
Abstract. The sign correlation of quasiperiodic oscillations with
close incommensurable frequencies forms a dynamic chaos,
which interferes like noise with a single interference peak and
is controlled by the delay of its constituent oscillations. This
property of oscillations with incommensurable frequencies can
be employed in multichannel information transfer systems to
form radar reception patterns and obtain uninterrupted coher-
ent key streams in symmetric cryptographic systems. The re-
view of known results on the generation and properties of
quasiperiodic oscillations is complemented by a description of
new experiments.

1. Introduction

Dynamic chaos as a deterministic irregular motion has
attracted the attention of experts in different scientific fields
(see, for instance, Refs [1 ± 3]). Particularly rapid is the
development of chaotic dynamics in radiophysics Ð the
realmbest suited to the pursuit of experimental investigations.

Relatively recently, an investigation was made into the
possibility of using electronic circuits with strange attractors
for information transfer protection from unauthorized access
[4]. The identity of parameters of the transmitting and
receiving chaotic modules of these circuits ensures their
strong coupling, making it possible to perform consistent
reception of desired signals concealed in chaos. A start was
made on the development of such circuits once the feasibility
of controlling dynamic chaos came to light. This determined
the main line of employment of strange attractors as
information signals in information transfer and storage
systems [5].

The aim of our paper is different. The objective is to show
the possibility of using the dynamic chaos of mappings
representing quasiperiodic oscillations, i.e. oscillations with
incommensurable (irrationally related) frequencies, for com-
munication systems. Oscillations of this kind are generated by
parametric circuits with regular attractors [6].

During the intensive investigations of parametric circuits
in the 1960s, dynamic chaos was not yet known to radio-
physicists, and therefore the chaotic properties of parametric
circuits were associated with noise and did not arouse
practical interest. That is why several promising applications
related to the chaotic properties of parametric circuits have
been given no consideration. We now believe that this gap
should be compensated, the more so as quasiperiodic
oscillations have long come to the attention of radiophysi-
cists [7, 8].

At present, the study of dynamic chaos in experimental
radiophysics and electronics is primarily limited to the
investigation of strange attractors, whereas systems with
regular attractors remain mainly a source of mathematical
problems and an object of computer simulations.
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In experiments with oscillations having incommensurable
frequencies, oscillations of a two-circuit parametric oscillator
are used [8]. Under certain conditions, such an oscillator can
be considered a conventionally conservative Hamiltonian
chaotic system with a constant phase volume [3]. The chaotic
dynamics of such systems is determined by uniform quasiper-
iodic motion irrationally winding a torus Ð a regular
attractor of the system formed by phase trajectories.

The dynamics of Hamiltonian systems is the subject of
three modern special theories: the egrodic theory [9], which
studies the instability of chaotic motion; the KAM theory,
which considers its stability; and the stochastic theory, which
unites both extreme theories on the basis of nonlinear
resonance [10] (the acronym KAM is associated with the
names of Kolmogorov, Arnol'd, and Moser [11 ± 13]).

The remarkable property of Hamiltonian systems to
generate irregularity in the mutual mappings of regular
stable motions was noted even by Poincare [14]. Present-day
numerical investigations showed that `this irregularity can be
indistinguishable from randomness in the case of irrationally
related frequencies' [15].

This can be observed experimentally in the mutual
mappings of two rectangular waves with close incommensur-
able periods, with one wave defining a periodic sequence of
zeroes and unities and the other defining regular samplings of
these elements with a repetition rate incommensurable with
the frequency of the sequence. The absence of resonances
common to rectangular waves with incommensurable periods
makes the results of samplings virtually random, as in the case
of tossing up an ideal coin. Therefore, a random (Bernoulli's)
sequence of zeroes and unities forms Ð a physical model of
dynamic chaos, in which binary elements and their combina-
tions are evenly mixed.

The frequency proximity of quasiperiodic oscillations is
fundamentally significant in their interference, because in this
case the oscillation frequency incommensurability alone
proves not to suffice to fully mix their phases and obtain a
continuous spectrum, which characterizes the chaotic proper-
ties of the resultant oscillation.

In practice, one quite often restricts oneself to so-called
Poincare mappings, which relate quasiperiodic oscillations
stroboscopically (in short-term samplings), at time intervals
multiple to one of the periods of quasiperiodic oscillations. In
this case, the proximity of the frequencies of quasiperiodic
oscillations may no longer be of fundamental significance for
obtaining a resultant oscillation with a continuous spectrum.

The result of the interaction of quasiperiodic oscillations
is termed chaotic, or quasirandom. Here, the randomness is
caused not only by the incommensurability of the oscillation
frequencies, but also by the impossibility of precisely
prescribing the initial conditions of motion, which stems
from the continuity of the phase space of a classical system.
That is why the phase trajectories of oscillations with different
initial conditions diverge with time; this occurs more
noticeably, the less frequent are the samplings for the
Poincare mappings. Moreover, random transitions from one
phase trajectory to another, referred to as Arnol'd diffusion
[1], are possible under external perturbations, which makes
motion even less predictable.

The manifestations of order and chaos are particularly
pronounced and diverse in the mappings of quasiperiodic
oscillations. Since these mappings are determined by the
dynamics of a Hamiltonian system, of particular interest is
their evolution from regular trajectories of the degenerate

mode to local resonances of the nondegenerate mode and
further (via intermittency) to dynamic chaos. The evolution
of mappings is observable in the tuning of partial frequencies
of a two-circuit generator.

Depending on the tuning of the resonators in a two-circuit
parametric oscillator, a periodic pump voltage can excite
either rationally or irrationally related oscillations, whose
respective mathematical models are resonant and nonreso-
nant tori.

In a degenerate mode, the multiplicity of frequencies
results in self-synchronization of parametric oscillations and
pump oscillations. As the circuits are tuned to pass into a
nondegenerate mode, the self-synchronization energy lowers
and the resonant tori begin to collapse. These collapses, or
bifurcations, are observed as diffusion and jump-overs of the
phase of parametric oscillations relative to the pump phase.
On the resonant tori thus collapsed, isles of local resonances
form, which next give way to nonresonant tori that are free
from mutual synchronization and prove to be more stable
(firmer) than the resonant tori.

Since chaos is inherent in the incommensurability of the
frequencies of quasiperiodic oscillations, narrow-band filtra-
tion, frequency division, and amplitude limitation can be
applied to them. These rational transformations permit
simplifying the problems related to dynamic chaos produc-
tion and control over the interference of the corresponding
chaotic binary sequences. These operations can be accom-
plished with the aid of frequency separation (filtration) of
quasiperiodic oscillations and control over their delay prior to
sign correlation. In this case, all electronic circuits, with the
exception of parametric oscillators, can be made of digital
integrated elements.

The frequency ratio in a nondegenerate oscillator is,
generally speaking, a hidden parameter of regular attractors,
because the oscillation frequency ratio is hard to judge from
oscillograms. That is why the frequency incommensurability
of quasiperiodic oscillations can be experimentally deter-
mined from the form of their mutual mapping and its
autocorrelation function.

Chaotic models possess the properties of dynamic chaos
[16] (a continuous spectrum and a decaying autocorrelation
function), and are a time-unlimited analog of algorithmic
noise-type signals, which are used extensively in communica-
tion systems [17]. The possibility of obtaining binary chaotic
sequences from quasiperiodic oscillations allows their auto-
correlation function to be controlled with the aid of
oscillation delay. With a sufficiently high stability of their
incommensurable frequencies, this property can find exten-
sive use in the solution of several topical radiophysical
problems.

In particular, two-channel four-beam interference of
quasiperiodic oscillations, which are used as radar signals,
can be employed to form sharp radar reception patterns and
suppress specular reflections (multipath propagation).

Producing dynamic chaos from quasiperiodic oscillations
received by spatially diversed receivers in symmetric crypto-
graphic communication systems makes it possible to accom-
plish the hidden `generation' of uninterrupted coherent key
streams, which can be used to cipher and decipher the
transmitted information. In this case, special preparation of
the key-stream formation system affords the optimal con-
veyance of a secret communication channel. The problems of
preparation of suchlike statistical systems with minimal
relaxation times were considered in Ref. [9].
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In writing this article we allocated a separate section
to the principal properties of radio oscillations with
incommensurable frequencies. The reason is that they
have not been systematized in the literature, while this
information may be beneficial where the radiophysical
applications of quasiperiodic oscillations under considera-
tion are involved. Moreover, to do this has taken
additional experimental investigation. The findings of
these investigations are used in subsequent sections, and
they are discussed in Section 7.

2. Quasiperiodic oscillations

In the literature, oscillations with incommensurable frequen-
cies are commonly referred to as quasiperiodic oscillations.
Commensurability and incommensurability are the relative
properties of uniform quantities which do or do not have a
commonmeasure. If one such quantity is assumed to be unity
(taken as the reference quantity), then the quantities com-
mensurable with it are expressed by rational numbers and
those incommensurable with it by irrational ones. This
pertains also to the frequencies of oscillations which do or
do not have common resonances. Quasiperiodic oscillations
are therefore oscillations with irrationally related frequencies
(o1 and o2), and their frequency ratio is expressed by an
irrational number, for instance, by the number
m1 � �o2=o1� � �21=2 ÿ 1� � 0:414 . . .

In Hamiltonian systems, oscillations with irrational
frequency ratios may have no common resonances for an
indefinitely long time. This is indicative of the high stability of
the irrational relationship of their frequencies. In the above
example we adopt the frequency o2 � 1 as the reference. The
other frequency is theno1 � 0:414 . . . In this case, irrespective
of which of the two irrationally related frequencies is taken to
be unity, their difference Do � jo1 ÿ o2j is also an irrational
number and is expressed by a unique infinite continued
fraction [18]. In our example, Do �j0:414 . . .ÿ 1j�0:585 . . .
Of course, this irrationality is of no physical interest, and
measuring instruments always round off such quantities to
rational values.

Experimentally, the situation may be different. One
continuous rectangular wave defines a regular sequence of
zeroes and unities with a frequencyo1, and a similar reference
wave defines a regular sequence of short samplings of these
elements with a frequency o2. In this case, each sampling is a
quantized phase value (0 or p) of the signal wave (with the
frequency o1) relative to the change of sign of the reference
wave (with the frequency o2). If the wave periods are
commensurable, the sequence of samplings contains reso-
nances and is a result of repeated measurements of the
difference frequency Do in the form of a rational, periodi-
cally repeated binary number.

If the wave periods are incommensurable, the sequence of
samples is void of resonances and represents the difference
frequency Do by an irrational binary number of the form
. . . 0101101 . . . Such a binary sequence may be infinite, but it
cannot be periodic owing to the absence of common
resonances in the frequencies of the waves under compar-
ison. Because of this, it has a decaying autocorrelation
function.

The properties outlined correspond to those of a determi-
nistic dynamic chaos, which is also highly sensitive to the
initial conditions of excitation of quasiperiodic oscillations. It
manifests itself in the breaking of correlation between binary

sequences obtained from quasiperiodic oscillations with
different initial phases.

Since irrational numbers form a continuum on the
number axis, their measure is assumed to be unity and the
measure of rational numbers to be zero. Similarmeasures also
apply to the frequencies of real radio signals, in which natural
beats appear under a nonsynchronous interaction. The
interaction of nondegenerate parametric oscillations, despite
the fact that they are irrationally related owing to the regular
pump voltage, is also attended by beats.

