
Abstract. Some aspects of local order in the amorphous state of
a glassy polymer are discussed. The physical principles behind a
cluster model involving the new concept of a structural defect
are presented. A comparative analysis of three major ap-
proaches to describing the amorphous state of a polymer is
given. It is shown that the cluster model is in reality a unified
model which presents a new explanation for many qualitative
results produced in the past on polymer structure and processes
involved and which, unlike previous approaches, has the advan-
tage of being quantitative. Possible future directions in polymer
structure studies are outlined.

1. Introduction

The structure of the amorphous state of glassy polymers is
one of the most important and conflicting problems in
polymer physics. Until 1957, it was generally believed that in
the amorphous phase the chain macromolecules making a
polymer are randomly distributed and the `spaghetti'
(random-coil chain) model provides a correct description of
its structure (or lack of it, to be precise) in this phase. It was
suggested in Ref. [1] for the first time that there is a short-
range (or local) order in polymers, based on the comparison
of the amorphous phase segmental volume and density, solid-
phase crystallization effect, etc.

In a later period, this hypothesis was extensively discussed
by the advocates of the two conflicting concepts. There are at
least two reasons for the local order problem to be at the
center of attention as far as amorphous polymers are
concerned. One is of fundamental importance because local

order, if any, must influence polymer properties in the same
way as the crystalline state influences the properties of
amorphous ± crystalline polymers. The other reason is of
methodological character, there being no direct experimental
approaches leading to an unambiguous solution of the
problem in question.

A most forcible argument in favor of the random-coil
chain concept is provided by the results of experiments on
small-angle neutron scattering, which suggest that the radius
of inertia hR 2

g i of a macromolecule in a y-solvent and in bulk
polymer is approximately the same [2]. However, certain
authors are of a different opinion. Boyer [3] presented a
speculative scheme (Fig. 1a) in which the presence of local
order does not necessarily affect the length of the radius of
inertia of a macromolecule. Moreover, studies of small-angle
neutron scattering demonstrated a marked discrepancy
between conformations of chains for mesophase-forming
polyethyl siloxane in a solution and in the condensed state
[4]. This difference for a crystallizable high-molecular poly-
ethylene terephthalate is less delineated and does not exceed
15%. [5]. It is natural to suggest that conformational changes
of the chains in the course of local order formation should be
even weaker than during the formation of a mesophase or
crystalline regions. For this reason, the change of hR 2

g i in the
first case is on the order of a few percent, i.e. within
experimental error (� 8%) [6], which makes it rather difficult
to identify. It will be shown below that the poor variability of
hR 2

g i upon transition from the solution to the condensed state
does not interfere with the formation of regions of local order.

There are two principal models of regions of local order in
the amorphous state of glassy polymers. In the beginning, it
was thought that such a region is analogous to a folded-chain
crystallite (FCC) [7]. This view had undoubtedly formed
under the influence of the discovery by Fischer [8], Keller
[9], and Till [10] of a crystallite structure composed of single-
crystal folded-chain lamellae. Close to this model is the so-
called `meandering' model of Pechhold [11]. Another class of
models for regions of local order is exhibited by the so-called
micellar domain structure [12] which represents a sort of
prolate-chain crystallite (PCC) analogue (Fig. 1b).

X-ray diffraction techniques appear to yield the most
weighty data in support of local ordering in amorphous
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polymers [13 ± 16]. It was shown in Ref. [14] that the shape of
the amorphous halo on large-angle X-ray diffractograms
provides a qualitative characteristic of one or another local
order constant which becomes the interplanar spacing for
polymer crystalsÐ that is, a long-range order parameter. It is
important that the number of these constants, i.e. the sum of
reflexes producing the amorphous halo, can be both a
property of the material and an individual characteristic of
the sample, indicative of the nature and degree of amorphous
phase ordering. In the following pages, it will be shown how
this general principle can be applied to confirm in experiment
the validity of the cluster model of the polymer amorphous
state structure. Indirect evidence of local ordering in the
amorphous state of glassy polymers was also obtained with
the aid of other up-to-date experimental techniques such as
nuclear magnetic resonance [17 ± 19], IR spectroscopy [20],
thermal analysis [21, 22], electron diffraction [23], small-angle
neutron scattering [24], and thermal expansion analysis [25].
Simulation of polymer structure by the Monte Carlo method
confirmed the feasibility of local ordering even if only the
packing density is considered [26]. A number of theoretical
studies demonstrated the possibility of local order realization
in the amorphous state of glassy polymers despite the
aforementioned invariability of the quantity hR 2

g i [3] (at
least to within the experimental error). Also, they explained
the constancy of glass transition to melting temperature ratio
in polymers [27].

As far as the size of the regions of local order is concerned,
it should be noted that in earlier works they were considered
to be rather lengthy (up to several thousands of angstroms
[28 ± 30]). In the course of time, however, this view changed,
and Boyer (following Robertson) suggested that regions of
local order should actually be smaller than 5.0 nm, while

regions of long-range order are bigger than 10.0 nm [3].
Certainly, the size is not the sole property responsible for the
difference between the regions of local and long-range orders.
The latter are characterized with necessity by spatial ordering
[31].

A review published by Fischer and Dettenmaier [32]
marked an important stage in the development of views on
the nature of local ordering in glassy polymers. In the first
place, these authors showed that the extent of locally ordered
regions can hardly exceed 1.0 nm (or 2.0 nm as later estimated
byWendorff [33]). Secondly, the local order in the glassy state
was shown to be sensitive to thermal fluctuations. In other
words, its degree is a function of temperature. For this reason,
it should be borne in mind that the phrase `the order frozen to
below the glass transition temperature Tg' does not suggest a
constancy of order parameter (e.g., a free volume [32]) at
T < Tg. `Freezing' of local order in the glassy state is due to its
high viscosity in contrast with low-molecular-weight liquids
in which the local order is of dynamic nature [3]. It will be
shown below that the cluster model is fully consistent with
these conditions.

Today, practically all researchers recognize the occur-
rence of local order in the amorphous phase of glassy
polymers. In the end, even Flory [2], a most staunch
opponent of this concept, eventually came to share this view
even though with some reservation to the effect that the
degree of ordering in polymers is not higher than in low-
molecular liquids. Therefore, amajor concern at present is the
accurate structural identification of locally ordered regions
and the development on this basis of a quantitative concept
which the cluster model actually represents.

Another important aspect of the approach being con-
sidered is the definition of a structural defect for the
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Figure 1. Schematic (model) representation of the coiled molecule (a) (1Ðstatistical ball, 2Ðthe same with locally ordered regions) [3]; amorphous state

(b) (1Ðmeandering model, 2Ð folded-chain micellar model, 3Ðmicellar domain structure) [12]; `macromolecular interlacing' (c), and cluster (d).
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amorphous state of glassy polymers. The influence of the
dislocation theory on the development of the metals science is
well known [34], hence the numerous attempts to use
disclination ± dislocation analogies for the description of
amorphous polymer properties [35 ± 40]. However, the lack
of a quantitative structure concept resulted in the structural
defects being treated as essentially molecular ones [35, 36, 39]
or totally unrelated to the polymer structure [37, 38, 40]. An
altogether new interpretation of a structural defect for
polymers will be presented below.

There are numerous interpretations of local order and
experimental findings allowing for its particular quantitative
evaluation. We shall consider in this paper a few examples
illustrating both the qualitative and quantitative consistency
of the cluster model with the results of earlier studies. They
confirm that the cluster model not only agrees with the data
accumulated in this branch of polymer physics but also
provides a basis for their integration.

Being dependent on a quantitative assessment, the cluster
model is designed for the analytical description of structure ±
properties relationships in glassy polymers. For this purpose,
the existing approaches to such phenomena as elasticity, flow,
fracture, etc. had to be revised. The use of the cluster model
for the description of different properties (mechanical and
thermodynamic, transport, etc.) of various types of polymers
will be illustrated in the forthcoming sections of this paper.

In addition, it is worthwhile to note that one of the
promising lines of further research concerned with the local
order in polymers is their consideration as dissipative
structures [41 ± 44]. This approach allows for the employ-
ment of the mathematical apparatus of synergetics [45, 46] to
describe the structure of polymers. A major advantage of this
approach to the elucidation of the amorphous polymer
structure consists in the possibility of studying the relation-
ship between the parameters of the initial glassy polymer
structure and its modification by various (e.g., mechanical)
factors. A similar principle of research was employed in Refs
[47, 48] where the GruÈ neisen parameter characterizing the
degree of interatomic bond anharmonicity served as a
measure of polymer structural change. With this in mind,
the objective of the present review is to analyze current views
about the local order, structure, and properties of glassy
polymers with recourse to the cluster model concept.

2. Model of the amorphous state
of glassy polymers

Widely known experimental findings created a prerequisite
for the development of the cluster model of the amorphous
polymer structure. It was demonstrated by Haward and co-
workers [49, 50] that the behavior of glassy polymers
experiencing deformation beyond yield stress (in the plateau
region of forced rubber-like elasticity) obeys the equations of
the theory of rubber elasticity. In this case, large strains are
described either by the Langevin equations [51, 52] or in the
framework of the Gaussian interpretation [53] where a
polymer chain does not approach a fully stretched condition
and the relation between the true stress strue and the degree of
stretch l for uniaxial tension has the form [53]

strue � Gp

�
l2 ÿ 1

l

�
; �1�

where Gp is the so-called modulus of strain hardening.

Formally, the knowledge of the quantity Gp permits one
to determine the density Ve of the network of chain
entanglements with the help of the well-known formulas for
rubber-like elasticity:

Gp � rRT
Me

; �2�

Ve � rNA

Me
; �3�

where r is the polymer density, R is the molar gas constant, T
is the testing temperature, Me is the molecular weight of a
chain segment between entanglements, and NA is the
Avogadro constant.

However, attempts to estimateMe (orVe) usingGp values
derived from Eqn (1) lead to an incredibly low Me (or
unrealistically high Ve) at variance with Gaussian statistics
which implies the presence of at least 13 links in a chain
segment enclosed between entanglements [54]. Possible causes
of this discrepancy are discussed at some length in Ref. [53],
where it is assigned to the interpretation of the entanglements
as conventional interlacings (`loops') of macromolecular
chains (Fig. 1c). In an attempt to solve this problem, the
authors of Ref. [55] suggested that, besides the conventional
network of such interlaced chains in glassy-state polymers,
there is another type of macromolecular linkage structurally
resembling prolate-chain crystallites (PCC) and schematically
depicted in Fig. 1d. Such entanglement sites (which should
rather be called binding sites) are characterized by a high
degree of functionality F (the functionality of a site is
understood as the number of chains that emanate from it)
[56] and will be further referred to as clusters. A cluster
comprises segments of different macromolecules. The length
of each segment is assumed to be equal to the length lst of the
statistic segment (`stiffness-providing polymer segment' [57]).
In this case, the effective (real) molecular weight of the chain
segment between clusters M eff

e can be estimated as follows
[56]:

M eff
e �Me

F

2
: �4�

Evidently, at a sufficiently large F, it is possible to obtain
sensible M eff

e values meeting the requirements of Gaussian
statistics. In what follows, the subscripts `cl' and `e' will be
used to designate parameters of a cluster network of
entanglements and conventional network of macromolecu-
lar interlacings, respectively. Thus, the model described in
Ref. [55] suggests that the structure of the amorphous
polymer state can be simulated by regions of collinear close-
packed segments (clusters) embedded in a loose-packed
matrix. Simultaneously, clusters play the role of multifunc-
tional sites in the network of physical couplings. The value of
F can be found (again in the framework of the rubber-like
elasticity concept) in the following way

F � 2G1
kTVcl

� 2 ; �5�

where G1 is the equilibrium shear modulus, and k is the
Boltzmann constant.

Figure 2a shows the temperature dependences of Vcl�T �
for polycarbonate (PC) and polyarylate (PAr), which indicate
that Vcl decreases with rising T. Furthermore, these depen-
dences exhibit two characteristic temperatures. One, the
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polymer glass transition temperatureTg, is responsible for the
complete cluster decomposition corresponding to the transi-
tion of the polymer to the rubbery state. The other, T 0g,
corresponds to the inflection on Vcl�T � curves and is
approximately 50 K below Tg. It was shown in earlier studies
[59, 60] in the framework of local order concepts that the
temperature T 0g is associated with unfreezing of segmental
mobility in loose-packed regions of the polymer. This means
that in the cluster modelT 0g can be associated with devitrifica-
tion of a loose-packed matrix. The dependences F�T � for
these polymers have a similar form (Fig. 2b).

The two principal models of the regions of local order in
polymers have one point in commonÐ these regions play the
role of nodes in the physical network of macromolecular
interlacings [55, 61]. However, their response to mechanical
deformation must be significantly different. `Bundles' appear
to be able to unfold and adopt a straightened conformation
under large strains, whereas clusters are not, and deformation
of the polymer occurs only via straightening of penetrating
chains (orientation along the applied stress). Turning back to
the analogy with crystalline morphology of polymers, it
should be noted that large strains of amorphous ± crystalline
polymers (amounting to 1000 ± 2000% for polyethylenes) are

realized through crystallite unfolding [62]. This means that
the measurement of limiting deformations may provide
arguments in favor of one or another type of the regions of
local order in the polymer amorphous state [63].

It has been suggested in Ref. [61] that `bundles' may serve
as sources of polymer segments entering `interstitial sites' (i.e.
interbundle regions) by virtue of their ability to unfold, which
they share with folded-chain crystallites (FCC). In the light of
this analogy, it is worth noting a significant difference
between limiting degrees of stretch llim of amorphous plastic
polymers and such amorphous ± crystalline polymers as high-
density polyethylene (HDPE) and polypropylene (PP). For
these polymers, crystallite unfolding under large strains has
been confirmed by experiment (llim � 1:6 for PC, llim � 6 for
PP, and llim � 13 for HDPE at room temperature [64]). The
explanation of this difference requires the quantitative
assessments [63].

Gent andMadan [64] suggested that the stretch occurs via
straightening of crystalline or amorphous sequences. In this
case, llim may be expressed as the number of times f which the
molecule passes through one and the same crystallite (or
`bundle'):

1

llim
� K

f
� �1ÿ K�1=2

n
1=2
st

; �6�

where K is the degree of crystallinity, and nst is the number of
equivalent statistical links between entanglement sites in the
melt. Usually, nst varies from 100 to 300. Because this
parameter has no significant effect on the final result, it is
assumed to equal 225 for all polymers used in Ref. [63].

Evidently, the quantity f determines the number of folds
formed by a molecule in FCC (or `bundle'). For folding to be
the case, the condition f5 2must be fulfilled. The estimated f
values for HDPE and PP presented in Table 1 are as expected
indicating that a macromolecule of HDPE is folded more
than 50 times, while that of PP only 5 times, in good
agreement with the results reported in paper [64].

An equivalent of the degree of crystallinity K for
amorphous glassy polymers is the relative number of
clusters jcl. The value of jcl can be estimated in the
following way. The overall length L of macromolecules per
unit volume of the polymer (on the assumption of their
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Figure 2. Plots of (a) density Vcl of cluster network of entanglements vs.

temperature T for PC (1, 3) and PAr (2) (1, 2 Ð stable, and 3 Ð unstable

network) [55], and (b) cluster functionalityF vs. temperatureT [for PC (1 ±

3), HDPE (4, 5)] and inverse characteristic ratio Cÿ11 (6). Curve 1 is

obtained from Eqn (5), curve 2 from Eqn (11), curve 3 from Eqn (6).

Curves 4 and 5 are for HDPE and HDPE� 0.05 Z, respectively.
Table 1. Folding parameter f for amorphous and amorphous ± crystalline
polymers.

Polymer T, K llim K jcl f

Polyethylene
Polypropylene
Polycarbonate

Polyarylate

293
293
333
353
373
393
413
293
313
333
353
373
393
413
433
453
473

13
6
1.91
2.23
2.15
2.36
2.75
1.66
1.67
1.66
1.76
1.66
1.70
1.75
1.80
1.86
1.97

0.69
0.50

0.33
0.29
0.24
0.19
0.11
0.50
0.38
0.37
0.31
0.25
0.19
0.16
0.13
0.11
0.01

53
4.7
0.70
0.73
0.57
0.52
0.35
0.89
0.68
0.66
0.59
0.45
0.35
0.30
0.25
0.22
0.02
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close packing) is [65]

L � S ÿ1 ; �7�

where S is the cross-section area of a macromolecule.
The length of the statistic segment lst is estimated to be [66]

lst � l0C1 ; �8�

where l0 is the length of the skeletal bond in the main chain,
and C1 is the characteristic ratio which describes the
flexibility of the macromolecule [67].

The total length Lcl of segments in the clusters per unit
volume of the polymer is estimated as [68]

Lcl � lstVcl ; �9�

and the quantity jcl is expressed as the ratio

jcl �
Lcl

L
: �10�

Values of jcl obtained from Eqns (7) ± (10) are presented
in Table 1. Results of the calculations for PC and PAr using
experimental values of llim indicate that in all cases f < 1 (see
Table 1). This suggests the absence of chain folding in the
regions of local order (nodes in the physical network of
macromolecular interlacings) of these polymers. Also, it
should be noted that the crystallite unfolding in amor-
phous ± crystalline polymers begins at strains of the order of
50 ± 100% [69]. The use of llim � 2 for amorphous segments
of HDPE in Eqn (6) and jcl � 0:2 yields f < 1. This means
that macromolecular folding in amorphous ± crystalline
polymers takes place only in crystalline regions.

Therefore, calculations in paper [63] indicate that a
prolate-chain crystallite analogue (cluster) is the most likely
type of supersegmental structures in the polymer amorphous
state (see Fig. 1d).

It has been mentioned above that Flory's main argument
[2, 56, 70] against local ordering in amorphous polymers was
the identical shape of a macromolecular ball in a y-solvent
and in the condensed state as reflected in the similar root-
mean-square distance between macromolecular ends. It was
however shown in Ref. [71] that this does not interfere with
the formation of clusters considered again as multifunctional
nodes in the network of physical entanglements. Evidently,
this condition must hold for the cluster model too. Forsman
[72] derived the following equation to estimate the number of
segments nseg in a polymer cluster:

n 1=2
seg �

B2

4A

�
1ÿ

�
1ÿ 16A

�
1ÿ ln�Crjcl�

�
B 2
2

�1=2�
; �11�

where B2 is a dimensionless quantity characterizing the
intersegmental interaction energy, and C is the polymer
concentration. Quantity A reflects a change of a macromole-
cular size prior to and after cluster formation and can be
found from the ratio [72]

A � a 4 ÿ a 2 � 1

a 2
; �12�

where the parameter a is given as

a � hh
2i

hh 2
0 i
: �13�

In this equation, h0 and h are the root-mean-square
distances between macromolecular ends before and after
clustering.

For the above reason, a � 1. The comparison of F values
for PC, calculated by Eqns (5) and (6) with the use of Eqn (11)
�F � 2nseg�, is presented in Fig. 2b (curves 1 and 3). It can be
seen that a calculation using equation (6) allows for the
correct quantitative estimation of F and the expected trend
of a temperature dependence. However, an accurate assess-
ment in the framework of Flory's concept [72] is hardly
possible in the case of amorphous polymers, because Eqn (5)
is an approximation.

Strictly speaking, the quantity F does not show the
degree of local order. However, it may characterize the
degree of interpenetration of macromolecular balls in the
condensed state of polymers, because the clusters are
formed by segments composed of different macromole-
cules. It has been demonstrated by Aharoni [73] that the
characteristic ratio C1 can play a similar role. If this
assumption is correct, F must correlate with C1. It has
been confirmed in Ref. [71] that such a correlation does
exist (see Fig. 2b, curve 6).

It can be shown that the formation of a cluster structure is
consistent with general concepts, for example, Gladyshev's
evolution theory of hierarchical systems [74 ± 79]. Experi-
mental verification of the physicochemical theory of chemi-
cal system evolution [74] was undertaken based on the
correlation between the melting temperature Tm and the
Gibbs specific function of intermolecular interactions DG im

(the superscript `im' points out the intermolecular or, as in our
case, intersegmental nature of interactions) [76, 78, 79]. The
choice of these parameters has been substantiated in Refs
[76 ± 79].

As is well known, the Gibbs ±Helmholtz equation is true
for the processes taking place in simple closed systems:

q�DG=T �
q�1=T �

����
P

� DH ; �14�

where, DG and DH are changes of the Gibbs function and
enthalpy, respectively, T is the temperature, and P the
pressure.

If DH is assumed independent of T in a given temperature
interval, the following equation holds for the nonequilibrium
phase transition, i.e. self-assembly of an individual substance,
at temperature T:

DG im � DH im
m

Tm
�Tm ÿ T� � DH im

m

Tm
DT � DS im

m DT ; �15�

where DG im is the change in the Gibbs function during
crystallization (self-assembly) of the substance being studied
from the overcooled state at T � Tm ÿ DT , DH im

m is the
change of enthalpy in the course of crystallization (solidifica-
tion), and DS im

m is the crystallization entropy (the entropy
change during phase transition).

It was suggested in Refs [74, 76, 78] that Eqn (15) should
also be used for open systems in which neither the composi-
tion nor Tm is subject to significant alteration. Later studies
demonstrated the possibility of applying this equation to
various chemical compounds having melting temperatures
Tm < 100 �C and undergoing condensation at a constant
temperature T � T0 (25

�C) [76 ± 79]. With a stricter
approach, for these cases Eqn (15) should be written in the
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form

DG im
i �

DH im
mi

Tmi
�Tmi ÿ T0� � DS im

mi DT ; �16�

where the subscripts i � 1; 2; . . . ; n refer to different sub-
stances. Equation (16) is an analogue of Eqn (15) in terms of
form. In other respects, these two equations are basically
different in that the latter contains a variable DG im character-
izing the nonequilibrium transition of an individual substance
in the system at any temperature T < Tm. The values of
DH im

m , DS im
m , Tm refer to this individual substance and are

assumed to be constants. On the whole, however, Eqn (15)
represents a functional dependence DG im � f �T �. In Eqn
(16), the variable DG im is related to nonequilibrium transi-
tions of various compounds with different melting tempera-
tures Tmi at a constant (standard) temperature T0. In this
case, equation (16) represents the function DG im

i � f �Tmi�
[78]. A method for the calculation of quantity DG im for
polymers is described in Ref. [80].

Figure 3 shows the dependence of DG im on DT �
Tg ÿ 293 K for amorphous glassy, amorphous ± crystalline,
and cross-linked polymers [80]. As expected, DG im decreases
linearly with increasing DT (in fact, Tg). It is even more
important that the straight line in Fig. 3, which fairly well
approximates the results of the study, is consistent with the
findings of Refs [76 ± 79] presented as the plot of DG im versus
DT for quite different chemical compounds, but with the
coefficient 10 : 1 along the axis DG im. This is due to the
difference between the molar volumes of the segments (i.e.
kinetically independent fragments) and compounds used in
Ref. [76], which amounts to approximately one order of
magnitude. In principle, this allows one to compute the size
of the segment, which is unlike in different polymers. A
departure from the plot for polymers with high Tg reflects
the peculiarities of the supersegmental structure of these

substances [76]. The data of Fig. 3 indicate that the
postulated cluster model based on the assumption of local
order in the amorphous state of polymers is in good
qualitative and quantitative agreement with a much more
general macrothermodynamic hierarchic model [74 ± 79] and
occupies a relevant energy niche in the hierarchy of real world
structures. The plot in Fig. 3 readily illustrates the tendency of
structural evolution of a physically aging polymer. With the
trend in the polymer structure to equilibrium, G im tends to a
minimum (i.e. DG im shifts towards negative values). A
concomitant enhancement of local order is accompanied by
a rise inTg [81]. Equally possible is polymer `rejuvenation', i.e.
a process thermodynamically opposite to that considered
above. In practice, it is realized through `pumping' mechan-
ical or other energy into the polymer [82].

The dependences (following from Gibbs ±Helmholtz ±
Gladyshev equations) presented in Fig. 3 hold true both for
different polymers and for one polymer at varying T. Points 4
in Fig. 3 show the dependence DG im�DT � for PC, which is in
quantitative agreement with the general dependence for
DG im. Therefore, in the case of polymers, Eqns (15) and (16)
are simultaneously fulfilled; in other words, the formation of
supersegmental structures constitutes a nonequilibrium
transition giving rise to nonequilibrium structures. Charac-
teristically, the onset of their formation corresponds to the
glass transition Ð that is, the transition from an equilibrium
devitrified state to a weakly nonequilibrium glassy state.

Finally, it should be noted that the values of DG im

`controlling' the formation of supersegmental structures in
polymers are in a definite manner related to their molecular
characteristics. Because polymers are solids composed of
long-chain macromolecules, it should be expected that the
most important (or at least one of the most important)
parameter is the polymer chain flexibility described by the
characteristic ratio C1 [83]. For this reason, Fig. 3 (curve 5)
shows the dependence DG im�C1� exhibiting the well-appar-
ent tendency of DG im to increase (in parallel to a decrease of
Tg) with increasing chain flexibility. The sole significant
deviation from this rule, displayed by polystyrene, may be
due to the well-known specificity of its chemical composition
[84]. The correlation between G im and C1 is in perfect
agreement with the earlier postulated growth of Tg with
increasing polymer chain stiffness [84].

