asM

ÿ1=2
c , in

accordance with the virtual crystal approximation. In this
situation, the effects quadratic with respect to the isotope
mass difference turn out to be rather small compared to the
linear effect. The theory of representations was used in work
[125] for identifying the realizable types of active modes for
different critical points; the calculated frequencies of both
acoustic and optical modes were in very good agreement with
experiment (see numbered points in Figs 12, 13 and Table 2).
The appropriate values are close to those obtained by neutron
spectroscopy. Generally speaking, the accuracy of optical
data is better than that of neutron spectroscopy by an order of
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Figure 11.Raman shift (a) and linewidth (b) in diamond as functions of the

concentration of the isotope 13C. The experimental points were taken from

Refs [100] (^) and [123] (D). The solid lines passing through the circles
represent the theoretical results obtained by Vast and Baroni [48].
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magnitude. It should be recorded that knowledge of the
acoustic mode frequencies has allowed the values of elastic

moduli and their dependence on the isotopic composition to
be obtained (for details see Ref. [103]).

Table 2. Phonon combinations and overtones for the Brillouin-zone critical points in diamond.

No. q, 2p=a Assignment Activity
o, cmÿ1

Raman spectrum IR
spectrum

G �1�� G �12�� G �25�� G �15ÿ� Experiment Theory [125]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

(1, 0, 0)
(1/2, 1/2, 1/2)
(1/2, 1/2, 1/2)
(1, 1/2, 0)
� 0:78� (1, 1, 0)
(1, 0, 0)
(1, 1/2, 0)
(1, 0, 0)
� 0:75� (1, 1, 0)
� 0:84� (1,1,0)
(1/2, 1/2, 1/2)
� 0:70� (1, 1, 0)
� 0:70� (1, 1, 0)
� 0:75� (1, 1, 0)
(1, 1/2, 0)
(1, 0, 0)
(1/2, 1/2, 1/2)
(1, 0, 0)
� 0:73� (1, 1, 0)
(1, 1/2, 0)
� 0:50� (1, 1, 0)
� 0:70� (1, 1, 0)
(1/2, 1/2, 1/2)

�X �3��TA���2�
L�3ÿ��TO� 
 L�3���TA�
L�3���TA� 
 L�2ÿ��LO�
�W 2�TA���2�
S �2��O� 
 S �4��A�
X �3��TA� 
 X �4��TO�
W �1��TO� 
W �2��TA�
X �1��L� 
 X �3��TA�
S �1��A� 
 S �3��A�
S �1��O� 
 S �4��A�
�L�1���LA���2�
S �3��O� 
 S �3��A�
S �2��O� 
 S �3��A�
S �2��O� 
 S �3��O�
W �1��TO� 
W �2��L�
�X �4��TO���2�
L�2ÿ��LO� 
 L�1���LA�
X �1��L� 
 X �4��TO�
S �1��O� 
 S �3��O�
�W �2��L���2�
�S �1��O���2�
�S �1��O���2�
�L�2ÿ��LO���2�
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2.3.2 Diatomic semiconductors. First-order Raman spectra.
Raman spectra of the first order for diatomic GaN crystal
with wurtzite structure were taken by Zhang et al. [110].

Measurements were performed with specimens of the
following isotopic composition: Ga15N, natGa 14N0.5

15N0.5,
and Ga14N. The vibrational modes LO and TO were
studied. The Brillouin zone for GaN is a hexagonal prism.
Representations of the group of a wave vector at the point G
coincide with the representations of the point group C6v.
Optically active are the modes with A1, E1, and 2E2

symmetries (Fig. 14). In the case of polar A1, E1 modes,
both the atoms (gallium and nitrogen) move in the same
direction. Such a motion can be described in terms of the
effective reduced mass mÿ1 �Mÿ1

1 �Mÿ1
2 . For the non-

polar E2 mode these atoms move in antiparallel directions.
The corresponding two modes constitute a mixture of Ga
and N vibrations.

In the harmonic approximation, the two modes with
E2 symmetry can be phenomenologically described as
follows.

Consider the motion of two coupled oscillators with
masses M1 andM2. Then we have

M1
�X1�t� � ÿK1X1�t� ÿ K12X2�t� ; �2:41a�

M2
�X2�t� � ÿK2X2�t� ÿ K21X1�t� : �2:41b�

Here K is the matrix of force parameters. In the standard
approach, when Xj�t� � Xj exp�iot�, in place of equations

(2.41) we have in the operator form:

KX � lX; l � o2 : �2:42�

Then the eigenfrequencies are defined as

o2
1;2 �

1

2
�O2

1 � O2
2� �

������������������������������������������
�O2

1 ÿ O2
2�2 �

4K 2
12

M1M2

s
; �2:43�

where

O2
1 �

K1

M1
; O2

2 �
K2

M2
: �2:44�

Our treatment also involves orthonormalized eigenvec-
tors, for which we go over from the matrix equation (2.42) to
an equation in the form

M 1=2KMÿ1=2 �M 1=2X � lM 1=2X : �2:45�
Notice that in addition to equations (2.41) ± (2.45) we also
have relations (2.8) which connect the isotopic frequency shift
with the modulus squared of the corresponding polarization
vector.

Experimental results were used by Zhang et al. [110] for
finding the elements of the matrix of force parameters and
then the eigenvectors on the basis of the above approach. It
was found that the gallium atom moves almost entirely in the
low-frequency mode, and the nitrogen atom in the high-
frequency mode. In work [110] results are also reported of
microscopic calculations based on the theory of the density
functional. As found, the theory gives a reasonably accurate
description of the observed values of both frequencies and
polarization vectors.

Raman spectra for several polytypes (3C, 6H, 15R) of
silicon carbide SiCwere obtained in Ref. [112]. The specimens
were natural superlattices with two different isotopic compo-
sitions with respect to silicon (the carbon isotopic composi-
tion was invariably the same, i.e. natural). One specimen
contained silicon with natural isotopic composition, whereas
the other was highly enriched in 30Si (5.0% 28Si, 1.3% 29Si,
93.7% 30Si). The spectra for 6H and 15R polytypes allow
reconstruction of the dispersion curves for longitudinal and
transverse optical and acoustic modes in the G ±L direction.
Knowledge of the experimental frequencies for the two
isotopic compositions allowed Widulle et al. to find the
polarization vectors in the framework of the same model as
used for GaN, with due account for relation (2.42). The
following conditions were additionally imposed on the phases
of acoustic modes:

eC�e�C� exp �iF�C��; eSi �
��������������������
1ÿ e2�C�

q
� e�Si� : �2:46�

The polarization vectors for optical modes are obtained by
making the replacements F! F� p, e�C� ! e�Si�
(e �M 1=2X). The authors of Ref. [112] compared their
results with the calculations for frequencies and polarization
vectors carried out with the bond-charge model. The
concordance between theory and experiment in this case
should be regarded as a two-way street.