In the general case, the interaction of two oscillations
whose frequencies are disproportionate (not close) pro-
duces an aperiodic oscillation with a discrete spectrum
consisting of two spectral lines, which, under certain
conditions, is also characteristic of quasiperiodic oscilla-
tions. That is why the mathematical result of superposition
of two periodic functions with incommensurable frequen-
cies is commonly termed a quasiperiodic function by
physicists and an almost periodic function by mathemati-
cians. Such a function retains the property of being almost
periodic under any rational transformation. In particular,
its autocorrelation function is also an almost periodic
function [19, 20].

Experiment shows that the statistical properties of
incommensurable observables are most pronounced when
their scales are proportionate (with respect to frequencies, this
manifests itself in the overlap of resonances) and that a simple
mixture of oscillations with incommensurable but not close
(disproportionate) frequencies is not chaos. If the frequencies
are scale-proportionate (the resonances overlap), they can be
approximately related as Do4 0:5�o1 � o2�.

To make efficient use of quasiperiodic oscillations, it is
expedient to resort to strong irrational numbers most remote
from their rational approximations [18]. A strong irrational
number is the `golden section' equal to 0:5 �51=2 ÿ 1�. It is
defined as the ratio of the smaller portion of a linear segment
divided in the mean and extreme ratios to the larger portion,
equal to the ratio of this larger portion to the entire segment
[21].

Rational approximations of the `golden section' are the
fractions 2/3, 3/5, 5/8, . . ., whose denominators make up the
Fibonacci number sequence [22]. The irrational frequency
ratio equal to the `golden section' can be obtained in a
nondegenerate two-circuit parametric oscillator (see Sec-
tion 3.1).

According to Ref. [19], any rational transformations can
be applied to quasiperiodic oscillations. Among them are
narrow-band filtration (for frequency separation) and oscilla-
tion amplitude limitation (for obtaining binary mappings and
applying digital devices). With the aid of frequency division it
is possible to draw apart the frequencies in the spectrum and
accomplish frequency matching to make them scale-propor-
tionate (with the overlapping of the resonances), and also to
thin out the sequence of their mutual mappings with a given
cadence frequency Os. The frequency of thinning out may be
either regular or irregular, but irregular thinning hinders the
observation of local resonances.

Due to the transformations specified above, in the
formation of chaos it is possible to obtain samplings with a
nearly maximum cadence frequency controllable over a wide
range, from a chaotic binary sequence prepared in amixer of a
phase comparator type. Such a specially prepared signal is
free of local resonances, which can be checked by its
continuous spectrum at the mixer output.
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The range of incommensurable frequencies can be
broadened by thinning out the Poincare mappings. The
thinning results in the decorrelation of the signal phases [23]
and is, under certain conditions, equivalent to frequency
matching. This is possible when the thinning frequency is so
selected that all local resonances (or intrinsic phase correla-
tions of the signal that fall within the intervals between
samplings) are automatically rejected.

In the case of interference of quasiperiodic oscillations
with close incommensurable frequencies, the difference
frequency Do exhibits instability, which leads to beats. This
instability results from the relative phase mixing of the
quasiperiodic oscillations, whereas the frequencies under
measurement themselves may be stable (see Section 3.4) and
the difference calculated from the measured frequencies may
be stable. In the interference of oscillations with close
incommensurable frequencies, a continuous spectrum is
observed. Having no common resonances, they interfere like
noise with a single interference peak at zero.

When considering the properties of oscillations with
incommensurable frequencies, noteworthy is the fact the
autocorrelation functions of purely periodic oscillations that
have incommensurable frequencies are also purely periodic
oscillations with the same incommensurable frequencies.
Therefore, the intensity of interference of two quasiperiodic
oscillations produced by purely periodic oscillations with
incommensurable frequencies is made up of the independent
results of interference of each coherent pair of purely periodic
oscillations.

Naturally, the results outlined above depend on the phase
difference between the interfering coherent oscillations.
Because of this, two signals with incommensurable frequen-
cies can be used to form an infinite number of quasiperiodic
signals with a degree of mutual correlation sensitive to the
initial conditions. The role of initial conditions is played by
two parameters Ð the phase difference between coherent
oscillations of one frequency and the phase difference
between coherent oscillations with a different, incommensur-
able frequency.

In experiments, the sign correlation of two rectangular
waveswith close incommensurable periodsT1 andT2 (Fig. 1a)
generates a discrete Poisson stream (a cascade, in the
mathematical terminology) of pulses of random length
(Fig. 1b), which occur at random points in time, as in band-
clipped noise with zero average value [24]. Here, the
randomness is a consequence of the noncoincidence and
relative mixing of the zeroes of rectangular waves with close
incommensurable periods.

The statistical transformation properties manifest them-
selves in the simple mathematical model shown in Fig. 1c. It is
of the form of two infinite arithmetical progressions of the
forms fig � �0; t1; 2t1; 3t1; . . .� and fkg � �0; t2; 2t2; 3t2; . . .�
whose terms are real numbers having no common multiple,
which recur at intervals t1�T1=2 and t2 � T2=2, where T1

andT2 are the incommensurable periods of rectangular waves
(this representation was borrowed from Ref. [19]).

If the sequences fig and fkg are superimposed, it is
possible to bring into coincidence only two numbers, for
instance, zeroes or any pair of values it1 and kt2, where i and k
are the respective serial numbers of the terms of the first and
second sequences. Shifting the zeroes by uniform intervals
e > 0 shifts the coincidence of the i and k values by different
`random' distances. In this case, even for e! 0 the point of
coincidence may turn out to be at infinity. At the same time,

any relative displacement of the zeroes brings about a
coincidence of some other values i and k. These values may
be formally taken as the new initial conditions and the new
coincidence of the zeroes, after which the mutual position of
the sequences is completely repeated. These repetitions are
infinite in number.

As the sequence fig is rolled up in a circle that contains
two equidistant `unit' intervals �0ÿ t1� and �t1 ÿ 2t1� equiva-
lent to the intervals [0ÿ p] and [pÿ 2p], the sequence fkg,
infinitely `wound' on this circle, never closes up. Its even and
odd serial numbers k � 0, t2, 2t2, 3t2, . . . are mixed between
the `unit' intervals [0ÿ t1] and [t1 ÿ 2t1] and are distributed
along the circle with a uniform density.

The properties of dynamic chaos of mappings and the
possibility to control its interference clearly manifest them-
selves in the model presented above. Here, the selection and
mixing of alternative states (0 and 1) are present, as is the case
with Bernoulli systems, along with the mixing of coincidences
of all values of i and k belonging to the sequences fig and fkg.
This entails the mixing of an infinite set of other `random'
intervals between any pairs of values of i and k not belonging
to the same progression. It follows from the incommensur-
ability of the progression periods that, in an unrolled
(statistical) model, equal `random' intervals cannot be
present among the infinite number of `random' intervals in
one period of displacement of the zeroes.

In the model under consideration, irrationality and the
sensitivity to displacement result in ergodicity and random-
ness. Nevertheless, the model dynamics is deterministic and
periodic, because the arithmetical progressions are periodic,

c

d

I2 2I2 3I2

I1 2I1 3I1

0 t2 2t2 3t2

0 t1 2t1 3t1

t

b

a
T1

t

T2

t

Figure 1. (a) Regular rectangular waves with incommensurable periods,

(b) random pulse stream, (c) infinite arithmetical progressions, and (d)

interference maxima of rectangular waves with incommensurable periods.
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and the coincidence of progression terms is equivalent to the
repetition of the same initial conditions (coincidence of
zeroes), which can generate an infinite number of repetitions
of random mappings. These properties, which demonstrate
the Poincare recurrence theorem, significantly distinguish this
model from the classical torus model, which represents
Hamiltonian systems, and also from real physical systems.

A radiophysics analog of themodel described above is, for
instance, a parametric quantizer of the phase of radio
oscillations whose frequency is incommensurable with the
pump frequency (see Section 6.1). For physical systems,
however, the initial conditions are irreproducible and their
parameters are inherently unstable, with the result that they
cannot be fully deterministic.

``The classical model of quasiperiodic oscillations pro-
duced in nature is an attractive invariant torus on the surface
of which a quasiperiodic motion without self-intersection of
trajectories is possible'' [25]. The system of mappings formed
from oscillations with proportionate incommensurable fre-
quencies is close in properties to a conservative system in
which there exists a continuum of tori surrounding a periodic
orbit, and a random transition from one trajectory of motion
to another one is possible under perturbations (Arnol'd
diffusion [1, 26]).

In the binary version (with a limitation on the oscillation
amplitude), the continuum of tori is likely to degenerate into a
continuum of phase trajectories that have no self-intersec-
tions and regular mutual intersections and are located on the
surface of two tori enclosed inside one another. In the
formation of a bit sequence, this results in the mixing of
individual elements and their combination, which explains its
ergodicity and removes the apparent contradiction to the
recurrence theorem. A model of this type leaves room for a
phase transition from one trajectory to another under the
action of perturbations and admits delays between the
oscillation phases.

Practical applications of quasiperiodic oscillations require
a stable irrational frequency ratio. It can be provided in a
parametric system of weakly coupled oscillators between
which the pump energy is distributed in proportion to its
scattering by the diffusion law (since, naturally, a real system
also possesses dissipative properties). An algorithmic
approach to the theory of Hamiltonian systems shows that
quasiperiodic motion is such a system can be not only
irregular (owing to the `uncoupling' of phase correlations
and phase mixing), but stable as well [12].

The limitation of oscillation amplitudes required to
employ digital devices and sign correlation leads to Bernoul-
lis-type mappings and broadens the spectrum of a quasiper-
iodic or almost periodic function f �x�. The lengths of the
intervals t�e� that mark off the boundaries of almost-periods
of the function f �x� on the number axis, as well as their
distribution density, depend on the chosen accuracy of
coincidence of repetitive values of the function:
e5 j f �x� t� ÿ f �x�j.

As the limitation strengthens, the range of possible values
of the function f �x� narrows (e! 0), the almost-periods
lengthen, and their distribution density decreases indefinitely
[19]. Therefore, a full limitation transfers an almost periodic
function into the class of aperiodic functions. Under the
limitation, the frequency ratio is conserved, and, if they are
proportionate (overlapping of the resonances), the almost-
period length and the Poincare recurrence point tend to
infinity.

It was shown in Ref. [9] that the discrete-to-continuous
spectrum transformation in a conservative system takes place
only if the system relaxation results from phase mixing (the
ergodicity alone proves to be insufficient for the system
relaxation). This is also observable in a conventionally
conservative dynamic system of weakly coupled oscillators
with incommensurable frequencies.

However, as theory [10] and experiment show, the
frequency incommensurability alone is also insufficient for a
uniform phase mixing in such a system and for a passage to a
continuous spectrum: the frequency scales should be propor-
tionate, i.e. the resonances should overlap [10], resulting in
phase mixing and an almost complete `uncoupling' of phase
correlations.

The rate of phase mixing is determined by the rate of their
relative motion, i.e., the magnitude of the frequency differ-
ence of quasiperiodic oscillations, Do � jo1 ÿ o2j. Accord-
ingly, the relaxation time tr is determined by the inverse
quantity 2p=Do. Therefore, the difference frequency of
oscillations with incommensurable frequencies determines
the minimal time interval between the samplings and, hence,
sets an upper limit on the sampling thinning frequency Os in
the production of chaos. At the same time, the difference
frequency Do determines the character of the autocorrelation
function of the formed stream of samplings.

For a sign correlation, the scale disproportion of
quasiperiodic oscillations with irrationally related frequen-
cies generates local resonances Ð sign-variable chains of
samplings which expand the interference peak. Strongly
separated frequencies (o1 5o0 oro0 5o1) lead to quasiper-
iodic oscillations, to which there correspond almost periodic
autocorrelation functions with a discrete spectrum. However,
such frequencies can be matched by means of their division.
In this case, the study of mapping dynamics of parametric
oscillations can begin with retuning the oscillator from the
degenerate mode, whereby the fitted frequencies can be made
equal and Do � 0 (see Section 4.2).