It may be concluded that the dependences DG im�DT � for
the polymer supersegmental structure obtained in the frame-
work of the macrothermodynamic hierarchic model are
consistent, both qualitatively and quantitatively, with the
analogous correlations for a wide variety of chemical
compounds reported in earlier studies [76, 78, 79, 85]. This
confirms the reality of these structures in the amorphous
polymer state. Equations (15) and (16) are equally applicable
to the description of thermodynamical behavior of these
structures and can be used for their quantitative simulation.
If stricter calculations are needed, corrections for variations
of thermal capacity during phase transitions can be intro-
duced [85].

An experimental evaluation [53] revealed the temperature
�T � dependence of the modulus of strain hardening Gp. It
follows from Fig. 2a (curves 1, 2), taking into account Eqns
(1) ± (3), that the cluster model directly leads to such a
dependence, thus suggesting that the local order has thermo-
fluctuation nature. This was taken into consideration in work
[86] within the framework of the statistical theory of
fluctuations. Fellers and Huang [87] used this theory for the
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description of crazing in amorphous polymers. They derived
an expression for the estimation of the polymer volume V0 in
which the probability of fluctuations is unity:

scV
1=2
0

�2kT0B�1=2
� 3:87 ; �17�

where sc is the crazing stress, T0 is the equilibrium
temperature having a glass transition temperature Tg as the
lower limit, and B is the bulk modulus. The methods for
computation of sc and B are described in Ref. [86].

Table 2 compares the intercluster distances Rcl and linear
size lfl at which the probability of fluctuations is unity. The
parameter lfl is taken to equal V

1=3
0 , and Rcl is found from the

equation [88]

Rcl � 18

�
2Vcl

F

�ÿ1=3
A
�
: �18�

It follows from Table 2 that these parameters are very
similar in terms of both absolute value and tendency to
change. This means that on the scale of the characteristic
size of a cluster structure, an amorphous polymer (or the
amorphous phase of an amorphous ± crystalline polymer)
may be regarded as a microheterogeneous system of thermo-
fluctuational origin [86].

Although the mechanism of fluidity in amorphous glassy
polymers has for a long time been a focus of interest for many
researchers, there is not yet a concerted opinion regarding its
nature. One of the popular fluidity theories is based on the
postulate of mechanical devitrification of polymers [89].
There are many arguments for and against this concept. A
detailed discussion of them is beyond the scope of the present
review. Suffice it to say that its validity is confirmed by the
aforementioned `rubber-like' behavior of amorphous glassy
polymers at the plateau of forced rubber-like elasticity (cold
flow). An argument against the concept is the overestimated
(by at least one order of magnitude) plateau stress spl for a
devitrified polymer, which is not significantly different from
the yield stress sy. This apparent discrepancy is easily resolved
in the framework of the cluster model which implies that a
loose-packed matrix is maintained in the glassy state (at
T < T 0g) by a mesh of smaller (therefore, thermodynamically
less stable) clusters [90]. Within the framework of such a
structural model, fluidity (cold flow) of the amorphous glassy
polymer is associated with mechanical devitrification of not
all the polymer but only its loose-packed matrix [91]. In this
case, large spl values are due to the high density Vcl of the
network of the conserved big (with large F ) stable clusters,
and the application of the rubber elasticity concept is justified
by the rubbery state of the loose-packed matrix. Evidently,
the well-known fall in the stress Ds beyond the yield stress in
such an interpretation is related to the decomposition of

unstable clusters in the loose-packed matrix, with their
network density V us

cl controlling Ds. As mentioned above,
Vcl can be found from the forced rubber-like elasticity
plateau; hence, the approximate ratio [90]

Ds
sy
� V us

cl

Vcl � V us
cl

; �19�

which allows V us
cl to be estimated.

It has been shown that Ds (hence, V us
cl ) decreases with

rising temperature T [92]. This agrees with the proposed
model where the cluster network density is a function of T
(in contrast to the network of conventional interlacings [93]).
Figure 2a (curves 2, 3) compares the temperature depen-
dences ofVcl andV

us
cl for PC, calculated with the help of Eqns

(1) and (19), respectively. As expected, the quantity V us
cl at a

temperature nearly 50 K below Tg (i.e. at T
0
g) relating to the

polymer is practically zero due to the thermal devitrification
of the loose-packed matrix [60].

An additional network of physical links can form in
polymers as a result of strong interactions. A possible variant
of such a structure was examined in Refs [94, 95] using an
epoxy polymer (EP) modified by adamantane carboxylic
acids. The authors studied parent EP with varied cross-link
density ncr and modified systems differing in the type of
adamantanoic acid used for the treatment and in the mode
of its admission. The latter systems were hardened with
diamine (EPD) or anhydride before (EPAh) and after
(EPAhag) ageing in the air for 3 years [94, 95]. A linear
growth of Vcl with increasing ncr was documented for EP
[96], as shown in Fig. 4a. A similar dependence was found for
epoxy polymers modified by carboxylic acids. In this case,
however, extrapolation of dependences to ncr � 0 did not
always result in zero Vcl. This suggests that the systems
considered had an additional network of physical entangle-
ments formed by the interaction of adamantane fragments.
The density DVe of such a network is equivalent to the
difference between Vcl for modified and unmodified epoxy
polymers [95]. Comparison of DVe and V us

cl reveals the
similarity of their absolute values. It is therefore suggested
that the network of unstable clusters holding the loose-
packed matrix in the glassy state is formed as a result of
interactions between adamantane fragments [95]. It was
shown later by large-angle X-ray diffractometry that, in
terms of energy characteristics (hence, in terms of type), a
network of physical links formed by strong interactions
between adamantane fragments is intermediate between the
cluster network and the network of conventional interlacings.

The application of the cluster model to such amorphous ±
crystalline polymers as polyethylenes deserves special con-
sideration. It is well known that the polyethylene amorphous
phase is in the devitrified state at room or similar tempera-
tures. Bearing in mind the above results, this phase is at first
sight missing a local order. However, a more detailed study
did not confirm this inference [97 ± 103]. We shall therefore
show in the first place that the nodes of the network of
physical links in high- and low-density polyethylenes (HDPE
and LDPE, respectively) make up the regions of local order
(clusters) and are of thermofluctuation nature. Thereafter,
the possibility of artificial variation ofVcl and the effect of this
factor on the structure of amorphous ± crystalline HDPE will
be demonstrated.

In the framework of Landau's phenomenological theory
of second-order phase transitions [104], the order parameter

Table 2.Comparison of intercluster distancesRcl and linear size lfl at which
the probability of fluctuations is unity [86].

Polymer Rcl, nm lê, nm

Polystyrene
Polymethyl methacrylate
Polyvinyl chloride
Polycarbonate
Polysulfone

3.61
3.16
2.71
3.11
2.50

7.64
3.17
5.40
3.79
3.64
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cop unambiguously related to one of the most important
thermodynamic properties, namely, a change of entropy DS,
is defined as

cop �
�

a

2C

�1=2

�Ttr ÿ T �1=2 ; �20�

where a and C are parameters, and Ttr is the transition
temperature.

That the application of the Landau theory in the case
under consideration is correct has been confirmed by the
experimentally found form �Ttr ÿ T �1=2 of the temperature
dependence of cop [104]. It follows from Fig. 4a that Vcl

exhibits a similar form of temperature dependence. Here, Ttr

was represented by the glass transition temperature Tg (as is

usual in the Landau theory [104]), melting temperature Tm,
and `liquid 1 ± liquid 2' transition temperature Tll approxi-
mately expressed as [57]

Tll � �1:2� 0:05�Tm : �21�

The data presented in Fig. 4a (curves 4 ± 6) suggest that the
density Vcl of a cluster network of entanglements is an
analogue of the order parameter cop and therefore charac-
terizes the degree of local ordering in noncrystalline regions of
polyethylenes. Two interesting peculiarities of these data are
worthy of note. First, the dependenceVcl � f �Ttr ÿ T �1=2 has
an inflection point at T � 333 K. It has been shown by Boyer
[105] that at this temperature polyethylenes undergo a
relaxation transition which the author called the `glass
transition I'. Second, Eqn (20) implies the condition cop � 0
at T � Ttr. It follows from Fig. 4a that the identity Vcl � 0 is
reached at T � Tm but not at T � Tg. In other words, not
only crystallites but also segments `melt' at Tm and only the
macromolecular interlacing network is preserved at tempera-
tures aboveTm [88]. Such a situation is due to the specificity of
the local order formation in amorphous ± crystalline poly-
mers, such as polyethylenes, in which this process is `forced',
resulting from chain tension in the amorphous phase in the
course of crystallization [96, 106]. It is worthwhile to note that
the analogy between parameters cop and Vcl rules out
consideration of the entanglement sites as conventional
interlacings [88] and suggests that they should be identified
with the regions of local order (clusters) [107].

Density fluctuations hDr=ri2 serve as a measure of
polymer disorder and are defined in the following way [108,
109]�

Dr
r

�2

�

�Nÿ hN i�2�

hN i ; �22�

where N is the number of electrons in an arbitrarily chosen
volume (hN i stands for the mean value of N).

Sanditov and Bartenev [110] demonstrated that hDr=ri2
depends on the relative fluctuation volume fc in the following
way�

Dr
r

�2

� fc

�
Vh

Va

�
; �23�

whereVh is the volume of amicrocavity in the fluctuation free
volume, and Va is the atomic volume.

Also, hDr=ri2 can be found using the Poisson coefficient m
[110]:�

Dr
r

�2

� �1ÿ 2m�3
6�1� m�2 : �24�

The temperature dependences of hDr=ri2, calculated by
means of Eqns (23) and (24) for HDPE and LDPE, are
presented in Fig. 4b. Despite the different absolute values of
fluctuation density found from these equations, the tempera-
ture dependence patterns agree with the presently available
data [111]. Characteristically, the dependences hDr=ri2�T � in
this case too show inflection points at � 333 K as in Fig. 4a.
Higher hDr=ri2 values for LDPE are due to the larger Vh of
this polymer [107].

Doping HDPE with a small amount (Z) of a highly
dispersed Fe ±FeO mixture results in a significant alteration
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Figure 4. Plots of (a) density Vcl of a cluster network of entanglements vs.

density ncr of sites of a chemical bond network [for EPD (1), EPAh (2),

EPAhag (3)] [94] and the parameter �Ttr ÿ T�1=2 corresponding to the

Landau equation for second-order phase transitions (the transition

temperature Ttr is taken as Tg (4), Tm (5), and Tll (6) [107]), and (b)

density fluctuations hDr=ri2 (calculated by Eqns (24) Ð curve 1, and (23)

Ð curves 2, 3) vs. temperature T and density Vcl of a cluster network of

entanglements (curve 4) for high-density (open circles) and low-density

(triangles) polyethylenes [107].
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of the polymer structure and properties [98, 103]. Table 3
shows the changes in such properties of an HDPE�Z
composition as impact strength Ap, coefficient of gas
permeability PN2

, and cracking resistance t50 in aggressive
media. It is quite clear that such conspicuous changes of these
(and a number of other [100]) properties must be associated
with the corresponding restructuring of the HDPE�Z
composition compared with original HDPE. In Ref. [103],
structural changes in HDPE caused by the incorporated
admixture of Z were examined by DSC, large- and small-
angle X-ray diffraction, and IR spectroscopy. Some results
were obtained in mechanical tests, by magnetic measure-
ments, and in rheologic studies. Dramatic changes of the
properties at CZ � 0:05 wt% (see Table 3) suggest a decrease
of the crystallite size at the given Z level [112]. This
observation is confirmed by electron microscopy data.

Because the properties of melted HDPE and its composi-
tions with Z are interrelated with the morphological structure
of the material being formed during crystallization, the flow-
behavior index (If) was measured and found to be minimal at
a Z content of 0.05 wt%. It has been shown in Refs [98, 99]
that a rise in viscosity of composite melts as compared with
basic HDPE should be attributed to the enhanced density Vcl

of a cluster network of entanglements resulting from the
addition of the filler. According to current crystallization
concepts [113], an increased number of molecular entangle-
ment sites rejected from the regions undergoing crystalliza-
tion interferes with the degraded continuity of this process
and leads to a respective decrease in the crystallite size.

One more structural peculiarity of compositions contain-
ing 0.05 wt% of Z has been demonstrated by large-angle X-
ray radiography. Evaluation of the CZ-dependence of the
fraction Lor of oriented crystallites revealed that it varies
considerably with a change in the filler content (Table 4) and
is of extreme character.

Analysis of small-angle X-ray scattering curves for speci-
mens containing different amounts of Z has shown that
maximum scattering occurs in composites with a larger

fraction of oriented crystallites. Test pieces containing
0.05 wt% of Z exhibit the maximum intensity of small-angle
scattering; the corresponding curve is characterized by the
highest degree of symmetry and has the largest half-width. All
these facts indicate that specimens of this composition have
the most perfect (regular) polymer morphology with minimal
dispersion, both in large period dimensions and in the
dimensions of crystalline and amorphous regions. This is
confirmed by the results of studies [114, 115] which suggest
that enhanced crystallinity leads to a denser packing of
crystallites, hence to a limited number of possible configura-
tions that can be realized in noncrystalline regions. Specifi-
cally, as the distance between crystallites decreases, the chains
in the noncrystalline regions have to align parallel to the
crystallite surface (the so-called barrier effect).

Table 4 shows the overall magnetic susceptibilities wm of
specimens prepared from HDPE�Z compositions, which
were calculated as follows [116]

wm �
M

H
; �25�

whereM is the magnetic moment, andH is the magnetic field
strength.

The dependences M � f �H� for compositions containing
Z at 0.01 and 0.05 wt% are characterized by a negative
ingredient beyond the saturation point, which suggests a
considerably enhanced (compared with other compositions)
diamagnetic contribution (in absolute terms) to the overall
magnetic moment [116]. It is known [117] that one of the
causes of such a rise may be an increased number of
conduction electrons or, in other words, an increase in the
relative amount of free iron in a Fe ±FeO mixture incorpo-
rated into a polymer matrix. It follows from these data that
the parameter wn

m for PE compositions grows significantly at
the beginning as the Z content increases, but thereafter (at
CZ 5 0:20 wt%) reaches asymptotic values [101].

Taken together, the above results allow the following
interpretation of the experimentally examined extremum in
the physicomechanical characteristics of HDPE�Z compo-
sitions, related to an increase of Ve, in analogy with that
proposed for single-phase metal-containing polymers [118]. If
Z is incorporated intoHDPE as described inRef. [119], iron is
reduced from its oxidized forms as schematically shown in the
diagram below:

where Red is a reducer which may be a product of HDPE
oxidation containing hydroxyl and carbonyl groups or
mobile hydrogen. This speculation is confirmed by an
increase in the diamagnetic contribution, a decrease in the
size of Z particles, and higher w n

m values for compositions
containing 0.01 and 0.05 wt% of Z. Because of the high
dispersion of Z-particle sizes, a part of the Z fraction may fall
into a size range accounting for the appearance of super-
magnetic domains [120]. Naturally, the less the average size of
the particles Rav, the more of them may become super-
magnetic domains. The technology for the injection of
metals into polymers, described in Ref. [118], implies

Table 4. Fraction Lor of oriented crystallites and normalized magnetic
susceptibility w n

m for HDPE compositions [103].

Z content,
weight percent

Lor, % w n
m, G gÿ1

0
0.01
0.05
0.10
0.15
0.20
0.50
1.00

12.00

25
27
44
36
25
24
27
25

0.30
0.23

0.18

0.14
0.17

O2

Fe�2 Fe�3 , (26)

Red

Table 3. Impact strength Ap, cracking resistance t50, and coefficient of gas
(nitrogen) permeability PN2

for HDPE�Z compositions [103].

Z content
(weight percent)

Ap, kJ mÿ2 t50, h PN2
� 10ÿ17,

mol mÿ1

m2 s Pa

0
0.01
0.05
0.10
0.50
1.0

12.0
17.3
37.4
12.0
13.0
19.6

10
36

250
38

3.9

2.70

0.16

1.70
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significantly smaller particle sizes for Z and the absence of its
oxides. Nevertheless, it is obvious that there is a common
tendency in the behavior of single-phase metal-containing
polymers and HDPE�Z compositions. In particular, they
share the property of a significantly decreased flow-behavior
index [103].

Furthermore, the above results also suggest that Z
particles initiate cluster-type entanglements (Fig. 1d) in
noncrystalline regions of HDPE, because a magnetic field
applied to a PE melt promotes ordering [121]. In addition, it
can be expected that local magnetic fields of superparamag-
netic particles will facilitate the formation of the regions of
local order. From this standpoint, it is easy to explain the rise
in t50 and decrease of PN2

for HDPE�Z compositions (see
Table 3) because the enhanced amount of molecular interla-
cings must have an opposite effect as a result of structure
loosing [122].

Figure 2b (curves 4, 5) shows the temperature depen-
dences of functionality F for the sites of a network of
molecular entanglements, determined with the help of Eqn
(5) for HDPE and a composition containing Z at 0.05 wt %.
For these polymers F5 11, whereas for conventional
molecular interlacings F � 4 [66]. This also confirms cluster-
ing in noncrystalline regions of HDPE.

The foregoing can be summarized in the following way:
(1) sites of the network of macromolecular entanglements

in noncrystalline regions of amorphous ± crystalline polymers
form regions of local order (clusters);

(2) density changes in the cluster network of entangle-
ments have a marked effect on the HDPE structure and
properties;

(3) there appears a possibility of goal-oriented regulation
of Vcl and, consequently, of the properties of polymers
belonging to this class.

Experimental evidence of the structural heterogeneity in
the polymer amorphous state, consistent with the cluster
model, has been obtained in Refs [86, 123] with the aid of
the large-angle X-ray radiography used earlier for a similar
purpose [124, 125]. As a rule, large-angle X-ray halos of
amorphous polymers depart from an ideal shape, showing
asymmetry, poorly distinguishable maximum, etc. This
suggests the superposition of several scattering curves of a
simpler form.

It is expected that the use of strictly monochromatic Ka1 -
radiation broken free from the Ka2 -component may increase
the resolving power of the X-ray technique and provide data
in support of the above reasoning. Such a possibility has been
demonstrated in a study of epoxy polymers as typical
representatives of glassy cross-linked polymers [123].

Analysis of a typical diffraction pattern for epoxy
polymers hardened with diamines (stoichiometric composi-
tion) [123] has demonstrated that they are best described on
the assumption of the existence of two components. This
finding once again confirms the above postulate of structural
heterogeneity (microheterogeneity) of the polymer amor-
phous state. At the same time, the existence of two
components allows the premises of the cluster model to be
used. It is natural to associate a halo having the vertex at
smaller scattering angles y (and corresponding to a larger
Bragg interval dB) with the loose-packed matrix, while a halo
at larger y with clusters, i.e. a more closely packed compo-
nent.

The knowledge of a Bragg interval for clusters and a
loose-packed matrix provides the possibility to calculate the

appropriate characteristic intermolecular distance D because
D � 1:22dB [126]. The estimates obtained in Ref. [123]
indicate that D � 6 A

�
for clusters, and D � 7 A

�
for the

loose-packed matrix. Moreover, these distances are indepen-
dent of the density ncr of cross-linking within the experimental
error. Their absolute values agree fairly well with the
generally accepted ones [126].

Figure 5 compares the integral scattering intensity Ilm of
an amorphous halo component having the vertex at lower y
with the loose-packed matrix relative portion jlm estimated
as [68]

jlm � 1ÿ jcl : �27�

There is a definite growth of Ilm with increasing jlm. This
dependence is linear and may be extrapolated to the origin of
the coordinate system. An even more apparent correlation of
this kind has been obtained for amplitude intensity. This gives
additional evidence of the relationship between the scattering
curve to which large dB values correspond and a given
structural component, namely, the loose-packedmatrix [123].

To conclude, it should be noted that the existence of local
order in the polymer amorphous state (regardless of the
concrete model of its regions) is supported by rigorous
mathematical arguments of the most general character. In
accordance with the Ramsey theorem proved in the theory of
numbers, any sufficiently large amount i > R�i; j� of num-
bers, points, and objects (or statistical segments as is the case
with this review) is sure to contain a highly ordered subsystem
of Nj 4R�i; j� such segments. This makes improbable
absolute disordering in large systems (structures) [127, 128].

3. The concept of a structural defect

It has been noted earlier that the cluster model of the polymer
amorphous state allows for an essentially new interpretation
of a structural defect (in the full sense of this term) for a given
state [44, 129]. The structure of real solids is known to contain
a large number of imperfections [34]. This concept constitutes
the basis for the theory of dislocations, which is extensively
employed to describe the behavior of crystalline solids.
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Recent progress in this area accounts for the attempts of
certain authors [35 ± 40, 130, 131] to apply this concept to
amorphous solids, too (specifically, to amorphous polymers).
In this case, notions used to characterize crystal lattices are
frequently extended to the structure of amorphous polymers.
As a rule, this is done on the grounds of outward similarity
between stress ± strain �sÿe� curves for crystalline and
amorphous solids. The authors of Ref. [129] suggested that
the essential structural differences rather than the formal
resemblance of the behavior of a given type of solids should
constitute the basis of the theory of structural defects.

The discussion concerning amorphous polymers has long
been focused onwhether they have or do not have local order.
It has revealed a considerable controversy of opinion. The
presence of local order may seriously influence the definition
of a structural defect in amorphous polymers if, in the general
case, the defect is understood as either an order ± disorder
transition or the reverse process. For example, in crystalline
solids any distortion (break) of the long-range order repre-
sents a defect (dislocation, vacancy, etc.), whereas a single
crystal with perfect long-range order constitutes an ideal
structure showing no defects. It is known [132] that a
sufficiently bulky polymer specimen with 100% crystallinity
is impossible to synthesize, and all characteristics of such
hypothetical polymers are deduced by extrapolation. For this
reason, an ideal defect-free structure of the amorphous-state
polymer is simulated by the `felt' model proposed by Flory
[70, 133]. According to this model, an amorphous polymer is
made up of interpenetrating coiled macromolecules, i.e. the
personification of complete disorder. In terms of this model, a
defect in an amorphous polymer may be thought of as a
disturbance (break) of the complete disorder Ð that is, the
formation of local (or long-range) order [129]. It is also worth
noting that the formal resemblance of sÿe curves for
crystalline solids and amorphous polymers is far from
fullness and their behavior reveals principal differences.

Returning to the proposed concept of an amorphous-
polymer defect, it should be noted that a cluster segment may
be regarded as a linear defect, i.e. an analogue of dislocation
in crystalline solids. Because the length of such a segment in
the cluster model is assumed to be equal to the length of the
statistic segment lst, and their number per unit volume equals
the density Vcl of the network of cluster entanglements, the
density of linear defects rd per polymer unit volume can be
expressed as [129]

rd � Vcllst : �28�

This interpretation allows the well-developed mathema-
tical apparatus of the dislocation theory to be applied to the
description ofmechanical properties of amorphous polymers.
Of special interest here are the results of large-angle X-ray
diffraction demonstrating an antibate change of the cluster
fraction jcl (the degree of local order) and integral intensity
Iin (area) of the total amorphous halo as a function of cross-
link density ncr for epoxy polymers [123]. Viewed in the light
of the analogy with crystalline solids, this inference seems
unexpected because a rise in jcl must lead to the growth of Iin
[134]. At the same time, this result can be fully accounted for
by the proposed structural defect concept. In this case, the
degree of disorder in a system (i.e. the degree of approxima-
tion to an ideal defect-free structure) may be the amount of
fluctuation free volume fc in the glassy state [135]. The
dependence Iin� fc� in Fig. 5 (curve 3) is linear and goes

through the origin of the coordinate system. In other words,
the quantity Iin characterizes the degree of disorder in the
amorphous state of polymers, thus explaining the antibate
dependences jcl�ncr� and Iin�ncr� mentioned earlier in this
section and confirms the proposed structural defect concept.
An essentially similar interpretation was proposed byGuinier
[136]. He believed that a decrease of Iin for metals may be due
to the formation of precrystallite structures in multicompo-
nent melts.

Comparison of the results presented in Fig. 5 and
available from the relevant publications on amorphous
polymers indicates that the above reasoning is in line with
observations of other authors. For example, a study of the
effects of annealing temperature Tann on the cellulose nitrate
structure [137] revealed a systematic decrease of amorphous
halo intensity and an increase of the large Bragg interval dB
with increasing Tann. It is universally accepted that annealing
of amorphous polymers at temperatures below Tg improves
molecular packing [138]. Therefore, this process must
intensify with increasing Tann. Nonetheless paper [137] offers
a different explanation of this effect, in which experimental
data fit in the above interpretation. A decrease of Iin in the
course of cluster formation was also documented in Ref.
[139].

