
Abstract. A diffusion model for the evaporation of a single
spherical droplet is examined taking into account the reduction
in the droplet temperature and vapor pressure near its surface,
for arbitrary condensation and surface tension coefficients.
Quite general analytical expressions for the dependence of the
lifetime of a droplet on its initial radius are derived for the first
time. This model makes it possible to estimate the condensation
coefficient of the vapor molecules from the experimental form
of this dependence.

1. Introduction

Droplet aerosols are important in many branches of science
and technology, such as chemistry, medicine, the physics of
the atmosphere, and heat and power engineering [1, 2]. The
problem of aerosol formation is also important in connection
with the intensive study of plasma chemical processes in gas
discharge, in which, as a rule, a broad spectrum of products is
formed [3]. Naturally, each of these has its own value of the
relative vapor tension with respect to the equilibrium state. It
is often necessary to estimate the time of formation or
complete evaporation of such an aerosol.

One should pay special attention to the formation of a
nonequilibrium aerosol in an electric discharge. In Refs [4, 5]
experiments are described in which the corona Ð streamer
discharge in a mixture of gases at the atmospheric pressure

first gives rise to the formation of an aerosol by stimulated
condensation of unsaturated vapor on ions, and, after the
discharge stops, the aerosol slowly evaporates. Although the
vapor pressure of volatile liquids in these experiments was just
a few percent of the pressure of saturation, the time of
evaporation of the aerosol was abnormally large and
amounted to tens of minutes. The classical theory of
evaporation can explain neither the process of the fast
growth of an aerosol in an unsaturated vapor nor its
subsequent slow evaporation. Observe that the process of
formation of an aerosol in a gas discharge is totally different
from the kinetics of atmospheric water aerosol. The latter
depends mainly on the process of formation and condensa-
tion growth of nuclei of the new phase from the super-
saturated vapor against the background of slowly varying
conditions in the gas phase [6]. In contrast, the aerosol in the
low-temperature plasma of a gas discharge has no shortage of
primary nuclei, because this role is efficiently performed by
numerous ions. The main processes that determine the
growth of droplets in the recombining plasma are the
competing processes of coagulation and evaporation of
droplets.

Before describing the process of growth and evaporation
of an aerosol as a collective of particles over a broad size
range, we need to identify the physical factors that influence
the process of evaporation of a single droplet of liquidÐ that
is, one needs to be able to calculate, as accurately as possible,
the process of growth of an individual droplet under the given
conditions of the external environment.

Despite the simplicity of the statement of the problem, its
solution in the general case runs into difficulties. This may be
the reason why the theory of evaporation of a droplet has not
found its way into the university textbooks.We hope that this
paper will at least partially fill this gap in the curriculum of
general and molecular physics.

The problem of evaporation of a single spherical droplet
in a medium with given parameters can be regarded as
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classical. In its simplest form it was solved byMaxwell in 1877
[7]. Using the equations of diffusion and continuity of the
molecular flux for a spherically symmetrical geometry,

w�r� � ÿD qn
qr
; W � 4pr2w�r� � ÿ4pDR 2 qn

qr

����
r�R

; �1�

Maxwell derived the known expression for the flux W of
particles evaporated from the droplet:

W � 4pDR�nR ÿ n0� : �2�
HereD is the coefficient of diffusion of vapormolecules in the
surrounding gas and nR and n0 are the concentrations of
particles near the surface of the droplet and at infinity,
respectively.

It would seem that, knowing the total flux of evaporated
molecules (2), one can easily calculate the so-called lifetime of
a droplet with initial radius R0. It turns out, however, that
such a statement of the problem is oversimplified. For
example, Maxwell assumed that the vapor near the surface
of the droplet is always saturated, and therefore nR � ns�T �.
Here ns�T � is the equilibrium concentration of vapor
molecules just above the surface of the liquid phase at
temperature T. Firstly, however, the vapor at the surface
will be saturated only if the rate of supply of molecules from
the surface of the droplet is large enough compared with the
rate of their diffusive escape. In general, this is not the case.
Secondly, evaporation leads to the removal of energy from
the droplet and must be accompanied by a reduction of its
temperature with respect to the temperature of the surround-
ing medium. This implies that the concentration ns of
saturated vapor near the surface will be determined not by
the preset temperature of the surrounding gasT, but rather by
the unknown temperature of the droplet TR, and ns�T � is an
exponential function of temperature. Because of this, even the
neglect of only this feature of evaporation makes Maxwell's
formula (2) very crude.

One of the refinements in the theory of evaporation is
associated with the kinetics of the process of interaction of
vapor molecules with the surface of the liquid phase. Hertz
and Knudsen, using the equation of state of an ideal gas for
the vapor and the principle of detailed equilibrium, obtained
the following formula for the density ws of the flux of vapor
molecules from the surface [8]:

ws�T � � acPs�T �����������������
2pMkT
p ; �3�

where Ps�T � � nskT is the pressure of saturated vapor at
temperature T, M is the mass of evaporating molecules, ac is
the coefficient of condensation, which equals the probability of
a vapor molecule incident on the surface of the condensed
phase not being reflected.