In the oscillator retuning, the frequency ratiom1 � o1=o2

runs a sequence of rational and irrational values. In the
Poincare mappings local resonances are observed whose
duration and regularity are related to a partial phase mixing
and depend on the difference frequency Do and the sampling
frequency. As a result, the transition from the degenerate
mode to a nondegenerate one proves to be most complicated
for the analysis of dynamics of a Hamiltonian system,
although insignificant for the radiophysical applications
considered below.

We note that for relatively close irrationally related
frequencies a complete `uncoupling' of phase correlations
occurs. The overlapping of incommensurable frequencies in
the mixer band does not signify the occurrence of their
common resonances. As in the case of phase mixing in the
overlapping of nonlinear resonances, considered in Ref. [10],
it brings about an increase in the weight of the fractional
(irrational) part of the frequency ratio, reflected by the
difference frequency Do, and, accordingly, an enhancement
in the effect of randomness.

In the event of strongly separated frequencies (o1 5o2 or
o1 4o2), the `uncoupling' of phase correlations is limited.
This weakens the effect of randomness and results in local
resonances. Therefore, the chaotic properties of the interac-
tion of oscillations with incommensurable frequencies man-
ifest themselves in full measure only provided they are scale-
proportionate. In other words, the scale proportion of the

July, 2001 Dynamic chaos interference in Hamiltonian systems: experiment and potential radiophysics applications 739



frequencies (or overlapping of the resonances) is a condition
that enhances disorder in the interaction of oscillations with
irrationally related frequencies.

As the difference frequency Do increases while the
frequencies still remain close, the mode of local resonances
is replaced with intermittency. In this mode, the beat
frequency is still low, because it is related to a slow variation
of the phase difference and to a weak phase mixing. However,
for a sign correlation, this now gives rise to shorter binary
sequences of random duration. Such streams of samplings
with a relatively infrequent random phase change-over are
similar to the intermittency observed in chaotic systems on
the threshold of synchronization [3].

If the frequencies aremore remote but still relatively close,
the average beat frequency is already rather high. This is a
consequence of the rapid chaotic variation of the phase
difference in the intense uniform phase mixing. For a sign
correlation, it gives rise to virtually d-correlated binary
streams of samplings with a continuous spectrum. There-
fore, by changing the difference frequency of the signals, it is
possible to vary the degree of correlation of binary elements in
the stream of samplings and the shape of the autocorrelation
function from a time-broadened Poisson distribution to a d-
function-type distribution.

Two problems ensue from the above consideration. The
first involves preparing a stationary statistical system with a
continuous spectrum and frequency matching, i.e. ensuring
their scale proportion. In such a system (without thinning out
the samplings), the phase of a quantized oscillation should
not have more than one inversion in an interval of phase
quantization (interval between samplings). In this case,
obtaining a d-correlated sampling stream affords the mini-
mal time of `uncoupling' of phase correlations of quasiper-
iodic oscillations. As this takes place, the sampling frequency
is bounded from above only by the system relaxation time,
i.e., by the difference oscillation frequency Do. Hence we
obtain an approximate operating range of irrational ratios
between proportionate incommensurable frequencies (or
oscillation periods):��21=2 ÿ 1� � 0:41 . . . ; . . . ; �31=2 ÿ 1� � 0:73 . . .

�
;

in which, amidst the rational numbers, there exists an infinite
number of relatively strong irrational numbers. We note that,
if a parametric phase quantizer (PPQ) is used as the sign
correlator, the problem is solved by matching the frequency
of the quantized signal and the band of the cold circuit of the
PPQ [27].

The second problem is related to the appearance of a
constant component for a nonideal amplitude limitation,
which introduces asymmetry in the distribution of oscillation
phases andmanifests itself in the inequality of probabilities of
binary elements in the stream of large-volume samplings. In
this case, the symmetry of distribution of oscillation phases
needs to be restored upon amplitude limitation. To eliminate
the constant signal component upon the limitation, it is
expedient to use frequency division, which transforms the
signal into ameander, i.e., ensures equidistant positions of the
quantization intervals [0ÿ p] and [pÿ 2p].

We note that equidistant positions of the cells of a classical
macrosystem are a necessary condition to prepare it for the
corresponding statistical measurements [9]. We also note that
this condition is automatically fulfilled in a PPQ, which
behaves as a perfect limiter. Because of this, a PPQ can be

used as a sign correlator in a circuit for the phase quantization
of a strong signal whose frequency is incommensurable with
that of the pump signal (see Section 6.1).

On performing the above matchings, the thinning of a
Poisson sampling stream with a frequency Os, which does not
exceed the difference frequency of the signals Do, yields a d-
correlated binary model of dynamic chaos. These models are
practically unlimited in number and, for a synchronous
sampling thinning, they can be made coherent at any points
of a two-channel reception with the aid of phase self-tuning of
coherent oscillations.

As noted above, the Poisson streams of binary samplings
of quasiperiodic oscillations interfere like noise with a single
interference peak, which can be controlled owing to the
periodicity of each of the oscillations. That is why a
controllable interference of such sampling streams can be
practically realized only in a four-beam interference scheme
with a frequency separation of oscillations that have
incommensurable frequencies. When compensating for the
delay between coherent oscillations in such a scheme, the
maximum of the total intensity, which corresponds to the
interference of independent sampling streams, is equal to the
sum of the maximum intensities of two-beam interference of
each coherent pair of constituent oscillations. It is evident
that, with synchronous samplings, the coherence of resultant
Poisson streams corresponds to tuning the four-beam inter-
ferometer to the peak of total intensity.

3. Generation of quasiperiodic oscillations

To produce dynamic chaos from quasiperiodic oscillations, it
is necessary to generate oscillations with stable irrationally
related frequencies. In classical systems (owing to the
continuity of the parameter phase space), the frequencies of
the generated oscillations are inherently irrational, because
the fraction of their rational values has a zero Lebesgue
measure, while the fraction of the irrational ones has the
power of continuum. The natural instability of parameters of
uncoupled oscillators cannot afford a stable irrational
frequency ratio of their oscillations.

Irrational frequency ratios can be obtained in nonlinear
parametric systems. Experiment shows that a stable form of
self-organization of the chaotic mode is possible in such
systems. Oscillations with irrationally related frequencies
can be generated, in particular, in a nondegenerate two-
circuit capacitive parametric oscillator operating with a
continuous pump voltage.

3.1 Nondegenerate parametric oscillator
A nondegenerate parametric oscillator is a chain of two
oscillators weakly coupled through a nonlinear semiconduc-
tor capacitor with a capacitance modulated by the voltage
produced by a separate pump oscillator. The theory of
parametric oscillators and frequency dividers was elaborated
in the 1930s [28], and practical applications of these devices in
the radio and microwave ranges were investigated in the
1960s; see, for instance, Refs [8, 27, 29] and references
therein. Parametric oscillators of different types and designs
are described in these papers, including three-circuit ones with
a resonance pump chain as well as multi-circuit and
distributed schemes.

In our experiments, we used balanced-circuit oscillators
(Fig. 2), with partial compensation for the pump voltage at a
bridge assembly (D) ofD202A-type silicon varicaps operating
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with an autobias. A pump with an effective voltage
Ueff � 3:5 V and a fundamental frequency o3=2p � 3 MHz
was employed to obtain oscillation. The frequencies of the
degenerate mode were o1=2p �1MHz and o2=2p �2MHz.
The retuning of LC circuits with capacitances C1 � C2 was
performed with magnetic cores M1 �M2 of inductance coils
L1 > L2.

According to the Manley ±Rowe theorem (see, for
instance, Ref. [8]), the sum of partial frequencies o1 � o2 in
a two-circuit parametric oscillator is equal to the pump
frequency o3, while the phases of the normal oscillations are
related as j1�t� � j2�t� � j3�t� and are, relative to the pump
phase, which can be set equal to zero (j3 � 0), anticorrelated
(dichotomous): j1 � ÿj2. In the degenerate mode, the
oscillation frequencies o1 and o2 and the pump frequency
o3 are rationally related; the conditions for their self-
synchronization are fulfilled in this case, which makes the
frequency difference and the phase difference constant.

Retuning the oscillator to the nondegenerate mode
implies bringing the eigenfrequencies of the circuits closer
together to maintain their coupling with the Manley ±Rowe
relation retained. In the nondegenerate mode, the conditions
for self-synchronization between the oscillations of the
resonators are not fulfilled, and the oscillation frequency
ratios are in general irrational. In this case, the oscillation
phases j1 and j2 are free relative to the pump phase j3, and
the phase difference becomes an aperiodic function of time:
j1 ÿ j2 � Dj�t�. The pump voltage maintains forced oscilla-
tions in each resonator, giving up energy to them synchro-
nously, in pulses and regularly, in general, with a frequency
irrationally related to the frequencies of the normal oscilla-
tions of the resonators.

Their phases can be imagined to move away from the
pump pulses like billiard balls, i.e., specularly symmetric
relative to the direction of the incident ball (see Ref. [8] and
Fig. 12 below). As a result, the synchronism of the phases j1

and j2 relative to the pump phase j3 persists and the
irrational frequency ratio o1=o2 remains stable. (Such
motion is termed stochastic phase synchronism [30].)

Therefore, a complex behavior of the voltage across the
nonlinear capacitor of the oscillator arises in the nondegene-

rate mode. The spectrum of the voltage contains, as in the
degenerate mode, two normal frequencieso1 ando2, and also
the pump frequency o3. The superposition of these three
oscillations with nonoverlapping frequencies is observed as
an aperiodic or almost periodic oscillation with a ternary
discrete spectrum.

3.2 Regular attractors
As already noted, the aim of our paper is to show potential
practical applications of oscillations with irrationally related
frequencies. Naturally, this is possible on the basis of the
present-day notions of the dynamic chaos in Hamiltonian
systems, which is not a result of conventional fluctuations and
is stable enough for the control of its interference.

In dissipative systems, according to the Ruelle ±Takens
theory, temporal instability appears for three or more
incommensurable frequencies (turbulence related to the
transformation of tori into strange attractors). In contrast,
stable states in integrable Hamiltonian systems are, according
to the KAM theorem, possible even if the number of
irrationally related frequencies is n > 2. This is one of the
reasons to classify such systems as conventionally conserva-
tive, although this is related primarily to the fact that the
pump oscillator permanently compensates for the energy
losses [3].

At the same time, multi-circuit schemes are also known,
both with series and parallel connections of n > 2 nonlinear
resonators weakly coupled to the common pump voltage
generator (see, for instance, Ref. [8] and Section 6.4). Lastly,
irrational tori are produced in Hamiltonian systems and by
the harmonics of nonlinear combination oscillations. The
practical problem to be solved first upon the excitation of a
nondegenerate mode of a parametric oscillator is therefore
the extraction (filtration) of normal oscillations.

Without considering higher combination constituents, the
mathematical model of motion in the three-dimensional
phase space of a system with frequencies o1, o2, and o3

shows up as a double-layer torus or as KAM tori (non-
resonant tori) enclosed inside one another. According to the
KAM theorem, as the perturbation increases, the last to
collapse in a multifrequency Hamiltonian system (following
resonant and nonresonant tori) are regular KAM tori with
the strongest irrational frequency ratio, like, for instance, the
`golden section' [3].

