
Abstract. The possibility of stable faster-than-light propagation
of ultimately short (without high-frequency carrier) electro-
magnetic solitons, breathers, and nonresonant envelope soli-
tons is discussed based on the simple model of two-component
nonequilibrium media undergoing two-level quantum transi-
tions with widely differing eigenfrequencies.

1. Introduction

Today in connection with the development of pulsed laser
technology that allows creation of highly nonequilibrium
media, interest has revived in the issue of the possible
existence of pulses in such media that travel faster than light
in vacuum [1]. The superluminal (tachyon) modes exist
necessarily in media that are unstable with respect to
transition to the equilibrium state [2]. The possibility of
faster-than-light propagation in amplifying (active) media of
optical monochromatic pulses (MP) was earlier noted in the
series of works [3 ± 5]. The term `monochromatic' as applied
to a pulse is conventional and can only be used when the
spectral width of the pulse do � 1=tp (where tp is the time
length of the pulse) is much less than its carrier frequency o.
In other words, the condition under which the pulse may be
regarded as monochromatic can be written as otp 4 1. It
should be observed that we are talking about the group
velocity v > c. Such pulses do not carry information in the
process, because the propagation of themaximumof thewave
packet is associated not with the transfer of energy from one
point to another, but with the amplification of the pulse by
virtue of the nonequilibrium state of the medium. Associated
with this circumstance is also the impossibility of spatial
localization of the superluminal object [2]. The difficulty
consists in the instability of the stationary light pulses that

return the nonequilibrium medium into the original inverted
state [1]. On the other hand, the stability of superluminal
signals leads to violation of the causality principle [6].

The advances of laser physics over the past decade have
made it possible to produce optical pulses about one period of
electromagnetic wave long Ð ultimately short pulses (USP)
[7 ± 9]. The interaction of such pulses with matter (including
nonequilibrium media) exhibits special features not found in
the interaction involving MP with a well-defined carrier
frequency [10, 11].

In the simplest case, when the medium is assumed to
consist of two-level atoms, the dynamics of broadband USP
is described by the three-dimensional sine-Gordon equation
[10, 11].We use the term `broadband' here in the sense that the
pulse spectrum do � tÿ1p overlaps the frequency o0 of
quantum transitions in the two-level atoms (that is,
o0=do � o0tp 5 1; see below). In the nonequilibrium case,
when prior to the arrival of the pulse in themedium it ismostly
the excited states that are occupied, the solution of the sine-
Gordon equation formally appears as localized superluminal
pulses (v > c). Such solutions, however, are found to be
unstable (for example, with respect to self-focusing) [12, 13].
The same can be said about the nonresonant envelope solitons
[12].

In connection with the above, it would be interesting to
study the issue of the feasibility to create such a state of the
medium in which it will carry stable USP and nonresonant
envelope solitons with superluminal group velocities.

2. Linear analysis

The linear optical dispersion is quite adequately described by
the classical Lorentz theory [14], in which the interaction of
the optical electron with atomic core is represented by the
quasi-elastic restoring force. As a result, the complex index of
refraction, whose imaginary part K is proportional to the
coefficient of light damping, and the real partN describes the
refractive properties of the medium, is expressed in terms of
the parameters of the medium and the frequencyo of light by
the Selmeier formula [14]. Figure 1 shows the curvesN�o� and
K�o� relevant to this formula [14]. Observe that the Selmeier
formula corresponds to the quantum-mechanical model of a
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two-level medium, where the frequency of transition between
the levels is o0.

By definition, the group velocity is v � do= dk, where k is
the wave number corresponding to the frequency o and
expressed through the phase velocity vph � c=N as
k � o=vph � oN=c. Then we have

1

v
� dk

do
� 1

c

d

do
�oN� � 1

c

�
N� o

dN

do

�
: �1�

In the neighborhood of the frequency o0 of resonant
absorption, owing to the abrupt decrease in N, the inequality
N� o dN= do < 1 may be met and, as a consequence [see
Eqn (1)], v > c. However, the damping of light here is so
strong that the group velocity loses the meaning of the energy
transfer velocity [15].