Generally speaking, it can be expected that the degree of
disorder in a solid increases with temperature. If in addition
the order is of thermofluctuation origin (as with the cluster
model), this tendency becomes even more pronounced.
However, studies of inorganic glasses (e.g., As2Se3 and
GeS2) by X-ray diffractometry and small-angle neutron
scattering technique showed that a rise in temperature led to
a higher intensity of the peak associated with the near-range
order in the amorphous state [134]. It was hypothesized that
the layered structure representing the near-range order in
these glasses became even more regular upon raising the
temperature. It is worth noting that Lin et al. [134] did not
present other evidence, besides these analogies with the
behavior of crystalline solids. The proposed interpretation
appears to provide a more realistic explanation of this
experimental finding. Also, it was shown in work [134] using
different types of glasses that the closer the testing tempera-
ture to Tg of the glass, the higher the intensity of the peak
mentioned. This observation is also consistent with the cluster
model (see Fig. 2). Finally, a rise in the intensity of
amorphous halos was also observed for polystyrene (PS) at
temperatures both above and below Tg [140]. Evidently, there
is no reason to expect an enhancement of the degree of local
order with elevated temperature for this amorphous polymer
[141]. Therefore, it should be recognized that the proposed
interpretation of a structural defect provides a sufficiently
general explanation of the experimental findings [134, 137,
139 ± 141].

One striking experimental result was obtained with epoxy
polymers experiencing deformation above the yield stress
[142]. The authors observed an increase in the intensity of
the amorphous halo by approximately 17%. This finding is
also easy to explain in the context of the proposed interpreta-
tion because the cluster model implies (see below) that the
flow process is associated with the decomposition of unstable
clusters, hence with a decrease of Vcl and the degree of local
order [143]. The amount of clusters of this type in Ref. [143] is
approximately identical to that responsible for the rise in the
amorphous halo intensity of epoxy polymers reported in
paper [142]. For the intensity of the cluster-associated (see

July, 2001 A cluster model for the polymer amorphous state 691



Ref. [123]) second halo component �Icl�, there is linear
correlation Iÿ1cl (see Fig. 5, curve 2), in agreement with the
above considerations concerning a decrease of intensity with
increasing degree of ordering in amorphous polymers.

We shall further consider the applicability of the proposed
concept of structural defects to the description of flow in
polymers. As a rule, earlier concepts of polymer defects were
largely or even exclusively used to describe this process [35 ±
40, 130, 131]. The theoretical shear strength of crystals was for
the first time computed by Ya Frenkel' based on a simple
model of two rows of atoms shifted relative to each other
under the effect of shear stress. In accordance with thismodel,
the critical shear stress t0 is given by [34]

t0 � G

2p
; �29�

where G is the shear modulus.
In a slightly modified form, this model was applied to

polymer fluidity in Ref. [37], where the following ratio was
obtained:

t0 � G

p
���
3
p : �30�

Special attention should be given to an important fact
characterizing the essentially different behavior of crystalline
metals as compared with polymers. It has been shown [34,
144] that the ratio tann=ty (where ty is an experimentally
found shear stress in the case of yielding) for metals is
significantly higher than for polymers. For five metals with
face-centered cubic and hexagonal lattices tann=ty �
3740ÿ22720 (see Ref. [34]), whereas for five polymers this
ratio is 2.9 ± 6.3 [37]. As a matter of fact, the closeness of
tann=ty to unity is in itself a proof of the possibility of
realization of the mechanism proposed by Frenkel' in
polymers (as opposed to metals). A slight modification of
the law of periodic changes of shear stress t in polymers leads
to tann=ty practically equal to unity [145].

As shown by Kozlov and Novikov [145], dislocation
analogies hold good for amorphous metals too. Indeed, Liu
and Li [146] considered the distortion of the atomic arrange-
ment (responsible for the appearance of elastic stress fields) as
a linear defect (dislocation) incapable of motion. It is easy to
see that such an approach is in excellent agreement with the
concept proposed in this section. In the framework of this
concept, the cluster (crystallite) cross section and a shift of
segments as postulated by Frenkel' can be regarded as a
mechanism limiting the fluidity of polymers. This view is
supported by the results of Ref. [147] where it was shown
experimentally that the flow in glassy polymers is realized in
closely packed regions. Balankin et al. [128] also demon-
strated that these closely packed regions are clusters. In other
words, it may be argued that fluidity is associatedwith the loss
of stability by clusters (crystallites) in a shear stress field.

Monograph [148] presents an asymmetric periodic func-
tion illustrating the dependence of shear stress t on shear
strain gsh. The asymmetry of such a function [144] and the
corresponding decrease of the height of the energy barrier
overcome bymacromolecular segments in an elementary flow
act is due to the cavity formation of fluctuation free volume
cavity in the course of deformation (also being a specific
feature of polymers [82]). These data indicate that the
dependence of t on their shift from zero to a maximum at
the initial portion of the periodic curve can be simulated by a
sinusoid with a smaller period. In this case, the function

t � f �x� can be represented as

t � k sin

�
6px
bi

�
; �31�

in perfect agreement with Frenkel's conclusion, excepting an
arbitrary chosen numerical coefficient in parentheses (6
instead of 2).

The further calculation of t0 as described in Ref. [34] and
its comparison with experimentally found values of ty
revealed their close correlation in amorphous and amor-
phous ± crystalline polymers. This confirms the possibility of
realization of the above flow mechanism at the segmental
level.

The lack of correspondence between tann and ty in metals
made researchers look for another mechanism of yield. At
present, it is generally accepted that such a mechanism
consists in the motion of dislocations over slip planes of the
crystal [34]. This implies that interatomic interaction forces
directed perpendicular to the crystallographic slip plane are
overcome during a series of local displacements determined
by the periodic lattice stress field. This mechanism is
obviously different from a macroscopic shift in which all
bonds are broken simultaneously (the Frenkel' model). It
seems evident that the overall shear strain realized via
dislocation motion requires a significantly smaller external
stress than the process involving simultaneous disruption of
all atomic bonds across the slip plane [34].

Peierls and Nabarro were the first to compute the shear
stress tsh necessary for dislocation motion [34]. These authors
used a sinusoidal approximation and showed that the
quantity tsh is defined by the expression

tsh � 2G

1ÿ m
exp

�
ÿ 2pai
bi�1ÿ m�

�
; �32�

where m is the Poisson coefficient, while the parameters ai and
bi represent shifts in two mutually perpendicular directions.

The substitution of reasonable m values, for instance, 0.35
[110] and the assumption of ai � bi lead to tsh � 2� 10ÿ4G.
For metals, this figure is higher than the observed values of ty
but significantly closer to them than the stress computed from
the simple shift model (the Frenkel' model).

However, there is a reverse picture for polymers. A similar
computation gives tsh of not higher than 0.2 MPa or roughly
two orders of magnitude lower than the observed ty values.

Let us now consider the dislocationmean free path ld. It is
known [34] that in metals, where mobile dislocations play the
key role in plastic deformation, the quantity ld is of the order
of � 103 nm. For polymers, this parameter can be estimated
in the following way [149]

ld � ey
brd

; �33�

where ey is the yield strain, b is the Burgers vector, and rd is the
density of linear defects. The quantity ey is of the order of
� 0:10 [150], the Burgers vector b � 3� 10ÿ10 m [40], and rd
can be found from Eqn (28).

With the help of Eqn (33), the value of ld for different
polymers was estimated to be� 0:25 nm. A similar distance is
covered by a macromolecular segment upon a shift as is easy
to see from purely geometric considerations. Therefore, in
this case too, there is no reason to speak about any significant
value of dislocation mean free path in polymers. Rather, a
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segment (or several segments) of a macromolecule passes
from one quasi-equilibrium state to another [151].

It is well known [34, 148] that the Bailey ±Hirsch relation
between shear stress ty at yield and dislocation density rd is
fulfilled for crystalline materials:

ty � ti � aGbr 1=2
d ; �34�

where ti is the initial internal stress, and a is the efficiency
constant.

Equation (34) also holds for amorphous metals [146]. In
Ref. [145], this equation was used to describe the mechanical
behavior of polymers belonging to major classes. For this
purpose, the characteristics of amorphous glassy polyarylate
(PAr) [91], amorphous ± crystalline HDPE [98], and cross-
linked epoxy polymers hardened with amines and anhydrides
[143] were examined. Various loading schemeswere employed
including uniaxial tension [91], high-speed bending [98], and
uniaxial compression [143]. An empirical relation was used to
estimate the parameter b as [152]

b �
�
52:2

C1

�1=2

: �35�

Figure 6a illustrates the relationships betweenGbr 1=2
d and

the experimentally obtained values of ty for the above
polymers described by Eqn (34). It can be seen that these are
linear relationships passing through the origin of the
coordinates (i.e. ti � 0), but the a values are different for
linear and cross-linked polymers. It is therefore concluded
that within the framework of the proposed defect concept the
Bailey ±Hirsch relation holds also true for polymers. This
means that dislocation analogies are valid for any linear
defect distorting the ideal structure of a material and creating
an elastic stress field [145]. In this context, it is worthwhile to
emphasize the high degree of imperfection in polymers, which
reveals itself in rd � 1014 cmÿ2 [149] compared with
rd � 1010 cmÿ2 for crystalline metals [34] and rd � 109 ±
1014 cmÿ2 for amorphous metals [146].

It can be concluded from the results reported in Ref. [145]
that in polymers, unlike metals, the probability of flow by
Frenkel' mechanism is much higher than its realization
through the motion of defects. This inference is governed by
the above-mentioned essential (and even diametrically oppo-
site) structural difference between crystalline metals and
polymers [129].

There is one more conceivable interpretation of structural
defects in amorphous polymers, based on the premises of a
new scientific discipline called synergetics [46] and concerned
with self-organization processes in dissipative structures
(DS). The possibility of DS realization in polymers was also
considered in earlier studies [41 ± 44]. Suffice it to note that the
behavior of the regions of local order (clusters) and DS has
much in common. To begin with, it is well known [138] that
physical ageing of amorphous polymers leads to a higher
degree of their local order, in agreement with the fact that a
rise in DS energy dissipation with time ensures the stability of
a strongly nonequilibrium system. It is also known [43, 153]
that DS are formed when the system is rather far from
equilibrium. This general proposition is also consistent with
the cluster system behavior. It can be seen fromFig. 2 that the
onset of cluster formation corresponds to a deviation from
equilibrium �Tg�. The rate of formation rapidly decreases in
the T < Tg region as Tmoves away from Tg. Such a behavior

is typical of DS [153]. However, the most important common
feature in the behavior of clusters and DS consist in that both
represent a transition to an ordered state at the bifurcation
point (Tg or Tm on the temperature scale [154]) and are of
fluctuation origin [46]. This makes it possible to define a
structural defect in the amorphous state of polymers as an
element arising from a departure of the system from an ideal
(equilibrium) condition towards a thermodynamically non-
equilibrium one. In such an interpretation, the notions of
ideal (defect-free) and equilibrium polymer structures coin-
cide, since the two states are realized above the bifurcation
point on the temperature scale and correspond to the
structural model of interpenetrating Flory coils [133]. In
other words, they are characterized by the absence of a
`frozen' local order. It needs to be shown that clusters and
DS do not differ as structural entities, if the identity of the two
defect interpretations considered in this section is to be
confirmed.

As is well known [127], even in elastically isotropic solids
there are at least three independent scales of length

lp � a ; le � aL0 ; lI � leLi ; �36�
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d and shear stress ty at yield,
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which determine complex dynamics of self-organization
processes in DS. There is every reason to anticipate [150,
156] that in amorphous-state polymers these scales must
reflect three main structural levels Ð that is, molecular,
segmental, and supersegmental (permolecular). If this sugges-
tion is correct, lp ought to be taken as a minimal independent
dimension characterizing a macromolecule, i.e. the length of
the skeletal bond l0, the values of which for different polymers
are reported in Ref. [73]. Another explicit scale of length for
polymers is the length lst of the statistic segment exhibiting the
smallest fragment of a macromolecule with an interindepen-
dent orientation in space [157]. It follows from the compar-
ison of Eqns (8) and (36) that

lp � l0 ; L0 � C1 : �37�

The automodel coefficient Li can be represented as
follows [127]

Li � li�1
li
� 2�1ÿ m�

1ÿ 2m
; �38�

where li�1 and li are the neighboring linear scales of DS, and m
is the Poisson coefficient.

Assuming that the next structural level in polymers is
represented by DS separated by distances li, and taking into
account Eqns (37) and (38), it is possible to write down [156]

Li � lI
lst
� 2�1ÿ m�

1ÿ 2m
: �39�

Equation (39) allows the value of lI to be determined if the
Poisson coefficient is known from the results of a mechanical
test based on the equation [110]

sy
E
� 1ÿ 2m

6�1� m� ; �40�

where sy is the yield stress, and E is the modulus of elasticity.
The distance between clusters Rcl may be found from Eqn

(18). Thus, within the framework of the two independent
models, it is possible to estimate the distance between ordered
elements of structure in the polymer amorphous state: lI for
DS, and Rcl for clusters. When these elements are the same
structural units, the following evident identity must be
satisfied:

lI � Rcl : �41�

The existence of two parallel structures with a similar
characteristic scale of length on the order of a few tens of
angstroms seems to be very unlikely. The comparison of lI
and Rcl for different polymers in Fig. 6b confirms the validity
of identity (41) and suggests a similarity of clusters and DS. It
should be noted that the formation of supersegmental
structures (DS or clusters) in the amorphous state of
polymers is encoded at the molecular level, since appropriate
conditions are controlled by the parameters l0 and C1 [see
Eqn (37)].

The most important conclusion inferred from the materi-
als presented in this section is that the three main approaches
to the description of polymer amorphous state (local order
model, structural defect concept, and fractal analysis dis-
cussed below) are based on a fundamental property of the

glassy state, namely, its thermodynamically nonequilibrium
character.

4. Analysis of experimental data (interpreted
in the framework of the cluster model)

This section discusses experimental data and their interpreta-
tions showing that the cluster model does not contradict
earlier findings and may serve as a unified model for their
description. An indisputable advantage of this approach
consists in that the parameters of the model inspected can be
obtained in independent tests [55, 158].

Mooney ±Rivlin equation. The possibility of using the
Mooney ±Rivlin equation for the description of local order
in polymers has been considered in Ref. [159]. This approach
is essentially different from the methods used in previous
investigations into the properties of rubbers alone in that it is
also applicable to solid glassy polymers. The empirical
Mooney ±Rivlin equation in its simplest variant has the form

f � � 2C1 � 2C2l
ÿ1 ; �42�

where f � is the reduced stress, 2C1 and 2C2 are the equation
constants, and l is the degree of stretch.

The quantity f � is defined by the ratio [161]

f � � s

lÿ lÿ2
; �43�

where s is the nominal stress, i.e. that calculated taking into
consideration the initial cross-section area of a sample.

Equation (42) is extensively used to study the mechanical
properties of rubber. Based on the analysis of a series of
publications, Boyer [3] suggested that the 2C2=2C1 ratio can
serve as a measure of near-range order in the cross-linked
rubbers and summarized in a table a variety of experimental
data for polymers in the rubbery state that confirm this
suggestion.

Typical dependences described by Eqns (42) and (43) for
PC (tested at T � 403 K) and HDPE (T � 293 K) are
presented in Fig. 7 (curves 1, 2). It can be seen that the
Mooney ±Rivlin equation is applicable to both amorphous
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Figure 7. Plots of reduced stress f � vs. degree of stretch for PC (1) and

HDPE (2) [159] and of molecular weight Mcl of chain segments between

clusters vs. the ratio of constants of the Mooney ±Rivlin equation (3) for
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and amorphous ± crystalline polymers and gives reasonable
absolute values of 2C1 and 2C2. This last inference is based on
the following observation. It is known [160] that the constant

2C1 � ArRT
Me

; �44�

where A is the coefficient determined by the functionality of
entanglement network sites.

The estimation ofMe from the known values of 2C1 using
Eqn (44) has demonstrated a good agreement with analogous
parameters computed with the help of relations (1) and (2).
Characteristically, the values of 2C1 thus obtained are in
correspondence with Mcl (but not with Me values for a
molecular entanglement network, which are one or two
orders of magnitude higher).

It follows from the dependence of Mcl on the 2C2=2C1

ratio (Fig. 7, curve 3) that the parameters in question are
related by a linear correlation, which confirms Boyer's
suggestion about the possibility of using the 2C2=2C1 ratio
as a measure of near-range (local) order in polymers.
However, Boyer [3] believed that a rise in the absolute
2C2=2C1 value reflects the enhanced degree of the near-
range order in rubbers. For the polymers studied in Ref.
[159], a rise inMcl with increasing 2C2=2C1 means a decrease
in the density of entanglement network [see Eqn (3)], the
number of segments in a cluster, and therefore the degree of
local order. In other words, a rise in 2C2=2C1 for amorphous
glassy and amorphous ± crystalline polymers reflects an effect
opposite to that observed in rubbers. Such a discrepancy is no
mere coincidence, it rather reflects structural differences
between these classes of polymers. In rubbers, the cross-link
density and the potential for the chain fragment packing
between cross-link sites are associated with different struc-
tural elements and display the opposite trend [3]. For
polymers of this study, the density of entanglement network
and the degree of local order undergo symbate variations, as
follows from the cluster model. In other words, analogies
between structural and mechanical properties of truly cross-
linked rubbers and linear polymers studied in Ref. [159] may
be regarded as relevant only with some reservation.

GruÈ neisen parameter. In the physics of liquids and glasses,
there has recently been increasing interest in the GruÈ neisen
parameter g which enters the equation of state and serves as a
measure of anharmonicity of quasi-lattice vibrations and
nonlinearity of interatomic interaction forces [47, 48]. The
GruÈ neisen parameter has been successfully used for the
analysis of cluster formation and molecular ordering in
liquids [162 ± 164]. The liquid and glassy states being
structurally indistinguishable [165], it is of interest to apply
the GruÈ neisen parameter to the study of local order in glassy
systems. Paper [166] offers an interpretation of the tempera-
ture dependence of g in amorphous polymers within the
framework of the cluster model.

Knopoff and Shapiro [162] have demonstrated that a
decrease of g with increasing specific volume V for water
and mercury can be ascribed to a change of the mean number
N of molecules in the cluster. They posed a semiquantitative
one-dimensional model to describe the volume dependence of
g. It was assumed that g is a sum of two components [162]:

g � gD � x
q lnN
q lnV

����
P

; �45�

where gD is the component of g corresponding to the Debye
theory of heat capacity, and x is the N-dependent factor.

Equation (45) describes variations of g with changing
pressure P. However, it can also be used to estimate the
temperature dependence of g at a constant pressure, by virtue
of the equivalence of variables P and T in the equation of
state. In this case the subscript P in Eqn (45) is replaced by T.

The Debye component gD of the GruÈ neisen parameter
may be expressed as [162]

gD � ÿx
�
q lnoD

q lnV

�
P

; �46�

where oD � po0 is the Debye vibration frequency of a
polymer chain, and

o0 � U

M
: �47�

Here, M is the mass of a vibrating kinetic unit of the chain,
and U is the potential interaction energy of two kinetic units
(segments) in a cluster, which may be estimated in the
framework of the structural defect concept discussed in the
previous section as follows [152, 156]

U � Gb2lst
4p�1ÿ m� ln

�
r

r0

�
; �48�

where r and r0 are the outer and inner radii of the linear defect
(dislocation) field of forces, respectively. The radius r is
assumed to be equal to the distance between clusters Rcl,
and the radius r0 to the Burgers vector length determined in
Ref. [152].

The temperature dependence of the specific volumeVred is
calculated by means of the equation [164]

V
1=3
red ÿ 1 � aT

3�1� aT � ; �49�

where Vred � V=V � is the reduced specific volume, V � is the
characteristic specific volume, and a is the coefficient of
volumetric thermal expansion, whose temperature depen-
dence is determined in the following way [166]�

qa
qT

�
P

� �7� 4aT � a
2

3
: �50�

Taking the value of a atT � 293K [166] and characteristic
volume V � as the density inverse rÿ1, it is possible to derive
the relation lnoD � f �lnV �which is shown in Fig. 8a (curves
1, 2) for polyarylate (PAr) and polysulfone (PSf). It can be
seen that the relationship between the logarithms ofoD andV
is fairly well approximated by a linear correlation. This
means, in accordance with Eqn (46), that gD remains
constant over a temperature range of 293 ± 453 K for PAr,
and of 293 ± 433 K for PSf. Absolute gD values can be
obtained from the slopes of the straight lines in Fig. 8a
regardless of the choice of V �. For PAr one finds gD � 12,
and for PSf gD � 13:75, i.e. they are close to the values for
polymers of the same class obtained in earlier studies [167].

To summarize, the above results indicate that the
following condition [see Eqn (45)] must be fulfilled when the
mean number of segments in a cluster is independent of T
[166]:

g � gD � const : �51�
It has been shown in a previous study [47] that g decreases

with increasing T [47], which suggests that dN 6� 0; hence the
necessity to evaluate the second term in Eqn (45). It follows
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from the discussion in Section 2 that N � nseg � F=2. Figure
8a (curve 3) depicts the dependences ln nseg � f �lnV� for PAr
and PSf. Both are described by a single linear relation, thus
providing the possibility to evaluate q�ln nseg�=q�lnV � � 6:5.
Parameter x in Eqn (45) at temperatures above the Debye
temperature for large nseg is approximated by the following
expansion in a series [162]:

x � 0:6942� 0:03780

nseg
� . . . �52�

The temperature dependence of g computed by Eqn (45)
for PAr is presented in Fig. 8b (curve 2).

The value of gmay also be obtained by the following two
independent methods. One of them uses a simple relation for
the temperature dependence of the modulus of elasticity E
[168]:

E � E0�1ÿ gaT � ; �53�

where E0 is the value of E extrapolated to T � 0 K. The other
is based on the Sharma equation [164]

g � 1� 1

2aT
ÿ 1

3
�5V 1=3

red ÿ 2� : �54�

The values of g calculated fromEqns (53) and (54) for PAr
are also shown in Fig. 8b (curves 3, 4). Similar dependences
have been obtained for PSf as well.

In the past, a decrease of gwith rising temperature used to
be ascribed to a concomitant fall in the modulus of elasticity.
The latter, in turn, was accounted for by a reduced cluster
network density, i.e. by a decrease of nseg [91]. Therefore, the
above results are consistent with the explanation of the
observed effect, suggested by earlier workers. Equations
(45), (53), and (54) give an adequate description of g�T � in
terms of both the general tendency and absolute values. This,
in its turn, confirms the correctness of the cluster model and
the utility of using the GruÈ neisen parameter for the descrip-
tion of local ordering in glassy polymers [166].

Fluctuation free volume. The fluctuation free volume
model was extensively employed for the description of
physical properties of liquids and glasses [110, 169, 170].
However, the physical sense of many parameters of the model
remains obscure. Moreover, difficulties are encountered in
explaining temperature dependences of kinetic properties,
such as viscosity at a fixed system volume [171]. In the
framework of the cluster model, the fluctuation volume is
known to be concentrated in a loose-packed matrix. In terms
of the theory of fluctuation free volume, removal of a kinetic
unit (an atom or group of atoms) from a cluster results in
formation of a fluctuation microcavity (`hole'), whereas the
attachment of another kinetic unit fills this void. This suggests
that a fluctuation-related change of the free volumewith a rise
in temperature can be, in principle, realized at a constant
system volume by means of `hole' exchange between clusters
and loose-packed matrix. Such an understanding of the
mechanism of creation and migration of fluctuation micro-
cavities helps to overcome the difficulty in explaining the
temperature dependence of viscosity at a fixed system volume
[171].

Specifically, a critical fraction of the fluctuation free
volume fg corresponding to Tg is determined from viscosity
measurements in the glass transition region [110, 170].
Knowing fg, it is possible to calculate the energy eh of
formation of a minimal microcavity [110]:

eh � kTg ln

�
1

fg

�
: �55�

It can be seen from Fig. 2 that a rise in temperature is
paralleled by a symbate decrease of the cluster network
density Vcl and cluster functionality F for amorphous glassy
polymers. Analysis of these data leads to the conclusion that
the number of clusters per unit volume of the polymer does
not significantly change with a rise of temperature, whereas
the number of segments in each cluster decreases. However,
clusters are subject to degradation over the glass transition
temperature range T � Tg, because Vcl � 0. An excess
fluctuation free volume amounts to a critical value � fc 5 fg�.