In a regular attractor formed by three limiting cycles of
stationary oscillations of a two-circuit parametric oscillator
and a pump oscillator, the trajectories of motion are located
in different, possibly incommensurable, orbits. The periods of
the torus and of the winding of each phase-trajectory layer are
related as the oscillation periods that correspond to the pump
and oscillation frequencies. Because of this, the trajectory
loops on each layer are closed for a rational frequency ratio
and opened for an irrational one.

We note that the experimental techniques of observing
chaotic attractors of radio circuits are described in Ref. [31].
Smooth attractors can be obtained upon filtration of the
normal oscillations of a parametric oscillator.

Figure 3 shows a portion of a double-layer torus which is a
model of a Hamiltonian system with frequencies o1, o2, and
o3 (which prescribes the period of the double-layer torus).
The phase trajectories of oscillations with the frequency o1

make up the outer torus K and those of oscillations with the
frequency o2 the inner torus L. Also shown here is the
Poincare plane P, which transversally intersects the tori, as

L1
C1

L2C2

M1

M2

o1

o3

o2

D

R

Figure 2. Schematic diagram of a two-circuit parametric oscillator.
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the phase trajectories are strobed with the pump frequency
o3, and the points of intersection of the phase trajectories j1

and j2 with the plane P.
The sequences of intersection points fj1ig and fj2kg,

where i and k assume the values 1, 2, 3 . . ., are Poincare
mappings that relate the dynamic states of the system (phase
and energy) stroboscopically, i.e., at a time interval T. The
Poincare mappings form a discrete binary basis for the
production of dynamic chaos, i.e., a complete (base) chaotic
model. In the formation of different random sequences, these
mappings are commonly thinned out with a frequency
Os � o3=d multiple to the pump frequency, where d is the
so-called Poincare number of rotations.

If the frequencies are incommensurable, the phase
trajectories cover the entire torus with a uniform density.
This property referred to as the transitivity on a torus is,
according to the Birkhoff theorem, equivalent to ergodicity
[31]. By the Poincare recurrence theorem, the trajectory of
motion on any torus returns to a given neighborhood of some
point an infinite number of times. On the one hand, this leads
to ergodicity, but on the other this is precisely the reason why
ergodicity is not a sufficient property for the production of
chaos. In the case of a torus, however, this process may be
accompanied with an even stronger property Ð mixing.
Mixing is one of the central concepts of modern ergodic
theory since it is related to probability, i.e., to the generation
of statistically independent events [9].

The motion on a torus is defined by the Arnol'd
mapping [3, 26], which possesses the property of mixing
for irrationally related frequencies, i.e., it distorts any
surface element so strongly that the element behaves as if
it spread over the entire surface with time. This accounts for
the virtually uniform mixing of the phase sequences fj1ig
and fj2kg (i; k � 1; 2; 3; . . .) in the K and L contours
(intersections of the tori by the plane P). Also mixed in
this case are the hits of phase on the half-planes p� and pÿ,
which conventionally denote equidistant intervals of their
quantization. Experimental scans of the thinned-out Poin-
care mappings of resonant and nonresonant tori are given in
Fig. 6 (see below).

It was shown in Ref. [10] that for a uniform phase mixing
the spectrum of quasiperiodic oscillations becomes contin-
uous and ``... the lower bound for the return frequency of the
trajectory of motion to a given neighborhood of some point
proves to be zero, despite the fact that the return is bound to
occur an infinite number of times in accordance with the
Poincare theory. Therefore, motion is inherently fluctuant,
and the statement that statistical notions are inappropriate on
time intervals exceeding the Poincare cycle prove to be
erroneous.'' In the case of quantization of the phase of
quasiperiodic oscillations in the production of dynamic
chaos, both individual elements of the bit sequence and any
of their combinations are mixed, which does not, naturally,
contradict the recurrence theorem.

For a uniform mixing of oscillation phases j1 and j2,
their distributions over the contours K and L are of the form
W�j1;2� � 1=2p and their hits on the half-planes p� and pÿ
are not correlated. This determines the distribution of the
corresponding signed samplings in the formation of chaos.
We note that, again, for a binary phase quantization of a
strong signal, which is incommensurable with the pump of a
PPQ and has a uniform phase distribution, the probabilities
of the corresponding values 0 and p (or 0 and 1) are [27]
P�0� � 1=2, P�1� � 1ÿ P�0� � 1=2.

As noted in Section 1, theory [10] and experiment show
that a uniform phase mixing is possible only with the
overlapping of resonances, i.e., if the frequencies are scale-
proportionate. If the oscillation frequencies in a real oscillator
are disproportionate, they should therefore be pre-matched
to be used for chaos production. In this case, the chaotic
model will differ from a real oscillation system not only by the
thinned-out dynamics mapping and overlapping of the
resonances, but by the continuous spectrum as well.

Figure 4a shows the development of several periods of a
nonresonant torus T and the phase trajectory with a period
T1 4T in the case of unmatched incommensurable frequen-
cies o and o1. Figure 4b depicts the corresponding sequence
of `oppositely signed' Poincare mappings (bright and dark).
This is a weak-mixing case, whereby a fraction of the phase
samplings (shaded in Fig. 4b and marked in Fig. 4a) do not
regularly participate in the process. Limited sequences of
stable phase correlations make up local resonances, which
leads to a discrete spectrum and an almost periodic auto-

P

p�

pÿ
L

K

j1

j2

Figure 3. Section of regular attractors by the Poincare plane.

p�

pÿ
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Figure 4.Development of a torus (arbitrary scale).
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correlation function of the chaotic model. In this case, only
the oppositely signed neighboring mappings Ð bright and
dark Ð are in fact mixed up.

3.3 Hidden parameters of regular attractors
Along with normal frequencies o1 and o2, the spectrum of a
two-circuit oscillator contains an infinite number of higher
harmonics and combination frequencies, which descend in
amplitude and are of the form n1o1 � n2o2, where n1 and n2
are integers. These constituents, which are produced by the
capacitance nonlinearity of the varicaps, partially fall into
the resonance bands of the oscillators. If the amplitudes are
high enough, they are responsible for either the self-
synchronization of normal oscillations (a degenerate mode)
or for self-modulation and period doubling Ð effects
occurring on the threshold of synchronization and fractal
in character [3, 6].

In particular, in the retuning of the frequencies of the
resonators and the pump, a two-circuit parametric oscillator
exhibits a fractal structure of alternating degenerate and
nondegenerate modes, which was considered in Ref. [8]
prior to the discovery of dynamic chaos in such systems.
Naturally, it was associated with the loss of synchronization
and attributed to the effect of fluctuations. The domains of
excitation of subharmonics of integer multiplicity 1=n � 1=2,
1/3, . . . are separated by narrower domains of excitation of
subharmonics of fractional multiplicity k=n, which, in turn,
are separated by the states of instability, wherein the ratios of
the normal frequencies are irrational (k and n are natural,
mutually prime numbers: n > k5 1).

If the ratio of the lower oscillation frequency to the pump
frequency is equal, for instance, to the irrational number
m1 � o1=o3 � �21=2 ÿ 1� � 0:414 . . . lying between the first
two subharmonics of integer multiplicity, it is surrounded by
the infinite sequence of rational numbers

1

3
<

2

5
< . . . <

239

577
< . . . < m1 < . . . <

169

408
< . . . <

3

7
<

1

2
;

whose denominator determines the order of the subharmo-
nic oscillation. Related to these numbers are the domains
of high-order subharmonic generation separated by
domains of the nondegenerate mode. Therefore, there
exists an infinite cascade of period doubling, which is
responsible for the occurrence of subharmonics with
frequencies 2ÿno0, where o0 is the normal frequency.
Experimental observation of subharmonics of order
n � 500 was reported in Ref. [8].

Not nearly all oscillations with rational frequency ratios
are provided with a reliable self-synchronization and are
realized in the form of high-order subharmonics, and there-
fore the nondegenerate mode is observed in a relatively broad
pump frequency band (about 1%). To put it differently, the
set of local resonances (multiple frequencies) is hidden in the
nondegenerate mode owing to the absence of self-synchroni-
zation and superficial evidence for it. In this case, the
irrationality of, for instance, the K torus relative to the
pump is practically possible if the L torus is rational (see
Fig. 3), which, of course, also expands the nondegenerate-
mode band.

In experiment, hidden (local) resonances occupy about
50% of the nondegenerate-mode domain and manifest
themselves as almost periodic autocorrelation functions with
a specific envelope whose aperiodic decay stems from the
limited coherence time of the pump phase.

3.4 Frequency stability of quasiperiodic oscillations
Upon narrow-band filtration, the normal oscillations of a
two-circuit parametric oscillator can be viewed from a
practical standpoint as purely periodic functions. In our
experimental setup, a Ch6-31 frequency synthesizer with a
frequency instability within 10ÿ8 was used as the pump
oscillator. However, according to Ref. [33], the actual
stability of parametric oscillations can be made much higher
than the pump stability, this being so not only due to its
frequency division.

Akhmanov et al. [33] derived a condition for the
constancy of oscillation frequencies under slow correlated
deviations of intrinsic frequencies possible for different
temperature instabilities of the oscillator circuit parameters.
This condition implies that the oscillation frequencies remain
invariable if the increments of the intrinsic frequencies under
temperature variations are related as normal oscillation
bands. Since this condition can be satisfied in our experi-
ments, the frequency instability can be assumed to be of the
order of 10ÿ9.

Therefore, it is possible to ensure a fairly high stability of
incommensurable frequencies in the nondegenerate mode.
This property of radio signals of this type can be very useful
for specific radiophysics applications: when controlling the
interference of deterministic chaos, the stability of incom-
mensurable frequencies (or the phase coherence time of each
quasiperiodic oscillation) determines the maximum permis-
sible delay that retains the coherence of chaotic models.

4. Production of dynamic chaos

To impart a simple quantized form, convenient for radio
transmission and delay control, to complex parametric
oscillations and, in doing so, retain the periodicity and the
incommensurability of the normal frequencies, match (bring
closer together) the frequencies, and ensure equal distances
between the points where the phase passes through zero,
some requisite transformations were used, viz., the filtration
of the normal oscillations (separation of the frequencies o1

and o2), limitation of their amplitudes to logical levels of 0
and 1, and frequency division by an even integer. This
allowed observing the phase correlation of different oscilla-
tions, including those of different parametric oscillators with
a common pump. With the aid of frequency dividers, all
signals were matched with the sixth pump subharmonic
O3 � o3=6; thus, they had the symmetric appearance of
meanders with periods T1, T2, T3 and T 01, T 02 and close
frequencies of the order of 0.5 MHz:

O1 � o1

2
� O2 � o2

4
� O 01 �

o 01
2
� O 02 �

o 02
4
� O3 � o3

6
:

�1�
In the matching of different frequencies o1 and o2 of one

oscillator, divisions by different integers destroys the mirror
symmetry of their phases. For this reason, in studies of the
dichotomous properties of the phases of parametric oscilla-
tions, we used signals with close frequencies (o1 and o 01, o2

and o 02) produced by different two-circuit nondegenerate
oscillators with a common pump at a frequency o3.

4.1 Experimental setup
A schematic structural diagram of the experimental setup is
shown in Fig. 5. Two identical two-circuit parametric
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oscillators POA and POB operate with a common generator
of continuous pumpPP. FiltersF separate out the frequencies
of normal oscillations. ComparatorsC limit the amplitudes to
logical levels of 0 and 1. Frequency dividers D provide
frequency matching and the formation of meanders. The
oscillation phases are discretely varied by delay lines DL.
The sign correlation is performed by phase comparatorsXOR
Ðmodulus-two adders.

Employing a frequency synthesizer as a pump oscillator
and digital delay lines furnished a good reproducibility of
experimental results. All devices, with the exception of the
parametric oscillators and filters F, were made of digital
components [34].