Recently, Rohmfeld et al. [126] studied theRaman spectra
for two SiC polytypes (6H and 15R) with different isotopic
compositions with respect to carbon; it was experimentally
demonstrated that the isotopic broadening of phonon modes
Giso is proportional to the density of phonon states r�o� [see

A1
E1

B1l

B1h

E2l
E2h

ÿGa

ÿN Ô-axis

Figure 14. Eigenvectors of irreducible representations realized at the point

G for optical phonons in GaN. The representations B1l�E2l� and B1h�E2h�
relate to low-frequency and high-frequency modes B1 (E2) [111].
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formula (2.30)]. This linear relationwas observed over a range
of values covering one order of magnitude. The absolute
value je�C�j of the polarization vector for the carbon
sublattice, found from the coefficient of proportionality, fits
in well with both the experimental results of Ref. [112] and the
theoretical findings of Karch et al. [95] derived from first
principles.

Anomalous Raman spectra for TO-phonons. Fermi reso-
nance. In works [113, 114] the anomalous shape of the first-
order Raman spectrum observed for the transverse optical
phonon in the case of GaP crystals was studied. The shape of
the spectral lines for specimens 71GaP, 69Ga0.471Ga0.6P,
69Ga0.6 71Ga0.4P, and 69GaP was investigated.

A specimen with natural isotopic composition displayed
an asymmetrical broadened peak. Such broadening is asso-
ciated with processes related to cubic anharmonism. Owing to
the anharmonic interaction, the optical TO(G)-phonon with a
frequency o0 decomposes into longitudinal and transverse
acoustic phonons, so that the damping G�o� equals the
modulus squared of the anharmonic constant jV3j2 times the
density r2�o� of the corresponding two-phonon states:

G�o� � jV3j2r2�o� : �2:47�

Then the line shift is given by the formula

eD�o� � 2

p
jV3j2

�om

0

do 0
o 0r2�o 0�
o2 ÿ o 02

: �2:48�

Concrete calculations reveal that the density of two-
phonon states displays a weak-dispersion curve with a van-
Hove singularity ok at the upper edge of the acoustic
spectrum. The characteristic frequency oTO of the optical
phonon is close to ok, which gives rise to a kink in the low-
frequency part of the Raman spectrum (to the left of the
maximum). As the isotopic composition is varied, the
frequencies change as follows: oTO � mÿ1=2GaP and ok �M

ÿ1=2
Ga

(by definition, mÿ1GaP �Mÿ1
Ga �Mÿ1

P ). Such a behavior of the
frequencies ok is explained by the fact that in the acoustic
modes in the first approximation it is the atoms of gallium that
move. In the case of the TO mode, both Ga and P atoms are
active. This is the reason why the relative disposition of
frequencies oTO and ok on the frequency scale is changed,
which leads to the change in the asymmetry of the peak (Figs
15, 16).

It should be noted that the spectra for the anharmonic
constant were analyzed under the assumption [116]

jV3j2 / mÿ1=2GaP M
ÿ1=2
Ga M

ÿ1=2
P : �2:49�

GoÈ bel et al. [109] analyzed a compound with the structure
of zinc blende. Specimens were prepared from isotopes 63Cu,
65Cu, 35Cl, and 37Cl; the measurements were carried out at
2 K. Observe that the material in question is then close to a
phase transition. The parameter of anharmonism is relatively
large here. The Raman spectrum displayed peaks associated
with the longitudinal and transverse optical phonons. The
transverse phonon spectrum turned out to be anomalous. It
consists of two peaks, broad and narrow (Fig. 17). The
authors studied the dependence of these peaks on the
isotopic composition of the specimens.

It is pertinent to note that the CuCl phonon spectrum is
fairly well simulated in the microscopic approach. One can
also calculate the anharmonic linewidth associated with the
decomposition into two acoustic phonons [see formulas

(2.47), (2.48)]. It is important that the frequency of a
longitudinal phonon is considerably higher than the acoustic
edge of the two-phonon spectrum. The frequency of the
transverse mode lies lower, but near the spectrum edge. By
contrast to GaN, here we have a high density r2 of states near
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the edge. The parameter of anharmonicity in CuCl is also
higher but has the same order of magnitude. According to the
theory, the frequencies of the boundary acoustic modes are
�M

ÿ1=2
Cu , and the optical frequencies are � mÿ1=2CuCl.

The authors of paper [109] gave a quantitative description
of the observed anomalous transverse phonon spectrum. Its
peculiarities can be treated in terms of Fermi resonance
(Fig. 18). Namely, the transverse phonon interacts with the
two-phonon state (biphonon). A certain `repulsion' of energy
levels occurs. The upper level is narrow, and its position
mainly depends on the mass of the copper atom, which fits in
with the experiment. The lower broad level is associated with
an optical phonon which has a large probability of anharmo-
nic decay and depends on the reduced mass.

2.4 Study of phonon spectra in germanium
by inelastic neutron scattering
Optical methods give relatively limited information about the
lattice vibration spectrum. The availability of precision first-
order Raman spectra only permits the study of optical
phonons near the center of the Brillouin zone. As regards
the second-order Raman or photoluminescence spectra, they
carry indirect information, again with a restricted ensemble of
phonon modes at the symmetric points of the Brillouin zone.
At the same time, the inelastic neutron scattering method, in
principle, allows us to get complete information about the
vibrational spectrum of a crystal (which implies that both the
frequencies and the polarization vectors of the modes are
measured in experiment). However, the as yet considerable
instrumental width and the anharmonic effects still hamper
the use of neutron spectroscopy in the studies of isotopic

effects. Nevertheless, in the case of strong isotopic disorder,
the modern techniques yield valuable quantitative informa-
tion.