In the light of these observations, devitrification (soft-
ening) of a glassy polymer is due to cluster breakdown
(annihilation of local order). Therefore, the energy of cluster
formation or dissociationUmust be on the order of the mean
thermal energy of a kinetic unit (statistic segment) at the
softening temperature, i.e. U � �i=2�kTg, where i is the
number of the degrees of freedom of a kinetic unit. Bearing
in mind that each segment consists of many atoms, i must be
equal in the first approximation to the number of degrees of
freedom of a polyatomic molecule, i.e. i � 6 [171].
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As expected, the segment separation energy from a
cluster, defined by Eqn (48), turned out to be proportional
to the polymer vitrification temperature. Interestingly, the
slope of the straight line U � kTg practically coincides with
the coefficient of proportionality between the energy of
formation of a minimal fluctuation microcavity and the
glass transition temperature [see Eqn (55)]: U � 3:3kTg and
eh � 3:5kTg, respectively, where it is taken into account that
fg for glassy polymers is generally accepted to equal 0.025,
and ln�1=fg� � 3:5 [171]. Therefore, the energy of formation
of a fluctuation microcavity is practically coincident with the
interaction energy between segments in a cluster �eh � U�.

From this standpoint, the formation and collapse of a
fluctuation microcavity in amorphous polymers are the
results of degradation and creation, respectively, of the sites
in the fluctuation network (clusters). The energy of micro-
cavity formation equals the work of separation of parallel
segments from each other due to the rupture of intermole-
cular bonds keeping them together. The linear size of a
microcavity is � 4ÿ5 A

�
, i.e. of the same order of magnitude

as the ultimate elastic strain of intermolecular bonds between
the segments. `The inner radius of the defect (dislocation)
field of force' takes approximately the same value
r0 � b � 3ÿ5 A

�
and can be determined from Eqn (35) [171].

Equation (48) suggests a decrease of U with rising testing
temperature owing to the existence of temperature depen-
dences G�T � and m�T �. It can be shown that, for glassy
polymers, the quantity fg increases (even if insignificantly) as
the temperature rises [135], leading to a corresponding
decrease of eh. It should be noted, however, that the
temperature dependences of energies eh and U are rather
weak [171]. This can probably be accounted for by the fact
that the parameters eh and U are characteristics of the near-
range (local) order in glasses, which is virtually insensitive to
temperature variation (at least at T < Tg [55]).

Besides the correspondence between the cluster model and
the kinetic theory of fluctuation free volume, the former
offers a number of new ideas concerning free volume ±
structure relationships [172]. For example, Fig. 9 (curve 1)
shows the dependences of the relative amount of fluctuation
free volume fc on the loose-packedmatrix fractionjlm for two
linear amorphous polymers PC and PAr. These dependences
are linear, and their extrapolation to jlm � 0 give fc � 0.
Therefore, in this case, the amorphous polymer is actually a
giant cluster having no fluctuation free volume. It is under-

standable that this property does not exclude the presence of
the geometric free volume [173]. At jlm � 1:0, fc is extra-
polated to a finite quantity roughly equal to 0.14 and
corresponding to fc � fg at glass transition temperature Tg

[174].
The fc�jlm� dependences for cross-linked polymers differ

from those described in preceding paragraphs (Fig. 9, curve
2). They are well approximated by a straight line, similar to
those for linear amorphous polymers. However, this line does
not pass through the origin of the coordinate system and, in
the case of jlm � 0, cuts off an intercept fc � 0:024. It seems
plausible that fc is related to the presence of chemical bond
network sites. Therefore, the relative fluctuation free volume
in cross-linked polymers, unlike that in linear ones, consists of
two components. One is of constant magnitude and is
associated with regions of chemical bond sites, while the
other is a linear function of jlm and depends on the super-
segmental (cluster) structure. Different fc components are
responsible for the specific properties of polymers. The
variable component of fc controls the elasticity and local
plasticity, whereas the total fc determines the properties in the
macroscopic fluidity region [175].

To sum up, correlations obtained with the aid of the
cluster model of the amorphous polymer structure indicate
that the amount of the fluctuation free volume and its
variations under the effect of structure factors are to a large
extent dependent on the polymer type [172].

Model of amorphous ± crystalline polymer. The two pre-
sently available cluster models provide an experimentally
verified tool for the interpretation of amorphous ± crystalline
polymers and allow for the validation of theoretical calcula-
tions using the model described in paper [55]. It has been
shown in Refs [57, 176] that paramagnetic resonance (PMR)
spectra obtained from the devitrified regions in amorphous ±
crystalline polyethylenes comprise two components. The
broad one is due to the contributions of crystallites and the
remaining devitrified amorphous fragments (clusters, in
terms of the model posed in Ref. [55]). The narrow
component results from amorphous portions involved in
intense micro-Brownian motion (i.e. devitrified). The ratio
of the narrow spectral component area to the total spectrum
area �Cm� gives the relative number of devitrified regions at
each temperature (the so-called `mobile fraction' [176]).

Another interpretation was proposed in Refs [177, 178],
according to which the formation of a certain number of
primary crystallites in amorphous ± crystalline polymers is
followed by chain folding which gives rise to secondary
crystallites in the form of fringed micelles (cluster analogues).

Thus, the fractions of clustersjcl and loose-packedmatrix
jlm evaluated in the framework of the cluster model can be
compared with the experimentally found relative amounts of
secondary crystallites msc (by DSC [177]) and the `mobile
fraction' Cm (PMR technique [176]), respectively. The
quantitative assessment of jcl is possible by means of Eqn
(10), and that of jlm from the evident relation [179]

jlm � 1ÿ jcl ÿ K ; �56�

where K is the degree of crystallinity.
Collation ofjcl calculated by Eqn (10) andmsc taken from

paper [177] has demonstrated a good correspondence
between their absolute values as well as similar trends of
their temperature-dependent changes, despite the use of
different HDPE for the evaluation of these parameters. Such
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Figure 9. Plots of relative fluctuation free volume fc vs. volume fraction of

the loose-packed matrix jlm for linear amorphous (PC and PAr) (1) and

cross-linked (EP) (2) polymers ]172].
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a correspondence was not unexpected, knowing the structural
identity of clusters [55] and secondary crystallites [177, 178].

The comparison ofjlm andCm for HDPE and LDPE also
showed a significant correlation between the theoretical and
observed values. This gives reason to associate the `mobile
fraction' [57, 176] with the loose-packed matrix of the
polyethylene amorphous phase [55, 68].

Thus, paper [179] confirms the correctness of the cluster
model by up-to-date experimental techniques of DSC and
PMR.

The Poisson coefficient is one of themain characteristics of
polymers, determining many of their thermodynamic and
mechanical properties [45, 110]. It is natural to predict a close
relationship between this parameter and the polymer struc-
ture. However, such a correlation remains to be demon-
strated. Nevertheless, the application of the cluster model
allowed the analytical relationship between the structure and
Poisson coefficient to be obtained for polyarylate sulfone as
an example, a typical representative of amorphous glassy
polymers [180].

One of the laws underlying the classical theory of
continuous medium elasticity is the experimentally found
Poisson's relation which postulates a lateral strain �e?� effect
[181]:

e? � meii ; �57�

where m is the Poisson coefficient, and eii is the longitudinal
strain.

The coefficient m can be found using Eqn (40) which was
confirmed in experiment [182]. This equation is rather a strict
relation derived from the polymer equation of state [110].
However, it does not reflect the relationship between m and
the polymer structure. It is quite clear that an accurate
structural identification is needed if the desired relationship
is to be obtained. It has been mentioned in the foregoing that
the regions of local order (clusters) may be regarded as a
departure from an ideal structure, i.e. a defect. In this
interpretation with the use of mathematical apparatus of
dislocation theory, it is possible to write down [129]

sy���
3
p � Eb

4p�1� m�
���
r
p

: �58�

A combination of Eqns (8), (28), (35), (40), and (58)
provides the following expression for m taking into considera-
tion only the structural characteristics of the polymer [180]:

m � 0:5ÿ 2:985� 10ÿ10�Vcl l0�1=2 ; �59�

where Vcl is measured in mÿ3, and l0 in m.
Comparison of the calculated temperature dependence m

[Eqn (59)] and functions m�T � derived from Eqn (40) in the
event of impact and quasi-static tests for polyarylate sulfone
(PArSf) showed that m increased with increasing T in all the
three experimental series [183]. The maximum discrepancy
between theoretical m values and those observed in impact
tests did not exceed 20%. It was even smaller (less than 10%)
for quasi-static extension. Therefore, the data reported in
Ref. [180] indicate that the Poisson coefficient computed from
the structural parameters of an amorphous polymer alone is
in good correspondence with the values obtained by other
methods. It should be noted that Eqn (59) used for the
computation of m includes only structural characteristics in
the absence of an adjustable parameter.

The photochromic mark method is extensively employed to
study free volume parameters in polymers [184, 185]. It
provided qualitatively new information about their free
volume and allowed it to be compared with various
theoretical models (see, for example, Ref. [186]). Paper [187]
collates experimental findings obtained by this method and
predictions of the cluster model for epoxy polymers hardened
with diamines (EPD) or anhydrides (EPAh), and aged
anhydride-hardened epoxy polymer (EPAhag).

The photochromic mark method allows us to measure the
free volume size and its distribution for structurally different
portions of cross-linked polymers, viz. in the free (dangling)
chains, fragments enclosed between neighboring backbone
chains and those of hardener (cross-link sites). In all these
cases different marks are used [184, 185]. Specifically, in a
study [185] with an epoxy oligomer (diglycidilether bisphenol
A) hardened with diaminodiphenylsulfone (previously used
in paper [187]), the reactive monoamine p, p 0-aminoazoben-
zene (AA) was used to mark the first of the said portions. A
derivative of p, p 0-diaminoazobenzene (DAA) in which four
amine hydrogens were fully substituted with ethyl groups
(designated as tt-DAA) and unmodified DAA incorporated
into the net-shaped skeleton as a cross-linking agent were
used as themarks for the second and third structural portions,
respectively. The authors of Ref. [185] had to invoke at least
two processes with substantially different (by approximately
a factor of 100) rate constants to describe the photoisome-
rization kinetics of these epoxy skeleton portions above the
gelation point. They interpreted the fraction of the `rapid'
process as as an integral area under the curve of the free
volume distribution for an individual mark. It was assumed
that a critical size of the free volume cavity around themark is
necessary for its photoisomerization. For this reason, the
method in question evaluates the characteristics of different
portions of the epoxy polymer structure, surrounding the
mark (i.e. in its immediate neighborhood [185]).

According to Ref. [185], the radius of a free volume cavity
in epoxy polymers averages 6.5 A

�
. Positron spectroscopy

yielded somewhat lower figures [188, 189]. The estimates
given in Ref. [187] indicate that the distance between cluster
centers Rcl [see Eqn (18)] in these epoxy polymers varies from
approximately 19 to 31 A

�
. The size of a portion of the loose-

packed matrix enclosed between two neighboring clusters is
even smaller. Therefore, the size of a free volume microcavity
is comparable with the distance from the nearest cluster. This
means (using the terminology adopted by Lamarre and Sung
[184]) that such a portion of the loose-packed matrix may be
regarded as the immediate vicinity of the free volume
microcavity contained in it. Hence the possibility to identify
the `rapid' process fraction as in an epoxy polymer with the
loose-packed matrix fraction jlm. Another reason for such a
correlation is given by the proportionality between jlm and
the relative fluctuation free volume fc in epoxy polymers (see
Fig. 9, curve 2) [135, 172]. Finally, it is worthwhile mentioning
one more finding in support of the identification of as as jlm.
Works [184, 185] showed that such factors affecting a
polymer as an increased temperature, plasticization, and
deformation lead to an enhancement of as, while physical
ageing causes its decrease. The quantity jlm behaves in
exactly the same manner when a polymer experiences the
effect of the same factors [47, 166, 171].

Figure 10 shows the dependences of as on the glass
transition temperature Tg for the cross-linked skeletons of
AA (curve 1) and tt-DAA (curve 2), using data from
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experimental study [185]. Similarly, the Tg-dependence ofjlm

is represented based on the results of Ref. [175]. It can be seen
that the records of jlm fall between curves 1 and 2 and
undergo a shift from curve 1 to 2 with an increasing cross-
link density (or Tg growth). Evidently, the number of
dangling chains must decrease with growing Tg (and ncr) due
to their cross-linking and incorporation into the skeleton.
Accordingly, the free volume fraction attributable to them
must decrease too. As a result, a key role in a rather closely
cross-linked skeleton (where the molecular weight may reach
104 g molÿ1 [190]) will be played by the free volume between
the chain segments fixed at both ends by chemical cross-link
sites. This hypothetical process is depicted by curve 5 in
Fig. 10.

Paper [185] also reports the dependence of as on the free
volume microcavity radius rh, which has the meaning of the
distribution curve. Figure 10 presents an analogous curve
jlm�rh� (curve 6), with rh calculated from the size of the free
volume microcavity Vh (on the assumption of its spherical
shape) [110]:

Vh � 3
�1ÿ m�kTg

fcE
; �60�

fc � 0:017
1� m
1ÿ 2m

: �61�

Plot jlm�rh� in Fig. 10 (curve 6) has a somewhat different
physical sense than plot as�rh� [185]. Because the former
correlation includes data for different epoxy polymers, it
may reflect characteristic patterns of variation of the free
volume hole size rh upon the alteration of the magnitude of
departure from thermodynamically equilibrium structure of
these polymers. For example, an enhancement of the degree
of local order (decrease of jlm) leads to the growth of rh.
Figure 10 also presents data for an anhydride-hardened
epoxy polymer aged at 293 K for 1.5 hours. As expected,
jlm decreases parallel to the growth of rh, which suggests a
well-known [140] enhancement of the degree of departure
from thermodynamic equilibrium in epoxy polymers experi-
encing physical ageing.

To conclude, the results reported in paper [187] suggest
the possibility of identifying the `rapid' fraction as (measured
by the photochromic mark method) with the loose-packed
matrix fraction jlm in the framework of the cluster model, in
excellent agreement with the physical sense of as. Figure 10
indicates that not only the relative fluctuation free volume fc
(regarded as the disorder parameter [135]) but also the mean
size of its microcavity (rh or Vh) can serve as a measure of
departure from thermodynamic equilibrium for the cross-
linked polymer structure. It should be noted that the authors
of Ref. [185] also accepted the proposed interpretation of the
parameter as, considering it to be associated with the high
segmental mobility of lower-density regions in a solid
polymer.

Percolation models are extensively used to consider a large
number of physical problems [191] including those pertinent
to polymers [192, 193]. These models are simple and
demonstrable [191], and their application to the description
of polymer structure and properties permits one to exploit
their well-developed mathematical apparatus. The formation
of a cluster structure at Tg results in a sharp change of the
properties of an amorphous polymer which becomes as rigid
as a genuine solid [55]. It may therefore be suggested that in
this case Tg determines the percolation threshold [194] at
which an infinite (within the sample length) cluster forms. In
work [195], these processes were studied for the EPD and
EPAh epoxy polymers discussed in the preceding paragraphs.

It has been shown in review [191] that the critical behavior
of the infinite cluster capacity P1 (the probability for a site to
enter this cluster) near a percolation threshold xg is described
by the scaling relation

P1 / �xÿ xg� b : �62�
In the framework of the cluster model, the obvious choice for
P1 is the cluster fraction jcl [196], while the glass transition
temperature Tg is taken as xg (see above). In this case, the
testing temperature T is regarded as the current probability x,
and equation (62) can be rewritten as

jcl / �Tg ÿ T � b ; �63�
where the exchange of positions of T and Tg is due to the
inequalityTg > T. It is worth noting that, because all the tests
of epoxy polymers inRef. [195] were carried out atT � 293K,
Eqn (63) actually gives the appropriate dependence of jcl on
Tg. Figure 11 shows the dependences ofjcl on �Tg ÿ T � � DT
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Figure 10.Dependences of the `rapid' fraction as for marks AA (1) and tt-

DAA (2) and loose-packed matrix fraction jlm (3 ± 5) on the glass

transition temperature Tg, and of jlm on the mean radius rh (6) of free

volume microcavities for epoxy polymers. Curve 5 depicts the supposed

transition of sites with the largest amount of free volume cavities [187].
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in double logarithmic coordinates for EPD and EPAh. These
plots are linear, permitting the calculation of b. It proved to
be 0.36 for EPD, and 0.58 for EPAh (Table 5), i.e. rather close
to the theoretical `geometric' value of b � 0:40 [191]. There-
fore, the cluster structure of epoxy polymers being considered
is a percolation cluster with the percolation thresholdTg. This
means that the vitrification of cross-linked polymers repre-
sents a phase (nonequilibrium) transition, and jcl is an order
parameter. This confirms an earlier conclusion [80, 170] and
suggests that the epoxy polymer structure may be described
proceeding from the general premises of the percolation
theory [191]. For example, the number of sites s in a finite
cluster depends on the dimensionless deviation of concentra-
tion tcon from a critical value ftcon � �xÿ xg�=xgg [191] when
tcon ! 0 as

s / jtconj ÿgcon : �64�

For the cluster structure, s should be the number of segments
nseg � F=2 in one cluster, while tcon is the parameter
�Tg ÿ T �=Tg [195]. The calculated values of g are presented
in Table 5 which shows that they agree fairly well with the
theoretical `geometric' parameter g for a three-dimensional
percolation cluster [191].

Thus, the results reported in Ref. [195] indicate that a new
element Ð a percolation cluster described by the cluster
model Ð is formed in the epoxy polymer structure at the
glass transition temperature Tg. This implies that the
vitrification of epoxy polymers proceeds as a nonequilibrium
phase transition, and the quantityjcl is an order parameter in
the strict physical sense of this term [195].

Shear and crazing. As is well known [197, 198] shear and
crazing are the two key mechanisms of plastic deformation in
amorphous glassy polymers. The relationship between these
mechanisms governs the polymer plasticity. As a rule, a more
intense crazing enhances polymer brittleness, whereas the
propensity for shear contributes to its plasticity [199, 200].
The recognition of this fact gave impetus to a large number of
studies having the objective to elucidate these mechanisms
and competition between them, in which the phenomenon of
testing temperature dependence was extensively employed to
characterize their relative importance.

Donald and Kramer [201 ± 203] posed a micromechanical
crazing model for amorphous polymers, in which the
probability of one or the other mechanism of plastic
deformation is determined by a structural factor, i.e. the
density Ve of the network of macromolecular entangle-
ments. The authors demonstrated in the framework of this
model that a rise in Ve intensifies the shear mechanism and
proportionally suppresses crazing. Kramer [204] derived the
following formula for the effective surface energy G:

G � gw �
1

4
deVeUw ; �65�

where gw is the van derWaals surface energy, de is the distance
between cross-link sites, and Uw is the bond dissociation
energy in the main chain.

A rise inVe (other things being equal) facilitates G growth
and therefore enhances fibrillation stress and suppresses
crazing. Henkee and Kramer [205] have also demonstrated
that the formation of craze fibrils requires the `geometrically
necessary entanglement loss' which occurs by two mechan-
isms: either through molecular-chain scission or macromole-
cular slip followed by their disentanglement.

An advantage of the Donald and Kramer model [201]
consists in that it relates the craze structure to such an
important structural characteristic of a bulk polymer as the
density of the network of macromolecular entanglements. It
should be noted that bothVe as a structural characteristic and
crazing as the mechanism of plastic deformation are specific
features of the polymeric state of matter. This suggests a
relationship between these parameters. The predictive value
of the model being considered is increased by virtue of
correlations between entanglement network characteristics
and molecular properties of polymers, found in Refs [66, 73].
At the same time, a variant of the macromolecular entangle-
ment network (the network of `interlacings') chosen by the
authors imposes apparent constraints on the application of
themodel. It is known fromRefs [88, 207] thatVe is evaluated
based on the results of mechanical testing of polymers at
temperatures above Tg. The value thus obtained is taken as
constant over the entire temperature range within which the
polymer remains in the glassy state, i.e. at T4Tg.

It is understandable that the possibility of explaining the
temperature dependence of the crazing mechanism was
restricted from the very beginning by the polymer structure
model adopted for the purpose. It was assumed that the
`geometrically necessary entanglement loss' is realized at
relatively low molecular-chain scission temperatures (close
to room temperature). At higher temperatures, the same
effect is achieved via `untangling' Ð that is, chain disengage-
ment from the entanglement network. Donald [207] posed
another model for the explanation of the high-temperature
shear ± crazing transition based on the temperature depen-
dences of yield (shear) sy and crazing sc stresses. The
disentanglement of macromolecules in high-molecular-
weight polystyrene (PS) encounters difficulty. For this
reason, the crazing stress sc falls with rising temperature
slower than in a low-molecular polymer [see Eqn (65)]. Once
the yield stress sy is higher than sc, crazing is favored over
shear deformation; if sy < sc, shear becomes increasingly
important. It is assumed [207] that sy is unrelated to the
molecular weight of the polymer. Since the degree of stretch lc
of craze fibrils is a function of molecular weight Me, it was
proposed to explain a rise in lc with increasing T by enhanced
disentanglement of macromolecules at elevated temperature
[208, 209]. In accordance with this concept, the friction
coefficient S0 of macromolecules is high at relatively low
temperatures and the applied load breaks the main chain. As
T is raised, S0 decreases and the load enabling macromole-
cules to slip becomes smaller than the chemical bond strength.
This accounts for the predominance of the former process.
Macromolecular slip along the surrounding `tube' leads to
`disentanglement' or reduction in Ve, hence to a decrease of
sc. This concept was used to explain the experimentally found
temperature dependences of lc and G [209, 210].

For all that, the concept just discussed raises a number of
objections. Some of them are listed below:

(1) As is well known [211, 212], crazing stress is a
function of temperature and monotonically grows as T
drops. In PS, for example, it increases three-fold as T falls

Table 5. Characteristics of percolation clusters in epoxy polymers [195].

Parameter Experimental values Calculated values [191]

EPD EPAh

b
g

0.36
1.28

0.58
2.28

0.40
1.84
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from 300 to 100 K [212]. If the `geometrically necessary
entanglement loss' even at room temperature is due
exclusively to the molecular-chain scission, the cause of
such a rise in sc is unclear.

(2) The ratio of sy and sc, and the more so their absolute
values should not be taken as the sole evidence for the
simplicity of realization of one or the other mechanism. It
has been shown in Refs [98, 103] that the modification and
cross-linking of HDPE result in a 2 ± 3-fold increase of the
degree of shear as is easy to see from the `shear lip' sizes at the
damaged sample surfaces. Simultaneously, sy remains unal-
tered or increases by 5 ± 10%, while crazing is completely
suppressed [98].

(3) The independence of sy from the molecular weight of
the polymer, postulated by Donald [207], is questioned by
other authors [213].

(4) The slippage of a macromolecule along the `tube'
under the effect of load and its resulting disentanglement
can hardly be regarded as a unidirectional process. A
hypothetical three-stage model has been posed for its
explanation. First, a local equilibrium is established without
slip, then stretching of the chain takes place, and finally
recovery of the statistical ball configuration under micro-
Brownian motion. This three-stage model accounts for the
situation in a polymer melt. For a glassy polymer, Donald
[207] found it appropriate to consider the first two stages only
and regard the third one as missing due to the appearance of
the prolate chain. It should be recalled, however, that the
active zone at the bulk ± craze interface is involved, with
enhanced molecular mobility owing to the proximity to the
free surface and/or mechanical devitrification of the polymer
[89]. Also, it is worthwhile to note that the formation of
macromolecular entanglements in the course of polymer
craze `healing' by diffusion is known to occur even in the
stressed state [214, 215].

(5) Evaluation of the temperature dependence of sc for
PS under shock loading [216] revealed its decrease from 25
to 18 MPa with a rise in T from 193 to 252 K. Moreover, a
maximum of sc corresponding to the b-transition in PS was
recorded at T � 313 K [217]. Berger and Kramer [208]
estimated the macromolecular disentanglement time tdis at
� 102ÿ103 s. The deformation time for PS samples in an
impact test was 5 ± 6 orders of magnitude smaller, which
makes the disentanglement process unlikely. Nevertheless,
the energy of craze formation in PS in a temperature range
of 313 ± 353 K was significantly lower than at T < 313 K
[216].

(6) Finally, the main reason for an alternative interpreta-
tion of the temperature-dependent shear and crazingmechan-
isms is the inconsistency of the results obtained by Kambour
and Gruner [218 ± 220] and that in the framework of the
Donald model [207]. The authors of Refs [218 ± 220] empiri-
cally found linear correlations between crazing parameters
(crazing strain ec, major principal stress syy, hydrostatic
stretching Ps) and essential characteristics of bulk polymers
(Tg and cohesive energy densityWc) as well as sy and E in the
form

ec /Wc�Tg ÿ T �
E

; �66�

ec /Wc�Tg ÿ T �
sy

; �67�

syy /Wc�Tg ÿ T � ; �68�

Ps /Wc�Tg ÿ T � : �69�

The analogy between Eqn (63) and relations (66) ± (69) is
worth mentioning since it provides an additional argument in
favor of an alternative interpretation discussed below.