Different ways of connecting the signals with frequencies
(1) to phase comparators were realized experimentally; the
dashed line in Fig. 5 shows the connection used to study the
interference of signals with frequencies O1 and O2. The setup
also involved power supply units, a dual-beam oscilloscope,
and a spectrum analyzer, which are not shown in Fig. 5.

We note some operational features of the facility. The sign
correlation of signals in theXOR comparators yields a binary
Poisson stream Ð the basic model of dynamic chaos.
Thinning out the basic model in CAMAC permits us to
obtain a virtually unlimited number of different chaotic
models corresponding to different sampling frequencies Os,
which could be set either by a separate oscillator, or by means
of an additional division of any one of the frequencies (1).

As already noted, the maximum sampling frequency Os is
limited from above by the difference frequency of incommen-
surable oscillations: Os 4DO. This condition defines the
boundary mode between intermittency and dynamic chaos.
However, for a CAMAC transmission capacity of no higher
than 30 kHz, the frequency transformation (1) was quite
sufficient to verify this condition.

The operations of sign correlation and sampling are as
follows. If the signs of meanders (for instance, T1 and T2) at
the inputs of the phase comparatorXOR coincide, the level of
the signal voltage at the comparator output is minimal, and a
value of 0 is assigned to it; if the signs are opposite, this level is
maximal, and a value of 1 is assigned to it. For an
uninterrupted succession of incommensurable meanders at
the inputs of XOR, an aperiodic variation of logical voltage
levels is observed at its output. They are fed to the CAMAC
input, where the stream is thinned with a sampling frequency

Os. The resultant bit stream (the final result of chaos
formation) is brought out to a display screen via CAMAC
for visual diagnostics and recording. The autocorrelation
function of the stream was calculated with a personal
computer PC. Spectrum observations were made at the
output of the oscillators, filters, and XOR comparators.

4.2 Experimental conditions and results
The indication of mappings in the form of a bit stream on a
display is convenient in that it permits observing the evolution
of dynamic modes when retuning the circuits of a parametric
oscillator. In the raster of samplings (the so-called dump),
which reflects motion in the system, characteristic manifesta-
tions of this evolution are observed: hidden (local) resonances
with regular controllable sequences of zeroes and unities,
intermittancy with long (also controllable) random sequences
of these symbols, and chaos, in whose kaleidoscopic dynamics
regular correlations and possibilities for control cannot be
found. Among the visual effects of the chaotic raster is the
apparent insensitivity of the system to external perturbations,
although in reality it is in chaotic dynamics that its highest
sensitivity is manifested.

Dynamic chaos was observed in a `deeply nondegenerate'
mode, wherein neither self-synchronization nor attendant
threshold effects can be found: there are no period-doubling
bifurcations. The absence of such bifurcations is an indication
that the system is stable [35]. The stability is alsomanifested in
the abruptness of transitions from one dynamic state to
another (see Section 4.3) and in the stable repeatability of
these effects without no hysteretic effects.

Nevertheless, the nondegenerate mode commences with
bifurcations like oscillation phase jumps related to the
collapse of resonant tori with a decrease in the self-
synchronization energy. The traces of these collapses are
local resonances hidden to an oscilloscopic inspection but
readily observable on the display screen.

Figure 6 shows typical fragments of bit streams (top) and
their autocorrelation functions (bottom), which correspond
to (a) local resonances, (b) intermittancy, and (c) dynamic
chaos. To enhance contrast, the zeroes and unities in dumps
are represented by spaces and rectangles. These experimental
results were obtained for a sign correlation ofmatched signals
of the POA oscillator with close frequencies O1 � o1=2 and
O2 � o2=4 at a sampling frequency of 104 Hz not synchro-
nized with the frequency of the pump oscillator PP. Similar
results are also observed for a sign correlation of other
matched frequencies (1).

We note that thinning out samplings with the frequency of
a `free' oscillator, uncoupled to the pump oscillator, does not
hinder observing chaos. However, in the observation of
hidden resonances this introduces (floating) stroboscopic
distortions, which show up in raster dynamics as motion
turbulent in time. If the frequency of the `free' oscillator were
irrationally related to the frequency of the oscillations under
study, thiswould lead to chaos in the thinning of themappings
of hidden resonances. However, as one could expect, no
`masking' of hidden resonances by chaos is observed here.

To put it differently, uncoupled oscillators do not furnish
stable irrationally related frequencies. A relation of this sort is
an intrinsic property of a Hamiltonian system [35]. This can
also be regarded as a manifestation of self-organization of the
chaotic mode in a conventionally conservative dynamic
system possessing an extremely high stability and the
maximum entropy.
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Figure 5. Schematic structural diagram of the facility for mapping

quasiperiodic oscillations and observing their interference.
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Such properties are also realized inmore complex systems.
In particular, it is possible to observe experimentally that the
stochastic phase synchronism involves oscillations of several
nondegenerate oscillators coupled only by a common pump
(see Section 6.4).

The nondegenerate mode originates as the self-synchro-
nization of parametric oscillations is lost; the self-synchroni-
zation mechanism was comprehensively studied in Ref. [8].
When the pump frequency is retuned, self-synchronization
fails earlier than one of the K or L tori (see Fig. 3) becoming
irrational, i.e., the irrationality of at least one of the tori
occurs in the nondegenerate mode some distance away from
the self-synchronization threshold. This is one of the reasons
for the relative broadening of the band of the nondegenerate
mode with a variation of the pump frequency. Half this band
(corresponding to 1% of the pump frequency) can be used for
a crude practical estimate of stability of the chaotic mode.We
note that the band in which all frequencies are irrationally
related proves to be substantially narrower, of the order of
1% of the pump frequency.

A parametric oscillator as a physical system is, naturally,
subject to technical fluctuations, the temperature instability
of its circuit elements, and the flicker noise of the quartz pump
oscillator. The phase diffusion of parametric oscillations
arising from such perturbations can be observed in the
mappings of hidden resonances and in their autocorrelation
functions.

According to the Manley ±Rowe theorem, slow fluctua-
tions should be dichotomous relative to the pump phase. This
is likely to account for a virtually perfect coherence of two
chaotic models synchronously obtained for a sign correlation
of the oscillations of two pairs of close frequencies from two
different parametric oscillators operated with a common
pump. Another version follows from the KAM theorem that
irrational tori are stable against small perturbations, which

distort the trajectories of motion only slightly, but do not
eliminate their irrational relation.

A two-circuit parametric oscillator as a coupled system is
characterized by a common capacitance and a common
inductance [8]. That is why the retuning of one circuit results
in a partial retuning of the frequency of the second one, which
approaches the frequency of the first circuit. In the degenerate
mode with a frequency ratio 1 : 2 : 3, the matched frequencies
are equal: O1 � O2 � O3. In the oscillator retuning to a
nondegenerate mode for a constant voltage and a fixed
pump frequency o3, the frequency O3 � o3=6 matched with
it remains constant, and the oscillation frequencies come
closer together.

As the partial frequencies approach each other, o1 ! o 001
and o2 ! o 002 (Fig. 7a), the matched frequencies O 001 and O 002

a b c

Figure 6.Dumps of Poincare mappings (top) and their autocorrelation functions (bottom): (a) local resonances, (b) intermittancy, (c) dynamic chaos.
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Figure 7. (a) Retuning of partial and matched frequencies of a nondegene-

rate oscillator with a fixed pump frequency and (b) diagram of the

domains of dynamic chaos evolution.
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diverge, and their difference frequency DO 00 � O 001 ÿ O 002
increases. The difference frequencies between the matched
partial frequencies and the pump frequency also increase:
DO 001 � O3 ÿ O 001 and DO 002 � O3 ÿ O 002 . In experiment, the
matched frequencies were measured with the frequency
meter CO at the outputs of the frequency dividers D (see
Fig. 5).

Of special interest for chaos production are the KAM tori
with the strongest irrational frequency ratio and high
difference frequencies, for instance o1=o2 � �51=2 ÿ 1�=2 �
0:618 . . ., known as the `golden section'. It is shown in an
arbitrary scale in the following diagram, where the pump
frequency o3 is taken as the unit frequency:

Strong irrational ratios ensure a dependable stability of
nonresonant tori and the highest difference frequency DO of
the matched frequencies needed to attain a high sampling
frequency Os in the production of chaos.

The `golden section' of the pump frequency
o3=2p�3MHz gives frequencies (from here on they are
expressed in kilohertz) o1=2p � 1146 . . ., o2=2p � 1854 . . .,
strong irrational ratios
o2=o3 � 0:618 . . . � o1=o2 � 0:618 . . . (the `golden sec-
tion'), o1=o3 � 0:382 . . ., and the highest difference fre-
quency equal to

jDo3j
2p
� jo3 ÿ o1j

2p
� 1854 . . .

For comparison we note a strong irrational ratio
(21=2 ÿ 1). The corresponding section is shown in the diagram

For a pump frequency o3=2p � 3 MHz, this section corre-
sponds to the frequencies o1=2p � 1243 . . .,
o2=2p � 1757 . . ., close irrational ratios o1=o2 � 0:707 . . .,
o1=o3 � 0:414 . . ., o2=o3 � 0:586 . . ., and the highest differ-
ence frequency equal to

Do3

2p
� jo3 ÿ o1j

2p
� 1757 . . .

Since the matched frequencies of the degenerate mode are

O1

2p
� o1

4p
� O2

2p
� o2

8p
� O3

2p
� o3

12p
� 500 kHz ;

for a matched pump frequencyO3=2p � 500 kHz, the `golden
section' 0.618. . . gives the maximum difference frequency
equal to

jDO1j
2p
� jO1 ÿ O2j

2p
� 573 . . .ÿ 212 . . . � 361 . . . ;

and the maximum difference frequency given by the section
0.414. . . is two times lower:

jDO1j
2p
� jO1 ÿ O2j

2p
� 621 . . .ÿ 439 . . . � 182 . . .

Therefore, the selection of a `section' and the correspond-
ing frequencies with the highest difference is of significance in
the production of chaos. At the same time, apart from the
choice of the `section', it is important that the difference
frequencies increase under the transformation of frequencies
by division in accordance with expression (1) (Fig. 7a),
allowing the solution of both problems: to ensure a stable
irrationality and a fast response (supposedly up to 10% of the
pump frequency).

A physical experiment does not allow an observation of
the fine fractal structure of the dynamics evolution in the
mappings of regular attractors. This shows up in that the
sizes of the domains of local resonances, intermittancy, and
chaos do not correspond to the Lebesgue measures of
rational and irrational numbers. This could be related to
the fact that a limited resonator Q-factor results in an
overlap of resonance and nonresonance states with the
oscillator retuning, and the frequency ratios do not resolve
the fine structure of the continuous series of resonant and
nonresonant tori.

In the dynamics of mappings obtained from matched
signals (1), it is possible to isolate only a limited series of
three stable domains comprising local resonances, intermit-
tancy, and dynamic chaos. All the mapping domains with
different forms of motion are determined and distinguished
by the rate of phase mixing, which is governed by the
difference of matched frequencies DO � O1 ÿ O2 and is
measured relative to the sampling frequency.

As the difference frequency DO is varied, the sampling
frequencyOs should remain constant, because it characterizes
the mapping rate: low difference frequencies (DO < Os)
correspond to a slow phase mixing and high frequencies
(DO > Os) to a fast one. Therefore, by varying the ratio of
frequenciesDO andOs it is possible to control the distribution
of elements in chaotic streams.

