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directed momenta of equal amplitude, but also by the
existence of an electric field in the p—n junction of the laser
structure, which is responsible for electron and hole currents
whereby electrons and holes have oppositely sensed
momenta.

Therefore, for the first time observations were made of the
superradiance of electrons and holes in a bulk semiconductor
at room temperature. The coherent interaction of the optical
field with an e—h system was attended with oscillations at a
frequency of over 1 THz with a change of sign of the field
amplitude. The superradiance mode in the semiconductor
was accompanied by the formation of a cooperative e —h state
(the domains of macroscopic polarization). The lifetime of
this cooperative state is shorter than 1 ps. In this case, the
coherence of interaction of the electromagnetic field with the
e—h system is retained throughout periods much longer than
the T, time. This may be caused by the pairing of electrons
and holes residing in the cooperative state, their condensa-
tion, and the formation of a state similar to the BCS state of
Cooper pairs in superconductors. In this case, the scattering
of the pairs by each other does not result in a loss of
coherence.
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Bose condensate from the standpoint
of laser physics

A N Oraevskii

1. Coherence of Bose condensates

and the inversion condition

Bose condensate has long been the object of keen interest of
researchers. It has drawn their attention primarily in the
context of the problems of superconductivity and super-
fluidity [1, 2]. The coherent state of a laser-generated
electromagnetic field with a specific frequency and spatial
configuration can also be considered as a Bose condensate of
photons. Relatively recently, a new wave of interest in Bose
condensate research was generated in connection with the
pursuance of successful experiments to cool atoms to record
breaking low temperatures of the order of 10~7 K [3—5]. For
so low a temperature it has been possible to obtain a Bose

condensate of atoms captured in a trap [6]. A Bose condensate
of atoms is primarily of general physical interest. In the state
of a Bose condensate, the wave nature of matter is much
pronounced and an ensemble of particles large enough in
number behaves like a classical field which possesses an
amplitude and a phase.

The Bose condensate of particles has always a priori been
assumed to be a coherent state of matter. In this case, the Bose
condensation of particles was silently implied to form this
coherent state automatically. But for a researcher with the
mentality of a laser physicist this statement is hard to accept
without proof. To take one example, the accumulation of
photons in a single resonator mode in an ‘underexcited’ laser
is possible due to spontaneous transitions, but this state of the
electromagnetic field will not be coherent. The coherent state
of the electromagnetic field (photons) in a laser is formed by
induced transitions when the self-excitation condition is
fulfilled.

Laser. According to the self-excitation condition, the
emission of electromagnetic energy by the active medium of
a laser should exceed the losses arising from possible
absorption and dissipation inside the laser and the emer-
gence of radiation from the laser for subsequent use. In the
context of a two-level model of the laser active medium, this
condition is of the form
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where ANy, is the threshold value of the population
difference, which depends on the total loss of electromag-
netic radiation inside the laser and the transparency of the
output mirror. Clearly the fulfillment of similar conditions is
also necessary to obtain the coherent state of any Bose
particles. Condition (1) is sufficient for laser excitation. The
necessary condition is the inequality
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which is referred to as the ‘inverse population condition.’

For interband transitions in a semiconductor laser, the
condition equivalent to inequality (2) is of the form [9]

/vte_:uh>hw7 (3)

where p, 1, are the respective chemical potentials of electrons
and holes, and /i is the energy of emitted photons. Inequality
(3) testifies to the fact that the electron and hole states should
be degenerate, i.e., their densities should be substantial.

Bose condensate of atoms. Let us consider the process of
Bose condensation from the viewpoint of formation of a
coherent state. The relationship equivalent to the inversion
condition in a laser should follow from the requirement that
the formation of a Bose condensate under the action of the
condensate itself (induced production of coherent particles)
should exceed the condensate decay rate. The result is the
relationship

n(e) > {exp (kiT> - 1}1. (4)