The curves shown in Fig. 1 correlate with the equilibrium
medium. For a medium with the inverse population of
quantum levels, the coefficient K is negative and the regions
of normal dispersion �dN=do > 0� in the equilibrium
medium become the regions of anomalous dispersion
�dN=do < 0� in the inverted medium, and vice versa. In the
regions where N decreases rapidly with increasing o, the
amplification of waves is now strong, which leads to the
development of their instability.

The situation may be somewhat different if we consider a
two-component medium with the resonant frequencies o1

and o2, respectively, when one of the components is in the
equilibrium state, whereas the other is inverted. Let in this
case the characteristic frequency o of the electromagnetic
wave satisfy the dual inequality

o2
1 5o2 5o2

2 : �2�

The condition o2
1 5o2 can be satisfied by the eigenfre-

quencies o1 that lie in the IR range. The inequality o2
2 4o2

holds true for frequencies o2 falling within the optical range,
corresponding to the electronic-optical transitions. Further
on we shall refer to the quantum transitions with the
frequency o1�o2� as the 1�2� transitions or 1�2� compo-
nents. Both types of transitions may pertain to the same
molecular structural units (then their respective concentra-
tions n1 and n2 are equal) or to different ones (then, possibly,
n1 6� n2).

The set of constitutive andwave equations for themedium
comprised of two types of two-level atoms is given by

q2Uj

qt2
� ÿo2

j Uj ÿ oj
2dj E

�h
Wj ;

qWj

qt
� 2dj E

�hoj

qUj

qt
; �3�

DEÿ 1

c2
q2E
qt2
ÿ g
c2

qE
qt
� 8p

c2
q2

qt2
X2
j�1

dj njUj : �4�

Here, the subscript j � 1; 2 denotes the number of the
respective component, E is the electric field strength of the
pulse, dj is the transition dipole moment of the jth component,
Uj and Wj are the dimensionless dipole moment and the
population inversion of atoms of the jth component
�ÿ1=24Wj 4 1=2�, and g is the radiation loss factor in the
medium per unit time. Further on we assume that the
duration tp of the light pulse is much shorter than the time
of phase and energy relaxation for both transitions, which
allows us to disregard the relaxation terms in Eqn (3).

Linearization of equations (3), (4) implies fixing the values
of inversion for both components. In accordance with this, we
assume thatWj �Wj1 (whereWj1 is the initial inversion of
the jth component). Assuming then that P;E � exp�iot�,
where P � 2

P2
j�1 dj njUj is the medium polarization, we find

the expressions for susceptibility w � P=E and the square of
the refractive index �g � 0�:

N 2 � 1� 4pw � 1ÿ 16p
�h

X2
j�1

d 2
j oj nj

o2
j ÿ o2

Wj1 : �5�

By virtue of Eqn (2), in the denominator of the first term
( j � 1) under the summation sign in expression (5) we may
drop o2

1, and also drop the frequency squared o2 of the
external field in the denominator of the second term ( j � 2).
Then fromEqns (1) and (5) we find the condition under which
we have v > c:

o2
�W11 � o2W21 > 0 ; �6�

where we have introduced the parametero� (with dimensions
of frequency), which is defined as o� ��d1=d2N20������������������������
n1o1o2=n2

p
, N20�

������������������������
1ÿ 2ZW21
p

and has the meaning of
the refractive index of the 2-component in the range of
frequencies that satisfy condition (2): Z � 8pd 2

2 n2=��ho2�.
As follows from the Kramers ±Kronig relations [16], the

dispersion (the dependence of w on the frequency) inevitably
leads to absorption of the light field in the medium. Observe
also that the absorption coefficient K has sharp peaks in the
regions of anomalous dispersion (qw=qo � qN 2=qo < 0).
This anomalous dispersion pattern is always associated with
absorption [14]. From the sameKramers ±Kronig relations it
follows that the change of sign of the absorption coefficient
alters the nature of dispersion: the dispersion becomes normal
in the neighborhoods of the resonant frequencies, and

N

N0

1

0
o0 o

�

0
o0 o

Figure 1.Real refractive indexN and absorption coefficient K as functions

of light frequency o, based on the classical Selmeier formula (o0 is the

resonant medium frequency, N0 is the refractive index at zero frequency).