4.3 Evolution of the chaos in Hamiltonian systems
As the oscillation frequencies are retuned for a constant pump
frequency, a specific evolution of the mapping dynamics is
observed, in which chaos borders on intermittancy. This
corresponds to one of the known typical transitions to chaos
[3]. At the same time, it is also possible to point out other
states of the nondegenerate mode, also related to the
oscillation-to-pump frequency ratios.

The evolution of chaos commences with local resonances,
which are observed in the mappings formed from matched
oscillation frequencies (1). As one of the circuits is retuned,
the self-synchronization breaks down and the oscillator
passes to the nondegenerate mode with non-synchronized
regular attractors, in which the oscillation phases are
relatively free [8]. In the sequence of samplings this shows up
in the form of local resonances within limited time intervals,
which are clearly visible in phase trajectories and have
periodic autocorrelation functions with slowly decaying
envelopes (Fig. 6a).

In the passage to this state, the breakdown of self-
synchronization is due to the reduction of the energy of the
combination constituents that fall within the transparency
bands of the resonators, but no stable irrational relation
between the oscillations still takes place here. There is no full
mixing of the phases of local resonances in their relative
diffusion, and therefore the signal spectrum at the output of
XOR1 is discrete. Local resonances were also observed with
phase correlations of disproportionate irrationally related

o3 � 1

o2 � 0:618 . . . o1 � 0:382 . . .

o3 � 1

o2 � 0:586 . . . o1 � 0:414 . . .
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frequencies for their individual matching unrelated to
expressions (1). The domain of these resonances is located
above the chaos domain shown in Fig. 7b.

Intermittancy is observed for low difference frequencies
(of the order of 103 Hz) and a slow phase mixing
(Os � 104 Hz). In this state, the ratio of the frequency of the
retuned circuit to the pump frequency and, hence, to the
frequency of the second circuit becomes irrational, and the
phase difference is a random function of time. In this case,
local resonances pass into intermittancy Ð long random
sequences of zeroes and unities, corresponding to irregular
changes of the phase difference and having a Poisson-type
autocorrelation function (Fig. 6b).

The transition to chaos from intermittancy for a constant
sampling frequency Os � 104 Hz was observed at close
difference frequencies DO of the order of 104 Hz. The ratio
between the frequency of the retuned circuit and the pump
frequency remains irrational in this state. However, as the
difference frequency increases, the relaxation time shortens,
and the phase mixing quickens. For a constant mapping rate,
this is attended with the transformation of the autocorrela-
tion function into a d-shaped function (Fig. 6c). In the
production of chaos from matched frequencies (1), the
upper limit of the thinning frequency supposedly approaches
a frequency of the order of 105 Hz.

At the same time, as shown by experiment, for a stable
irrational ratio between the frequencies of the first circuit and
the pump, the ratio of the frequency of the second circuit to
the pump frequencymay be close to a rational number. In this
case, the phase difference of the matched frequencies is a
slowly varying, almost periodic function, and its autocorrela-
tion function has an aperiodic envelope similar to that
depicted in Fig. 6a.

The common feature of transitions from local resonances
to intermittancy and from intermittancy to chaos is that in
mappings they are abrupt and bifurcation-like. Figure 7b
shows an experimental diagram of the sequence of the
domains of different dynamic modes in relation to the
difference between the matched frequencies DO. The bound-
ary between the domains of intermittancy and dynamic chaos
is marked by the corresponding value of the sampling
frequency Os in Fig. 7b.

The dynamics of mappings obtained from the matched
signals of the pump and the second oscillator circuit evolves
similarly with the frequency retuning of this circuit. When all
the frequencies in the system are irrationally related, dynamic
chaos is observed in the correlation of any pair of matched
frequencies.

5. Dynamic chaos interference

The above-considered principle of dynamic chaos production
in Hamiltonian systems admits long-range transmission of its
two quasiperiodic constituents, for instance, in the form of
narrow-band signals (prior to frequency matching) or in the
form of envelopes of different phase-manipulated carriers
(for matched frequencies). In either of these representations,
the quasiperiodic oscillations can be received by separate
receivers with separated incommensurable frequenciesO1 and
O2, and the interference of a coherent pair of oscillations with
the frequency O1 can be considered separately from the
interference of a coherent pair of oscillations with the
frequency O2. The intensities I1 and I2 in the case of
interference of coherent oscillation pairs with equal quan-

tized amplitudes A are [35]

I1 � 2A 2�1� cos a� ; I2 � 2A 2�1� cos b� ; �2�

where a � 2pt=T1 and b � 2pt=T2 are the phase differences
between the coherent oscillations with the frequencies O1 and
O2, respectively.

The interference peaks of rectangular waves with periods
T1 and T2 produced from the corresponding quasiperiodic
oscillations can be conventionally represented as shown in the
diagrams given in Fig. 1d. Since the T1=T2 ratio is given by an
irrational number, the intensity peaks I1 and I2 will recur at
irrationally related periods T1 and T2. To put it otherwise,
both sequences of peaks located at points I1, 2I1, 3I2; . . . and
I2, 2I2, 3I2; . . . are incommensurable, as are two arithmetical
progressions whose terms I1 and I2 have no commonmultiple.
It is therefore evident that, by superposing the diagrams, it is
possible to bring into coincidence only two peaks: either at
zero, or at any other (single) point.

In the case of the propagation of two adequate signals in
time, such alignment of peaks is possible only in one
circumference in a plane or in one surface in space. This can
be done either by shifting the upper row of peaks (in Fig. 1d)
with the aid of a common delay of the interfering signals with
the frequency O1 relative to the signals with the frequency O2

within the limits of the period T1, or by shifting the lower row
of peaks with the aid of a delay of the interfering pair of
signals with the frequency O2 relative to the signal pair with
the frequency O1 within the limits of the period T2.

On the superposition of interference patterns, for
instance, employing a common correlator, the visibility of
the common interference will be independent of which of the
two peaks are brought into coincidence, and there will always
be one (and only one) point of a common interference peak.
Moreover, the periodicity of signals with the frequencies O1

and O2 makes it possible to bring into coincidence the
intensity peaks I1 and I2 at any (single) point by compensat-
ing for the delay a between the received signals with the
frequency O1 and by compensating for the delay b between
the received signals with the frequency O2, and thereby to
ensure the production of a common interference peak.

Therefore, bringing into coincidence the intensity peaks I1
and I2 obtained in the two-beam interference with a frequency
separation of the signals with frequencies O1 and O2 is
equivalent to a four-beam interference, whereby the total
intensity IL is determined by the sum of intensities I1 and I2:

IS � I1 � I2 � 2A 2�2� cos a� cos b� : �3�

One can see from relation (3) that the energy of the signals
doubles for a four-beam interference with a frequency
separation; the average value of the total intensity IS, which
corresponds to the absence of correlation for a � b � � p=2,
also doubles and is equal to 4A 2. The maximum value of the
total intensity, which corresponds to a total correlation of
chaotic sequences for a � b � 0, is equal to 8A 2. Theminimal
value of IS, which corresponds to a total anticorrelation of the
sequences, is zero. There also appear new intensity values of
mixed states (a � 0, b � � p=2) and (a � � p=2, b � 0) equal
to 6A 2.

Relation (3) implies that it is possible to separately control
the interference of oscillations with irrationally related
frequencies by varying the parameters a and b in different
frequency channels with the use of the delay between the
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oscillations with equal frequencies within the limits of their
periods. Therefore, for in-phase interfering oscillations (for
a � b � � np, where n � 0, 1, 2, . . .) it is possible to obtain
coherent chaotic bit sequences in correlators connected to
spatially diversed receivers. In a four-beam interferometer of
this type, synchronization can be obtained with the aid of two
diversed circuits of phase self-tuning and synchronous
samplings determined by a separate synchronization system.

The experimental setup diagrammed in Fig. 5 allows the
realization of the four-beam interferometer with a frequency
separation. In experiments the correlations of different
combinations of parametric oscillations of oscillators POA

and POB were considered. This figure shows one of the
possible variants of investigation of the interference of
oscillations with matched frequencies O1 and O2 of the
oscillator POA. The sign correlations were analyzed with
comparators XOR1 and XOR2, and the results were com-
pared in comparator XOR3.

The degree of correlation M of two chaotic bit sequences
was measured with the counterCO at the output of theXOR3

phase comparator. To introduce a delay a between the phases
of the oscillations with the frequency O1 and a delay b
between the phases of the oscillations with the frequency O2,
we used delay lines DL1 and DL2 based on type-K155LN1
microcircuit elements. Since the frequencies are close, the
delay increments in the a and b angles were approximately
equal, about 0.08 rad.

Figure 8 shows the experimental dependence of the degree
of correlation M between two chaotic bit sequences on the
phase difference a between the signals with the frequency O1

for b � 0. The dependence on the phase difference b between
the signals with the frequency O2 for a � 0 is similar. In each
channel, it was possible to employ either different compara-
tors and different frequency dividers or the same pair of
comparators and frequency dividers common to the two
sequences compared. This allowed us to estimate the like-
lihood of errors introduced by the comparators into the
correlation of sequences: it was found to be 0.05.

The results given in Fig. 8 show how the random and
periodic properties of the interaction of quasiperiodic radio
signals manifest themselves in the four-beam interference.
Unlike the interference of repetitive noise-type signals, here,
naturally, only one interference peak is observed at the zeroes
(a � b � 0), if the coherent oscillations are inphase at the
reception sites. In this case, the synchronous samplings of
their sign correlation, i.e., the binary sequences of dynamic
chaos, are also coherent.

The coherence of chaotic sequences is determined by the
phase coherence of the constituent oscillations and depends
not only on the phase delay, but also on the general time delay
between them, and the possible bounds on the latter are
limited by the frequency stability of the oscillations. This
signifies that a narrow-band noise signal can be employed as
the pump of parametric oscillators for small delays of the
constituent signals. Under certain conditions, these circum-
stances can be used in specific radiophysics applications, for
instance, in cryptographic communication systems to
improve their operating immunity.

6. Radiophysics applications

We now consider random number generation, the application
of irrationally related frequencies in radar and cryptography,
and also the modeling of quantum correlations (see Section
6.4). So far quasiperiodic radio signals have not been applied
to location and cryptography. However, experimental inves-
tigations have shown that they can be used in multichannel
communication systems with frequency separation to pro-
duce N-sequences Ð aperiodic noise-type signals (NTSs)
having single-lobe autocorrelation functions. It appears
reasonable to compare the signals of this kind with their
recurrent algorithmic analogs, such as Barker codes and
sequences of maximum length (orM-sequences).

Unlike periodic M-sequences, any N-sequence (or
unlimited-length sequence) has no intrinsic period and is
an irrational binary number. However, any N-sequence has
a continuous spectrum and a d-like autocorrelation func-
tion, which is defined by two incommensurable periods of
the constituent quasiperiodic oscillations and is controlled
by their delay. That is why, in principle, coordinated
filtration is impossible for N-sequences. However, a sepa-
rate coordinated reception of quasiperiodic oscillations and
a coherent accumulation of samplings of sign correlation
are possible.

The main operations to produce N-sequences are not
more complex than the corresponding operations employed
to produce algorithmic NTSs [17]. Practical schemes for
obtaining algorithmic NTSs on the basis of shift registers
and logical elements were considered, for instance, in
Ref. [37].

Unlike their analogs, N-sequences have the property of
uniqueness, are void of correlation between the constituent
radio signals, and (with their frequency separation) possess an
uncorrelated dependence of the autocorrelation function on
instrumental delay parameters. These new properties comple-
ment the well-known properties of algorithmic NTSs [17] and
their nearest analogs based on strange attractors Ð broad-
band chaotic signals (BCSs) considered in Ref. [38].