Today, correlations between E and Wc [221, 222], E and
sy [223],Wc andTg [224] are well known. Therefore, relations
(66) ± (69) to the first approximation reflect the dependence of
ec (or syy andPs) on the temperature difference DT � Tg ÿ T,
i.e. the degree of closeness of testing temperature to Tg. In
Fig. 12 (curves 1, 2), this approximation is confirmed by
relevant correlations for ec � f �DT � and Ps � f �DT � con-
structed from the data of Refs [219, 220], respectively. Despite
a larger scatter of points compared with correlations (66) and
(69), these plots demonstrate a tendency in ec and Ps to
increase with rising DT. The enhanced scatter of points is
due to the departure of the results obtained in the correlations
E � f �Wc� and Tg � f �Wc� from the straight line. The
physical grounds of such deviations are subjected to a
detailed analysis in Refs [221, 222, 224]. Evidently, an
increase of ec, syy, and Ps indicates that crazing becomes
progressivelymore difficult to realize. It is just as clear that all
polymers must have equal probability of craze formation at
similar DT. In terms of the model posed by Donald and
Kramer [201 ± 203], this condition must imply similar Ve

values. However, it has been shown above that the macro-
molecular entanglement network is `frozen' over the entire
temperature range corresponding to the glassy polymer state,
i.e. Ve remains constant. This discrepancy is resolved by the
assumption of chain slippage and withdrawal from the
entanglements with rising T [207 ± 210].

Plastic deformation. Let us now consider an alternative
interpretation of the temperature dependence of the plastic
strain mechanism, based on the premises of the cluster model.
It is known [225] that the limiting degree of stretch l of
polymers (the same as the quantity lc for craze fibrils, and ldz
for deformation zones (DZ) [226]) is determined by the length
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Figure 12. Plots of crazing strain ec (1) and hydrostatic stretching Ps (2) vs.

temperature difference DT � Tg ÿ T, based on the data from works [219,

220].
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of the macromolecular segment le between entanglement
sites. In qualitative terms, this relationship implies that a rise
in Me leads to the growth of l. The strain e magnitude in
crazes or deformation zones can be expressed as [227]

e � ln

�
rp � dc
rp ÿ dc

�
; �70�

where rp and dc are the craze (or DZ) length and opening
displacement, respectively.

The quantity l is found from the following simple relation
[228]

l � 1� e : �71�

Plummer and Donald [209] measured the degrees of
stretch lc and ldz for PS crazes and deformation zones,
respectively. Parameter lc was found to grow rapidly at
T � 383 K, while ldz remained unaltered. Theoretical estima-
tion of the maximum degree of stretch in a craze �lc� or
deformation zone �ldz� is feasible using a relation proposed
by Donald and Kramer [201, 202]:

lc �or ldz� � le
Rcl

: �72�

In the framework of the cluster model, the quantity le is
easy to obtain from the known Mcl values, based on the
relationship between the molecular weight and the chain
volume [229] and the macromolecular cross-section area
[230]. Quantity Rcl may be found by means of Eqn (18). The
results of such lc and ldz calculations for PS were compared
with the experimental findings of Plummer and Donald [209].
It turned out that the onset of crazing in PS coincided withT 0g.
There was an excellent agreement between the observed and
theoretical lc values, which was rather unexpected bearing in
mind that the results had been obtained in different
laboratories and with different PS species. In the deforma-
tion zone (T4 343 K), the ldz values exhibited a similarly
good correlation on absolute scale and as functions of
temperature (the difference between experimental and theo-
retical data did not exceed 15%). However, the most
remarkable result was obtained from the collation of the
observed and calculated parameters in the DZ± craze transi-
tion region (T � 333 ± 373 K). It indicated that the reduction
in the density of the network of macromolecular entangle-
ments necessary for the realization of such a transition and
the associated increase of l depend exclusively on the
thermofluctuation decomposition of clusters with rising T
[229].

Molecular orientation. Investigations into the properties
of oriented polymers have always been in the focus of
attention by virtue of their important practical implications
[231]. In this respect, amorphous ± crystalline polymers are
considered to be superior to amorphous ones because they are
much easier to orient, yielding a higher degree of chain
stretch, and therefore have better properties. This difference
can be accounted for by dissimilarities found in super-
molecular structures of the two classes of polymers. Never-
theless, oriented amorphous polymers received as much
attention as their semicrystalline counterparts, one of the
reasons, apart from practical considerations, being the
possibility of producing orientation ± property relationships
taking advantage of the simpler structure of these compounds

containing no crystalline components. Molecular orientation
is usually described in terms of two deformation schemes: the
so-called `affine' and `pseudoaffine'. Papers [232, 233]
provide detailed characteristics of these schemes and their
potential applications to work with real polymers. It came to
be known, however, that neither theoretical scheme is really
adequate to describe many aspects of the behavior of real
oriented polymers, hence the large number of their modifica-
tions [232, 233]. An indispensable element of all these
modified and unmodified schemes is the molecular entangle-
ment skeleton [234, 235]. It is therefore appropriate to recall
three specific characteristics of the cluster entanglement
network important for further discussion, which distinguish
it from the conventional network of macromolecular interla-
cings:

(1) The sites of the cluster network have a well-defined
finite size equivalent to the polymer statistic segment length
[166].

(2) The cluster network density Vcl is a function of
temperature. It decreases as T is raised; the cluster network
is completely disintegrated at Tg. The growth of Vcl with
decreasing T is markedly slowed down at T4Tg.

(3) The density Vcl exceeds the corresponding parameter
of a macromolecular entanglement skeleton by approxi-
mately one order of magnitude.

It is worthy of note that the regions of local order, i.e.
clusters, influence the orientation behavior of amorphous
polymers (see works [236, 237]). A careful check of the results
reported in Refs [232 ± 238] revealed a number of specific
behavioral features of oriented polymers, which are unac-
countable in the framework of the macromolecular entangle-
ment skeleton concept and thus preclude the straightforward
application of the two aforementioned deformation schemes.
These features are listed below:

(1) the qualitative difference between the dependences
governing molecular orientations below and above Tg on the
degree of stretch l;

(2) the density Vcl for polymethyl methacrylate (PMMA)
below T � 50 �C is practically constant;

(3) a change of the shrinkage stress at temperatures above
Tg implies the existence of a permanent `residual' skeleton;

(4) it is supposed that the molecular orientation can be
described on the assumption of a single mechanism involving
changes of entanglement density with temperature and strain;

(5) it is suggested [232] that orientation in polyethylene
terephthalate (PETP) is associated with microcrystallites of
dimensions comparable to or smaller than the Brillouin light
scattering wavelength;

(6) the small nst (the number of statistic segments between
entanglement sites) accounting for the high skeleton densities.

It has been mentioned in a preceding paragraph that the
behavior of real polymers did not always obey the theoretical
schemes for their deformation mechanisms which had to be
modified. One such modification is described by the equation
[234]

Dn � CV0 ap�l2 ÿ lÿ1� exp�ÿkdl� ; �73�

where Dn is the path difference in birefringence measure-
ments, characterizing the degree of molecular orientation; V0

is the molecular skeleton density; ap is the difference between
statistic segment polarizabilities parallel and perpendicular to
its axis, and kd is the parameter characterizing the degree of
degradation of the sites involved inmolecular skeleton during
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the course of stretching. The constant C is defined as [235]

C � 2p
45

�n2av � 2�2
nav

; �74�

where nav is the average refractive index.
Botto, Duckett and Ward [233] noticed that Eqn (73)

fairly well describes experimental findings atT < Tg but is not
adequate to describe the situation for T > Tg. They proposed
the following modification of Eqn (73):

Dn � apC
n
Vp � Vt exp

�ÿkd�lÿ 1��o�l2 ÿ lÿ1� ; �75�

which implies the existence of two molecular entanglement
skeletons (permanent and `temporary') with densities Vp and
Vt, respectively.

Despite successful applications of Eqn (75) to the
description of experimental data for PMMA (both at
T < Tg and T > Tg) [233], it is worthwhile to note the
following:

(1) the quantities Vp, Vt, and kd were obtained by
adjusting to experimental values; the absence of independent
methods for measuring Vp and Vt significantly compromises
the value of Eqn (75);

(2) Vt values turned out to be an order of magnitude
higher than Ve of the entanglement network.

To our knowledge, the model of a molecular skeleton
maintained through the agency of electrostatic interactions
[234] has never been used in subsequent studies, although it is
difficult to recognize that a macromolecular skeleton of such
density does not influence other polymer properties. The
treatment of two macromolecular skeletons in terms of the
cluster model looks much more natural. In this case, Vp � Ve

and Vt � Vcl. Then, the macromolecular skeleton density is
Vcl � Ve at T < Tg, and Ve at T > Tg. It is easy to see that the
proposed interpretation removes all the aforementioned
discrepancies between real and theoretical behavior of
molecular orientations.

Table 6 collates the macromolecular skeleton densities
obtained by fitting to experimental results [233, 235] and by
an independent method [152]. It can be seen that there is an
almost 2-fold difference between V0�Vt� obtained in Refs
[233, 235], which reflects their adjustable character. At the
same time, pairs ofVp fromRef. [233] andVe as well asVt and
Vcl are in good agreement. Thus, our interpretation actually
uses the two-skeleton model posed in Ref. [233] but has the
advantage of accurate physical identification and indepen-
dent skeleton density assessment for these structures.

Figure 13 (curve 1) compares calculated [see Eqn (75)] and
experimental [233] jDnj values as functions of l for PMMA.
Because the experiments had been carried out at 408 K, i.e. at

T > Tg (Tg � 378 K for PMMA [235]), the calculations were
made at Vp � Ve, Vt � Vcl � 0, and kd � 0. It can be seen
that the theoretical and experimental results are in rather
good agreement.

Figure 13 (curves 2 ± 9) also compares experimental [235]
and calculated with equation (75) dependences jDnj�l� for
test-pieces stretched at 303, 363, and 373 K. PMMA
orientation having been effected at T < Tg, the calculation
was made at Vp � Ve, Vt � Vcl, and kd � 2:0. Here again,
there is a good agreement between the theoretical and
observed values. A small discrepancy (a somewhat lower
calculated jDnj compared with experimental values at
elevated stretching temperatures) is easily resolved by low-
ering kd as demonstrated for curve jDnj�l� at T � 373 K by
the choice of kd � 1:3. Therefore, the above results indicate
that cluster entanglement network parameters determined by
an independent method are in close correlation with experi-
mental data on the molecular orientation in PMMA.

To conclude, it should be noted that the cluster model
revealed its consistence with a wealth of experimental
materials obtained by different techniques. It is important
that this model provides quantitative interpretations using no
adjustable parameters.

5. Local order and processes in glassy polymers

In the pages that follow, we shall demonstrate the application
of the cluster model to the description of various processes in
polymers under different influences and discuss the major
parameters controlling them. Again, this description will be
quantitative. It should be noted that the cluster model not
infrequently offers quite a new fundamental interpretation of
one or another process (e.g., yielding). Bearing in mind the
large volume of materials to be discussed, this section is
divided into subsections to consider each set of results in
turn, for the reader's convenience.

Elasticity. The modulus of elasticity E was first described
in terms of the cluster model in paper [91]. Figure 14a shows
the dependence of E on Vcl for polyarylate sulfone (PArSf).

Table 6. Structural PMMA parameters used in calculations by means of
Eqns (73) and (75).

T, K Ref. [235] Ref. [233] Ref. [152]

V0 kd Vp Vt kd Vcl Vcl � Ve kp

303 ë 323
363
373
390
408

15.1
8.4
6.4
2.4
ì

1.42
1.22
1.18
0.58
ì

ì
0.38
ì
ì
0.31

ì
4.70
ì
ì
9.31

ì
0.89
ì
ì
0.61

9.23
3.83
1.33
ì
ì

9.7
4.3
1.8
0.47
0.47

2.0
2.0
1.3
ì
ì

Note: The values of V0, Vp, Vt, Vcl, and �Vcl � Ve� are given in 1026 mÿ3.
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Figure 13. Birefringence jDnj vs. macroscopic degree of stretch l at

T � 303 K (1, 4), 363 K (2, 5), 373 K (3, 6, 7), and 408 K (8, 9) for

PMMA: 1 ± 3 Ð experimental data [235], 4 ± 6 Ð calculated by Eqn (75)

with kd � 2:0, 7 Ð calculated by Eqn (75) with kd � 1:3 for T � 373 K,

8Ð experiment, 9Ð calculated by Eqn (75).
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Such a correlation is easy to explain in the framework of the
cluster model according to which increased Vcl means a
greater number of close-packed segments and the corre-
sponding intensification of intermolecular interactions
between them, leading to a rise in E [222].

A remarkable finding is that the dependence of E on Vcl

shows two parallel portions of the curves. Tg for PArSf is

� 475 K [229]; hence, T 0g � 425 K. Therefore, curve 2 (Fig.
14a) corresponding to the temperature interval T < T 0g
indicates that the quantity E in this interval consists of two
components: a modulus corresponding to close-packed
polymer (clusters) and proportional to Vcl, and a relatively
constantmodulus of loose-packedmatrix atVcl � 0.At 443K
(i.e. for T > T 0g), the loose-packed matrix undergoes devi-
trification, its modulus on the scale of Fig. 14a falls to zero,
and the cluster network remains the sole determinant of
polymer rigidity. It is worthwhile to note that in terms of the
theory of rubber-like elasticity, the modulus of elasticity E is
proportional toVcl [58], which is also true of PArSf, to within
a constant factor, over the entire temperature range employed
in the test [91].

It is known [57] that deformation of amorphous glassy
polymers, intermediate between liquids and solids in terms of
structure, is fairly well described by both molecular-kinetic
(liquid-phase) and solid-state models. The quantitative
relationship between them may be established with the aid
of the kinetic theory of fluctuation free volume [110] or the
cluster model (identified as type 1 and 2models, respectively).
The interrelation of these concepts has been demonstrated in
the previous section, while Sanditov and Kozlov [152] used
them to describe the temperature dependence of shear
modulus G for two amorphous glassy polymers, PC and
PAr. This dependence is easy to obtain by combining Eqns
(8), (40), (48), (51), and (61) in the form

G � 4p�1ÿ m�Tg k ln�1= fc�
b2l0C1 ln�r=r0� : �76�

Parameters Tg, k, b, l0, and C1 for one polymer are
constants, therefore the experimentally established changes
of G at different temperatures are fully attributable to the
temperature dependences of m and fc. Equation (76) is
characteristic in that it demonstrates the necessity of varia-
tion of m and fc [related to each other by expression (61)] with
temperature. Also, it shows that the interpretation of the
constancy of these parameters below Tg as an indication of a
`frozen' structure is too rough an approximation [32].

The results of estimating the temperature dependence of
shear modulus G by means of Eqn (76) for PC and PAr show
that even a small change in absolute values of m and fc may
have a marked effect on the mechanical properties of
polymers [152].

The specific relationship between cross-link polymer
structure and modulus of its elasticity was examined in Ref.
[175], taking into consideration the aforementioned division
of the fluctuation free volume of epoxy polymers into two
components: f g

c attributable to the presence of chemical
cross-link sites, and f 0c arising from cluster decomposition,
i.e. the fluctuation component proper � fc � f g

c � f 0c � [135,
172]. In monograph [110], the following relation between
microrigidityHm and E was suggested:

Hm

E
� 1ÿ 2m

6�1� m� : �77�

Despite the seeming identity of formulas (40) and (77), they
yield dissimilar Hm and sy values, because the quantities m
entering them differ for various deformation zones in the
polymer. It follows from Eqns (61) and (77) that

E � 35:3 fc Hm : �78�
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Figure 14. Plots of elastic modulus E vs. (a) density Vcl of cluster

entanglement network for PArSf films casted from solutions in tetrachlo-

roethane (1), tetrahydrophthalate (2), chloroform (3), dimethyl forma-

mide (4), and methylene chloride (5) [91]; (b) hardener/oligomer ratio Kst

for the epoxy polymer hardened with amine at 0.1MPa (3, 4) and 200MPa

(5, 6). Curves 3, 5Ð calculation by Eqn (78) using f 0c , curves 4, 6Ðusing

fc [175], 1, 2Ð experimental values, and (c) cluster fraction jcl for LDPE

(1) and HDPE (2).
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In work [175], this relation was used for calculating the
dependences of E on the hardener/oligomer ratio Kst.
Comparison of calculated and observed dependences E�Kst�
for an epoxy polymer hardened with amines at different
pressures revealed their symbate character (Fig. 14b). The
use of f 0c in the calculations of E from formula (78) gave a
better quantitative correspondence than fc. Similar results
were obtained for epoxy polymers hardened with anhydrides.

The data presented in Fig. 14b explain the better
correlation between E and Vcl than between E and ncr for the
case of epoxy polymers [175]. It appears that the mechanical
properties of epoxy polymers in the elastic deformation zone
are governed only by that fraction of the total free volume
which is related to the assembly of segments into clusters or
their dissociation from them. It should be emphasized that
polymer properties are under the control of different
structural regions at various stages of deformation. For
example, the influence of the loose-packed matrix � f 0c � is
largely apparent in the elasticity �E � and local plasticity �Hm�
intervals. In the case of macroscopic fluidity �sy�, its action is
supplemented by that of chemical cross-link sites, i.e. matrix
� fc � f 0c � f g

c �. This accounts for the different sy and Hm

values derived from Eqns (40) and (77) despite the apparent
similarity of these formulas [175].

There are several concepts explaining the relationship
between polymer structure and the modulus of elasticity for
amorphous ± crystalline polymers, e.g., low-density (LDPE)
and high-density polyethylenes (HDPE). One of them
considers either polymer to be a two-phase composite
made up of alternating crystalline and amorphous regions
[239]. Due to this circumstance, E is largely determined by
the high elastic modulus characteristic of the crystalline
phase. Because this phase is more rigid than the other, a
major part of the strain affecting a bulk sample must be
realized in the amorphous interlayers. Moreover, in the
general case, polymeric molecules have to pass through
both crystalline and amorphous regions. Therefore, crystal-
lites function similarly to cross-links, i.e. preclude slippage
of macromolecules relative to one another. Thus, the
structural organization of amorphous ± crystalline polymers
and elastomeric skeletons displays certain common features.
The validity of this concept is seriously doubted on the
grounds of the significantly smaller calculated moduli of
elasticity compared with that observed. Krigbaum and co-
workers [240] have modified this approach. They believe
that the formation of crystallites must result in considerable
tension of the remaining amorphous chains. This means
that an increase in the modulus of elasticity throughout
crystallization is due to the fact that the skeleton chains are
almost fully stretched even in the absence of external load.
Mandelkern et al. [241, 242] have studied various poly-
ethylenes and showed that crystallinity alone cannot
adequately account for the elastic modulus values inherent
in amorphous ± crystalline polymers. In terms of concepts
framed in works [240 ± 242], they are largely dependent on
the molecular structure of amorphous regions. Thus,
crystallinity affects amorphous interlayers which in turn
induce changes of E.

Pakhomov and co-workers [243] postulated that the
elastic modulus E of amorphous ± crystalline polymers is
fully determined by their conformational state, namely, the
concentration of trans-conformations. The latter were com-
pared in Ref. [244] with the data for LDPE and HDPE in the
context of the cluster model.

Variations of the LDPE and HDPE elastic moduli as
functions of the parameter 1=�1ÿ k�, where k is the degree of
crystallinity, are in good agreement with the calculated values
obtained by Krigbaum et al. [240]. Some discrepancy may be
due to a failure to take into account changes of crystallite size
with temperature [239]. Anyway, the observed correspon-
dence confirms the validity of the model [240].

Comparison of experimental E values with those com-
puted in the framework of the theory of rubber elasticity [see
Eqn (2)] has demonstrated that the former are approximately
30 ± 150 times higher than the latter [244]. In terms of the
model posed in work [240], this means that statedNr-fold rise
is due to the tension of macromolecular chains in amorphous
regions, accompanying the crystallization of polyethylenes.

It is worthy of note that temperature dependences of Nr

and bulk crystallinity k [192] variations are very similar. As
expected from the above reasoning, these parameters are in
good correspondence. Rathje and Ruland [109] have recently
reported the analysis of small-angle X-ray diffraction
patterns suggesting significant temperature-dependent
changes in the thickness of polyethylene amorphous and
crystalline regions. Specifically, the thickness of amorphous
interlayers increases from 30 A

�
at room temperature to 150 ±

200 A
�
near the melting point. This means in turn that the

amorphous chain tension decreases with rising temperature.
As is mentioned above, the relative number of clusters jcl

characterizes the degree of local order in the amorphous state
of polymers [68]. The relation E � f �jcl� for LDPE and
HDPE is presented in Fig. 14c. It shows that the dependences
are linear and extrapolated toE � 0 atjcl � 0, notwithstand-
ing the presence of the crystalline phase. Levene et al. [245]
reported maximum E values for nonoriented polyethylenes as
functions of their densities at 1.45MHzÐ that is, for a case in
which the viscoelastic contribution to E may be neglected.
These E values are in perfect agreement with experimental
ones at jcl � 1:0 (see Fig. 14c, where E � 1:3 and 1.1 GPa for
LDPE, and 2.8 and 2.6 GPa for HDPE). The above results
indicate that in nonoriented polyethylenes E is controlled by
noncrystalline regions, which in turn depend on the crystal-
line morphology [240 ± 242].

Paper [244] reports calculated levels Ct of LDPE and
HDPE transconformations obtained by using the method
outlined earlier [243]. As expected, Ct decreases with increas-
ing temperature [244]. This observation gives reason to argue
that the elasticity modulus of polyethylenes is related to the
stiffness of noncrystalline regions. This property depends on
the crystalline morphology which alters the topological and
conformational characteristics of amorphous chains, com-
pared with the macromolecular characteristics of hypotheti-
cal fully amorphous polyethylene.

Flow. The flow behavior in amorphous glassy polymers is
frequently regarded as their mechanical devitrification [89].
However, analysis of a typical stress ± strain �sÿe� curve for
such polymers shows that the forced rubber-like elasticity
plateau stress sre beyond the yield stress sy is practically
equivalent to sy. In other words, it is of the order of a few tens
of MPa, whereas in a devitrified polymer this parameter is at
least a factor of 10 lower. Moreover, sre is a function of the
testing temperature T, in contrast with a devitrified polymer
for which this dependence must be much weaker and, above
all, display the opposite tendency (a rise in sre with increasing
T ). This discrepancy is easily removed within the framework
of the cluster model which implies that the flow occurs when
only the loose-packed matrix undergoes devitrification [129].
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It is worth noting that the model posed by Kozlov et al. [129,
246] assumes that the number of close-packed segments in a
cluster per unit volume of the polymer is equivalent to the
densityVcl of cluster entanglement network, determined from
the parameters of the plateau of forced rubber-like elasticity,
over which Vcl remains unaltered. In this interpretation, the
forced rubber-like elasticity (cold flow) of the polymer is
related to the deformation of the devitrified loose-packed
matrix with `floating' clusters. However, thermal devitrifica-
tion of the loose-packed matrix occurs at T 0g, i.e. approxi-
mately 50 K below Tg [60]. It should therefore be expected
that the application of a very small stress (on the order of
1 MPa) must cause a flow (deformation) of an amorphous
polymer over the entire temperature rangeT 0g ÿ Tg. However,
such a flow is not observed. This means that devitrification of
the loose-packed matrix is a result rather than a realization
criterion of flow. Moreover, it is known [147] that the flow
occurs in close-packed regions (clusters) of an amorphous
polymer [128]. Thus, it may be speculated that a sufficient
condition for polymer flow is provided by the loss of stability
in locally ordered regions, after which the deformation
proceeds without a further (at least nominal) rise in stress s.
This situation differs from the strain process continuing until
a yield stress is reached and accompanied by a monotonic
growth of s.

The model developed in Ref. [247] shows that clusters lose
stability when the stress generated in a polymer reaches a
macroscopic yield stress sy. Because clusters are assumed to
be an array of close-packed collinear segments and should be
expected to have randomly oriented axes relative to the
applied stress s, they can be simulated by `inclined plates'
(IP) [247]. The following expression holds for IP:

ty < tip � 24Gcle0
1� m2
2ÿ m2

; �79�

where ty is the shear stress at the yield point, tip is the shear
stress in IP (cluster),Gcl is the shearmodulus accounted for by
the presence of clusters and determined from plots similar to
those in Fig. 14a [i.e. G � f �Vcl�], e0 is the intrinsic IP
deformation, and m2 is the Poisson coefficient for clusters.

Quantities sy and ty are related by a simple expression [36]

ty � sy���
3
p : �80�

Because Eqn (79) characterizes the plastic strain of the
clusters, it is possible to assume m2 � 0:5. Furthermore
(assuming ty � tip), an expression is derived for the minimal
intrinsic deformation emin

0 [taking into account the inequality
in the left-hand side of Eqn (79)]:

emin
0 � ty�����

24
p

Gcl

: �81�

The stability condition for clusters (IP) has the form [247]

q �
����
3

2

r
e0
ty

"����1� e 00
e

����ÿ
����
3

8

r
ty

Gcle0�1� m2�

#
; �82�

where q is the parameter characterizing the plastic strain, and
e 00 is the proper deformation of the loose-packed matrix.