In this connection we should note that the effects of
isotopic disorder on frequencies and damping of phonons in
germanium were studied by GoÈ bel et al. [73]. Measurements
were taken at room temperature. The neutron spectra were
obtained for two germanium specimens: isotopically pure
70Ge (99.99%) and ultimately, isotopically disordered
70Ge0.576Ge0.5. The behavior of optical phonon modes for
the symmetrical directions D5 and S3 was studied in detail
(Fig. 19). In particular, it was confirmed that the frequen-
cies varied as �M

ÿ1=2
c . Most importantly, however, the

corresponding values for frequency shifts Diso and line-
widths Giso, proportional to x2, were measured and
analyzed. Notice that the phonon frequencies o were of
the order of 300 cmÿ1, and the instrumental width was
about 13 cmÿ1. The experimental values of Diso and Giso,
defined as the difference between the magnitudes for
70Ge0.576Ge0.5 and 70Ge, were of the order of 1 ± 2 cmÿ1.
The frequencies for the isotopic alloy were found using the
relevant data for the isotopically pure crystal 70Ge. In this
case, according to theoretical estimates for acoustic modes,
the values of the parameters under consideration are smaller
by an order of magnitude. The corresponding values of o,
Diso, and Giso are compiled in Table 3.

The analysis [73] was carried out using the coherent
potential and supercell methods, which yielded similar
results. Figure 20 shows experimental and theoretical values
for Diso and Giso. By and large, the investigations have
uncovered a good quantitative agreement between the theory
and experiment for Giso. At the same time, there is a certain
systematic discrepancy for the frequency shift. The following
assumption was made in Ref. [73]. Germanium, which has
only four neighbors at the first coordination sphere, may
exhibit short-range-order effects. Namely, the light (or heavy)
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atoms are surrounded preferably by light (or heavy) atoms.
The interaction is mainly short-ranged in character, which is
the reason why the actual frequencies of vibrational modes in
the isotopic alloy may differ from theoretical values obtained
under the assumption of a random atomic distribution over
the lattice sites.

3. Static displacements of lattice atoms near
isotopic impurities

Atomic vibrations give a certain contribution to the bond
energy and are known to affect the static configuration of the
lattice atoms. When the lattice sites are occupied with
different isotopes, the atoms will be displaced from equili-
brium positions characteristic of an ideal crystal (chemically

pure and built of isotopes of the same kind). As a result, the
fields of static displacements fzng appear near the `impurity'
isotopes. The resulting dynamic disorder is described by the
correlation function

K ab
n1n2
�t � 0� � hu a

n1
u b
n2
i �3:1�

formed in terms of the operators of dynamic atomic
displacements. Observe that in the range of temperatures,
where the classical statistics holds, the correlator K ab

n1n2
�t � 0�

does not depend on the mass, and the fields of displacements
disappear.

In this section we present theoretical results for statical
displacements, obtained within the microscopic approach.
We also find an asymptotic representation for fzng in the limit
when jR�0�n j is much greater than the interatomic distance a.
Also discussed are the results of NMR studies of the isotopic
composition effects on the shape of spectral lines.

For the first time, the problem of static displacements of
crystal lattice atoms in isotopically disordered solutions was
formulated in the studies of kinetic properties of quantum
crystals Ð the effects of 3He impurities on thermal con-
ductivity of a solid 4He [127 ± 129]. Most recently, the
problem of static atomic displacements in isotopically
disordered crystals has become the subject of investigation
as applied to metals [130] and semiconductors [131, 132].

3.1 Dynamic disordering and static displacements near
impurities
Let us consider a crystal lattice with isolated isotopic
impurities. For the sake of simplicity we assume that

Mn �M0 � DMdn;0; DM �M1 ÿM0 : �3:2�

Table 3. Values of phonon mode frequencies o, isotopic frequency
renormalizations Diso, and phonon widths Giso for the crystal 70Ge0.5
76Ge0.5 [73].

q � �qx; qy; qz� o, cmÿ1 D �S3�O��, cmÿ1 G�S3�O��, cmÿ1

(0.50;0.50;0)
(0.40;0.40;0)
(0.45;0.35;0)
(0.30;0.30;0)
(0.25;0.25;0)
(1.15;0.15;0)
(0.10;0.10;0)

244.1
260.2
268.2
275
281.3
291.6
295.5

0.18
0.18
0.01
0.77
1.07
1.51
0.96

0
0
1.41
2.34
2.14
1.44
0

q � �qx; qy; qz� o, cmÿ1 D �D5�O��, cmÿ1 G�D5�O��, cmÿ1

(1.0;0;0)
(0.7;0;0)
(0.6;0;0)
(0.5;0;0)
(0.4;0;0)
(0.3;0;0)
(0.2;0;0)
(0.1;0;0)

270.9
272.0
273.9
276,.
280.9
286.4
292.2
296.6

0.32
0.31
0.66
1.23
1.41
1.56
1.77
1.47

1.73
1.73
2.05
2.22
1.36
1.19
0.91
0
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Here,M0 is themass of the regularmatrix atom, andM1 is the
mass of an impurity isotope. The origin of the coordinates
coincides with the equilibrium position of an impurity
isotope.

The total energy E depends on the atomic coordinates Rn.
In a crystal with impurities, the atoms become displaced from
their equilibrium positions R�0�n in an ideal lattice, so that

Rn � R�0�n � fn � un ; �3:3�
where fn is the vector of static displacements, and un is the
vector of dynamic displacements.

Taking into consideration that the atomic displacements
are small comparedwith the interatomic distances, we expand
the structure-dependent part of the energy in a power series of
un and fn with respect to R�0�n . We would like to find the
relaxation energy Er associated with the static displacements
of atoms near impurities, retaining the terms of the first and
second order in zn. In symbolic notation for the energy Er we
have

Er � F z� 1

2
F2 z

2 : �3:4�

The effective force F in expression (3.4), acting on regular
matrix atoms from the side of an impurity isotope and
displacing them, can be represented as

F a
n �

1

2

X
n1n2

Fabg
3;nn1n2

DK bg
n1n2

: �3:5�

The characteristic of dynamic disordering, DK, is defined as
the difference between K-correlators for the lattice with an
impurity isotope and regular lattice:

DK ab
n1n2
� K ab

n1n2
�DM 6� 0� ÿ K ab

n1n2
�DM � 0� : �3:6�

In equations (3.4) ± (3.6), the force parameters of the second
and third order, F2 and F3, and the K-correlator are defined
with respect to the equilibrium atomic positions in an ideal
lattice.