Noise-type signals in the form of different codes have been
elaborated specifically for radar and communication, and
their use has proved to be quite fruitful. Since the length of
algorithmic sequences (codes) is limited, they are inherently
periodic. That is why algorithmic NTSs afford coordinated
reception and the d-like shape of their autocorrelation
function ensures the formation of a directivity pattern and a
delay resolution of the radar required to resolve targets and to
suppress the interference from specularly reflected beams.

However, in other applications of communication sys-
tems, such as encoding messages or possible recurrence of the
code (key), severely deteriorates the protection of informa-
tion. Naturally this fact is irremovable, despite the existing

1

M

0

ÿ1
ÿp ÿp=2 0 p=2 p a

Figure 8.Degree of correlationM of two chaotic sequences as a function of

the phase difference a between the signals with the frequency O1.
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possibilities for producing algorithmic NTSs of virtually
unlimited length [17].

According to Ref. [39], a continuous ergodic d-correlated
key stream represented, for instance, by the binary form of an
irrational number is optimal for enciphering messages. This
may be an N-sequence formed from quasiperiodic signals,
which is adequate in its cryptographic immunity to a singly
used Vernam key (see, for instance, Ref. [44]).

The possibility of coordinated filtration is an important
property of NTSs. However, only Barker signals are
energetically equivalent to harmonic signals with synchro-
nous accumulation, since, in their convolution, the ampli-
tudes of discrete signals add up. In the convolution of an M-
sequence, the signal energies are added up, i.e., only half the
signal energy is in fact used to improve the signal-to-noise
energy ratio, like in the case of a normal noise.

In the reception of quasiperiodic radio signals with a
duration T and a total energy equal to 2E, one half of this
energy can be used for synchronous accumulation in a time
interval of 0:5T and the other half for the formation of N-
sequences and the calculation of their mutual correlation
functions. In energy efficiency, this is equivalent to the
reception of anM-sequence with a duration 2T.

Therefore, with quasiperiodic signals one can expect an
increase in the detection range and an improvement in the
resolution of ranging. In this case, detection is ensured by
narrow-band filtration of echo signals, while the resolution of
targets is ensured by producing N-sequences with a contin-
uous spectrum from the signals and by a single-lobe
autocorrelation function. The frequency band of such an
`NTS' is equal to the difference frequency of the matched
quasiperiodic signals: Do � jo1 ÿ o2=2j, where o1 and o2

are the frequencies of the reflected signals (o2 > o1), while
o2=2 and o1 are the proportionate signal frequencies after
their matching (from a practical point of view, Do can be of
the order of 0.1o1).

6.1 Random number generation
The properties of quasiperiodic oscillations generated by a
nondegenerate two-circuit parametric oscillator and the
properties of a one-circuit parametric oscillator as a perfect
limiter permit employing a combination of these devices as an
optimal generator of random binary numbers (including
technical applications). This is afforded not only by the
probabilistic character of the results of the sign correlation
of phases, but also by the absence of any algorithm of the
process.

Another important property of the random-number
generator is the possibility of synchronization with a similar
generator; the synchronization principle was partly consid-
ered in Section 6.4 and comprehensively outlined in Ref. [40].

Figure 9 shows a block diagram of a random-number
generator. The pump oscillator PP with a frequency o3

continuously excites the two-circuit oscillator OPA with
frequencies o1; 2. In the degenerate mode, the frequency
ratio is 1 : 2 : 3 (o1 � o2 � o3), and in the nondegenerate
mode the frequency ratio is irrational. The signal of the
upper oscillation frequency o2 of the OPA oscillator is
voltage modulated by the modulator M with a frequency
O � o3=n produced by the frequency divider D1, where n is a
large integer. The modulated signal serves as a pump for the
periodic excitation of the one-circuit oscillator OPB. The
signal of the upper frequencyo1 of theOPA oscillator defines
the initial excitation condition for the OPB oscillator with

phases 0 or p. The phase detector FD transforms the
quantized phase samplings 0 and p at the OPB oscillator
output into amplitude samplings with logical levels 0 and 1.

The sequence of zeroes and unities in a tuned setup is an
irrational binary number. The reference signal of the phase
detector FD is produced by the frequency dividerD2. Filters F
provide the frequency separation of the signalso1 ando2. To
increase the cadence frequency, a phase manipulation of the
voltage of theOPB pump oscillator can be taken advantage of
[27].

6.2 Potential radar applications
The interference properties of quasiperiodic radio signals can
be employed to form sharp directivity patterns for radar
reception, improve the resolution in target discrimination,
and combat specular noise.

Figure 10 shows a diagram of the location of a low-flying
target C with a two-frequency interferometric-type locator.
The transmitter S emits two quasiperiodic oscillations with
incommensurable frequenciesO1 andO2. Upon the reflection
from the target, the signals are received by the two-channel
locator receivers A and B. Sign comparators produce
synchronous N-sequences fNAg and fNBg from the signals
received. The result of their correlation M � hfNAgfNBgi is
the output signal of the interferometer. We emphasize that
each beam in Fig. 10 contains two oscillations whose periods
T1 and T2 are incommensurable, and therefore their two
amplitude peaks (or zeroes) can coincide only at one point on
the time axis. The two-channel narrow-band receivers A and
B are equally distant from the transmitter S.

PP OPA

o3

o3

n

o2

2

o2

2

o2

o1

F1

D1 F2 OPB

M D2 FD

Figure 9. Block diagram of a random number generator.

A

S
O1

O2

B

C

C 0

Figure 10. Two-frequency radar scheme for a low-flying target.
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One can see from Fig. 10 that the paths of the echo signals
(direct and specular) are always different. Therefore, the
locator sees only the target C located in the equisignal
direction, whereby the coherent signals are in phase, and
does not see the specular image of the targetC 0, because both
signals reflected, for instance, from a water surface, arrive at
the receivers with a delay relative to the `direct' echo signals.

For a small angle of elevation, this delay is small, and the
exact directions of a target and its specular image will be
indistinguishable when using algorithmic-type NTSs, i.e., the
average direction pointing at the target will be deviated
towards the specular image. For quasiperiodic radio signals
with incommensurable frequencies, one can expect a higher
resolution affording the separation of the target and its
specular image.

This can be achieved by employing a periodic modulation
(signal interruption) of continuously generated probing
signals (accordingly, the delay and interruption of the echo
signal reception) and synchronous accumulation of uniform
realizations of chaoticN-sequences, i.e., the coherent summa-
tion of the principal maxima and the incoherent summation
of the randomly distributed side lobes.

For active location with a delay by a time t, the
interference formula involves the correlation functions R1�t�
and R2�t� of oscillations with average frequencies O1av and
O2av:

IS � 4A 2
�
1� R1�t� cos�O1avt1� � R2�t� cos�O2avt2�

�
; �4�

where R1;2�t� � 1 for t � 0 and fall off to zero as t tends to
infinity.

The dependence of the interference peak on R1;2�t� shows
that the coherence of chaotic models for a relative delay t
should be ensured by the stability of frequencies O1 and O2.
This limits the radar range L to half the coherence length
equal to ct0, where c is the velocity of light and t0 is the
coherence time, whereby R1;2�t0� � 0:5 and which can be
assumed to be equal for the frequencies O1 and O2. For an
oscillation frequency instability of the order of 10ÿ9 and
t0 � 0:5 (these are the parameters of our experimental
setup) with the neglect of other limitations, L can be taken
equal to 108 km.

6.3 Application to cryptography
Quasiperiodic oscillations open up the possibility of `genera-
tion' of uninterrupted key streams in symmetric, spatially
separated cryptographic devices invoked to encipher and
decipher messages with the purpose of protecting them from
unauthorized access. As noted in Ref. [39], `the development
of continuous generators of coherent key streams is the best
we can hope for in the progress of classical cryptography'.
Key streams enciphered with secret keys are capable of
providing the highest practical cryptographic resistance. The
problem of the formation of coherent key streams in
symmetric cryptographic systems is solved by employing the
four-beam interference of quasiperiodic oscillations.

The `generation' principle of continuous key streams is
explained in Fig. 11. Two subscribers, A and B, of a
symmetric cryptographic system receive two continuous
nonoverlapping narrow-band signals with incommensurable
frequencies o1 and o2 from a transmitter S aboard an
artificial Earth satellite (of the universal time service).
Subscribers A and B have a common system for synchroniz-
ing samplings [41] and two circuits for the phase self-tuning of
the signals received.

The transmission and reception system with a frequency
separation of quasiperiodic oscillations depicted in Fig. 11 is a
two-channel or a four-beam interferometer. In the general
case it has a variable base (the distance between the
subscribers A and B) and an indefinite deviation from the
equisignal direction of the transmitter S. Because of this, the
signals received by the subscribers have different delays:
subscriber A receives signals proportional to cos �o1t� a1�
and cos �o2t� a2�, and subscriber B signals proportional to
cos �o1t� b1� and cos �o2t� b2�. The delays of the signals
with frequencies o1 ando2 in the phase self-tuning circuits of
subscribers A and B are the same, equal to 2g1 and 2g2,
respectively. Since the phase self-tuning eliminates the a1;2
and b1;2 delays, subscribers A and b obtain in-phase signals
proportional to cos �o1t� 2g1� and cos �o2t� 2g2�.

The sign correlations of the signals and their synchronous
samplings yield random coherent bit sequences, which can be
used, upon enciphering with secret keys, as working keys for
the bulk enciphering of transmitted messages. The delays 2g1
and 2g2 are hidden parameters of the cryptographic system.
This property, as shown in Section 6.4, can be used to protect
the secret keys.

Another version of system adjustment is the optimal
selection of the delay between the oscillations of each pair of
coherent signals in the interferometer receivers A and B
according to the maximum correlation between the received
cryptogram and the local one, out of the enciphered key
stream. This can be done using an open channel with, for
instance, a secret algorithmic key.

6.4 Simulation of quantum correlations
The use of dichotomous properties of the oscillations of a
nondegenerate parametric oscillator was considered in Refs
[42, 43] in the context of the simulation of EPR-type quantum
correlations in the Bohm version (the acronym EPR owes its
origin to the names of Einstein, Podolsky, and Rozen).
Numerous optical EPR experiments are known to have
pioneered quantum cryptography [44].

Since the signals of a nondegenerate oscillator are a
classical analog to quantum dichotomous (two-valued)
signals applied in quantum cryptography, the experimental
setup outlined in Ref. [45] can be regarded as the nearest
classical analog to the quantum cryptographic system
considered in Ref. [44].

The scheme elaborated in Ref. [45] is a prototype of a
symmetric wave cryptographic system in which the principal

S

A B

o1;2

o1;2

g1;2

a1;2 b1;2

Figure 11.Principle of key stream generation in a symmetric cryptographic

system.
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problems of cryptography Ð the transfer and protection of a
key Ð are solved by the synchronous production of
continuous key streams for subscribers connected by open
communication channels. In a cryptographic system of this
kind, the subscribers generate, on their own, radio signals
with incommensurable frequencies and partially exchange
them to obtain phase correlations, whose coherence is
determined by the dichotomous properties of the signal
phases and by the employment of a common synchroniza-
tion signal (transmitted via an open communication channel)
to synchronize the pump and the sign correlation samplings.

To put it differently, the subscribers receive coherent key
streams simultaneously and secretly as they exchange regular
continuous signals at incommensurable frequencies. Taken
alone, the harmonic signals transmitted via open communica-
tion channels carry no information, but their synchronous
sign correlation gives rise to dynamic chaos simultaneously at
widely separated points in space. One the one hand, this is
adequate to the production of continuous streams of
information whose amount is infinite and, on the other
hand, this principle of information transfer is a classical
analog of the quantum teleportation described in Ref. [46].