Book [8] contains an indication of the low values of the
coefficient of condensation for water and some organic
liquids. For pure water it is usual to set ac � 0:04, and for
most other substances ac ' 1. It is hard to find any consistent
figures for ac for different media in handbooks, which can be
explained by the fact that this coefficient is strongly affected
by the presence of small uncontrollable impurities. In
particular, it was Knudsen who reported strong variations
in the rate of evaporation of droplets of mercury as the latter
were even slightly oxidized [8]. The authors of monograph [1]
also point out a considerable decrease in the rate of

evaporation of water droplets even in the presence of small
amounts of surfactants. It would be reasonable to assume
that impurities of this kind mainly alter the coefficient of
condensation. Note that Maxwell's classical theory of
evaporation does not resolve this problem, since it predicts
the independence of the evaporation rate for a droplet on the
condensation coefficient [7]. Accordingly, one of the tasks of
this paper consists in identifying the conditions under which
the coefficient of condensation will considerably affect the
rate of evaporation. Given the availability of a sufficiently
general theory, the knowledge of such conditions wouldmake
it possible to measure indirectly the coefficient of condensa-
tion from experimental data about the rate of evaporation of
a droplet.

An integral part of the theory of evaporation is the
description of the escape of evaporated particles from the
surface. The formation of a diffusive flux of vapor molecules
occurs at a distance approximately equal to the mean free
path �l from the surface of the liquid phase. A correct theory
of evaporation must include a kinetic description of the
molecular flow [9]. The pattern of vapor flow near the
spherical droplet must depend on the droplet radius R, or,
to be more precise, on the Knudsen number Kn � �l=R. The
calculation of the vapor flow becomes much simpler in the
approximation of a continuous medium, with Kn5 1.

The next refinement of the model should be a consistent
description of the process of energy exchange between gas
molecules and the condensed phase at the interface. Strictly
speaking, near the interface the velocity distribution function
of gas molecules is not equilibrated and needs to be
determined, but, for the sake of simplicity, the gas is often
characterized by a certain effective temperature. In the
general case, this temperature near the surface must lie in
between the temperature of the surface of the liquid phase and
the gas temperature away from the surface.

Finally, a consistent theory of evaporation of a droplet
must also take into account the existence of the free energy of
the surface, because it is this energy that determines the
pressure of saturated vapor above the curved interface.

From this brief review of the problem we see that even a
slight refinement of the theory of evaporation considerably
complicates the relevant equations. Textbooks, monographs
and reviews only cite solutions to these equations for
particular extreme or special cases, because the general
solution can only be obtained by numerical methods. As a
rule, however, numerical results give much less insight than
analytical expressions, and lack universality.

For methodological purposes it seems expedient to
formulate a relatively simple model of evaporation of a
droplet, which would be capable of analytically taking into
account the most important factors affecting the evaporation
timeÐ the temperature decrease in the course of evaporation,
the surface tension of the liquid phase, the reduced vapor
pressure near the surface, and the effects of the condensation
coefficient. As will be shown below, all these requirements are
satisfied by the diffusion model of droplet evaporation.

2. Diffusion model of droplet evaporation

2.1 Statement of the problem and main approximations
Consider a single spherical droplet of radius R, placed in an
unbounded atmosphere of a chemically inert gas that
contains the vapor of the substance of the droplet with the
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relative pressure f0. Here and below we denote any parameter
p of the problem by p0 away from the droplet and by pR near
the evaporation surface.

The geometry of the problem is assumed to be spherically
symmetrical Ð that is, we only consider the radial profiles of
temperature and vapor concentration. The origin of the radial
coordinate is fixed at the center of the droplet. The ambient
temperature T0 and the concentration n0 of vapor at infinity
are constant and fixed. Accordingly, the relative vapor
tension (relative humidity in the case of water vapor) at
infinity is also constant and fixed, f0 � n0=ns�T0�.

We also assume that, always, TR � T0. This assumption
will considerably simplify our calculations, allowing us to use
the linear approximation for the temperature dependence of
the saturated vapor pressure Ps�T �, without limiting too
much the applicability of our model. In this way, from the
start we exclude the process of fast evaporation, which entails
a strong cooling of the droplet, from consideration.

In analytical models, evaporation is usually considered
without taking into account the effects of surface tension on
the rate of evaporation. Indeed, this effect can be neglected
for not very small droplets far from the dew point. Near the
dew point, however, this effect cannot be neglected because
the so-called critical radius strongly depends on the free
energy of the interface [1, 10]. From the outset we shall take
into account the effects of the surface tension s on the
saturated vapor pressure Ps near the spherical surface of the
liquid.

To calculate the flux of molecules and heat, we use the
approximation of a continuous medium, which holds for
sufficiently large droplets. We assume as known the coeffi-
cient of diffusion of vapor molecules in the surrounding gas
D, the heat conductivity of the gas l, the coefficient of
condensation for the liquid ac, the vaporization heat per
molecule L0 at temperature T0, and the saturated-vapor
pressure as a function of temperature Ps�T �. The transport
coefficients can be assumed constant if the concentration of
vapor molecules is always much smaller than the concentra-
tion of molecules of the ambient gas. In other words, we
assume that the ambient temperatureT0 is low comparedwith
the boiling point of the droplet material.