Assuming that the resultant force acting on the atom is
zero, qEr=qzn � 0, we find the set of equations in z:

F� F2z � 0 : �3:7�
In the coordinate representation we find from this the
following relations

zan � ÿ �D
ab
nn 0F

b
n 0 ;

�D � �F2�ÿ1 : �3:8�

The relaxation energy Er is then equal to Fz=2.
Let us express explicitly the correlator K determining the

effective force F. First, we take into account the standard
relation between the correlator hun�t�un 0 �0�i and one-particle
Green function D. We have�1

ÿ1
dt exp�ÿiot�K ab

n1n2
�t� � 2ImDab

n1n2
�oÿ id�

1ÿ exp�ÿo=T� : �3:9�

Taking into account that the Green function D satisfies an
approximate relation of the form [see Eqn. (2.22)]

Dab
nn 0 �o� � Dab

0; nn 0 �o�

� o2
X
n1

Dag
0; nn1
�o��M0 ÿMn1�Dgb

0; n1n 0 �o� ; �3:10�

wemight use expressions (3.9) and (3.10) and find for the case
of an isolated impurity:

DK ab
n1n2
�t � 0� �

�ÿ 2DM
p

�1
ÿ1

do
o2

1ÿexp�ÿo=T� Im
�
Dag

0; n10
�o�Dgb

0; 0 n2
�o��;
�3:11�

where the `zero' Green functionD0 of an ideal crystal lattice is
presented in the form

Dab
0; nn 0 �o� id�

� 1

M0N

X
q j

ea�l �eb�l �
exp
�
iq�R�0�n ÿ R

�0�
n 0 �
�

o2 ÿ o2�l � � id signo
: �3:12�

The knowledge of the factor DK allows us to find the field
of static atomic displacements, based on relation (3.5). For the
spatial Fourier component zan we get the following expression

za�q� �
X
j

�D a; b
q j F

b�q� ; �3:13a�

where

�D a;b
q j �

ea�l �eb�l �
M0o2�l � ; �3:13b�

F a�q� � ÿ 1

2

DM
M0

X
q1q2 j1 j2

Fabg
3; qq1q2

Z bg
q1q2

; �3:13c�

Z ab
q1q2
�
X
j1 j2

ea�l1�eg1�l1�eg1�l2�eb�l2�

� o�l1�
�
2n
ÿ
o�l1�

�� 1
�ÿ o�l2�

�
2n
ÿ
o�l2�

�� 1
�

M0

�
o2�l1� ÿ o2�l2�

� : �3:13d�

From the last formula it follows that at absolute zero of
temperature we have

Z ab
q1q2
�T � 0� �

X
j1 j2

ea�l1� eg1�l1� eg1�l2� eb�l2�
M0

�
o�l1� � o�l2�

� : �3:14�

In the limit of high temperatures we haveZ � 0, and therefore
the field of static displacements near the isotopic impurity
disappears.

Let us make some estimates for the linear chain model
with the interaction between nearest neighbors. In this model,
the spatial Fourier components of the force parameters of the
second, f2, and third, g3, orders Ð that is, F2; q andF3; qq1q2 Ð
are represented as (see, for example, monograph [133])

F2; q �M0o2
q ; M0o2

q � 4f2 sin
2 qa

2
; �3:15�

F3; qq1q2 � ÿ
ig3

�f2=M0�3=2
~oq ~oq1 ~oq2D�q� q1 � q2� ; �3:16�

~oq � 2

�
f2
M0

�1=2

sin
qa

2
:

Here a is the lattice constant. As regards the relationship
between parameters f2 and g3, it is known that for the central
force model and the integral GruÈ neisen parameter gG � 2 we
have ÿg3a=f2 � 10.
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Based on the relations (3.13), (3.14) and making use of
equations (3.15), (3.16), we arrive at the following estimate for
static displacements of atoms located on the first coordina-
tion sphere relative to the isotopic impurity:

z � ÿ0:3E g3a
2

f2
� ÿEa ; E � DM

M0

hu2i
a2

; �3:17�

where hu2i is the mean square of the dynamic atomic
displacements. Notice that E is a characteristic parameter of
the theory. From the last relations it follows that because of
the difference in zero vibrations the lattice contracts near the
heavy isotope and expands near the light isotope. In common
solids we have hu2i=a2 � 10ÿ3 and jDMj=M0 4 0:1, so that
jEj4 10ÿ4. Thus we see that the static atomic displacements
near impurities are very small compared with the distance
between the atoms.

It would be interesting to make similar estimates for
quantum crystals. Let some lattice sites in an 4He matrix be
occupied with 3He isotopes. Using the values for the Debye
temperature TD � 26 K and the lattice constant a � 3:57 A

�
,

reported in Ref. [127], we then get hu2i=a2 � 3�10ÿ2. Since
jDMj=M0 � 0:25, the static displacements are noticeable. On
the first coordination sphere z � 0:025. These displacements
are of the same order as those for systems with nonisotopic
impurities.

3.2 Asymptotic representation for the field of static
displacements
Let us derive the expression for fn in the asymptotic limit,
when jR�0�n j is much greater than the interatomic distance a.
By definition, we have

zan �
O0

�2p�3
�
dq exp

ÿ
iqR�0�n

�
fa�q� ; �3:18�

where O0 is the unit cell volume. We shall assume that the
integrand in formula (3.18) is analytical. Then at jR�0�n j4 a,
owing to the fast oscillation of the term sin qR�0�n , the main
contribution to the integral comes from the range of small q
coming from the directions almost perpendicular to the vector
R�0�n .