The right-hand side of inequality (4) is nothing but the
equilibrium distribution function of the particles outside of
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the Bose condensate. Consequently, even a weak disturbance
of the equilibrium distribution towards the increase of the
number of particles with some specific energy ¢ results in the
formation of a state which can be termed inverse, if advantage
is taken of laser terminology. Condition (4) is considerably
less stringent than condition (3), since the Bose condensate is
produced with a zero energy. Its coherence now becomes
comprehensible: as soon as some particle escapes from the
Bose condensate owing to fluctuations, it immediately
restores itself by virtue of induced, i.e. coherent, transitions.
Superconducting Bose condensate. The interaction of
electrons responsible for their pairing is most efficient for
the electrons whose energy is close to the Fermi energy [1, 13—
15], to which there corresponds a surface (the Fermi surface)
in the momentum space. The interaction efficiency lowers
with depth away from the Fermi surface, so that the effective
number of interacting electrons is appreciably smaller than
the total number of electrons. The energy diagram of a
superconductor can therefore be represented as follows
(Fig. 1). The superconducting condensate of Cooper pairs N
lies on the pillow of unpaired electrons m. Owing to the
interaction with some agent (primarily with phonons), the
Cooper pairs may decompose. As a consequence, unpaired
quasi-particles n form separated from the condensate of
Cooper pairs by a superconducting energy gap 4 in the
energy space. Bearing this diagram in mind and assuming
the subsystem of free quasi-particles in the semiconductor to
be quasi-equilibrium with chemical potential p, it is possible

to represent the ‘inverse population condition’ in the
following form:
u>0. (5)

Figure 1. Energy diagram of a superconductor. Condensate of Cooper
pairs (N); unpaired electrons below the Fermi level (m); free quasi-
particles (n).

The condition u = 0 corresponds to the equilibrium between
the condensate of Cooper pairs and the ensemble of quasi-
particles, and therefore an arbitrarily weak disturbance of the
equilibrium in favor of the quasi-particles results in the
‘inversion’ condition. We compare condition (5) with the
similar condition (3) for a laser. Condition (3) is much more
severe: a weak disturbance of the thermodynamically equili-
brium distribution does not result in the inversion condition
in lasers. The point is that laser-generated photons carry away
a significant amount of energy stored in the active medium,
whereas the condensate of Cooper pairs is formed with a zero
energy as is the Bose condensate of atoms.

We now pass on to the description of the dynamics of Bose
condensates.

2. Dynamic laser equations
To describe the laser dynamics, the following system of
equations [11, 12] is commonly taken advantage of:
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where A is the amplitude of the field in the resonator, B is the
polarization amplitude, and N = N»/g» — Ni/g1, 7. ', 11 and
7, are the relaxation times of the dynamic quantities 4, N, and
B, respectively.

The system of equations (6) and a modification of it has
been used validly to interpret, predict, and analyze different
dynamic laser regimes. The most remarkable of them is the
regime of nonperiodical pulsations (dynamic chaos, Fig. 2)
first discovered by Grasyuk and Oraevskii [13]. Subsequently
these theoretical predictions were experimentally borne out
[14].

3. System of equations for the Bose condensate of atoms

To describe the dynamics of an atomic Bose condensate,
many authors take advantage of the equation [1]
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Figure 2. Temporal variation of the laser field amplitude in the mode of
chaotic pulsations (calculation) [13]. Plotted on the axes are the quantities
in relative units.
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where V(r, ) is the energy of interaction of the condensate
with an external field, e.g., with the fields of the trap in which
the atoms are confined. U is determined by the energy of pair
interaction of the particles with each other: U = 4n/i*a/m,
where a is the scattering length. By its sense, the dynamic
variable (r, ¢) is the wave function of the subsystem of atoms
which have ‘fallen out’ as the Bose condensate. In the limit of
a sufficiently large number of atoms in the condensate, it is
treated as a classical quantity and is referred to as the order
parameter.

In the context of Eqn (7), the dynamics of the particles
which remain beyond the Bose condensate (incoherent
particles) are left ‘behind the curtain.” However, the
dynamics of incoherent particles become fundamentally
important when atoms can flow into the trap and escape
from it. It is also fundamentally important when the fields in
the trap are perturbed, with the effect that the equilibrium
particle distribution is disturbed. In other words, a dynamic
relationship between Eqn (7) and the equation for the atoms
remaining beyond the Bose condensate is called for. To unify
the Bose condensate and incoherent particles in a single
dynamic system, the following system of equations was
proposed [8]:

. 2
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where N(r,t) = [n(r,p, 1) dp/(2nh)* is the density of inco-
herent quasi-particles [15] and nﬁ(r, f) is their momentum
distribution. S{® and S® = [ §{® d*p/(2nh)* are recombi-
nation integrals which describe the dynamic exchange
between the subsystems of coherent and incoherent parti-
cles, and #5(r,f) is a random Langevin force caused by
spontaneous transitions.