In our description of diffusion and heat conduction we
assume that all profiles of concentration and temperature are
quasi-stationary, and in our calculation they will not show an
explicit dependence on the time. This assumption is reason-
able as long as the characteristic time t of variation of the
droplet radius R satisfies the condition

t4
R 2

D
: �4�

All of the above assumptions fit the real situation well for gas
pressures of the order of the atmospheric pressure.

2.2 Boundary conditions for the diffusion model
In our description of the fluxes of vapor and heat we confine
ourselves to the simplest assumptions Ð the linear diffusion
of molecules and the supply of energy to the evaporating
droplet by heat conduction. The equations of diffusion and
heat conduction require quite definite boundary conditions.
Figure 1 shows the profiles of concentration of vapor and
temperature near the evaporating droplet. Far from the
droplet, for r!1, these conditions are quite obvious:
n! n0, and T! T0.

A characteristic feature of the statement of the problem in
the diffusion approximation are the jumps of concentration
and temperature at the interface. The existence of such jumps
was first noted by Langmuir in 1915. The jumps of
concentration and temperature are usually not defined in the
framework of the diffusion approximation and are regarded
as additional parameters of the problem [7].

In this work we assume the coefficient of condensation of
molecules ac to be known and independent of the radius of the
droplet, because in our approximation the radius of the
droplet is fairly large: R4 �l.

To describe the heat exchange on the surface of a droplet,
we introduce the coefficient at that characterizes the tempera-
ture difference between the liquid and gas at the interface.
Since the equation of heat conduction coincides in form with
the diffusion equation (1), the total energy flux to the
evaporating droplet Q will be expressed in the same way as
the flux of particles in (2):

Q � 4patlR�T0 ÿ TR� ; �5�

where l is the heat conductivity of the buffer gas.
From Fig. 1 we can see that the actual heat flux to the

droplet depends not on the difference T0 ÿ TR, but rather on
T0 ÿ T 0R. This possible distinction, T 0R 6� TR, is reflected in
equation (5) by the coefficient at 6� 1. Such an introduction of
coefficient at is equivalent to the following definition:
at � �T0 ÿ T 0R�=�T0 ÿ TR�. We assume that this coefficient
is a constant parameter of the problem, which is justified by
the relatively narrow range of variation of the temperature of
the droplet in the course of evaporation.

Observe that the jump of concentration and the jump of
temperature near the surface of the droplet are described in
entirely different ways. The jump of concentration depends
on the current radius of the evaporating droplet, and changes
in the course of evaporation. Accordingly, we have to
calculate it specially. In contrast, we regard the relative
temperature jump at as a constant parameter that does not
change in the course of evaporation.

In the framework of the diffusion model, the two
constant coefficients, ac and at, can be regarded as the
adjustment parameters of the model that should be defined
either from the condition of best fit with experimental data
or from a comparison with a more comprehensive theory
that consistently describes the physical aspects of interaction
of vapor and gas molecules with the surface of condensed
phase.

ns�TR�

T 0R

TR

nR � fR ns�TR�

r

n! n0 � f0 ns�T0�

T! T0

W

Q

O

R

Figure 1. Parameters of the problem and notation.
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3. Theory of the evaporation process

3.1 Calculation of the temperature
of an evaporating droplet
The concentration of particles near the droplet surface, nR,
and at infinity, n0, can be expressed in terms of the saturated
vapor pressure and the relative vapor tension:

nR � fR
Ps�TR�
kTR

; n0 � f0
Ps�T0�
kT0

; �6�

where fR and f0 are the relative vapor tensions at the surface
and at infinity, respectively, and k is Boltzmann's constant.
From (2) and (6) we express the flux of particles

W � 4pDR
Ps�T0�
kT0

�
fR

Ps�TR�T0

Ps�T0�TR
ÿ f0

�
: �7�

If we assume that the saturated vapor tension Ps�T � depends
on the temperature as exp �ÿL0=�kT �� and TR � T0, then
with due account for the curvature of the droplet surface, the
ratio of saturated vapor pressures can be approximated as

Ps�TR�
Ps�T0� ' 1� L0

kTR

TR ÿ T0

T0
� Rs

R
: �8�

Here we have used the known formula of Thomson (Kelvin)
for the saturated vapor pressure over a curved surface, and
introduced the notation for the characteristic radius
Rs � 2svm=�kT0�, where s is the surface tension, and vm is
the mean volume occupied by one molecule of the liquid
phase.

Upon substituting (8) into (7), with the same accuracy for
the flux of particles we obtain

W � 4pDR
Ps�T0�
kT0

�
fR ÿ f0 � ofR

TR ÿ T0

TR
� fR

T0

TR

Rs

R

�
;

�9�

where for compactness we use the notation o �
L0=�kTR� ÿ 1.