We represent the quantity za�q! 0� defined by Eqn
(3.13a) in the form

za�q! 0� �
X
j

ÿi �D ab
q!0; j q

b lim
q!0

ieF�q�;
lim
q!0

eF�q� � F b�q! 0�
qb

: �3:19�

Let us substitute relation (3.19) into formula (3.18) and
perform the integration in Eqn (3.18) over the interval
(0;1). Having regard to the estimate z�q! 0� � qa=q2, we
get

zan � dim
Aa�n��
R2

n

; n� � Rn

jR�0�n j
: �3:20a�

Here the following notation was used:

dim � lim
q!0

ieF�q� ; �3:20b�

A a�n�� � 1

8p2

�2p
0

dj
�
q
qy

X
j

e aj �y;j�
ÿ
ej�y;j�q�

�
Mcvj�y;j�

�
y�p=2

:

�3:20c�

It should be pointed out that the standard factor Aa�n�� is
expressed in terms of the polarization vectors and velocities of
sound vj�y;j� in a regular lattice; in addition q� � q=jqj and
the polar angle y is measured with respect to n�. The factor A
describes the angular dependence of fn; it bears no relation to
the properties of the impurity isotope. In the case of crystals
with cubic symmetry, the analytical formulas forA a�n�� have
been obtained for fn aligned with the directions [100], [110],
and [111] (see, respectively, Refs [134 ± 136]).

Now let us find the quantity dim. Taking into account that�
q
qqa

Fa1a2a3
3; qq1q2

�
q!0

� ÿi
X

n; n1; n2

exp�ÿiq1R �0�n1
� exp�ÿiq2R�0�n2

�R�0�n;a F
a1a2a3
3; nn1n2

;

�3:21a�

we may use the recurrent relation for the force parameters of
different orders in the formX

n1

R�0�n1; aF
a1... ap�1
p�1; n1... np�1 � O0

q
qO0

Fa2 ... ap�1
p; n2... np�1daa1 �3:21b�

(see, for example, Refs [133, 137]). Considering expression
(3.14) for Zq1q2 , we get as an upshot

dim �ÿ DM
2M0

X
l

X
m

O0
q

qO0
Fab

2;0m exp
ÿ
iqR�0�m

� ea�l �eb�l �
2o�l � :

�3:22�

As the volume is varied, the change of the eigenvalue
(frequency squared) in the first approximation is equal to the
corresponding diagonal element of the perturbation energy
taken over the unperturbed states. Therefore, one obtains

qo2�l �
qO

� ea�l �
qFab

2; q

qO
eb�l � : �3:23�

Using this relation, in place of formula (3.22) we get

dim � ÿDM
M0

qEvib

qO
; Evib � 1

2

X
l

�ho�l � ;

where Evib is the zero-vibration energy.
The derivative qEvib=qO can be expressed in terms of the

change DeO in the unit cell volume, which arises as a result of
variation of precisely the isotopic composition (see paper
[138]). Then we have

DM
M0

qEvib

qO
� ÿB0

DeO
O0

;

where B0 is the bulk compression modulus, and

dim � B0
DeO
O0

:

In calculating the quantities that are integral with respect
to the field of static displacements, on the qualitative level it is
often sufficient to rely on the elastic isotropic continuum
approximation. In such a case it is possible to arrive at an
explicit expression for fn. With this purpose we define the
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quantity

C a � 1

N

X
l

�D
ab
l qb exp

ÿ
iqR�0�n

�
: �3:24�

In the case of isotropic continuum, the polarization vectors of
longitudinal (l) and transverse (t) modes satisfy the following
relations

e�l ��q� � �qn�q
q2

; e�l � ? e�t� ; �3:25�

where n is the unit vector. In view of these relations we can
demonstrate that after summation over the polarization
branches j only the contribution from the longitudinal
modes is retained in formula (3.24). Their frequencies are
given by

o�l ��q� �
�����������
l� m
rq

s
; �3:26�

where l and m are the LameÂ coefficients, r is the density, and

M0�l� 2m�
r

� O0c11 : �3:27�

Here c11 is the modulus of elasticity. As a result we get the
following relations

C a � ÿi
M0N

X
q

qa exp
ÿ
iqR�0�n

�
o�l �2�q�

� 1

O0c11

q

qR�0�n;a

O0

2p3

�
dq

exp
ÿ
iqR�0�n

�
q2

� ÿ 1

4p
1

c11

R
�0�
n;a

R3
n

: �3:28�

From these relations, we finally get (see Ref. [130])

fn �
b

4p
R�0�n O0

jR�0�n j3
; b � DeO

O0

B0

O0c11
; �3:29�

where b is the defect capacity.
In the case of an elastic isotropic continuum, the field of

atomic displacements is purely radial. The static displace-
ments in a crystal are anisotropic. The displacements become
radial only along the symmetric directions and demonstrate
more complex behavior along the nonsymmetric directions.
On the coordination spheres nearest to the impurity, the
values of fn calculated by formulas (3.13) and (3.18) differ by
a factor of 2 or 3. The values calculated by the asymptotic
formula are in excess of the true ones. Notice that the
asymptotic limit for fn is actually realized only at
jR�0�n j5 �4ÿ5�a, i.e. starting with the 6th ± 8th coordination
spheres (see, for example, Ref. [139]). Nevertheless, relation
(3.18) gives the correct sign and scale of the displacement. For
illustration, Figs 21 and 22 show the fields of displacements f
in the bcc 7Li lattice that arise around the light isotopic
impurity 6Li. The static displacements were calculated on the
basis of the pseudopotential theory. Straightforward defini-
tions of the force parameters in the second and third order,
using the local pseudopotentials, are given in Ref. [130].

In the case of metals, the electron multiports require, in
general, special treatment. If the Fermi surface is spherical,

the expression for z contains an oscillating term that decreases
as R3. If the Fermi surface is entirely cylindrical or flat, the
Kohn singularity is reinforced, and the asymptotic expression
for z changes [140].

Theoretical analysis of the fields of displacements around
isotopic defects has been carried out in few works (see Refs
[127 ± 130]). In Ref. [127], in connection with the problem of
thermal conductivity of solid 4He containing 3He impurities,
it was suggested that the lattice gets distorted near the
impurity isotopes. The atomic displacements are expressed
in terms of such quantities as the zero-vibration energy in
spherical potential well and the relaxation energy due to the
inclusion of a finite radius. Glyde [128] considered 3He with
4He as an impurity, and the displacements dR=R on the
coordination spheres closest to the impurity were calculated
in the framework of the self-consistent harmonic approxima-
tion. It was found that dR=R � 0:01, and the force interaction
parameters are considerably renormalized because of static
displacements. A more comprehensive theory based on the
self-consistent harmonic Kohler approach was developed by
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Figure 21. Static atomic displacements around the light isotopic impurity
6Li in the bcc 7Li lattice. Displacements are given in arbitrary units and
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Jones [129]. This theory allows us to estimate the effects of
displacements at large distances from the defect, and thus
provides for a more accurate description of the long-
wavelength-phonon scattering. The theory in Ref. [130] was
formulated in terms ofGreen functions. The equation derived
for fn involves the microscopic parameters. The explicit form
of the atomic displacements is given in the asymptotic limit.