In the neighborhood ofo0, whereN�o� falls off rapidly due to anomalous

dispersion, we formally have v > c. However, owing to the strong

absorption in this frequency range, the parameter v loses its meaning of

the velocity of the wave.
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anomalous elsewhere. Figure 2 depicts the curves w�o� and
K�o� for the four different states of the two-component
medium. As follows from Eqn (6), in the case of an absorbing
medium (AbM, W11 �W21 � ÿ1=2), the group velocity is
always lower than c. At the same time, in an absorbing ±
amplifying medium (AbAmM, W11 � ÿW21 � ÿ1=2), and
in an amplifying ± absorbing medium (AmAbM,
W11 � ÿW21 � 1=2), we have v > c at o > o� and
o < o�, respectively. The amplifying medium (AmM,
W11 �W21 � 1=2), according to Eqn (6), always corre-
sponds to superluminal group velocities in the frequency
range between o1 and o2. In all four cases we must pay
attention to inequalities (2), which identify the frequency
range where absorption and amplification are relatively
weak.

Condition (6) does not imply the possibility of transmis-
sion of information faster than the speed of light, because
plane monochromatic waves cannot carry information.
Linear wave packets formed by the wave groups falling
within the frequency range in question, will rapidly spread
because of the dispersion.

3. Nonlinear wave equation

The ultimately short pulses are so called because their
spectrum is so broad that it is not possible to identify the
carrier frequency [17, 18]. So as to be able to avail ourselves of
the conditions (2) in this case as well, wemust seto � tÿ1p , and
then conditions (2) will take on the form used in Refs [10, 11,
17]: �o1tp�2 5 1 and �o2tp�2 4 1. At that time for the 1-
transitions � j � 1� in the right-hand side of the first equation
in (3), by virtue of inequalities (2), we may drop out the term

o2
1U1, and the solution of Eqn (3) for j � 1 will be obviously

written in the form [10, 11]

W1 �W11 cos y ;
qU1

qt
� ÿo1W11 sin y ; �7�

where

y �
�
2d1
�h

�� t

ÿ1
Edt 0 ;

andWj1 is the inversion of j-transitions prior to the arrival of
USP.

For j � 2, the left-hand side of the first equation in set (3)
is small [see Eqn (2)]. Neglecting this left-hand side in the zero
approximation, we find U2 ' ÿ2d2EW2=��ho2�. Substituting
this expression into the left-hand side of the first equation in
(3), we get in the next approximation

U2 � ÿ 2d2E

�ho2
W2 � 2d2W21

�ho3
2

q2E
qt2

: �8�

Here in the second term of the right-hand side we set
W2 �W21 because the spectrum of the pulse does not
contain Fourier components in resonance with the 2-transi-
tions [see Eqn (2)], and so the latter are excited only slightly.
In this way, the variation ofW2 becomes of the same order of
magnitude as the small parameter �o2tp�ÿ2.

Substitution of U2 ' ÿ2d2EW21=��ho2� into the second
equation in set (3) with subsequent integration leads to the
expression

W2 �W21

�
1ÿ 2

�
d2E

�ho2

�2�
: �9�
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Figure 2. Curves w�o� (solid lines) and K�o� (dashed lines) for different states of the two-component medium with resonant frequencies o1 and o2:

(a) absorbing medium: v < c at o2
1 5o2 5o2

2; (b) absorbing ± amplifying medium: v > c at o2
� < o2 5o2

2; (c) amplifying ± absorbing medium: v > c at

o2
1 5o2 < o2

�; (d) amplifying medium: v > c at o2
1 5o2 5o2

2.\
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Using relations (4), (7) ± (9), we get

DyÿN 2
20

c2
q2y
qt 2
ÿ g
c2

qy
qt
� a sin y� b

�
qy
qt

�2 q2y
qt2
� m

q4y
qt 4

;

�10�
where

a � ÿ 16pd 2
1o1n1W11

�hc2
;

m � ÿ 16pd 2
2 n2W21

�hc2o3
2

; b � 3d 2
2 m

2d 2
1

: �11�

The parameter m accounts for the dispersion, and b for the
cubic nonlinearity of the 2-component. At the same time, the
dispersion and nonlinearity caused by the 1-transitions enter
the right-hand side of Eqn (10) in a nonadditive way as the
term a sin y.