From the energy flux (5), we can find the linkage between
the rate of decrease of the droplet volume and the difference
of temperatures:

dV

dt
� 4pR 2 dR

dt
� ÿQM

L0r
� 4patlR

M

L0r
�TR ÿ T0� ; �10�

whereM and r are the mass of the evaporating molecules and
the density of the liquid phase, respectively. From (10) we
obtain the relative temperature difference

TR ÿ T0

TR
� rk�o� 1�

atlM
R

dR

dt
: �11�

Knowing the flow of evaporating particles enables us to
find the rate of reduction of the droplet volume:

dV

dt
� 4pR 2 dR

dt
� ÿW M

r
: �12�

Substituting expression (9) into the right-hand side of this
equation yields for the radius of the droplet:

R
dR

dt
� ÿDM

r
Ps�T0�
kT0

�
fR ÿ f0 � ofR

TRÿ T0

TR
� fR

T0

TR

Rs

R

�
:

�13�

Upon substituting (11) into (13), we can find an explicit
expression for the rate of variation of the droplet radius:

R
dR

dt
� ÿDM

r
Ps�T0�
kT0

�
fR

�
1� Rs

R

�
ÿ f0

�
�
�
1�DPs�T0��o� 1�

atlT0
fR

�
oÿ Rs

R

��ÿ1
: �14�

It is expedient to introduce a new dimensionless para-
meter of the problem a, which characterizes the relative effects
of diffusion and heat conduction on the rate of evaporation of
the droplet:

a �def atlT0

DPs�T0�o�o� 1� : �15�

By substituting (14) into (11), we can estimate the
difference between the temperature of the surface of evapora-
tion and the ambient temperature:

z � T0 ÿ TR

TR
� R� fR ÿ f0� � fRRs

oR� fR � a� ÿ fRRs
; �16�

where fR is yet to be defined.

3.2 Calculation of the vapor tension
near the droplet surface
Now let us calculate the relative vapor tension near the
surface of the droplet, fR. This quantity is often taken to be
equal to unity or calculated from kinetic theory. Sometimes
the calculation is simplified by introducing the intermediate
layer that hosts the surface concentration jump [7]. We shall
calculate fR from the natural condition of equality of the
particle fluxes near the surface and at infinity.

From (12) we express the flux of evaporated particles in
terms of the rate of variation of the radius of the droplet:

w � W

4pR 2
� ÿ r

M

dR

dt
: �17�

On the other hand, the flux of evaporated particles can be
found from (3) and (8):

w � acPs�TR��������������������
2pMkTR

p �1ÿ fR�

� ws�T0�
�
1� Rs

R
ÿ �o� 1� z

z� 1

�
�1ÿ fR� : �18�

By means of equating (17) and (18) and substituting (14)
and (16) into the resulting expression, we get the equation for
the relative humidity fR near the surface of the droplet:

ÿ r
Mws�T0� R

dR

dt
�
��R� Rs��z� 1�ÿ zR�o�1���1ÿ fR�

z� 1

� atl
kws�T0��o� 1� z : �19�

We introduce the parameter b with the dimension of length,
the parameter t with the dimension of time, and the
dimensionless parameter b describing the surface tension:

b �def atl
kws�T0�o�o� 1��a� 1� ;

t �def b 2 rk�o� 1�
atlM

; b �def Rs

bo�a� 1� : �20�
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It is convenient to regard the parameters b and t as the
characteristic scales of radius and time. Therefore, below we
shall consider the radius R and the time t to be dimensionless.
Then equation (19) becomes

ÿR dR

dt
�
��R� bo�a�1���z� 1�ÿ zR�o� 1�	�1ÿ fR�

o�a� 1��z� 1� � z :

�21�

From (16) we express the relative tension near the surface
in terms of the relative temperature difference z:

fR � R� f0 � aoz��
R� bo�a� 1���z� 1� ÿ zR�o� 1� ; �22�

and substitute it into (21). As a result, we obtain the desired
equations that link the two quantities, R and z:

R�z� � �zÿ b��z� 1�
j0 ÿ z

; j0 �
1ÿ f0

o�a� 1� ; �23�

z�R� � 1

2

� ��������������������������������������������������������������������
R 2 � 2R�1ÿ b� 2j0� � �1� b�2

q
ÿ Rÿ 1� b

�
:

�24�
As a result of these manipulations we get the explicit
expression (24) for the relative temperature difference
between the droplet and environment.

The relative tension fR�R� is related to the function z by
expression (22). If we expand z in a Taylor series in b and j0

near the point b � 0, j0 � 0 to the square term inclusive, we
get the following approximate expansion, which will con-
siderably facilitate our analysis of expression (24):

z�R� � Rj0 � b
R� 1

�
1� R�bÿ j0�

�R� 1�2
�
: �25�

3.3 Calculation of the evaporation time of a droplet
The differential equation for the radius of the droplet (21) can
be easily integrated if we go to the new variable z, because the
function R�z� is already determined in (23). Such a substitu-
tion of variables leads to a differential equation with
separable variables:

ÿ R

z

dR

dt
� ÿR�z�

z

dR�z�
dz

dz

dt

� �zÿ b��z� 1��z 2 ÿ 2zj0 ÿ j0 � b�j0 � 1��
z�j0 ÿ z�3

dz

dt
� 1 ;