The chaotic distribution of interatomic distances, result-
ing from the superposition of the fields of static displacements
near the isotopes, may be important for various phenomena.
Some of these are discussed below. We shall analyze the
situation when the chaotic distribution of electric fields in the
crystal, caused by static displacements, may lead to the
broadening of NMR lines, when the magnetic nucleus
exhibits a quadrupole electrical moment. Static displace-
ments of atoms and local variations of the crystal lattice
elastic properties may considerably reduce thermal and
electric conductivities of crystals. Such fields of displace-
ments, for example, can essentially modify the residual
electrical resistance rr of chemically pure metals containing
different isotopes, and their contribution to rr is greater than
the contribution caused by the difference in the dynamic
amplitudes of elastic electron scattering.

3.3 NMR measurements of static displacements in
germanium single crystals
Static displacements of crystal lattice atoms near isotopic
impurities can be studied by the nuclear magnetic resonance
method. The necessary condition for observing displacements
is the presence of at least two kinds of isotopic impurities in
the lattice. These are, firstly, the isotopes with nonzero
nuclear magnetic and quadrupole moments. It is on the
nuclei of such isotopes that nuclear magnetic resonance is
registered. Secondly, it is the impurity isotopes with a zero
nuclear moment. In such a situation, if near the probe nucleus
there is an impurity isotope of a different kind, the arising
local distortions of the crystal lattice will modify the electric
field gradient on the probe nucleus. As a result, the energy
levels of nuclei with a nonzero nuclear quadrupole moment in
the neighborhood of the defect will exhibit a quadrupolar
shift, which will lead to broadening of the NMR line. This
effect is especially clear when in an ideal lattice (without
impurities) the electric field gradient at the lattice site is zero.
Such a situation is realized in crystals with the cubic symmetry
of the nucleus charge environment.

Recently, Verkhovskii and his colleagues [131, 132]
discovered the effects of isotopic disorder in NMR spectra
of 73Ge nuclei in isotopically modified germanium single
crystals. Figure 23 shows NMR spectra taken with two
germanium specimens with approximately the same concen-
trations of 73Ge nuclei in a magnetic field of 12 T at room
temperature. One specimen was highly enriched in 70Ge
(96.3% 70Ge, 2.1% 72Ge, 0.1% 73Ge, 1.2% 74Ge, and 0.3%
76Ge) and in this experiment appeared as an almost regular
crystal with a narrow NMR line. The other specimen had
almost equal concentrations of 70Ge and 76Ge (43% 70Ge, 2%
72Ge, � 0:1% 73Ge, 7% 74Ge, and 48% 76Ge) and was a
crystal with the practically highest possible isotopic disorder
parameter x2. Its NMR line was much broader. The lattice
cubic symmetry, the fairly high quadrupole moment of 73Ge
nuclei (I � 9=2, eQ � ÿ0:19 barn), and their low concentra-
tion in the specimens that allowed the neglect of the direct
dipole ± dipole interaction between nuclear magnetic
moments, all these features ensured a high sensitivity of the

NMR experiment on the detection of small local static lattice
distortions around the resonance nuclei. The fact that there
are no other germanium isotopes with a nonzero nuclear
magnetic moment also facilitated the experiment.

Local deformations of the germanium crystal lattice
around the impurity isotope 73Ge and the quadrupole broad-
ening of the NMR line, induced by the isotopic disorder, were
simulated using the adiabatic bond-charge model for the case
when the crystal matrix was built up from the isotopes 74Ge
[131]. The local deformations of the lattice were primarily
analyzed. The atomic displacements are presented in Table 4.
Let us comment on these results. Since the mass of the probe
nucleus is different from that of the matrix nuclei, it creates
local lattice distortions in its neighborhood: the light atom
`pushes apart' the surrounding matrix atoms. The radial
displacements dr of atoms on the first coordination sphere
around a single impurity isotope are about ÿ1:5� 10ÿ5 A

�
at

T � 0 K, and they decrease with increasing temperature to
ÿ0:36� 10ÿ5 A

�
at room temperature, which is comparable

with the size of a nucleus itself. The displacements of atoms on
the second coordination sphere are smaller by about an order
of magnitude. These lattice distortions, however, do not
induce an electric field on the probe nucleus. The local
electric fields on the probe nucleus are created by a `pair' of
impurity isotopes, and the field will be the strongest when the
separation between these isotopes is of the same order of
magnitude as the interatomic distance in the lattice. Since in
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Figure 23. Shape of 73Ge NMR line in two germanium single crystals with

different isotopic compositions: isotopically ordered (96.3% 70Ge) and

isotopically disordered (43% 70Ge + 48% 76Ge) samples. The spectra

were taken in 12-T magnetic field directed along the crystallographic axis

[111] at T � 300 K [141].

Table 4. Atomic displacements caused by isotopic impurity centers in
germanium crystals. The theoretical results are given in units of 10ÿ5 A

�
per

amu mass change [131].

Type of impurity
center

Parameter Temperature, ¬

0 80 300 450

Single impurity
atom

Pair of nearest
neighbors

Pair of second
nearest neighbors

dr

dr f

dr f1

drs

ÿ1.47

ÿ2.04
ÿ1.59

ÿ1.80

ÿ1.06

ÿ1.37
ÿ1.18

ÿ1.36

ÿ0.36

ÿ0.50
ÿ0.43

ÿ0.50

ÿ0.19

ÿ0.22
ÿ0.19

ÿ0.22
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this experiment the concentration of 73Ge was � 0:1%, only
the impurity isotope dimers were considered (Fig. 24).
Calculations confirmed that because of the correlation
between atomic displacements of impurity atoms in dimers,
their mutual displacements dr f along the pair axis are
increased by about 40% (Fig. 24a). The radial displacements
dr f1 of the six nearest matrix atoms in such a system also turn
out to be important. In the pair of impurities next to nearest
neighbors (Fig. 24b), the displacements of the impurity atoms
themselves can be neglected, but a considerable displacement
(dr s) is exhibited by the matrix atom being the common
nearest neighbor to both the `foreign' atoms. Theoretical
results on the fields of atomic and charge displacements
around isotopic impurities were used for calculating the
random crystal electric fields, the interactions of the nuclear
quadrupole moments with these fields, and the relevant
effects in NMR spectra. The model spectra are in qualitative
agreement with experiment.