Cluster stability is disturbed if the following inequality is
fulfilled:

q4 0 : �83�

Comparison of relations (82) and (83) gives the following
instability criterion for IP (clusters):����1� e 00

e0

���� �
����
3

8

r
t thy

Gcle0�1� m2�
; �84�

whence the theoretical stress sy�s th
y � is determined, at which

criterion (83) is satisfied.
Quantitative assessments require that two simplifying

assumptions be made [246]. First, the condition [247]

04 sin2 yn
e 00
e0

4 1 �85�

must be fulfilled for IP, where yn is the angle between the
perpendicular to IP and the principal axis of intrinsic strain.

Because sin2 yn � 0:5 for arbitrarily oriented IP (clusters),
condition (85) is met if e 00=e0 � 1. Second, Eqn (81) gives a
minimal e0 value; for the convenience of calculations, ty and
Gcl were substituted by sy and E, respectively. The elasticity
modulus E is bigger than the appropriate modulus of
elasticity Ecl accounted for by the presence of clusters, as
follows from Fig. 14a. Therefore, the strain e0 determined by
Eqn (81) must be doubled to compensate for these two effects.
In the end, this leads to [246]

e0 � 0:638
sy
E
� 0:638eel ; �86�

where eel is the elastic component of macroscopic yield strain
[248] with the physical sense of strains e0 and e 00 [247].

A combination of Eqns (80), (84), (86) and plots similar to
those in Fig. 14a [whence Ecl�Gcl� can be derived) allows for
the theoretical estimation of the yield stress s th

y �s th
y �

���
3
p

t thy �
and its comparisonwith experimentally found sy values. Such
a comparison has demonstrated fairly good agreement
between s th

y and sy, and thus confirmed the validity of
assumptions made in Ref. [246] and the above reasoning in
general.

By this means flow of amorphous glassy polymers
requires stable clusters and is followed by devitrification of
the loose-packed matrix [246]. A similar criterion was
obtained for amorphous ± crystalline polymers [249].

It has been shown in Refs [143, 250] that the flowing
behavior of cross-linked polymers is essentially the same as
that of linear PC and PAr. However, further progress in the
study of this phenomenon in cross-linked polymers encoun-
ters at least two obstacles: the overestimation of the role of
chemical cross-links, and the absence of a quantitative
structural model. Kozlov et al. [250] proposed a mechanism
of flow and forced rubber-like elasticity in cross-linked
polymers, based on the premises of the cluster model and
the latest developments in synergetics of deformablematerials
[127] for the example of two epoxy polymers, EPD andEPAh,
discussed above.

It follows from sÿe curves for EPAh that uniaxial
compression applied to a test piece until it is destroyed or
subjected to strain e in excess of the yield strain ey results in a
sequential `yield tooth' suppression with a constant stress sre
of forced rubber-like elasticity plateau [250]. Large sre
suggests a correspondingly high density V st

cl of the stable
cluster entanglement network, much higher than the chemi-
cally cross-linked network density ncr [175]. For this reason, a
network of stable clusters is retained for the given portion of
the sÿe curve, although the behavior of the cross-linked
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polymer at the forced rubber-like elasticity plateau is
described in the framework of the theories of rubber
elasticity. Only unstable clusters undergo decomposition
which ensures devitrification of the loose-packed matrix.
The process of unstable cluster decomposition starts at a
stress equivalent to the proportionality limit, in agreement
with the results of Ref. [182] where this stress and temperature
T2 � T 0g are assumed to have analogous effects. The analogy
between flow and glass transition is only partial since a single
structural component (the loose-packed matrix) undergoes
devitrification. Moreover, the complete decomposition of
unstable clusters occurs at the origin of the plateau of forced
rubber-like elasticity sre and not at the point of yield strain sy.
This means that the flow is unrelated to the devitrification of
the loose-packed matrix, being regulated by a different
mechanism. It has been shown above that this mechanism
may consist of the loss of cluster stability as is equally well
known from the vanishing of the derivative ds=de at the yield
point [150].

According to monograph [127], the critical strain g�
terminating in the loss of shear stability by a solid is given by

g� �
1

mn
; �87�

where m and n are indices in the Mie equation [110] relating
the interaction energy and the distance between particles. The
quantity 1=mn can be expressed through the Poisson coeffi-
cient m [110]:

1

mn
� 1ÿ 2m

6�1� m� : �88�

It follows from Eqns (40) and (88) that

1

mn
� g� �

sy
E
: �89�

Equation (89) gives the strain magnitude regardless of
viscoelastic effects (departure of the sÿe curve from linearity
outside proportionality limit).

The sy=E ratio may also be expressed through the
GruÈ neisen parameter g [110]:

sy
E
� 1

6g
: �90�

Taking into consideration that ey � 0:5=g [150] and the shear
strain is � 0:66 of the tensile deformation [40] gives the
theoretical yield strain [250]:

e thy � 2g� : �91�

Comparison of the experimental yield strain ey and e thy
derived from Eqn (89) revealed their rough equality suggest-
ing the association of flowing quality with the loss of stability
by polymers (strictly, by clusters because m depends on the
density Vcl of a cluster network of macromolecular entangle-
ments [see Eqn (59)] and sy is proportional to V cl [91]).

Paper [251] demonstrated accelerated stress relaxation in
epoxy polymers loaded as described above. The authors
explained this effect by a partial breaking of chemical
bonds. To verify this conclusion, the experiment was
reproduced by subjecting samples first to compression until
the plateau of forced rubber-like elasticity was reached and
then to annealing at T < Tg [250]. These procedures resulted
in the reappearance of the yield tooth in the sÿe curve,

probably due to the recovery of unstable clusters (the
restoration of disrupted chemical bonds at T < Tg being
unlikely). In connection with this, it should be noted that
suppression of the yield tooth as a result of preliminary plastic
deformation was also observed in linear amorphous poly-
mers, e.g., polycarbonate [82], known to be having no
network of chemical bonds.

According to Filyanov [182], the yield tooth Ds in epoxy
polymers decreases with increasing Tg. It is also true of the
systems studied in Ref. [250]. However, the dependence
Ds�Tg� is not universal. For EPD, Ds are significantly
smaller than for EPAh at the same Tg. In the case of
Kst > 1:0 and comparable Tg, Ds is higher than that at
Kst 4 1:0. In other words, an excess of the hardener
promotes formation of a larger number of unstable clusters.

Analysis of the relationship between the experimentally
found width of the temperature range DTg over which the
glass transition occurs and the unstable cluster network
density V us

cl derived from the equation [250]

Ds � 1:73Eb
�������������������
l0C1V us

cl

p
4p�1� m� �92�

has shown that the correlation between Ds and DTg is due to
the presence of unstable clusters [182].

The personification of processes proceeding during the
cold flow of amorphous polymers is also possible in the
framework of the cluster model [250]. They may be inter-
preted as the movements of stable clusters interconnected by
penetrating chains in the devitrified loose-packed matrix, the
high viscosity of which is one of the causes of the transition to
the turbulent regime [250, 252]. Such a qualitative deforma-
tion model for amorphous glassy polymers was constructed
by Bekichev [22, 254].

The behavior of a deformable solid experiencing mechan-
ical action is underlain with the processes of formation and
evolution of dissipative structures (DS) which ensure optimal
dissipation of the energy incoming from the outside [127,
255]. In the case of metals, this approach is universally
accepted even though there is no concerted opinion on the
mechanism of structural rearrangement in the deformable
material [256]. For polymers, this problem is virtually
unexplored although they have been shown to contain DS
[41 ± 43]. Meanwhile, its solution may be instrumental in
addressing polymer deformation based on fundamental
physical principles of nonequilibrium thermodynamics [257].
The application of these principles is possible if a quantitative
structural model is available. In what follows, the cluster
model will be used for the purpose, in which DS are
characterized as the regions of local order.

It has been shown by Balankin et al. [128] that the flow
process in linear amorphous polymers is initiated after an
effective Poisson coefficient my � 0:41 is reached. Assuming
this inference to be correct for cross-linked polymers too and
using the formula relating m to Vcl [see Eqn (59)], the authors
of Ref. [44] computed V y

cl as the yield stress sy is reached. The
results are presented in Fig. 15a along with Vcl values for
undistorted epoxy polymers EPD and EPAh as a function of
Kst. It can be seen that the V y

cl values are independent of Kst

and practically identical in EPD and EPAh owing to the
initial choice of my. At the same time, they are significantly
lower than Vcl. This means that for the flow process to be
realized in cross-linked polymers, a certain number of clusters
(DS) must disintegrate. Such a situation is diametrically
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opposite to deformation processes in metals during which DS
(dislocation substructures) are formed [127, 257]. This
difference is fundamental, being due to distinct notions of
ideal (defect-free) structures of the materials compared.

It should be expected that these structural changes must
influence parameters which characterize the flowing quality
in cross-linked polymers. We shall consider this situation
taking the yield strain ey as an example. It is natural to
suggest that the more DS undergoes decomposition
throughout the flow process, the higher ey must be. The
amount of DS involved in the process can be evaluated as
the difference between the cluster network density before
�Vcl� and after �V y

cl� initiation of yielding: DVcl � Vcl ÿ V y
cl

which is easy to determine from plots in Fig. 15a. The
correlation ey�DVcl� that confirms this suggestion is pre-
sented in Fig. 15b.

Relations (37) ± (39) taken together with Eqn (18) may be
used to assess the cluster functionality F for epoxy polymers
before and after yielding is induced. The most characteristic
difference between the dependences F �Kst� being compared
consists in a significant increase of F as the yield stress is
achieved. A parallel decrease of Vcl and increase of F upon
polymer deformation prior to the yield stress indicate the
decomposition of unstable clusters having low F. As a result
only stable clusters with high F are preserved at sy.
Decomposition of unstable clusters leads to mechanical
devitrification of the loose-packed matrix, accounting for

the rubber-like behavior of the polymer on the plateau of
forced high elasticity (cold flow).

Let us now estimate the energy cost of cluster decomposi-
tion under the action of external load. The energyU necessary
for the association (dissociation) of a pair of segments in a
cluster can be calculated fromEqn (48). Then, the total energy
Uy spent to impose yield strain ey is given by [44]

Uy � UDVcl : �93�

On the other hand,Uy may be derived from the sÿe curve,
assuming it to remain roughly triangular until the yield point
is reached:

Uy � eysy
2

: �94�

By equating formulas (93) and (94), it is possible to find a
theoretical yield stress s th

y and compare it with the experi-
mental sy. The good agreement between s th

y and sy obtained
in Ref. [44] means that the yield strength actually depends on
the decomposition energy of unstable clusters. It is concluded
that the flowing quality of cross-linked polymers is described
in the framework of synergetics of a strained material,
namely, by dissipative structure evolution.

Let us consider specific features of flow process in
amorphous ± crystalline polymers [213, 258, 259]. Practically
all the properties of a polymer of this class have been shown to
depend on the degree of crystallinity [112]. It is therefore
recognized that the crystalline phase makes the main
contribution to the polymer properties. For certain obvious
reasons, plastic deformation of amorphous ± crystalline poly-
mers is of special interest [241, 242]. Unlike amorphous glassy
polymers discussed above on which there is no concerted
opinion as regards flowing quality, its mechanism in
amorphous ± crystalline polymers raises no controversy
amongst researchers, starting from the early treatment of
flow as partial melting and recrystallization of crystalline
regions [260]. The authors of the latest studies appear to share
this view of amorphous ± crystalline polymer flowing quality
without any serious modification [64, 241].

Investigations based on this general concept brought
about correlations of flow and stretch characteristics with
crystalline phase properties of amorphous ± crystalline poly-
mers. Examples of such correlations are provided by the
relationship between yield stress sy and the degree of crystal-
linity [241], between sy and the melting heat [64], etc. It is
generally believed that noncrystalline regions have no effect
on flowing quality or stretching. However, a number of
studies published in the last decade suggest that the influence
of noncrystalline regions on the aggregate of properties of
amorphous ± crystalline polymers has long been underesti-
mated [114, 258].

The flow concept for amorphous ± crystalline polymers is
consistent with the treatment of their behavior as related to
the presence of dislocations. The advocates of such an
interpretation are usually focused on crystalline phase
defects analogous to dislocations in crystal lattices. Analysis
of effects of the amorphous phase of amorphous ± crystalline
polymers on their mechanical properties in the framework of
dislocation analogies requires a revision of the defect concept
as applied to the original amorphous phase (see above).
Without violating the generality of the definition, dislocation
may be regarded as a linear entity that affects the initial
arrangement of the elements comprising an ideal structure.
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Figure 15.Plots of (a) cluster network densityVcl in the unstrained state (1,

2) and after yieldingV y
cl (3, 4) vs. hardener/oligomer ratioKst, and (b) yield

strain ey vs. difference between cluster network density DVcl before and

after yield initiation for epoxy polymers hardened with diamine (1) and

anhydride (2) [44].
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Associated with this entity is the strain energy of the
surrounding medium [see Eqn (48)]. In terms of the inter-
pretation being considered, both clusters formed in the
initially `fully amorphous' polymer matrix (melt or solution)
and crystallites are the defects of the amorphous structure.
For obvious reasons, their formation leads to elastic
disturbances in the matrix with which they are connected by
penetrating (entering neither clusters nor crystallites) chains.
Therefore, macromolecular segments in crystallites and
clusters may be treated as linear defects formally analogous
to dislocations in a fully crystalline material [159].

The temperature dependences of sy for HDPE and PP
calculated by means of Eqns (8), (35), (58) and obtained in
experiment are presented in Fig. 16a. As expected, the sy
values computed from the cluster network density in non-
crystalline regions �s nc

y � are significantly lower than the
experimental sy. This can be accounted for by the fact that
flow in amorphous ± crystalline polymers involves both non-
crystalline and crystalline regions [258, 261].

The contribution of crystalline regions to sy in amor-
phous ± crystalline polymers can be evaluated in the following
way. The linear defect density r c

d corresponding to crystalline
regions is defined as the length of macromolecules entering

them [cf. Eqn (7)] [259]:

r c
d �

K

S
; �95�

where K is the degree of crystallinity, and S is the macro-
molecular cross-section area.

By substituting r c
d into Eqn (58), it is possible to calculate

the contribution of crystalline regions �s c
y � to the total sy.

Figure 16a also compares experimental sy values and the
calculated sum �s nc

y � s c
y � and demonstrates a good correla-

tion between these parameters.
It is concluded that the model suggested by Belousov et al.

[259] based on the revised structural defect concept [129]
allows for the quantitative assessment of the contributions of
crystalline and noncrystalline regions to flowing quality in
amorphous ± crystalline polymers.

Let us consider the dependence of the yield strain ey on the
structural characteristics of polymers. This dependence has
actually been neglected until recently by researchers even
though an early study [89] demonstrated its importance in the
deformation of amorphous glassy polymers. There are several
definitions of this parameter. For example, ey has been
defined as the ratio of yield stress sy to the modulus of
elasticity E or as a degree of deformation at which a yield
point is reached [47]. In what follows, the latter definition will
be used. Also, we shall demonstrate the functional relation of
yield strain ey to structural and molecular characteristics of
amorphous glassy polymers for the example of PC and PAr.

Earlier authors believed that ey is either the same for
different polymers [89] or depends on a change of free volume
fc in the course of polymer dilation under deformation [262].
It was also shown that ey relates to the degree of anharmoni-
city of intermolecular bonds, i.e. the GruÈ neisen parameter g,
by the following simple expression [47]

ey � 1

2g
: �96�

Nevertheless, both fc and g are indirect characteristics of the
structure of an unstrained polymer and its changes under
deformation. Therefore, it would be important to obtain, e.g.
in the framework of the cluster model, expressions relating
the mechanical properties of polymers to parameters which
have a direct bearing on their structural features.

The quantity ey was related to the polymer structural
characteristics by Eqn (90) taking into consideration Eqn
(96). This gave

ey � 3sy
E

; �97�

which clearly shows the relationship between yield strains in
terms of the above definitions.

The authors of Ref. [263] substituted fc-dependent
parameter A for coefficient 2 in Eqn (96). As a result of this
refinement, Eqn (97) acquired the form

ey � 6sy
AE

; �98�

where

A � 9

ln�1=fc� : �99�
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Figure 16. Plots of (a) yield stress sy of polyethylene (1, 2) and

polypropylene (3, 4) vs. temperature T (points show experimental data,

curve 1 Ð estimates for noncrystalline regions, 2 Ð estimates taking into

account the contribution of crystalline regions [259]), and (b) breaking

stress sbr vs. testing temperature T [for the entanglement network (1) and

cluster network (2)] and cluster fractionjcl [for PC (3), PAr (4) andHDPE

(5)]; the upper curve depicts the experimental dependence [267]).
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Thus, it follows fromEqns (98) and (99) that the definition
ey � sy=E ignores the presence of free volume in a polymer,
while quantitative differences between ey determined by the
two methods actually depend on fc.

A combination of Eqns (8), (28), (58), (98), and (99) allows
the final expression for the calculation of ey to be obtained in
the form

et �
���
2
p

ln�1=fc�b�l0C1Vcl�1=2
4p�1� m� : �100�

The relation (100) indicates that ey depends in rather a
complicated manner on three groups of factors. One includes
molecular characteristics b, l0, and C1 of the polymer. The
physical sense of b and l0 was commented on in preceding
paragraphs, while C1 is the automodel coefficient of the
supersegmental polymer structure [155, 156]. The second
group comprises the quantities A and m determined by the
fluctuation free volume of the polymer. Finally, the quantity
Vcl is a purely structural characteristic showing the degree of
local order in an amorphous polymer. This parameter is
largely responsible for the temperature dependence of ey and
also its dependence on structural changes throughout the
thermal treatment of the polymer.

It has been shown in Ref. [150] that, within a single
polymer class, ey increases as the glass transition temperature
Tg is raised at a constant testing temperature T and strain rate
e. Equation (100) explains this dependence because a rise in
Vcl in these polymers at practically similar C1 values is a
function of Tg [80].

In conclusion, it is worthwhile to note that the quantities
A and m in the end depend on Vcl, too. Due to this
circumstance, Eqn (100) gives the dependence of ey practi-
cally on two groups of factors. One comprises molecular
factors which can to the first approximation be regarded as
independent of thermal prehistory of the sample and testing
conditions. The other is represented by the structural
parameter Vcl which takes into account both T and e changes
and previous treatments of the sample (thermal treatment,
film formation by casting from solvents, etc.). Furthermore, it
follows from Eqn (100) that the condition Vcl � 0 must be
fulfilled if ey is to be reduced to zero. Because ey vanishes atTg

[262, 264], it may be concluded that polymer devitrification is
due to cluster decomposition under the effect of thermal
fluctuations.

Destruction. According to monograph [62], the deforma-
tion ± strength behavior of polymers depends on their macro-
molecular entanglement networks. It is therefore speculated
that the strength of nonoriented glassy polymers is a function
of the amount of entanglements per unit area in the plane
perpendicular to the external force direction. Bersted [265]
expressed the stress-at-break sbr as

sbr � Q�T; e�
2

�
2

3

�5=6

N
1=3
A �E0SUb�1=2

�
r
Mc

�
1ÿMc

Mn

��5=6
;

�101�
where Q is the correction factor taking into account changes
of the strain rate e and the difference between the testing
temperature T and the temperature at which mobility of
macromolecules is completely terminated, NA is the Avoga-
dro constant, E0 is the modulus of longitudinal elasticity of
the crystal lattice,Mn is the averagemolecular weight, andMc

is the critical molecular weight which, once achieved, gives

rise to themolecular entanglement network. The last quantity
is expressed as [73]

Mc � 2Me : �102�

In conformity with the cluster model [55], the amorphous
polymer structure is a mesh of clusters tied by `penetrating'
chains and the intercluster (loose-packed) matrix incorporat-
ing interlaced chains. In this situation, the substitution ofMe

measured by different techniques into Eqn (100) may be used
to elucidate what type of entanglements is responsible for
polymer durability and check up the validity of the cluster
molecular entanglement network concept.

Narasawa [62] substituted different E0, S, and U
b
values

to simplify Eqn (100) for the calculation of sbr based on the
data for polyethylene and polyethylene terephthalate:

sbr � 1:4� 105
�

r
Mc

�
1ÿMc

Mn

��5=6
; �103�

where sbr is given in Pa.
Of all the parameters enumerated, E0 is characterized by

the largest data spread. Even for polyethylene, in which it was
measured by different methods, E0 varies over a range of 40 ±
400 GPa [266]. For this reason, the constant of Eqn (103) was
assumed in Ref. [267] to be 1:17� 105 for both PC and PAr
and used as an adjustable parameter. It should be emphasized
that Me for the network of interlacings was measured at
T > Tg and therefore considered to be constant over a
temperature range below Tg. Because the fracture stress is a
function of temperature [262], Bersted [265] took it into
account with the aid of coefficient Q, which looks like a
speculative assumption. The value of Mcl for the cluster
network is a function of T and grows with its rising [see Fig.
2 and Eqn (3)]. Therefore, it seems more natural to think that
a decrease of sbr at elevated T is due in this case to a rise in
Mcl.

In Ref. [267], the true stress-at-break s true
br was taken as

a polymer strength characteristic and determined from
Eqn (36):

s true
br � s n

brlbr ; �104�

where sn
br is the nominal breaking stress, and lbr is the degree

of stretch leading to polymer destruction. The value of lbr was
in turn found from the breaking strain ebr with the use of
relation (71).

Comparison of the temperature dependences of s true
br for

PAr obtained in experiment (solid line) and estimated by Eqn
(103) (curves 1, 2) is shown in Fig. 16b. It can be seen that the
substitution of Mcl for the cluster network into Eqn (103)
gives a s true

br �T � value close to the experimental one. A similar
operation using Me for the conventional interlacing network
fails to produce an equally good agreement of estimated s true

br

with experimental data both on an absolute scale and as a
function of temperature [267]. It is worthy of note that s true

br

values for Me�Mcl� determined by both methods coincide
only at T � 493 K, i.e. at the glass transition temperature for
PAr [267]. This can be accounted for by the disintegration of
the cluster network at Tg, leaving intact the conventional
polymer interlacing network.

For PC, the calculation was made in the reverse order Ð
that is,Me was found from experimental s true

br values with the
help of Eqn (103). Comparison of Me thus obtained and
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corresponding Mcl values computed by Eqns (1) and (2)
indicated that it was clustering of chain segments that
correlated with the experimentally established PC tensile
strength both on an absolute scale and as a function of
temperature [267].

It may be concluded that the degree of strength of
amorphous glassy polymers is due to the presence of the
high-density cluster entanglement network alone, the density
of which is almost two orders of magnitude higher compared
with the conventional interlacing network [267]. Similar
results were obtained in Ref. [268] using the model of Mikos
and Peppas [269] who had demonstrated that the strength of
amorphous ± crystalline polyethylenes under impact destruc-
tion is a function of Vcl. Moreover, it was shown in Ref. [270]
using data for PArSf that lbr is also under the control of
cluster network parameters.

One more approach to the evaluation of polymer strength
is based on the concept of a quasi-two-phase (microhetero-
geneous) structure of the polymer amorphous state [86]. The
following empirical equation was derived for strength sbr of
filled polymers [271]:

sbr � aÿ cjfill ; �105�

where a and c are constants, and jfill is the volume fraction of
the filler.

Figure 16b (curves 3 ± 5) presents the dependences of
breaking stress sbr on the cluster volume fraction jcl for
three polymers: PC, PAr, and HDPE. The data for HDPE
were obtained in impact tests. It follows from the figure that
the strength of these polymers is described by a simple
relation [86]:

sbr � 119jcl �MPa� ; �106�

which is analogous to Eqn (105) at a � 0 and c � ÿ119, with
an increase in jcl (unlike jfill) leading to higher polymer
strength.

Glass transition. It has been repeatedly emphasized that in
the framework of the cluster model the polymer vitrification
at Tg (more precisely, in a certain temperature interval DT
around Tg) is considered to be a nonequilibrium phase
transition associated with the thermofluctuation breakdown
of the regions of local order (clusters). It is important to note
that the cluster model postulates a `frozen' local order. It is
underlain by the high viscosity of the polymer matrix,
although the degree of order `freezing' is a function of
temperature (see Fig. 2). Local ordering in the regions of
this type is characterized by a long lifetime. Local order
makes itself evident just as well at temperatures above Tg, as
was many times suggested for rubbers [56, 57] and has
recently been confirmed in experiment [272]. The last study
revealed `dynamic' local order whose regions (associates)
possess short lifetimes. In this context, it should be recalled
that Lobanov andFrenkel' [273] posed what appears to be the
most relevant model of the fluctuation molecular entangle-
ment network on the condition that it contains multifunc-
tional entanglement sites. These authors hypothesized that
the three-dimensional physical network (identified with
macromolecular entanglements for the purpose of this
discussion) is thermally reversible as it passes through Tll

(the so-called `liquid I ± liquid II' transition temperature). In
other words, there is every reason to consider the transition
Tll as resulting from the formation of the fluctuation

macromolecular entanglement network [274]. Quantities Tll

and Tg are related by the following approximation [57]

Tll � 1:21Tg : �107�

Boyer [275] demonstrated the temperature dependence of
polystyrene (PS) viscosity which suggests a sharp change in
the slope of linear plots at T � 443 K. In other words, this
change actually coincides with Tll equal to � 435 K for PS.
This means that the polymermelt viscosity is governed by two
factors: the viscosity of a `structureless macromolecular
ensemble' proper �T > Tll�, and the viscosity stemming from
the fluctuation entanglement network formed under definite
conditions �T < Tll�. Polymer treatment should be carried
out at temperatures above Tll [or above Tu Ð an analogue of
Tll for amorphous ± crystalline polymersÐ related to melting
temperature Tm similar to Eqn (107)] [274].