�26�

which integrates to the explicit primitive

t�z�R�� � 1

2

1

j2
0�zÿ j0�2

�
n
b�j0 � 1��2j0�j0z� 2j0 ÿ z� � b�2zÿ 3j0 ÿ j2

0�
�

ÿ j2
0

�
2j0z� j0 � 4j2

0zÿ 4j0z
2 � 2z3 ÿ j3

0

�o
ÿ �j0 � 1��j2

0 � b��j0 ÿ b�
j3
0

ln jj0 ÿ zj

ÿ b
�
b�j0 � 1� ÿ j0

�
j3
0

ln jzj � const : �27�

The time in which the radius of the droplet reduces from R to
R0 can be found simply by finding the difference of primitives
at these arguments:

y�R;R0� � t�z�R��
���R0

R
: �28�

For practical calculations it is convenient to have an
estimate for the time of the complete evaporation of the
droplet. The lifetime of the droplet y as an explicit function of
the initial radius R can be found from (28) substituting
R0 � 0:

y � t�z�R��
���0
R
� 1

2

zÿ b

j2
0�j0 ÿ z�2

�
n
j0

�
2j0z

2 ÿ z�3j2
0 � 1� � 2j0�j2

0 � j0 � 1��
ÿ b
�
j0�j2

0 � 4j0 � 3� ÿ 2z�j0 � 1��o
ÿ �j0 � 1��j2

0 � b��j0 ÿ b�
j3
0

ln

�
j0 ÿ b
j0 ÿ z

�
ÿ b
�
b�j0 � 1� ÿ j0

�
j3
0

ln
b
z
; �29�

where the function z�R� is defined in (24). Although the
diffusion theory developed here does not hold for small
droplets, for the sake of simplicity we have extended the
limit of integration to R � 0, because the time of evaporation
of a tiny droplet with size R4 �l is negligibly small compared
with the total lifetime of a droplet with the initial size R4 �l.

4. Discussion of the results

4.1 Analysis of the applicability limits of the problem
Let us use our results to redefine the criterion of steadiness of
process (4). Upon substituting the characteristic scales of the
problem b, t from (20) into (4) and using the kinetic
expressions for l and D, we write the criterion in the form

kDr
atlM

o�o� 1� ' r
rg

o2

at

������������������
Mg

M�Mg

s
4 1 : �30�

Here rg is the density of the gas medium, andMg is the mean
mass of molecules of the gas medium. Since o4 1, we can
safely assume that criterion (30) is satisfied with a good
margin of several orders of magnitude.

Strictly speaking, one must also check that the tempera-
ture regime within the droplet is quasi-stationary. We assume
that the temperature of the liquid phase inside the droplet is
everywhere the same, and at any time is determined by the
current radius of the droplet (24). The variation of tempera-
ture across a droplet of liquid with specific heat c, density r,
and heat conductivity ll in our case can obviously be regarded
as negligible:

DT
T
' crb2

llt
' at

o
l
ll

5 1 : �31�

Let us fathom the applicability of expansion (8). The
approximation is good as long as the discarded term is much
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smaller than the retained term:����ÿ�o� 1�z� Rs

R

����5 2 :

Let us first analyze the situation with the surface tension
neglected Ð that is, assuming that b � 0 everywhere. In view
of (25), we reduce the criterion of applicability of expansion
(8) to the inequality

j1ÿ f0j5 2�a� 1�
�
1� 1

R

�
; �32�

which is stronger, the larger the dimensionless parameter a.
The inclusion of surface tension will only reduce the discarded
term, because for the evaporating droplet the term with the
temperature and the term with surface tension have opposite
signs. Because of this, the necessary and sufficient condition
of applicability of the expansion consists in the simultaneous
satisfaction of two inequalities, (32) and R4 b.

4.2 Two regimes of evaporation of a droplet
The proposed theory of evaporation allows us to describe two
basically different regimes of evaporation of a droplet.

Let us look into the situation inwhich the relative pressure
of vapor in the environment is far from saturation, so that
j0 4 b. In this case we can neglect the effects of surface
tension on the rate of evaporation of the droplet. Then the
general formula for the lifetime of the droplet (29) for the
extreme cases of large and small initial radii can be written in
the form of asymptotic expansions,

y�R� � 1

j0

R� 1

2
�1ÿ j0 ÿ 2j2

0�R 2 for R5 1 ;

1

2
R 2 � 1� 2j0 ÿ j2

0

1� j0

R for R4 1 :

8>><>>: �33�

From these expressions we can see that in the limit of large
droplets we have the well-known dependence of the time of
evaporation of the droplet on the squared radius, while in the
limit of small droplets the time of evaporation is a linear
function of the initial radius. The reasons for such a deviation
from Maxwell's theory are illustrated in Fig. 2, which shows
universal approximate curves of the relative vapor tension

near the surface of evaporation versus the radius of the
droplet:

fR � x� f0
x� 1

; x � R
a� f0
a� 1

: �34�

They were obtained from expression (22) by substituting only
the linear (with respect to R) term of expansion z�R� from
(25).