The experimental sensitivity to local deformations of
crystal lattice (� 10ÿ5 A

�
) was almost an order of magnitude

better than that of the traditional X-ray and neutron
diffraction methods. Accordingly, in some cases the NMR
technique may be considered as a powerful tool for control-
ling the crystal lattice perfection.

To end this section, we note that the problem of
inhomogeneous broadening of resonance lines in NMR,
EPR and other spectra, caused among other things by static
atomic displacements, was discussed in detail theoretically in
the review [142] (see also the review [143] and paper [144]).We
should also point out theoretical studies [145, 146] concerned
with the effects of crystal lattice deformation (under the
action of generalized external forces) and the related
symmetry lowering on the spectra of impurity atoms.

4. Conclusions

The most straightforward indications of the effects of
isotopes on the properties of solids are the isotopic effects

observed in the phonon spectra. The effects of the first and
second orders are studied currently with respect to the isotope
mass difference, using optical and neutron spectroscopy
methods for a broad variety of monatomic and polyatomic
semiconductors. These studies validated and improved the
contemporary models of dynamic interatomic interaction in
covalent crystals. In addition, the studies of materials with
complicated crystal lattices `have honed' the coherent
potential and supercell methods used for describing the
phonon modes in nonideal systems.

In crystals, because of fluctuations of zero vibrations and
anharmonism, static fields of atomic displacements fzng arise
around the impurity isotopes. The analysis of atomic
configurations arising near the isotopic impurities with due
account for their mutual influence has just started for specific
materials. Static displacements in germanium crystals were
recently studied for the first time using the nuclear magnetic
resonance method as applied to 73Ge. This experiment
demonstrated a very high sensitivity to small (on the order
of 10ÿ5 A

�
) local lattice deformations around the resonant

nucleus. Such a sensitivity is an order of magnitude better
than that achieved with the traditional X-ray and neutron
diffraction techniques.
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was partly sponsored by RFFI (grant 01-02-17469) and by
CRDF (grant #RP2-2274).

5. Appendix. Bond-charge model

The bond-charge model firstly formulated by Weber [147,
148] explicitly takes into account the directional nature of
atomic bonds in ion-covalent crystals. Such an asymmetry
of interactions is due to the presence of peaks in the
electron density distributions over the regions of covalent
bonds (they have been experimentally studied, for example,
using the X-ray diffraction technique). In this model, in
addition to the positive charges on the atomic ion cores,
inertialess negative point charges of the covalent bonds are
introduced [bond charges (BCs)], and the Coulomb inter-
action between all charges of both types is taken into
consideration. The principle of adiabaticity is also postu-
lated: for any particular configuration of cores, the BCs
arrange themselves in such a way as to minimize the total
energy. In doing so, the adiabatically displaced BCs are
used for describing the many-particle nature of the
interaction between the ions.

Observe that in the case of heteropolar crystals, the
equilibrium position of the BC shifts towards the more
electronegative atom. The characteristics of BCs for various
cores are chosen in a different way.

Figure 25 schematically shows the unit cell with two ion
cores and four BC, and the force interactions between the ions
and BCs. The following notation is used: first, the quantities
fi1ÿi2�t�, fi1ÿBC�r1�, fi2ÿBC�r2� describe a non-Coulomb
elastic interaction of central type between the nearest
adjacent ions and between the ions and BCs; secondly, the

a
74Ge

73Ge

Bond
charges

b

Figure 24. 73Ge impurity pairs of the first (a) and second (b) nearest

neighbors in a 74Ge crystal lattice [131].
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quantity V s
bb defines the three-center interaction BC± ion ±

BC. It is described by a valence angle type coordinate. The
superscripts s � 1 and s � 2 correspond to cations and
anions, respectively.

It should be recognized that the part of the vibrational
energy that is due to the short-range forces can be represented
as a function of the so-called internal coordinates. Such
coordinates account for the elongations of valence bonds,
variations of valence angles, dihedral angles, etc. (see details
in the description of models of valence-force type).

We denote the length of the interionic bond by t. Bond
charges are localized at the points r1 � �1� p�t=2,
r2 � �1ÿ p�t=2. In this theory, for homeovalent crystals we
have p � 0 �r1=r2 � 1� (Fig. 25), and for III ±V compounds
and II ±VI compounds we have, respectively, p � 0:25
�r1=r2 � 5=3� and p � 1=3 �r1=r2 � 2�.

Let us reproduce the explicit expression for the three-
center interaction potential V s

bb (see Fig. 25). Then we have

V s
bb�k; k 0� �

Bs

8 a2s

�
R�s k�R�s k 0� � a2s

�2
; �A:1�

s � 1; 2; k; k 0 � 3; 4; 5; 6:

Here,R�s k� is the radius-vector of the kth BC,measured with
respect to the ion core s located at the vertex of an angle, and
a2s � ÿR�s k�R�s k 0�j0. The subscript j0 indicates that the
quantity is defined for the equilibrium configuration of
particles.

The theory explicitly accounts for the interaction between
BC. It is described by a central-type potential cs�r�s�bb �, where
r
�s�
bb is the distance between BCs centered around a cation or
an anion. In order to reduce the number of parameters, it is
additionally assumed that

c 01 � c 02 � 0; c 001 � ÿc 002 �
B2 ÿ B1

8
; �A:2�

�1� p�f 0i1ÿBC � �1ÿ p�f 0i2ÿBC � 0 : �A:3�
Finally, the ions and BCs interact, as already said, with each
other and between themselves through the long-range
Coulomb forces. The particles have the charges �2Ze and
ÿZe, so that the total charge of the unit cell is zero.

On the strength of the arguments developed above, the
total energy of crystal lattice per unit cell can be written as

Ftot � 4
�
fi1ÿi2�t� � fi1ÿBC�r1� � fi2ÿBC�r2�

�
ÿ aM

�2Z�2
E

e2

t
� 6
�
V
�1�
bb � V

�2�
bb � c1�r�1�bb ��c2�r�2�bb �

�
:

�A:4�
Here aM and E are the Madelung constant and the dielectric
constant, respectively.