The system of equations (8) can serve as the basis for
writing the dynamic system of equations for a so-called
atomic laser, i.e., the source of a beam of coherent particles
emanating from a trap [8]. Under amply justified assump-
tions, the system of equations for an atomic laser can be
shown to reduce to the form [16]

da
== loo(V = No) =7]4, (a)
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where A is the modulus of the order parameter averaged over
the trap volume, N and Ny are the average and critical
densities of incoherent particles, g is the constant for the
interaction between incoherent particles and the Bose con-
densate, and y and v are the attenuation coefficients arising
from the escape of coherent and incoherent particles from the
trap.

The system of equations (9) for an ‘atomic laser’ is
isomorphous with the system of equations for a laser with a
broad amplification line [12]. The theory of relaxation laser
pulsations [12, 17] is therefore fully applicable to the ‘atomic
laser.” In particular, by varying the amplitude of the radio-
frequency field in trap, it is possible to excite deep pulsations
of the atomic order parameter. The manifestation will be the
emergence of a coherent atomic beam outside the trap in the
form of regular repetitive bunches. It is also possible to bring
the ‘atomic laser’ to the regime of dynamic chaos, as was
previously done with a CO, laser [18]. The experimental
investigation of dynamic chaos in an atomic trap is a
fascinating problem. It would be highly instructive to
observe how the chaotic pulsations of the order parameter
inside the trap show up in its spatial configuration.

In summary we note that in the context of the system of
equations (8) it is possible to describe not only the dynamics
of a previously formed Bose condensate, but also its
formation process during the cooling of atoms in a trap.

4. Dynamic system of equations for a superconductor

By taking advantage of the model given in Fig. 1 and of the
particle conservation law, it is possible to write the equations
which unite the order parameter, free quasi-particles, and
phonons in a single dynamic system [19]. The equation for the
complex order parameter is of the form

o¥(r,) 1 (1 5 n(r, 1) 4 | (r, t)]2
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n(r, 1) = [n,(r,1)d*p/(2nh)’, Ny/2 is the density of super-
conducting electrons at absolute zero, 7, is the temporal
parameter determined by interelectron interactions, and
Z(r,t) is a random Langevin force caused by spontaneous
transitions.

The spectral density of free quasi-particles 7,(r, 7) satisfies
the kinetic equation [20]

0 0 O¢ O O¢
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= -89, 1) — 8™ (r,1) (12)

The energy of quasi-particles in this equation is defined by the
well-known BCS relationship. S,EC) is the collision integral
and S,SR) is the recombination integral which describes the
transitions between the subsystems n and (N + m) (see Fig. 1)
[20]. The recombination integrals involve, along with the
density of free quasi-particles, the phonon density M. If the
phonon density is nonequilibrium, it also necessitates a
dynamic equation. It is quite frequently written in the
following simple form [20]:
oMy 1
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(13)
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The first term on the right-hand side of this equation describes
the transfer of phonons from the superconducting sample to
the substrate, the second one describes the production of
phonons in the recombination of free quasi-particles, the
third one arises from the scattering of quasi-particles, and the
fourth one describes the excitation of phonons by an external
source. Mo is the equilibrium phonon density for a given
temperature.

If required, it is possible to write a recombination integral
in which photons would appear in lieu of phonons (or along
with them). Clearly the system of equations (10), (12), and
(13) should be complemented with the Maxwell equations,
which will be connected to it by the superconducting current
[1] and the density of photons, if the latter act on the
superconducting sample.

Eventually there results a comprehensive dynamic system
with a multidimensional phase space. That is why a wide
diversity of dynamic regimes are possible in a semiconductor,
which are of interest both from theoretical and practical
viewpoints.

5. Concluding remarks

We emphasize once again that the decisive role in the
production of a Bose condensate of any nature is played by
induced transitions. We believe that they are the universal
mechanism responsible for the violation of symmetry in
Nature. In order for this to happen, conditions are necessary
whereby the induced process of production of some object
with an inherent feature would exceed its decay process. It
seems likely that induced processes have played a crucial role
in the formation of our Universe with the symmetry broken in
favor of electrons and protons. A similar supposition can be
made as to the origin of life with the left chirality of protein
molecules. Suchlike suppositions have been discussed in the
literature.

The processes of self-organization occurring in nonlinear
systems have been discussed in the literature for about
20 years. A special term — synergetics — was invented to
unify a diversity of self-organization processes in a common
realm. But this is a unification of processes by a superficial
feature. In our opinion, induced transitions are the mechan-
ism which unifies self-organization processes.
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