As the radius of the droplet decreases, the probability of
the recapture of evaporated molecules decreases dramati-
cally, and, because of the limited rate of supply of new
molecules to the surface, the pressure of vapor above the
surface decreases and eventually tends to f0. The rate of
evaporation of small droplets is therefore limited not by the
process of diffusive escape of evaporated molecules, but
rather by the rate of release of molecules from the surface.
Accordingly, such a regime of evaporation can be called the
regime of depletion as compared with Maxwell's classical
regime. If the droplet is sufficiently small, the relative
pressure of vapor near the surface is reduced, and the
temperature of a small droplet is slightly higher than the
temperature of larger droplets. These factors lead to a
considerable increase in the evaporation time as compared
with the predictions ofMaxwell's theory. Themagnitude of ac
has an especially strong effect on the rate of evaporation of a
droplet in the regime of depletion.

Let us estimate the absolute size of a droplet r0 at which
the relative vapor tension in the neighborhood of the droplet
is reduced. For simplicity, we set f0 � 0; then from (34) we can
easily find that the two-fold reduction of the relative vapor
tension fR above the droplet (from 1 to 1/2) corresponds to the
following absolute magnitude of the droplet radius:

r0 � b�a� 1�
a

� 4D

ac�v
� 4�l

3ac
; �35�

where �v � ������������������������
8kT0=�pM�

p
is the mean velocity. Here we have

used expressions (15) and (20) for the parameters a and b, and
the approximate expression for the diffusion coefficient
D � �l �v=3. Observe that, within the framework of the
diffusion model, we have actually arrived at the same value
of r0 that has usually been derived fromkinetic considerations
[11].

Thus, the characteristic radius r0, at which the Maxwell
regime of evaporation is replaced by the depletion regime,
depends explicitly on the condensation coefficient ac. This
gives an opportunity for measuring the coefficient of
condensation by comparing the experimental and calculated
lifetimes of the droplet as functions of its radius.

Of course, the dependence (29) obtained in the diffusion
approximation only holds for R4 �l, and the transition to the
depletion regime occurs for very small droplets, whose
individual sizes are virtually impossible to measure experi-
mentally. However, at very small values of ac 5 1, for
example, in the case where a volatile liquid is covered with a
film of nonvolatile surfactant, the transition to the depletion
regime should occur even with rather large droplets, r0 4 �l.
There are indications, for example, that the evaporation rate
of droplets of some very dilute water solutions is hundreds or
even thousands of times lower than that of droplets of pure
water [1]. This means that even for droplets measuring tens to
hundreds of micrometers, the complete evaporation time
proportional to the squared initial radius is gradually

1.0

fR
f0 � 0:9

f0 � 0:5

f0 � 0

0.8

0.6

0.4

0.2

0
10ÿ2 10ÿ1 100 101 102

x

Figure 2. Relative vapor tension near the surface of the droplet fR vs. the

dimensionless radius x at different values of f0.
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replaced by a linear dependence on R [formula (33)]. In this
case one can adjust the condensation coefficient so as to align
the theoretical curve (29) with the measured curve, and thus
measure indirectly the coefficient of condensation. Such
experiments are quite feasible, all the more so because not
only the radius r0 but also the characteristic time of
evaporation increase as the condensation coefficient
increases, since t / 1=a2c . The smaller ac, the larger the radius
at which our curve (29) begins to deviate from Maxwell's
theory. Observe that it is the availability of an analytical
expression for the droplet's lifetime that makes such a
comparison between theory and experiment practically
efficient.

4.3 Parameters of the evaporation process
for droplets of mercury, water and hexane
Let us now perform a comparative analysis of the process of
evaporation for three substances: water, mercury and n-
hexane. The physical properties of these three substances are
highly different, which will help us to prove the universality of
our theory. For n-hexane, the vapor tension is high. Mercury
has a high density, high surface tension, and low vapor
tension. Water is the best studied substance and exhibits
certain anomalous thermophysical properties owing to its
ability to form hydrogen intermolecular bonds. In particular,
unlike mercury and hexane, the molecule of water is polar,
which probably accounts for the relatively low value of the
condensation coefficient, ac � 0:04 [7, 8].

The applications of these substances are also quite
different. Mercury is used in gas discharge lamps and in
vacuum equipment, and its vapor is a health hazard. Because
of this, it is important to know the rate of evaporation of
mercury. Hexane is a component of the gasoline cut, and its
rate of evaporation is indicative of the rate of evaporation of
fuel in general. The importance of calculation of the
evaporation rate of water droplets is obvious.

The table below gives the initial physical characteristics
and then above-introduced characteristic parameters for
the substances in question, calculated under the assump-
tion of evaporation in atmospheric air at about the
standard conditions: p � 105 Pa and T0 � 300 K. The
coefficients of heat conductivity of air are assumed to be
l � 0:026 W mÿ1 Kÿ1 and at � 1.

The vapor tension of mercury is quite low, so the rate of
evaporation is relatively small, and the temperature of a
droplet is virtually the same as ambient. It is interesting that
the high coefficient of surface tension of mercury in
dimensionless variables, b, does not make its evaporation
stand out against other substances. Owing to the large value
of the parameter a4 1, the rate of evaporation of the droplet
is completely determined by the coefficient of diffusion of
mercury atoms and does not depend on the heat conductivity
of the environment, as assumed in Maxwell's theory. For the
same reason, criterion (32) is always satisfied with a good
margin.