The equation that governs the dynamic particle displace-
ments ua�nk�, located in the nth cell of the lattice, can be
represented in the standard form. We have

Mk�ua�nk� � ÿ qFtot

qua�nk� � ÿ
X
n 0k 0b

jab�nk; n0k 0�ub�n0k 0� ;

�A:5�
where jab�nk; n0k 0� are the force parameters, with

jab�nk; n0k 0� �
q2Ftot

qRa�nk�qRb�n 0k 0�
����
0

:

As said above, the numbers k � 1, 2 correspond to the cation
and the anion, respectively. The numbers k � 3, 4, 5, 6
correspond to a BC with zero mass.

Now we rewrite equation (A.5) in the form

Mko2�q�ua�k� �
X
k 0;b

Dab�kk 0; q�ub�k 0� : �A:6�

Here Dab�kk 0; q� is an element of a Fourier component of the
dynamic matrix.

In the expression for the D-matrix we distinctly separate
the short-range and the long-range parts (DC). Then we have

Dab�kk 0; q��
X
n

jab�0k; nk 0� exp
�ÿ iq�R�0k� ÿR�nk 0��

�DC
ab�kk 0; q� : �A:7�

The equations of motion (A.6) for the system of six
particles (two ions and four BC) can be represented in the
operator form as follows

Mo2 eu � �D iÿi � 4
�Ze�2
E

C iÿi
�eu

�
�
D iÿBC ÿ 2

�Ze�2
E

C iÿBC
�
v ; �A:8�

0 �
�
D iÿBC;� ÿ 2

�Ze�2
E

C iÿBC;�
�eu

�
�
DBCÿBC � �Ze�

2

E
CBCÿBC

�
v : �A:9�

Here, eu and v are the vectors of displacements of the ion cores
and BCs, M is the matrix which defines the masses of ions.
Matrices D iÿi, D iÿBC, and DBCÿBC are the dynamic matrices
for the short-range ion ± ion, ion ±BC, and BC±BC interac-
tions. Matrices C iÿi, C iÿBC, and CBCÿBC describe the
Coulomb interaction that is calculated by the Ewald method.

The set of equations (A.8), (A.9) describing the dynamic
displacements of the six particles consists of 18 equations.
Since the BC species move adiabatically, these 18 equations
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Figure 25. Structure of a unit cell and the interactions in the bond-charge

model in the case of a homeovalent crystal [149].
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can be reduced to 6 equations which define the vibrational
spectrum of ions in the crystal lattice. As a result, the
frequencies and the polarization vectors are found as the
solutions of the standard form of secular equation

jDeff
i j �kk 0; q� ÿMko�k� di j dkk 0 j � 0; k; k 0 � 1; 2 : �A:10�

The dynamic matrix D eff in the last equation takes the
following form

Deff � D iÿi ÿ �D� iÿBC;� �DBCÿBC��ÿ1�DBCÿi : �A:11�

Here, the first term describes the direct interaction between
the ions, and the second accounts for the effects of BC on their
motion.

Let us find the force parameters for the short-range forces.
We take into consideration that for the case of pairwise
central potentials fi1ÿi2�t�, fi1ÿBC�r1�, and fi2ÿBC�r2�, we
have by definition

fcen
ab �nk; n 0k 0� �

ra rb
r2

�
f00 ÿ f0

r

�
� dab

f0

r
; �A:12�

where r � ��R�nk� ÿ R�n 0k 0���. Concerning the three-center
potential V s

bb, the corresponding contribution to the force
parameters is found in the following manner. If one of the
particles is an ion, and the other a BC, then one can write out
the following relation

fa
i j�lk; l 0k 0� �

Bs

4a2s

X6
t�3

Rj�st�
�
Ri�sk 0� � Ri�st�

�
;

k � 1; 2; k 0 � 3; 4; 5; 6 : �A:13�

If both particles are BCs, then one obtains

fa
i j�lk; l 0k 0� �

Bs

4 a2s
Ri�s k 0�Rj�s k�; k; k0 � 3; 4; 5; 6 :

�A:14�

Next, in accordance with the condition of lattice equili-
brium, we may write out

qF
qt
� 0 ; �A:15�

qF
qp
� 0 : �A:16�

Using equality (A.15) and the definition (A.4) of the crystal
energy per unit cell, we have

f0i1ÿi2 � ÿaM
Z2e2

2Et 2
: �A:17�

Using equality (A.16) and relation (A.3) we arrive at

f0i1ÿBC
r1

� 2
daM
dp

1ÿ p

1� p

Z2e2

Et 3
; �A:18�

f0i2ÿBC
r2

� ÿ2 daM
dp

1� p

1ÿ p

Z2e2

Et 3
: �A:19�

In addition to Eqns (A.15) and (A.16), the inequalities
q2F=qt 2 > 0, q2F=qp2 > 0 must also hold in the case of a
stable lattice. Using these inequalities and expression (A.3),

we get the following two restrictions on the values of
parameters:

4
f00i1ÿi2
3
� �1� p�2

�
f00i1ÿBC

3
� B2

6

�
� �1ÿ p�2

�
f00i2ÿBC

3
� B1

6

�
ÿ 128

9
���
3
p aM

Z 2

E
> 0 ; �A:20�

f001
3
� f002

3
� B1 � B2

24
ÿ 64

9
���
3
p d2aM

dp2
Z 2

E
> 0 : �A:21�

In this way, with the use of relations (A.17) ± (A.19) and
(A.2), we have defined the parameters f0ii, f

0
1, f

0
2, c

0
1, c

0
2, c

00
1,

and c002. Six parameters remain free in the theory, namely

f00ii;f
00
1 ;f

00
2 ;B1;B2; and

Z 2

E
:

For the homeopolar crystals, we have fi1ÿBC � fi2ÿBC
and B1 � B2, and the number of parameters reduces to four
(the magnitude of the BC and three parameters for the non-
Coulomb interactions). These parameters are found by fitting
with the experimental neutron data and elasticity moduli.

Table 5 compiles the parameters of the theory for the
elements of group IV of the Periodic System and III ±V and
II ±VI compounds.
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