Bearing in mind the fluctuation nature of the macro-
molecular entanglement network, it appears appropriate to
examine its relation to density fluctuations c�V� in polymers,
which are formally described by Eqn (22). It is known from
statistical mechanics that for a liquid in equilibrium c�V�
(when V!1, i.e. in the thermodynamic limit) is given as
[108]

c�1� � rkTwT ; �108�

where wT is the isothermal compressibility.
Equation (108) indicates that density fluctuations are due

to thermal atomicmotions with energy kT but limited by bulk
stiffness �wÿ1T �. Estimation ofc�1� atTll�Tu� using data for r
and wT from reference materials [276] shows that c�1� for
certain polymers is roughly constant at these temperatures.
This observation suggests that once a critical c�1� value is
reached, the formation of the regions of local order, i.e. a
fluctuation macromolecular entanglement network, becomes
impracticable because of the high thermal mobility of
macromolecules. Conversely, at c�1� below the critical
value, regions of local order (clusters) are formed in a
polymer melt, which the cluster model treats as multifunc-
tional entanglement network sites. In other words, the
situation takes place described by Boyer as a `liquid with
fixed structure' [275]. The calculated critical temperature Tcrt

[274] at which the critical c�1� value is reached (assumed to
be constant) is in good agreement withTll�Tu� for a number of
amorphous and amorphous ± crystalline polymers, the max-
imum difference being not more than 6% (Table 7).

Thus, the fluctuation macromolecular entanglement net-
work may be regarded as a percolation system formed upon
cooling the polymer melt as a certain critical fluctuation
density, i.e. critical thermal mobility of macromolecules, is
achieved. In this case, the percolation threshold on the

Table 7. Calculated Tcrt, Tll�Tu� and their relative deviations D [274].

Polymer Tcrt, ¬ Tll�Tu�, K D, %

Polymethyl methacrylate
Polystyrene
Polycarbonate
Low-density polyethylene
High-density polyethylene
Polypropylene
Polyamide-6

398
462
488
488
496
510
635

415
433
502
480
480
528
600

4.1
6.2
2.8
1.7
3.3
3.4
5.8
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temperature scale is Tll for amorphous, and Tu for amor-
phous ± crystalline polymers [274].

When the glass transition in amorphous and amor-
phous ± crystalline polymers is considered within the frame-
work of the cluster model, it is accepted [277] that the elevated
density of the chemical cross-link sites ncr leads to a rise in Tg

for cross-linked polymers. Such a dependence is due to the
restriction of molecular chain mobility by chemical cross-link
sites [277, 278]. This inference is confirmed by a number of
experimental findings showing symbate changes of ncr and Tg

[278]. At the same time, the following observations are worth
noting. According to Chang and Brittain [279], thermal
ageing of epoxy polymers at T < Tg increases Tg but does
not affect ncr. This suggests the absence of a direct relationship
between Tg and ncr. It is realized, if at all, at the super-
molecular level of structural organization of cross-linked
polymers.

Kozlov et al. [280] studied two series of epoxy polymers,
one immediately after manufacture (EPAh) and the other
after natural ageing in the air for three years (EPAhag ).
Appropriate vales of Tg, ncr, andVcl for these epoxy polymers
are shown in Table 8. It can be seen that ageing of themajority
of test pieces resulted in a reduction of ncr and increase of Vcl

especially in the case of a large deviation of epoxide
compositions from the stoichiometric ratio. Thus, a change
in the polymer structure throughout thermal ageing may be
interpreted in terms of the cluster model as an enhanced
degree of local order characterized by Vcl [166]. Because this
reflects a trend towards a more equilibrium structure, such an
interpretation is consistent with current concepts [138]. A rise
in Vcl also suggests a reduction in the fluctuation free volume
fc for cross-linked polymers [172], in agreement with modern
views of epoxy polymer ageing [279].

Tg values for aged epoxy polymers are higher than for
fresh ones (Table 8). Analysis of data included in Table 8
shows symbate changes of Vcl and Tg in the course of ageing,
and the absence of a similar relationship between ncr and Tg.
Hence, Tg is not directly dependent on ncr, being a function of
the characteristics of the supersegmental structure.

Figure 17a shows the dependences Tg�Vcl� for both EPAh
series, which are linear and fall on the same straight line,
which allows the devitrification of cross-linked polymers to be
regarded as the thermal breakdown of the `frozen' local order
[41, 42]. Thus, the results of Ref. [280] indicate that the
behavior of the glass transition temperature for cross-linked
polymers is governed by the density of cluster macromole-
cular entanglement network.

It is known at present that the modulus of elasticity E and
the glass transition temperature Tg in linear amorphous
polymers undergo symbate variations [110]. This can be
accounted for by the dependence of these parameters on
symbate changes of such characteristics as cohesive energy
and chain stiffness, respectively [81]. However, in cross-linked

polymers, including epoxy species, E and Tg can show
different (e.g. antibate) behavior. For example, it has been
shown in Refs [175, 281, 282] that a change of the site
concentration in the chemical network by means of Kst

variation brings about antibate (with respect to Tg) changes
of the bulk compressibility modulus and the velocity of
longitudinal ultrasound waves. This effect was explained in
Ref. [81] based on the fluctuation density c�1� concept.
Estimation of c�1� for certain polymers from available
literature data [276] has shown that c�1� remains virtually
constant not only at Tll but also atTg as was expected bearing
in mind relation (107). This fact allowed Eqn (108) to be
rewritten taking into account the relation wÿ1 � KT (KT is the
isothermal bulk compression modulus) as [81]

ccrt �
rkTg

KT
; �109�

where ccrt is the critical c�1� value at Tg.
Because the approximate equality KT � E is fulfilled at

m � 0:33 characteristic of glassy polymers, it follows from
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Figure 17. Plots of glass transition temperature Tg (a) vs. cluster entangle-

ment network densityVcl for an epoxy polymer hardened with anhydrides

(1 Ð original specimens, 2 Ð after ageing [280]), and (b) vs. hardener/

oligomer ratio Kst obtained in experiment (1 ± 4) and calculated from Eqn

(111) (5 ± 8) for epoxy polymers hardened with diamine (1, 2, 5, 6) and

anhydride (3, 4, 7, 8) at 0.1 MPa (1, 3, 5, 7) and 200 MPa (2, 4, 6, 8) [81].

Table 8. Characteristics of epoxy polymers before and after ageing [280].

Kst Tg, K ncr, 10ÿ26 mÿ3 Vcl, 10ÿ27 mÿ3

0.50
0.75
1.0
1.25
1.50

342=363
372=383
399=408
378=398
343=408

4=3
10=5:3
11=7:44
10=11:7
8=10:4

1:3=4:7
2:3=5:4
3:3=5:8
2:4=6:0
1:6=5:7

Note: numerator Ð for EPAh, denominator Ð for EPAhag samples.
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Eqn (109) that the criterion for constantccrt is inapplicable to
the vitrification of epoxy polymers studied in Refs [175, 281,
282]. A decrease of E must result in a fall of Tg, at variance
with known experimental data. This apparent controversy is
explained in Ref. [81] on the assumption that chemical bond
network sites restrict fluctuations of cluster segments and are
thus responsible for lowering density fluctuations. This
explanation does not undermine the key postulate of the
model, according to which polymer devitrification is con-
trolled by the breakdown of the `frozen' local order. A similar
line of reasoning can be found in a work of Flory [283] who
hypothesized that physical entanglements in rubbers
(regarded by many authors as `short-lived' regions of local
order) place strong constraints on fluctuations of chemical
cross-link sites. A direct relationship between ncr and Tg

appears unlikely because the glass transition is a critical
phenomenon associated with a substantial modification of
all polymer properties, whereas ncr does not change as the
temperature passes throughTg. For this reason, it is assumed,
as before, that chemical cross-linking in polymers influences
the formation of physical supersegmental structure manifest
as Vcl; hence, its effect on Tg.

It is difficult to describe the effect of ncr on ccrt in
analytical terms. However, it may be thought that a growing
ncr imposes progressively stronger constraints on ccrt which
becomes lower. The authors of Ref. [81] empirically took
these constraints into account (as Flory [283] done earlier) by
introducing a factor Cn ncr into the right-hand part of Eqn
(109), where C and n are constants. In this case, Eqn (109) for
cross-linked systems assumes the form (taking into considera-
tion a well-known relation between KT and E [110]):

ccrt �
3rkTg�1ÿ 2m�

ECn ncr
: �110�

Based on a few simple assumptions described by
Beloshenko et al. [81], Eqn (110) can be rewritten as

Tg � 4:45� 10ÿ21KTn 1=2cr ; �111�

where Tg is in kelvins, KT in Pa, and ncr in mÿ3.
Figure 17b shows the experimental dependences Tg�Kst�

for epoxy polymers, which on the whole exhibit a good
correlation. The discrepancies apparent in the EPAh system
appear to be related to the approximations used in the study.

Thus, the network of chemical bond sites not only affects
the degree of local order (parameterVcl) as was noticed earlier
in Ref. [284] but also restricts thermal fluctuations of cluster
segments. This effect plays an important role in the formation
of the properties of cross-linked systems. For example, it
explains the observed antibate variations of E and Tg [81].

Let us now turn to the interpretation of characteristic
temperatures for amorphous ± crystalline polymers in the
framework of the cluster model. The complex structure of
these materials as compared with amorphous polymers made
certain authors question the applicability of the notion of the
general nature of a- and b-transitions to highly crystalline
polymers [57]. Analysis of a large number of theoretical and
experimental studies on relaxation transitions in polyethy-
lenes shows that their interpretation is apparently contra-
dictory and many important aspects remain a matter of
controversy [57]. We do not consider here the pros and cons
of the implications of relaxation transitions in amorphous ±
crystalline polymers because they have been discussed at

length in many previous works [57, 285, 286]. Suffice it to
recall some major prerequisites for cluster formation in these
materials. It has been mentioned before that the amorphous
chain tension at the time of crystallization gives rise to the
regions of local order (clusters) by analogy with the formation
of liquid ± crystalline order [287]. This means that clustering
at T < Tm is also due to `freezing' molecular mobility by
mechanical chain tension [288]. As the temperature is raised,
the tension falls leading to a decrease of the local order level
and the corresponding growth ofCm�jlm�. It is appropriate to
recall that, in the case of polyethylenes, the `mobile fraction'
Cm (or the devitrified loose-packed matrix in the amorphous
phase) appears at temperatures roughly between 140 and
170 K [57]. On approaching Tm, the degree of crystallinity
decreases as a result of crystallite surface melting and
intensified chain slippage through crystallites. These pro-
cesses lead to cluster decomposition and devitrification of
the amorphous phase which acquires high elasticity. This
process is completed at the polymer melting point. Therefore,
devitrification of both the amorphous phase and the bulk
material in amorphous ± crystalline polymers is associated
with the breakdown of the `frozen' local order (cluster
decomposition) as in amorphous glassy polymers [171]. In
the framework of such a structural interpretation, the glass
transition occurs over a very wide temperature range, from
� 140ÿ170 K to � 410 K for polyethylenes [289]. In fact, in
terms of the cluster model, the transition at � 140ÿ170 K in
polyethylenes is an analogue ofT 0g, whileTm is an analogue of
Tg. In this aspect,Tg should be regarded as the achievement of
an `ideal' polymer structural state in which there is neither
local nor long-range order [129, 259].

Diffusion. The free volume theory is successfully
employed for the interpretation of diffusion processes in
polymers above glass transition temperature. However, its
application to the glassy state encounters difficulty [290].
Polymer diffusive properties below Tg were considered in
Refs [66, 166] in terms of two interrelated models: the
fluctuation free volume model [110] and the cluster model
[55].

The specific patterns of the dependence of the nitrogen-
based permeability coefficient PN2

on the amount of frac-
tional fluctuation free volume fc estimated from Eqn (61)
suggests a close relationship between diffusion processes and
free volume fractions in polymer materials. An admixture of
0.05 wt% Z in HDPE results in a dramatic decrease of PN2

(see Table 3). Selected structural characteristics of three most
common HDPE�Z systems are presented in Table 9. At the
practically invariable degree of crystallinity K, the nitrogen-
based permeability coefficient for HDPE�Z compositions is
almost a factor of 17 smaller than for uncontaminated
HDPE. A � 16% decrease of K in HDPE�Z containing
1.0 wt% of Z (compared with original HDPE) leads to a
decrease in PN2

rather than to an increase. This means that an
explanation for the effect in question should be sought in
structural changes of noncrystalline regions. As is known
from Ref. [291], transfer processes in amorphous ± crystalline

Table 9. Degree of crystallinity K and crystallite size L002 for HDPE�Z
compositions.

Z content, weight percent K L002, A
�

0
0.05
1.0

0.68
0.65
0.52

280
250
265
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polymers, such as HDPE, are as a rule mediated through
amorphous regions. It may be suggested that these processes
occur in the loose-packed matrix, since it accumulates the
entire fluctuation free volume available. The dependence of
PN2

on jlm is also linear [166]. This confirms that the above
structural interpretation of the diffusion processes in poly-
ethylenes is correct [68].

There is a definite relationship between the fluctuation
free volume size and the ratio of the diffusion activation
energy to the diameter squared of the diffusing particle,
ED=d

2
D [290]. This relationship turned out to be linear and,

as expected, a rise in fc results in a decrease of ED=d
2
D. These

data were obtained at temperature 293 K. Taking into
account the linear dependence fc�jlm� (see Fig. 9), it may be
argued that ED=d

2
D and jlm are related to each other by an

analogous correlation.
Thermodynamic properties. Let us consider the influence

of cluster structural parameters on certain thermodynamic
characteristics of polymers. Interesting physical information,
apart from necessary technical data, has been obtained in a
study of thermal expansion of polymers [292]. Slutsker and
Filippov [293] noticed different patterns of micro- and
macroexpansion in amorphous polymers and assigned them
to a certain degree of ordering in chain macromolecules. In
other words, these authors established a relationship between
thermal expansion and the supermolecular structure of
selected amorphous polymers. However, they were unable
to specify this relationship for the lack of an adequate
quantitative structural model. A potential relationship
between thermal expansion and the cluster structure in
epoxy polymers EPD and EPAh will be considered below.

Analysis of large-angle X-ray patterns for these epoxy
polymers revealed a systematic displacement of the center of
gravity of the amorphous halo along axis y as Kst was varied.
This suggested a corresponding change of the Bragg interval
db over a distance scale of 4.48 ± 4.82 A

�
[96]. It may be

concluded from the halo shift in amorphous polymers [294]
and from db values that the X-ray technique measured
distances between the axes of roughly parallel neighboring
macromolecules, i.e. interchain distances Dint, which can be
obtained from the well-known Keesome formula [294]

Dint � 1:22db : �112�
In these works, as in Ref. [293], microdilations �am� and

macrodilations �am� were measured, the former being
counted from the state at Kst � 1:0 for EPD, and at
Kst � 1:25 for EPAh, where db were minimal. The depen-
dences am�Kst� and am�Kst� for the two systems examined (and
for linear amorphous polymers) exhibited a much higher
degree of am variations compared with am, although their
general trend was identical [293]. This difference can be
explained in the framework of the cluster model analogous
to that employed in Ref. [293], setting apart the regions of
local order. Slutsker and Filippov proposed to consider these
regions as analogues of folded-chain crystallites, and clusters
as PCC analogs [55]. Following the line of reasoning adopted
in Ref. [293] it may be concluded that thermal expansion of a
cluster is strongly anisotropic and can be described by the
following equation

3aml � 2am? � 2amk ; �113�

where aml is the quantity obtained by dilatometric measure-
ments, and am? the quantity determined by X-ray diffraction

analysis. Equation (113) allows amk to be found. All measured
a values are listed in Table 10 which shows that aml, am?, and
amk are very close to the analogous characteristics reported in
Ref. [293] both on an absolute scale and in terms of the
tendency in changes. For all that, there is an important
difference such that amk may be either positive or negative in
sign. The authors of Ref. [293] maintain that one of the
factors accounting for the negative sign of amk may be trans-
hauche conformation transitions contributing to the long-
itudinal contraction of a macromolecule. Evidently, the
positive sign and rather high absolute values of amk suggest a
sufficiently high probability of reverse (hauche-trans) transi-
tions in epoxy polymers with changingKst. The wavelength lv
for a nonstretchable strand as a model of a macromolecular
segment in the case of sinusoidal vibrations can be written as
[293]

lv � pdb

��������
am?
jamj

r
; �114�

where am is the overall polymer microstate.
There have been many studies on the heat of solution

concerning amorphous polymers [292, 295, 296]. It is believed
that a major contribution to the heat of solution DHs comes
from the thermal effect of system transition from the
metastable glassy state to a quasi-equilibrium solution [296].
Of crucial importance here may be the contribution from a
component associated with the polymer structure, in parti-
cular, the presence of ordered regions [295]. It is natural to
check this inference in terms of the cluster model.

A few general features of DHs behavior were noticed in
Ref. [295]. First, DHs does not depend on the solution
temperature T above the glass transition temperature Tg of
the polymer. It has been mentioned above that the cluster
model implies thermofluctuation cluster decomposition atTg.
In other words, this process may be supposed to control
variations of DHs at Tg. Second, a rise in Tg is accompanied
by an increase of DHs at a fixed T [in the framework of the
cluster model, polymers with higher Tg have larger Vcl at
constant temperatureT, see Eqn (63)]. Third, a rise in solution
temperature leads to a fall inDHs because in the cluster model
Vcl decreases as T is raised (see Fig. 2). However, the most
remarkable finding is the linear dependence of DHs on the
Tg ÿ T difference, observed in Ref. [295]. This dependence
suggests that DHs is unrelated to the structural features of
amorphous polymers and is determined by the degree of
proximity to Tg alone. Treating a cluster segment as a linear
defect, one can calculate its dissociation energy U with the
help of Eqn (48). Then, the dissociation energy Udis per unit
volume of the polymer is found in the following way

Udis � UVcl : �115�
The evaluated Udis and the linear dependence

DHs � f �Tg ÿ T � for PMMA, PC, and PAr [295] give reason

Table 10. Dynamic characteristics of cross-linked polymers.

Composition Kst am? � 102 amk � 102 am � 102

EPD

EPAh

0.50
0.75
1.25
1.50
0.75
1.0
1.50

4.15
3.94
1.04
2.07
1.08
0.43
3.03

ÿ2.03
ÿ2.09
3.83
1.83
2.81
4.30
0.24

2.09
1.93
1.97
1.99
2.23
1.72
2.10
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to regard DHs as an energy necessary for cluster dissociation.
This means polymer transition from the metastable glassy
state to the quasi-equilibrium one (solution or melt).

Finally, a jump of heat capacityDCp at the glass transition
temperature Tg can be estimated as described by Wunderlich
[297]:

DCp � R
v0
vh

�
Eh

RTg

�2

exp

�
ÿ Eh

RTg

�
; �116�

where R is the gas constant, v0 is the molar volume occupied
by macromolecules, vh is the molar free volume, and Eh is the
energy of the free-volume microcavity formation.

The estimate is facilitated by simplifying formula (116)
and assuming v0=vh � 5 [297], Eh=RTg � ln�1=fc� [110], and
exp�ÿEh=RTg� � fc [110]. The resultant DCp values are
presented in Table 11. Their correctness can be checked by
independent determination of DCp using the Boyer empirical
relation [298]

DCp � 104:25 J gÿ1

Tg
: �117�

Table 11 shows rather closeDCp values derived fromEqns
(116) and (117). It is also easy to see that the calculation of
DCp by means of Eqn (116) requires a single parameter fc. It
may be argued based on the linear correlation fc�jlm� (see
Fig. 9) that a similar DCp value will be obtained in the
framework of the cluster model.

Scaling of molecular characteristics. Molecular weight
characteristics are specific parameters of the polymers,
having a definitive influence on all their properties [299]. It
has been shown in the foregoing pages that an admixture of Z
in HDPE results in a dramatic change of many HDPE
properties. This prompted a study of molecular weight
effects in HDPE�Z compositions [300].

Following Popova et al. [301], the average molecular
weight Mw of HDPE can be estimated from an empirical
relation

lgMw � lg 129000ÿ 0:263 lg�I 190
21:6� ; �118�

where the superscript and subscript on I denote the tempera-
ture in �C and the imposed load in N, respectively.

The dependenceMw�CZ� found from Eqn (118) exhibits a
maximum at CZ � 0:05%, when Mw is approximately 25%
higher than the molecular weight of unmodified HDPE
(Table 12). According to these data, admission of Z into

HDPE results in a marked increase of the polymer molecular
weight. This rise is paralleled by a change of mechanical
characteristics, such as would be caused by Mw modulation.
Thus, Table 12 shows CZ-dependence of the Sharpy impact
strength �Ap� having a maximum. Also, Ref. [301] proposes a
formula relating HDPE viscosity at impact tension �ap� to I :

lg ap � 1:492ÿ 0:22 lg�I 190
21:6� : �119�

The dependence of ap on CZ, governed by Eqn (119) (see
Table 12), is also analogous to the dependenceMw�CZ�.

However, these data do not actually indicate that an
admixture of Z in HDPE results in a higher Mw [99]. After
boiling of HDPE�Z in xylene for 5 h, I (hence Mw)
practically returned to the initial values at CZ of 0.01 ±
0.15%, as follows from Eqn (118) [99, 300]. The treatment
regimes for HDPE�Z compositions in n-xylene (tempera-
ture and duration) were chosen such that only van der Waals
intermolecular bonds were broken, while covalent bonds
remained intact as indicated by the equality of I for original
HDPE prior to and after boiling in n-xylene. It is therefore
assumed that incorporation of Z into HDPE has no effect on
its molecular weight. A drastic change of Mw estimated with
the use of Eqn (118) may be attributed to the enhancement of
Vcl.

Kavassalus and Noolandi [302] showed that the following
relation is true within the framework of scaling concepts:

M 3
w

M 2
p

/ Z0 ; �120�

where Z0 is the polymer melt viscosity at zero shear.
To a good approximation, Z0 can be characterized by I

becausemeasurement of the latter parameter is not associated
with marked shear stress. The reciprocal of the I quantity is
more convenient to use for the purpose because its increase
corresponds to Z0 growth. In this approach, Iÿ1 reflects a
cumulative change of both molecular mass and macromole-
cular entanglement network density of the polymer [300].

The dependence of molecular characteristics on Z0 in the
form of Eqn (120) is linear and goes through the origin of the
coordinate system. In other words, the cluster entanglement
network in HDPE�Z compositions may be described in the
framework of the scaling theory [302].

To conclude, Mills et al. [303] treated polyethylenes as a
rubber-like amorphousmatrix in which crystallites played the
role of molecular entanglement network sites. However,
measurements of I indicated that the maximum viscosity of

Table 12.Molecular and mechanical characteristics of HDPE�Z compo-
sitions [300].

Z content,
weight percent

Mw � 10ÿ5,
g molÿ1

Ap, kJ mÿ2 ap, kJ mÿ2

0
0.01
0.03
0.05
0.07
0.10
0.15
0.20
0.50
1.00

1.56
1.48
1.70
1.93
1.76
1.45
1.44
1.40
1.47
1.42

19.5
15.8
23.5
37.2
29.8
11.7
12.5
14.8
13.4
19.2

34.5
34.1
39.5
44.8
40.5
34.0
33.9
33.5
34.0
33.5

Note:Mw was calculated using Eqn (118).

Table 11. Comparison of heat capacity discontinuity DCp at Tg, estimated
from Eqns (116) and (117) for epoxy polymers.

Polymer Kst DCp, J gÿ1 Kÿ1

from Eqn (116) from Eqn (117)

EPD

EPAh

0.50
0.75
1.0
1.25
1.50
0.50
0.75
1.0
1.25
1.50

32.6
26.6
21.8
18.8
24.8
29.3
24.4
22.9
25.2
31.0

32.0
28.6
24.6
25.7
26.7
30.4
28.0
26.1
27.5
30.2
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HDPE�Z compositions is also retained in a melt at 190 �C,
when crystallites are nonexistent. Moreover, there is a linear
correlation between I (T � 190 �C) and Mcl (T � 20 �C) [99].
These observations support the role of cluster entanglements
in polyethylenes.