Further analysis in this paper is based on the particular
solutions of equation (10) in the form of solitary running
pulses.

4. Dissipative soliton

Consider a nonequilibrium dissipative medium, in which
radiation loss plays a vital part �g 6� 0�. We pursue the one-
dimensional solution to Eqn (10) in the form of a steady pulse
travelling along the z-axis with the velocity v Ð that is,
y � y�tÿ z=v�. Obviously, such a solution is possible when
the medium has an energy content sufficient for compensat-
ing the loss. Let the 1-component before the arrival of USP
resides in the inverted state W11 � 1=2. Then a � ÿjaj < 0.
The travelling USP, taking in the energy from the 1-
transitions, transfers them to the ground state, after which
the energy dissipates in the medium because of the loss. As a
result of such a `balance', a steady pulse with an `area'

y1 �
�
2d 1

�h

���1
ÿ1

E dt 0 � p ;

that is, a p-pulse, can form in the medium. In accordance with
this, we select the ansatz [19, 20]

_y � 1

tp
sin y ; �12�

where the dot above y denotes differentiation with respect to
tÿ z=v.

Substitution of relation (12) into (10) at D � q2=qz2, and
subsequent bringing the coefficient of sin 4y to zero, estab-
lishes the linkage between the dipole moments of the two
transitions for which the ansatz (12) holds true: d2 � 2d1. This
restriction is very artificial. However, it allows the exact
solution of equation (10) to be written in the form of a
running pulse, which in turn permits the basic features of
propagation of solitary electromagnetic waves in nonequili-
brium media with dissipation to be traced.

Equating further the coefficients of sin y and sin 2y in both
sides of Eqn (10), and making use of Eqn (11), we get

1

tp
� 8pd 2

1 n1o1

�hg
;

1

v
� 1

c

�
1ÿ 2ZW21

�
1ÿ 1

�o2tp�2
��1=2

: �13�

Integration of formula (12) leads to the expression for the
electric field profile of the travelling pulse:

E � �h

2d1tp
sech

�
tÿ z=v

tp

�
: �14�

From expressions (7) and (9) we get for the inverse population
of both components:

W1 � ÿjW11jtanh
�
tÿ z=v

tp

�
;

W2 �W21

�
1ÿ 1

2�o2tp�2
sech2

�
tÿ z=v

tp

��
: �15�

Hence it follows that after cessation of the pulse (14), the state
of the 2-component coincides with its original state. Observe
that if prior to the arrival ofUSP this component was inverted
�W21 > 0�, then the speed of the pulse is v > c [see Eqn (13),
condition �o2tp�2 4 1, and Fig. 3a]. Since �o2tp�2 4 1, then,
as follows from Eqn (13), one finds v � c=N20. This is true
until the value Z becomes equal to one. As Z! 1, we have
N20 ! 0 and, according to Eqn (13), the velocity tends to
v! �o2tp�c rather than to infinity, as would follow from the
approximate expression v � c=N20. Given the smallness of
the parameter �o2tp�ÿ2, the condition of feasibility to form
pulse (14) can bewritten as Z < 1, because otherwise the speed
v becomes imaginary. And ifW21 < 0 (AmAbM), then v < c
(Fig. 3b).