By contrast, for hexane droplets of almost any size at
f0 � 0 this criterion is not satisfied. In this case the linear
expansion (8) underestimates the magnitude of the vapor
tension, and the function y�R� for hexane at f0 � 0 gives
considerably exaggerated evaporation times. The estimate
becomesmore accurate for f0 ! 1. In spite of the low value of
the coefficient of surface tension s of hexane, its effects on the
evaporation process persist over a much greater range of
relative tensions as compared with water or mercury. This is
indicated by the relatively large value of the dimensionless
parameter b.

On the other hand, we should note the very small
characteristic scale b of hexane. This implies that, in the
framework of the diffusion model, the evaporation of
droplets of pure hexane always occurs in Maxwell's regime.
Even a small quantity of a surfactant in hexane, however, can
greatly reduce the coefficient of condensation of hexane
molecules. In this case the characteristic radius b / 1=ac and
the characteristic time of evaporation t / 1=a2c can become
much larger. It is known that an electric discharge in organic
vapors gives rise to a whole spectrum of complex compounds
that could act as surfactants. Seemingly, it was this situation
that was observed in the above-mentioned experiments with
stimulated condensation of unsaturated vapor in a corona
streamer discharge [4].

Physically, the most interesting is the process of evapora-
tion of water droplets that will be discussed in detail below.

4.4 Evaporation of water droplets
On the one hand, the parameter a of water is of the order of
unity, and the thermal conductivity of the environment has a
considerable effect on the rate of evaporation. On the other
hand, the characteristic parameter b even for pure water is
fairly large, so that the transition to the depletion regime
occurs already at droplet sizes in the micrometer range, where
the diffusion approximation still holds.

Besides, for submicron droplets, at dimensionless radii
R5 1, criterion (32) is satisfied fairly well over the entire
range 0 < f0 < 1. However, this cannot be said about large
droplets. To illustrate this last statement, let us turn to the
calculation of the so-called psychrometric temperature. Such
is the temperature of liquid in a relatively large vessel, and
such will be the reading of a wet thermometer in a
psychrometer in a stationary gas. Setting R!1 in (24) or
(25), we get the psychrometric temperature z � j0. Figure 3
shows two calculated curves for the difference of readings of
the dry and wet thermometers versus the relative humidity
z� f0�. We see that the agreement with the experimental points
(the table for a standard VIT-2 hygrometer) is quite good.
The discrepancy between theory and experiment arises
precisely in the region where criterion (32), which assumes
the form 1ÿ f0 5 2:6 in the case of water, is violated. From a
comparison with experiment one can obtain a direct estimate
of coefficient at, because its magnitude appears in the
expression for the parameter a. Good agreement between

Table. Characteristics of pure substances and parameters of the problem{

Substance Ps, Pa L0,
kJ molÿ1

r, kg mÿ3 D, cm2 sÿ1 ac s, mN mÿ1 o a b, nm t, ms b

Mercury
Water
n-hexane

0.27
3.63

2.24

65.6
43.8
37.7

13550
997
660

0.21
0.25
0.10

1.0
0.04
1.0

465
71
18

25.3
16.6
14.1

2066
0.303
0.171

475
976
19.2

127
292
0.02

2.2ÿ5

4.9ÿ5

4.7ÿ3

{We use abbreviated notation. for example, 3:63 � 3:6� 103.
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the slopes of the calculated and experimental curves indicates
that at � 1 for pure water in air.

The coefficient of condensation begins to tell on the rate of
evaporation when the droplet becomes small enough. For
water droplets the deviation from Maxwell's theory starts
even at micrometer droplet sizes, when it is certainly still
possible to use the approximation of a continuous medium
(the free path of molecules in normal conditions is
�l ' 60 nm5 1 mm). This is illustrated in Fig. 4, which shows
the droplet lifetimes calculated using formula (29) at b � 0.
Since criterion (32) at R < 1 is satisfied for 0 < f0 < 1, the
theoretically calculated lifetime of small droplets can be
regarded as quite reliable.

4.5 Growth and evaporation of droplets
in the neighborhood of the dew point
Aconsistent account of surface tension in the proposedmodel
gives a correct estimate for the time of evaporation of droplets
near the dew point.

The proposed theory allows one to indicate the character-
istic range of relative humidity where the effects of surface
tension become important. From the expression for the
temperature of the droplet (24) we can see that the surface
tension has a considerable effect if

2j0 ' b ; 1ÿ f0 ' Rs

2b
:

For pure water, which has Rs � 1:1 nm under normal
conditions, this estimate corresponds to 1ÿ f0 ' 6� 10ÿ4.