Structural relaxation. Structural changes accompanying
relaxation of amorphous glassy and amorphous ± crystalline
polymers are referred to as structural relaxation. The
principles of structural relaxation in amorphous polymers
are demonstrated by Fig. 18awhich shows the dependences of
the modulus of elasticity E and equilibrium modulus E1 on
Vcl for PC and PAr, respectively. The dependences E�Vcl�
split into two linear portions each bounded by the glass
transition temperature T 0g of the loose-packed matrix [60].
This means that at temperatures below T 0g E is determined by
the collective contribution of the clusters and loose-packed
matrix, and only by clusters above T 0g [91]. Such a situation is
easy to explain. Specifically, at temperatures above T 0g the
modulus of elasticity of the devitrifiedmatrix is around 2MPa
[65] or practically zero on the scale of Fig. 18a. Of special
interest is that the contribution of the loose-packed matrix to
E, determined by the extrapolation of plot E�Vcl� to Vcl � 0,
is independent of temperature. Such a situation is not a mere
coincidence, being underlain by fundamental processes
worthy of special consideration. The dependence E1�Vcl�
for PC, also shown in Fig. 18a, is distinct from E�Vcl� at

T < T 0g only in the zero contribution of the loose-packed
matrix. In fact, there is a parallel shift of the plot E�Vcl�,
suggesting that relaxation processes in amorphous polymers
at T < T 0g are actually confined to the loose-packed matrix.

The dependences E�Vcl� and E1�Vcl� for HDPE, derived
from the results of quasi-static tensile tests, present quite a
different picture compared with the behavior of PC and PAr
at T < T 0g. The course of relaxation is reflected in a change of
the slope of the plot E1�Vcl� as compared with E�Vcl�. The
vanishing of E and E1 at Vcl � 0 is due to the low elastic
modulus (� 2:1MPa [65]) of the loose-packedmatrix which is
devitrified at the temperatures (293 ± 363 K) used in the test
[57]. A decline in the slope, in turn, signifies a modulation of
the structural relaxation mechanism now biased in favor of
the second constituent structure, viz. clusters.

Let us now consider factors that may be responsible for a
change in the mechanism of structural relaxation. Earlier
studies [254, 304] revealed two potential mechanisms func-
tioning in the deformation of amorphous polymers: one
corresponds to the appearance and `freezing' of nonequili-
brium macromolecular conformations (mechanism I), and
the other to mutual displacement of elements of the super-
molecular structure tied by penetrating chains (mechanism
II). In essence, relaxation processes are opposite to deforma-
tion, which allows the above interpretation to be used to
explain the available data. Evidently, in the case of a vitrified
loose-packed matrix, structural relaxation due to cluster
motion encounters difficulty (or, at least, is time-consum-
ing). For this reason, the relaxation occurs via the transition
of nonequilibrium chain conformations back to equilibrium
ones (mechanism I). When generating a stress, this mechan-
ism is readily realized in a loose-packed matrix having high fc.
In the case of a devitrified loose-packed matrix (PC and PAr
at T > T 0g, and HDPE), relaxation is a rapid process, its
viscosity markedly decreases [110], and clusters are capable of
motion. Thus, structural relaxation is supported by mechan-
ism II. The dependencesE�Vcl� andE1�Vcl� atT > T 0g for PC
and HDPE practically coincide, which confirms the identity
of the structural relaxation mechanisms. It is worthwhile to
note that the coincidence of E and E1 dependences onVcl for
PC at T > T 0g and HDPE also provides indirect evidence in
support of the aforementioned temperature transitions for
HDPE, in which the interval T � 140ÿ170 K is associated
with Tm, and T with Tg.

Another argument in favor of possible identity comes
from the results of impact tests using HDPE. The longer the
notch, the shorter the period over which the test piece is
destroyed and the larger the growth of E due to the
incompleteness of relaxation processes [47]. Simultaneously,
a part of the loose-packed matrix undergoes mechanical
vitrification and therefore makes an important contribution
to E.

Works [182, 305] used the inverse relative stress decrease
during a certain period of its relaxation b as a parameter
characterizing the temperature dependence of relaxation
properties:

1

b
� sl

sl ÿ sr
; �121�

where sl is the stress at the time of loading, which becomes sr
after a certain period of relaxation.

In terms of the proposed mechanisms of structural
relaxation, a decrease of the cluster size with increasing T
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E=E1
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E1;E, GPa

Vcl � 10ÿ27, mÿ3

1.0

0.5

0 1 2 3

Figure 18. Plots of (a) elastic modulus E (1) and equilibrium modulus E1
(2) vs. cluster entanglement network density Vcl for PC, and (b) E=E1
ratio vs. temperature difference DT � Tg ÿ T for PC (1) and PAr (2), and

vs. �Tm ÿ T � for HDPE (3).
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may be expected to promote the process governed by
mechanism II. Hence, a correlation between 1=b and F may
be anticipated (it should be recalled that the number of
segments in one cluster is F=2 [55]). This was confirmed in
the work [166] which also showed that 1=b tends to unity in
the course of complete thermofluctuation cluster decomposi-
tion, i.e. as F! 2 and T! Tg.

The intensity of relaxation processes can be expressed
through the ratio E=E1. The smaller E1, the more complete
the relaxation processes and the higher E=E1. A similar
interpretation was proposed by Boyd [285, 286] who demon-
strated that the height of the peaks of secondary relaxation
depends on the difference Eÿ E1. Figure 18b shows the
dependence of E=E1 on the temperature difference Tg ÿ T
(Tm ÿ T for HDPE), i.e. the degree ofT approach toTg �Tm�.
It follows from the figure that the degree of process
completeness for all the three polymers grows on approach-
ing Tg �Tm�. This may be due either to a drop in viscosity of
the devitrified matrix or to a decrease of the cluster volume
with increasing T. Both causes promote cluster displacement
in mechanism II.

It is concluded that the cluster model is useful for the
identification of structural relaxation mechanisms in poly-
mers. In the case of a vitrified loose-packed matrix, the
relaxation process occurs through its conformational restruc-
turing (mechanism I); in a devitrified matrix the relaxation is
realized via relative displacements of the clusters (mechanism
II).

Crazing. It has been shown above that amorphous glassy
polymers experience deformation by such local plastic strain
mechanisms as crazing [306] and shear bands [307]. These
may be considered to reflect the structural inhomogeneity of
polymers under the effect of force fields. Nevertheless, the
behavior of these polymers under certain strain conditions is
not infrequently described in terms of polymer mechanical
continuity [197] which raises the problem of the size scale on
which a given polymer may still be regarded as a homo-
geneous solid. Fellers and Huang [87] have shown [see Eqn
(17)] that structural inhomogeneity of a polymer determines
its propensity for crazing Ð that is, the higher the degree of
inhomogeneity, the more amenable the polymer to crazing.
Hence the possibility of establishing a direct relationship
between the polymer structure and the susceptibility to
crazing. In the paragraphs that follow, this will be done
based on the fluctuation theory [87].

In terms of Eqn (17), the `interlacing'-free volume V0 is
considered to be a random quantity which rules out its
relation to the polymer structure. In the framework of the
cluster model, volume V0 can be treated as a cubic volume of
the loose-packed matrix (devoid of cluster network sites by
definition) bounded by eight clusters at the cube vertices. Its
volume Vstr is easy to determine as the inverse number of
clusters Ncl per unit volume of the polymer. Flory [56]
proposed the following formulas for Ncl:

Ncl � 2Vcl

F
; �122�

and

Vstr � F

2Vcl
: �123�

The quantityVstr thus obtained can be compared withV0,
namely, the volume necessary for the creation of a craze

cavity between fibrils, which can be found from Eqn (17). Let
us consider the physical meaning of the parameters entering
this equation. The crazing stress sc admits of several
interpretations. It is conceivable that there is craze nuclea-
tion stress, craze elimination stress, etc. [308, 309]. In the
interpretation under discussion, the major principal stress syy
for the cluster nucleationwas chosen as sc [309]. Such a choice
is justified by the necessity to consider cavity (hence, craze)
initiation.

Experimental measurement of the modulus of elasticity E
(which is approximately equal to the bulk modulus B in
Eqn (17) at m � 0:33, see above) deserves a more detailed
discussion. Polymer impact tests [47, 310] revealed the strong
dependence of E on the strain e due to the anharmonicity of
intermolecular bonds. So far as craze nucleation is concerned,
it is correct to choose E at the craze nucleation strain ec. For
PC and PAr, ec may be assumed to equal � 0:02 [220].
Comparison of E values found from the slope of the linear
portion of the load ± time �Pÿt� curve in impact tests and
evaluated by the elastic recoil technique [47] at e � 0:02
indicates that the former are significantly (approximately
1.5-fold) higher than the latter. This difference interferes
with the results of V0 determination by means of Eqn (17).
Finally, the glass transition temperature Tg is taken as T0 (see
above).

Calculations ofV0 with the help of Eqn (17) usingE values
found from the slope of the linear portion of Pÿt curve give
figures higher than Vstr. Nevertheless, in this case too, V0 and
Vstr are of the same order of magnitude, with similar patterns
of temperature dependences. For the reasons presented
above, the correlation is improved using E values obtained
at e � ec. In this case, the difference does not exceed � 22%.

Characteristically, Vstr does not change with temperature
and is therefore an intrinsic polymer property. The relations
between Vcl and F for PC and PAr are well approximated by
straight lines [221]. This means that a rise in Vcl with
decreasing temperature (Fig. 2a) is mediated through seg-
ment attachment to the existing clusters rather than through
the formation of new clusters. Extrapolation of Vcl�F � plots
to F � 0 yields a finiteVe as a characteristic of the network of
interlaced chains with density � 0:4� 1027 mÿ3, i.e. close to
the experimentally found Ve [66].

An essentially similar interpretation of the association of
crazing with the entanglement network (network of over-
lapping chains) is proposed in Ref. [311]. It is however
qualitative and speculative unlike the model discussed in the
previous paragraphs.

It may be concluded that Vstr, by virtue of its correspon-
dence to V0, characterizes the propensity of a polymer to
crazing. It is especially well apparent from the comparison of
V0 for PC and PAr (� 6:0� 103 A

� 3 and � 3:9� 103 A
� 3,

respectively) and also from the V0 values for polystyrene
(PS) obtained in work [87] (� 450� 103 A

� 3). Evidently, PS
exhibits a much stronger tendency to crazing than either PC
or PAr, as has been shown in numerous experiments [312,
313]. Another observation worth noting consists in that a
decrease of V0 leads to the lowering of the critical size level
above which the polymer may be treated in terms of
continuity concepts. In practice, it is realized via deformation
by diffuse shear in PC [314] and by strongly localized `coarse'
shear bands in PS [307].

Physical (thermal) ageing. Thermal (physical) ageing of
amorphous polymers has been investigated in numerous
studies. Many of them used PC and thus provide good
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materials for comparison. It has been shown that the
influence of thermal ageing on the structure and properties
of amorphous polymers is due to departure of the glassy state
from thermodynamic equilibrium. This gives grounds to
consider polymer ageing as the slow approach toward
equilibrium of a system with a broad distribution of
relaxation times [315]. The available results [138, 316] suggest
that ageing of amorphous polymers at temperatures below
the glass transition temperature Tg increases the density of
their fluid-like packing and thus facilitates the approach of
their structure to the equilibrium glassy state. There are two
major concepts of the mechanism of this process. One [317]
postulates that ageing affects free volume, the other [318]
maintains that ageing effects result from thermoreversible
molecular restructuring. It is specified in Ref. [319] that these
effects in the event of PC are associated with a decreased
mobility of phenyl groups and further ordering of polymer
chains. One more hypothesis was formulated by Bubeck and
Yusar [320]. The authors speculate that ageing leads to
relatively fine conformational changes weaker than, for
instance, a cis-trans transition. They also argue that the
decreased free volume is a result of ageing rather than the
main cause of altered polymer physical properties. It will be
shown below, using data for PC, to what extent this
hypothesis is consistent with the cluster model.

The dependences of cluster network density Vcl on testing
temperature T for original and aged PC indicate that Vcl of
the latter material is higher than of the former. In other
words, aged PC is characterized by a higher degree of local
ordering. This trend is fully consistent with the approach of
the structure of amorphous polymers experiencing thermal
ageing to equilibrium, i.e. a perfectly ordered state. Compar-
ison of the dependences Vcl�T � and F �T � shows that the
number of clusters per unit volume in an ageing polymer
remains roughly constant, but the number of segments in one
cluster increases, suggesting greater stability of the clusters.
Moreover, the increase in the number of cluster segments in
the course of ageing agrees with the conclusion of Ref. [320] to
the effect that the concomitant restructuring is due to
relatively slight conformational changes.

The T-dependence of the fluctuation free volume � fc� is
illustrated by Fig. 19 showing that fc of original PC is bigger
than in the aged polymer over the entire temperature range.
This agrees with the results of Morgan and O'Neal [317].
Antibate plots Vcl�T � and fc�T � suggest the possibility of
correlation between these parameters, which is confirmed by
curves 3 and 4 in Fig. 19. However, original and aged PC
exhibit different dependences fc�Vcl�. At equal Vcl, fc of the
aged polymer is smaller than of the initial one. Because the
entire fluctuation free volume is enclosed in the loose-packed
matrix, these findings indicate that it undergoes compaction
in the course of thermal ageing. This conclusion is in excellent
agreement with the data for annealed PAr obtained by the
positron annihilation technique [147]. Also interesting is the
extrapolation of plots in Fig. 19 (curves 3, 4) to fc � 0 and
Vcl � 0. It is obvious that at fc � 0 the polymer forms a close-
packed structure, actually one giant cluster [171, 321]. By
analogy with Eqn (9),Vcl of such a structure can be expressed
as L=lst which is 7:04� 1027 mÿ3 for both fresh and aged PC.
Extrapolation to fc � 0 gives a close value equal to
� 6:8� 1027 mÿ3 [321]. Extrapolation of the dependence
fc�Vcl� to Vcl � 0 yields the fluctuation free volume of the
polymer at the glass transition temperature Tg. Its values are
� 0:150 for fresh and � 0:133 for aged PC. They are higher

than the universal Simha ±Boyer quantity �� 0:113 [298]) but
fully agree with the calculations of Sanchez (0.105 ± 0.159)
[174].

As is known [140], the majority of amorphous glassy
polymers fail to meet the Prigogine ±Defay criterion. This
means that the order parameter alone is insufficient to
characterize the structure of these polymers. This inference
is confirmed for PC by plots of fc versus Vcl. Evidently,
different fc values at the same Vcl indicate that one more
order parameter besides Vcl is needed to describe the state of
the loose-packed matrix.

Thermal ageing of cross-linked polymers (native EPAh
and EPAhag aged for 3 years) was investigated in Ref. [322]. It
has been shown in a preceding paragraph that the modulus of
elasticityE in the polymer glassy state is a function of the total
contribution from clusters and loose-packed matrix �Elm�. In
the case of matrix devitrification, Elm � 0 (Fig. 18a). There-
fore, the dependence E�Vcl� permits one to find Elm by the
extrapolation of the plots to Vcl � 0. The dependences of E
and Elm on Kst for EPAh and EPAhag suggest that thermal
ageing is accompanied by a significant decrease of the
elasticity modulus, which is almost completely due to a
decrease of Elm. Because all effective relaxants are concen-
trated in the loose-packed matrix, the observed effects of
ageing may be interpreted as being induced by stress
relaxation in this matrix [322].

Analysis of the dependences F �Kst� for EPAh andEPAhag
has demonstrated that thermal ageing leads to a slight
decrease of F. Taken together, this observation and patterns
of Vcl�Kst� dependences suggest that ageing of cross-linked
polymers is associated with a rise in the number of unstable
clusters rather than segments in the existing clusters [322] (cf.
data for PC). This explains the appearance of the `yield tooth'
on sÿe curves for aged epoxy polymers and its disappearance
after yield is reached [279].

Thus, the interpretation of the thermal ageing process
below Tg in amorphous glassy polymers in the framework of
the cluster model provides a quantitative characteristic of the
attending structural changes [171, 321, 322].
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Plasticization. Plasticization is the incorporation of
organic compounds with a polymer for imparting to it such
properties as elasticity, freeze resistance, and lower processing
temperature [323]. Different aspects of plasticization have
been at the focus of many research works during the last 40
years because of the important practical implications of this
process. These studies resulted in the discovery of so-called
antiplasticization, i.e. enhanced polymer stiffness and
strength achieved by a rise in the content of a plasticizer
introduced into the specimen [323]. At present, the most
rational explanation of the observed effects consists in that
the addition of a small amount of a plasticizer leads to the
appearance (or modification) of structural order and the
resulting enhancement of polymer stiffness [324 ± 326]. Con-
tinued enhancement of a plasticizer amount fails to further
improve ordering; in fact, it decreases the polymer stiffness
and impairs its durability. However, until recently these
structural changes have been described only in qualitative
terms. The concluding paragraphs below present a quantita-
tive characteristic of these changes in PC doped with dibutyl
phthalate (DBP) accounting for the well-known effects of
plasticization and antiplasticization [171].

Figure 20a illustrates the effect of DBP content in PC on
Vcl and the number of segments F=2 in one cluster. Of special
interest is the different behavior of Vcl and F=2 depending on
DBP levels. The former parameter monotonically grows with
increasing CDBP. In other words, the plasticizer causes a
monotonic decrease in the degree of local ordering in PC. At

the same time, a conspicuous rise in the number of segments in
a cluster suggests cluster restructuring. Simultaneous exam-
ination of the dependences V�CDBP� and F=2�CDBP� shows
that the admission of the plasticizer leads to the destruction of
less stable (with smaller F=2) clusters and the concurrent
formation of more stable (with larger F=2) structures.

The dependences of E, Tg, and sy on the plasticizer
content CDBP indicate that the two latter parameters
decrease monotonically with growing CDBP, whereas E has a
maximum at CDBP � 2:5% corresponding to the maximum
F=2 in Fig. 20a [171].

If Tg and sy are assumed to be fully determined byVcl (i.e.
by the local order level), the relationship between E and the
structural parameters is of a more complicated character. The
former assumption is confirmed by plots Tg�Vcl� and sy�Vcl�
presented in Fig. 20b. Both plots are linear. Moreover,
extrapolation of the dependence Tg�Vcl� to Vcl � 0 shows
that glass transition temperature of PC in the absence of local
order is equivalent to the testing temperature (293 K). In
other words, PC acquires rubber-like properties under these
conditions. Thus, the breakdown of the local order forms a
prerequisite for devitrification of amorphous polymers.
Naturally, in this case sy � 0, as is shown by the extrapola-
tion of the plot sy�Vcl� to Vcl � 0 (Fig. 20b). Unlike curves 1
and 2, the dependences of the modulus of elasticity E on Vcl

for unmodified PC and PC containing 2.5 or 10% of DBP
(curves 3, 4) as Vcl ! 0 are extrapolated to nonzero E values.
Comparison of curves presented in Fig. 20b (3, 4) shows in the
first place that antiplasticized PC has the lowest Elm at
Vcl � 0. This suggests that the antiplasticizing effect is due
not only to the formation of more stable clusters but also to
the disintegration of the loose-packed matrix, leading to a
reduction in its stiffness. Secondly, antiplasticized PC is
characterized by the steepest slope of the line E�Vcl�, which
in the end compensates for the impaired stiffness of the loose-
packed matrix (i.e. the most stable clusters are also the stiffest
ones). Thirdly, Elm is higher for plasticized than for
unmodified PC at a similar slope of the corresponding
curves. It may be conjectured that an enhanced stiffness of
the loose-packed matrix in plasticized PC is due to the filling
of its free volume cavities with the plasticizer. This inference is
supported by a monotonic decrease of gas permeability
coefficient with growing CDBP. The plots in Fig. 20 provide
a highly descriptive quantitative estimation of structural
changes in PC plasticized by DBP, in conformity with the
reports of other authors.

6. Conclusions

The present work is concerned with the physical grounds of
the cluster model of glassy polymers in the amorphous state.
Analysis of experimental findings and theoretical studies has
demonstrated the possibility of realization of local order
conditions in amorphous polymers. The available data give
evidence in support of the following inferences: (a) macro-
molecular entanglement network sites in noncrystalline
regions of amorphous ± crystalline polymers are the regions
of local order (clusters), and (b) density changes in the cluster
entanglement network have a marked effect on the polymer
structure and properties. It is concluded that a crystallite
analogue with prolate chains is themost likely type of ordered
supersegmental structures in the amorphous state of poly-
mers. With this in mind, consideration of the two principal
models of the regions of local order in glassy polymers,
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treating them either as folded (`bundles') or prolate (clusters)
chains, leads to the conclusion that they must behave
differently under mechanical strain. `Bundles' appear to be
able to unfold and adopt a fully stretched conformation under
large strains, whereas clusters are not, and deformation of the
polymer only occurs via straightening of the so-called
penetrating chains. These assumptions and analogies with
crystalline materials in which any violation of the long-range
order presents a defect give reason to consider the regions of
local order in glassy polymers as structural defects disturbing
complete disorder. In this context, a segment participating in
the cluster may be interpreted as a linear defect, viz. an
analogue of dislocation in crystalline solids.

It is proposed that the experimental findings should be
interpreted based on the description of the amorphous state
of glassy polymers in terms of the cluster model, taking into
account that it does not contradict a wealth of previously
obtained data (when considering the GruÈ neisen parameter,
the Poisson coefficient, the Mooney ±Rivlin equation, the
fluctuation free volume, percolation models, etc.) but offers a
rational explanation of them and provides a sort of a
standard model for structure characteristics. An obvious
advantage of this approach consists in that the parameters
of the cluster model can be obtained in independent tests and
by different methods.

The application of the cluster model to the description of
processes in amorphous polymers has demonstrated that the
modulus of elasticity depends on the stiffness of the non-
crystalline component. Also, this makes it possible to
quantitatively evaluate the contribution of crystalline and
amorphous entities to overall elasticity, flowing quality, and
degradation. The process of devitrification is associated with
the break of the `frozen' local order (cluster decomposition)
and therefore occurs over a wide temperature range. It should
be noted that flow behavior depends on the loss of stability by
clusters rather than on devitrification of the loose-packed
matrix. Scaling analysis of molecular characteristics and
structural relaxation showed that the mechanisms of these
processes can be elucidated with the aid of the cluster model.
In a vitrified loose-packed matrix relaxation is mediated
through its conformational restructuring (mechanism I);
after devitrification the same process occurs via mutual
displacements of clusters (mechanism II). Investigation of
crazing, physical ageing, and plasticization revealed the
relationship between parameters of these processes and
characteristics of the cluster model. Hence the possibility of
quantitative evaluation of the attending structural changes.

Comparative analysis of a large store of available data
gives no reason to doubt the existence of local order in the
structure of amorphous glassy polymers. The only matter of
controversy is the choice of the model. One of them, the
cluster model, is superior to the others in that: (a) its
parameters are determined by independent methods; (b) it
provides a quantitative description of a large number of
properties; (c) it is consistent with current physical concepts,
and (d) it can be used to simulate the polymer structure in
order to predict its characteristics.

The relationship between the local order and fractal
nature of the polymer structure in the condensed state is
underlain by the fact that both are manifestations of a
fundamental property of this state, i.e. its departure from
thermodynamic equilibrium. It has been shown in Ref. [327]
that nonequilibrium processes give rise to fractal structures.
The physical description of these structures in polymers in

terms of the local order concept is feasible within the
framework of the cluster model which allows for the
quantitative identification of amorphous phase structural
elements. Because the two models simulate different aspects
of the polymer structure, they fairly well supplement each
other.

Structures behaving like fractal ones on small distance
scales and like homogeneous ones on large distance scales are
known as self-similar fractals [191]. They are represented by
percolation clusters at a percolation threshold. It has been
shown above (see Section 4) that cluster systems are
percolation systems and therefore should be regarded as
self-similar fractals. Thus, the existence of local order in the
condensed (glassy) amorphous state of polymers determines
their structure. Glassy polymers and self-similar fractals are
analogs so far as the structure of glassy polymers needs more
than one order parameter to be described, since it does not
obey the Prigogine ±Defay criterion. Because Euclidean
objects possess translational symmetry, a single parameter is
needed to describe them, e.g., the Euclidean dimension d.
Fractal objects exhibit dilational symmetry which makes it
necessary to have at least three dimensions (Hausdorff
dimension df, spectral ds, and Euclidean d) to characterize
them. Even if d � 3, at least two other dimensions are needed,
viz. df and ds.

Being a quantitative tool, the cluster model is designed for
the analytical description of structure ± property relation-
ships in polymers. In connection with this, one promising
line of further local order research is the examination of
clusters as dissipative structures. Such an approach allows the
mathematical apparatus of synergetics to be employed for the
description of polymer structures. Its indisputable advantage
consists in the possibility of investigating the interrelation of
the initial and modified (by mechanical, thermal, and other
factors) structures. Considering amorphous glassy polymers
as a combination of structural elements (i.e. their certain
distribution) opens prospects for the application of multi-
fractal concepts to the parametrization of their structures.
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