Of course, there is nothing like the mysterious teleporta-
tion here. What does take place is the result of synchronous
phase correlations, whose coherence is due to the phase
dichotomy of interfering oscillations and whose randomness
is caused by the incommensurability of their frequencies. A
system of this kind is also an interferometer in which four
irrationally related oscillations interact. Controlling correla-
tion in the system was considered comprehensively in Refs
[42, 45].

The interference peak of the system is a cosine function of
the sum of two parameters, a and b. Each of these parameters
is determined by the delay of the oscillation received by the
corresponding subscriber, relative to its reference pair
generated by the receiving subscriber. This allows the delay
of the transmitted oscillations to be compensated, thereby
controlling the coherence of key streams by any subscriber, A
or B.

The operating principle of the cryptographic system is
explained inFig. 12, which conventionally depicts the drifts of
the phases j1;2 and j01;2 of the incommensurable frequencies
o1;2 and o 01;2 of the parametric oscillators POA and POB,
respectively, in dimensionless time t � o3t (relative to the
phase of the common pump). The open circles indicate the
phase trajectories of the hidden reference signals, arrows
indicate the phase trajectories of the signals which subscri-
bers exchange via open communication channels, and the

solid squares show the phase trajectories of the signals j�1 and
j 0�2 received by the subscribers with delays a and b.

For an in-phase pumping, the phase differences of close
frequencies (oi and o 0i , i � 1, 2) of different oscillators form
dichotomous random time functions: Dj1�t� � �j1 ÿ j 01� �
ÿDj2�t� � �j2 ÿ j 02�. For this reason, synchronous voltage
samplings of the sign correlation between the oscillations at
these frequencies give two coherent bit streams possessing d-
shaped autocorrelation functions. In Figure 12 this case (in
which the signals are not delayed and a � b � 0) corresponds
to synchronous samplings equal to Dj1�t1� and Dj2�t1�.

Figure 12 also shows the result of synchronous samplings
of the correlation between the reference oscillation phases and
the phases j�1 and j 0�2 of the received oscillations, which are
shifted by angles a and b owing to the delay in the
transmission from one subscriber to the other. To make the
result descriptive, the instant of sampling t2 is shifted relative
to the instant of sampling t1. One can see from Fig. 12 that
Dj�1�t� � j�1 ÿ j 01 6� ÿDj�2�t� � j2 ÿ j 0�2 , i.e., the oscillation
delay destroys the coherence of the key streams. Therefore, in
order for the correlation to be controllable, an automatic
compensation for the phase shifts a and b should be provided
for.

Naturally, a conventional phase self-tuning system is not
appropriate for incommensurable frequencies. However, the
coherence of streams can be authenticated employing an open
communication channel and standard exchange protocols,
for instance, parity verification [44]. The secrecy of control-
ling the key stream coherence can be afforded by algorithmic
ciphers or by additional key streams produced in parallel with
an additional synchronous delay and therefore uncorrelated
with the main key streams.

Therefore, in the exchange of signals of different frequen-
cies, for synchronous samplings of the sign correlation
between the received and reference oscillations, subscribers
A and B can simultaneously receive coherent bit streams to
encipher and decipher messages. We note that there is no way
of comparing non-close frequencies in this scheme, since their
matching may necessitate an asymmetric frequency division,
which will result in the violation of signal phase dichotomy.

The cryptographic immunity of a classical cryptographic
system of this sort is afforded by hidden parameters: each
subscriber transmits only one of two of his signals to the other
subscriber, and uses the other signal as a hidden reference
parameter for the comparison with the phase of the signal
received from the other subscriber. The hidden parameters
may also be the frequency and phase of the pump of
parametric oscillators, the delay of signals in their transmis-
sion, the cadence frequency, and, finally, the secret keyswhich
can be used to additionally improve the cryptographic
resistance. However, in any of the possible versions of the
scheme with two or four incommensurable frequencies (see
Section 6.3) the principal hidden parameters are the delays
between the received and reference signals.

The development of any cryptographic system implies the
presence of a third `subscriber' C referred to as the
cryptoanalyst. To determine the hidden frequencies, advan-
tage can be taken of regenerative and nonregenerative
parametric amplifiers operating with a known pump, which
should be synchronized in phase with the pump of the
parametric amplifiers of subscribers A and B (additional
phase corrections are required in this case). Moreover,
cryptoanalyst C should also know the remaining hidden
parameters of the cryptographic system. Despite the task's
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Figure 12. Phase drifts of the oscillations of parametric oscillators relative

to the phase of the common pump.
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complexity, which determines the cryptographic immunity of
the system, this system cannot be regarded as absolutely
secure, like any other classical or even quantum system.

Clearly, classical cryptographic systems cannot exhibit a
response to interception similar to that inherent in quantum
cryptographic systems. However, the existence of hidden
parameters may endow them with a like property in the case
of the active participation of `subscriber' C in the phase self-
tuning of the system. This is related to the fact that any system
is majorant in the selection of a signal for phase self-tuning
[41].When comparing the results of transfer via the secret and
open channels, subscribers A and B of the cryptographic
system shown in Fig. 11 are therefore able to discover the loss
of direct synchronization with each other if the phase of
subscriber C is enforced on them and thereby establish the
fact of information interception.

7. Discussion of experimental results

1. Owing to the investigations of Hamiltonian systems, the
problem of magnetic plasma confinement was solved in the
1960s. Awealth of other possibilities are also known for using
the chaotic dynamics of Hamiltonian systems [1 ± 3], which
have clearly not been exhausted.

Experiments show that two irrationally related oscilla-
tions are sufficient to model motion with phase mixing; these
may be, for instance, the quasiperiodic oscillations of a
nondegenerate two-circuit parametric oscillator, which exhi-
bit unique properties. The nature and properties of these
oscillations are the result of a nonlinear resonance and the
reality of the continuum of irrational numbers. Irrationally
related oscillations can possess a stable frequency incommen-
surability and a mirror symmetry of phases relative to the
pump phase. In this case, they are highly stable, spectrally
resolvable, and can be made proportionate to ensure a
uniform phase mixing and the obtainment of a continuous
spectrum.

The above properties allow the four-beam interference of
quasiperiodic signals to be used in radio communication and
the exploit of the fact that in the overlapping of resonances
their interaction generates chaotic oscillations interfering
with one interference peak, which, unlike noise, can be
controlled. This is possible due to the fact that the auto-
correlation functions of purely periodic oscillations with
incommensurable frequencies remain purely periodic func-
tions of the incommensurable frequencies and of the instru-
mental parameter Ð delay.

2. In the stationary oscillation mode with continuous
pumping, the Q factor of a parametric system is so high that
its sensitivity to an external signal is several orders of
magnitude lower than to the initial excitation conditions,
which determine the trajectories of motion. For a narrow-
band filtration and a deep limitation of oscillations, part of
the information on the system dynamics is clearly deleted, but
the ratio and stability of the normal frequencies persist. This
makes it possible to check the frequency incommensurability
by the form of the autocorrelation function of mappings,
control the interference of chaotic models and their coher-
ence, and observe the local resonances of regular attractors.

3. Irrationally related oscillations interfere as absolutely
uncorrelated processes, otherwise their frequencies are either
commensurable, or disproportionate. The result of their
interference is a controlled random process with a multiple
stochastic attractor represented by a set of determinate phase

trajectories (of the type shown in Fig. 6c) extremely sensitive
to the delay between the interfering oscillations. Changes in
this delay result in determinate transitions from one attractor
to another, which are possible due to Arnol'd diffusion.

4. In the production of chaos, the relative delay of
quasiperiodic oscillations is equivalent to a change in the
initial conditions of the system dynamics and is manifest in a
change of the correlation of chaotic models. In the case of
natural dynamic chaos and continuity of phase space, with
the prescription of similar initial conditions prohibited, the
trajectories of motion are unique. In the case of chaos
simulations at widely diversed sites of reception of the
constituent radio signals, the full correlation of models is a
reality caused by the four-beam interference of quasiperiodic
oscillations.

Moreover, the correlation of the models possesses a long-
term stability, provided the interfering signals and their sign
correlation samplings are synchronous. Under these condi-
tions, the result of synchronousmappings of similar processes
is observed, in which the phase diffusion is also synchronous
and the trajectories of motion do not have time to diverge.

5. One could expect an effect of fluctuations of reference
voltages under limitation. Random noise of this kind does
really exist and is responsible for the equalization of phase
coincidence and noncoincidence probabilities in phase com-
parators. In the experimental setup shown in Fig. 5, the
ensuing model-correlation deviation from 100 % was about
5% (see Fig. 8). If parametric phase quantizers are employed
as phase correlators, the errors amount to fractions of 1%. In
the absence of perturbations, the likelihood of errors should
tend to zero, since any trajectory is determined by a unique
pair of initial parameters from the infinite phase space.

6. In our experiments, uninterrupted observations of
stable dynamic chaos were limited to sequences of the order
of 108 bits for a fixed sampling frequency varied between 10ÿ1

and 3� 104 Hz. The observation duration could be length-
ened, but for times exceeding the pump phase coherence time
this nevertheless does not provide an answer to the question,
posed in Ref. [3], of how `strong' this deterministic chaos is.
However, from the standpoint of interference, the answer is
simple: in as much as the irrational frequency relation is
stable.

ForHamiltonian systems with nonresonant tori, the long-
term stability of motion has been proved by the KAM theory.
In experiments, the stable generation of quasiperiodic
oscillations is afforded at the level of limiting cycles of the
parametric oscillator, where the intrinsic frequency instability
does not exceed 10ÿ9 (see Section 3.4) and is observed over a
relatively broad band of pump frequencies (about 1%).

7. Within some range of pump frequency retuning (of the
order of 1%), a nondegenerate two-circuit parametric
oscillator exhibits the properties of a dissipative system with
two irrational and one rational torus, which is consistent with
the Ruelle ±Takens theory, and exhibits the properties of a
conservative system with three stable irrational tori only in a
narrow range of pump frequency retuning (of the order of
0.1%). These properties are an experimental justification for
classifying such a system as conventionally conservative [3].
At the same time, two irrationally related frequencies are
sufficient to implement the above radiophysics applications.

8. From the general effect of wave interference it follows
that controllable N-sequences can be realized in all classical
systems operating in acoustic, radio, and microwave ranges,
i.e., where possibilities exist not only for generating oscilla-
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tions with incommensurable frequencies, but also for their
production with the aid of frequency conversion. The
applications considered here formally reduce to a doubling
of the signal channels of the known radio systems.

8. Conclusions

The interference of oscillations with incommensurable
frequencies is a special case of the general effect of wave
interference. Its properties were implicitly implied in the
papers of Harald Bohr (1887 ± 1951), who published a lecture
course on the theory of almost periodic functions. The
Russian edition of this small monograph [19] gave an
example in which the possibility of controlling the inter-
ference of purely periodic functions with incommensurable
frequencies was predetermined. It is therefore appropriate to
term the scheme of two-channel four-beam interference of
oscillations with incommensurable frequencies the `Bohr
interferometer.

The papers listed as references make up only a small
fraction of the publications on the problem involved.Many of
them, for instance, Refs [1 ± 3, 10, 26], are reviews in
character, i.e., encompass all the main results of research on
the chaotic dynamics of Hamiltonian systems and provide a
vast bibliography on the adjacent issues and strange attrac-
tors [47]. Among the outcomes of this prodigious work of
mathematicians and physicists is the recognition that quasi-
periodic signals hold promise as a basis for developing
interference multichannel communication systems. It is not
improbable that quasiperiodic signals are used by Nature in
biological systems. However, verifying this supposition is a
nontrivial task.
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