Let us first consider the case where f0 is exactly equal to 1.
In this situation the surface tension is a crucial factor. To find
the time of evaporation of a droplet we need to go to the limit
j0 ! 0 in equation (29). As a result, we get

y0�z� � b 2

3z 3
ÿ b�1ÿ b�

2z 2
� 1

6b
ÿ 1

2
� zÿ b� �1ÿ b� ln z

b
:

�36�

Substituting expression (24) into (36) under the condition
j0 � 0 yields the sought function y0�R�. This function in the
extreme cases of large and small radii can be expressed by the
same formula

y0�R� � 1

b

�
1

2
R 2 � 1

3
R 3

�
: �37�

Observe that formula (37), being asymptotically accurate in
the limits of very large and very small values ofR, also gives a
very good approximation in the intermediate region R ' 1.
Therefore, this expression can be rightly called an interpola-
tion formula and used for all values of the radius.

If f0 is only slightly different from 1, then for the lifetime of
the droplet we must use the general expression (29). The
passage through the dew point is reflected by a change of the
sign of the parameter j0; to be more precise, j0 > 0 in
unsaturated vapor, and j0 < 0 in supersaturated vapor.

For supersaturated vapor, as can easily be seen from
expression (23), there is a critical size of droplets Rcrit. The
droplets with R < Rcrit will continue to evaporate even in the
supersaturated vapor, and only droplets with R > Rcrit will
grow because of the condensation of vapor on their surface.
Since a droplet with the critical radius is in thermal
equilibrium with the environment, it will suffice to set z � 0
in (23) and find the corresponding value of the dimensionless
Rcrit:

Rcrit � ÿ b
j0

� Rs

b� f0 ÿ 1� : �38�

For j0 < 0 expression (23) gives positive values of the radius
at z > 0 �TR < T0� if R < Rcrit (the drop is colder than the
environment Ð evaporation regime), and at z < 0 �TR > T0�
if R > Rcrit (the drop is warmer than the environment Ð
condensation regime).

Figure 5 shows the results of exact calculations using
formula (29) for the time of evaporation of a water droplet
near the dew point. To demonstrate the difference between
the curves, a lowered value of the coefficient of condensation
was used in this calculation. The dashed line in the same
diagram shows the evaporation time of the droplet calculated
neglecting the surface tension. We see that in the range of
small droplets it deviates considerably from the exact
dependence (29).
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Figure 3. Relative temperature drop of the wet thermometer z vs. the

relative humidity f0 for different temperatures of the dry thermometer: (1)

T0 � 295 K; (2) T0 � 305 K (points in the diagram correspond to the

psychrometric table for a standard VIT-2 psychrometer).
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Figure 4. Time of complete evaporation of water droplets y vs. the initial

radius R at T0 � 300 K, f0 � 0:5: (1) the Maxwell regime of evaporation;

(2) ac � 0:04; (3) ac � 0:001.
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It is interesting that all our formulas can also be used to
calculate the time of condensation growth of a droplet in
supersaturated vapor. In the regime of condensation �z < 0�
the expression for the rate of variation of the radius changes
its sign automatically, and the same formula (28) can be used
to calculate the time of growth of a droplet from a certain,
sufficiently large radius R > Rcrit to a radius R0. Naturally,
the range of applicability of the theoretical model to the
calculation of the rate of growth of the droplet is restricted by
the same inequality (32).

Here, however, some comments are due. Condensation of
aerosols from supersaturated vapor is a collective process that
involves a multitude of droplets of very different sizes.
Calculations of the kinetics of evaporation and condensation
of an ensemble of particles must self-consistently take into
account both the change of the relative humidity and the
dynamics of the droplet size distribution function [10]. There
is, however, a practically important case where the number of
droplets in the system is relatively small, and their growth
does not materially affect the temperature and the relative
humidity of the environment (such is the situation, for
example, in a Wilson cloud chamber). Therefore, our theory
is quite capable of giving a correct estimate of the growth of
droplets after the nucleation under such conditions. For-
mulas for the rate of growth of an individual droplet can also
be useful for the description of the process of condensation of
an ensemble of droplets as one of the equations of the system,
providing that the change of parameters of the environment is
taken into account in a self-consistent manner.

5. Conclusions

Even though the proposed theory of evaporation of a solitary
spherical droplet does not predict any new effects, it certainly
has methodological and practical merits.
� This theory adequately reflects the variety of physical

processes associated with the evaporation of a droplet far
from the boiling point in an atmosphere of a buffer gas at
moderate pressure. By means of using the coefficients ac and
at as additional parameters of the problem, one can expand
considerably the applicability of the diffusion model. The
limits of applicability of the theory are outlined in this model
in a physically clear way.

� With the use of straightforward mathematics, it was
possible to find for the first time an exact solution of the
problem of evaporation of a droplet in a relatively broad
neighborhood of the dew point with due account for the
effects of surface tension on the saturated vapor pressure near
the curved phase interface.
� The analytical solution of the problem gives a clear idea

of the interplay of various factors affecting the rate of
evaporation of the droplet. Of special practical importance
are the analytical expressions for the overall (integral) lifetime
of the droplet, which, unlike the differential rate of evapora-
tion, can rather easily be measured experimentally. The
availability of a fairly general analytical theory opens the
possibility of efficient evaluations of low-valued condensa-
tion coefficients from the experimental curves of the integral
lifetime of a droplet as a function of its initial radius.
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