The state of the 1-component, as follows from Eqn (15),
is changed to the opposite after cessation of USP in the
form (14): the initial inversion W11 � 1=2 is replaced by the
final ground state (W1 � ÿ1=2 as t! �1). In this way the
overall state of the two-component medium is changed after
cessation of USP in the medium. Therefore, before passing
the second, third, and so forth superluminal solitons of the
form (14), (13) through this medium, it must be wholly
brought back to the state with W11 > 0, W21 > 0, which
takes energy. As a result, the information that the pulse is
applied to the input gate of the medium becomes known at
the exit of the medium before the occurrence of an event.
Accordingly, the question of faster-than-light transmission
of information using pulses (14), (13) has no meaning.
Besides, the parameters of the pulse itself (length, velocity
and amplitude), as follows from Eqns (13), (14), are rigidly
fixed by the parameters of the medium and its initial state
(the values of W11 and W21). It follows that there are no
free parameters in the solution (14). This means that as the
pulse travels in the medium and acquires its asymptotic
shape (14), it loses information about its own parameters at
the point of entry into the medium in question. This
information dissipates as radiation loss together with the
energy stored in the medium. Accordingly, the pulse of the
form (14) does not carry information either at v < c
�W21 < 0) or at v > c (W21 > 0). The conditions (2) at
o � tÿ1p , according to Eqn (13), impose restrictions on the
parameters of the medium that need to be complied with to
provide for the formation of the pulse (14):
�g=O1�2 5 15 �g=o1�2, where O1 � 8pd 2

1 n1=�h.
Steady pulses with the properties described above are

often referred to as dissipative solitons or autosolitons [21,
22]. From expressions (14), (15) and from Fig. 3 we see that
the solitons describing the motion of the electric field of the
USP and the inversion of the 2-component are `running
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pulse' type autosolitons [21, 22]. At the same time, the
inversion of the 1-component propagates in the regime of a
`running front' [21, 22], which ensures the irreversible
character of the change of state in the dissipative medium.
In a sense, autosolitons are similar to self-oscillations. The
asymptotic form of the latter also does not depend on the
way they had been excited (that is, on the initial conditions),
but is wholly determined by the parameters of the system in
which they occur. It is only necessary that the initial
conditions should not leave the region of attraction to the
limit cycle corresponding to self-oscillations. In this way,
self-oscillations in nonequilibrium nonlinear systems, like
autosolitons, `forget' information about the initial circum-
stances of their excitation.

The region of attraction of the input signal to autosoliton
(14) is determined by the condition that its total `area' y1, as
follows from Eqn (12), should fall within the range
0 < y1 < 2p. This ensures the stability of the autosoliton
discussed in this section.

5. Superluminal solitons
and breathers in conservative medium

In this section we shall consider a supersonic soliton in a
loss-free medium (g � 0). Then at b � 3m=2, equation (10)
admits an exact one-dimensional solution in the form of a
running soliton-like pulse [23]. In our case, the condition
b � 3m=2, as follows from Eqn (11), corresponds to equality
between the transition dipole moments for both compo-
nents: d2 � d1. Here we find such solution from a more
general standpoint corresponding to the three-dimensional
case. With this purpose we use the method of averaged
Ritz ±Witham type variational principle [12, 24]. Such an
approach will allow us to study the stability of such a pulse.
For this we note that equation (10) at g � 0 can be written
out as the Euler ± Lagrange equation, using the density of
the Lagrangian

L � 1

2
�Hy�2 ÿN 2

20

2c2

�
qy
qt

�2

� a�1ÿ cos y�

� m
8

�
qy
qt

�4

ÿ m
2

�
q2y
qt2

�2

: �16�

The state of the loss-free medium remains the same after
cessation of the steady soliton in it. Below we take the soliton
in the extended sense, without assuming its elastic interaction
with other solitons similar to it. Then its total `area',
according to Eqn (7), equals y1 � 2p. Following Ref. [12],
we use the trial solution in the form

y � 4 arctan

�
exp

�
r�r�

�
tÿ F�r�

c

���
; �17�

where F�r� and r�r� are the `fast' and the `slow' functions of
the coordinates, respectively.

Drawing an analogy with the plane monochromatic wave
[14], we call F�r� the soliton eikonal. Substituting formula
(17) into (16), disregarding the derivatives of r�r� [12], and
integrating the resulting expression with respect to t, we get
the averaged Lagrangian

L� 1

2

��1
ÿ1
L dt �

�
HF
c

�2

rÿ
�
N20

c

�2

r� a
r
� m

3
r3 : �18�

Using L to write out the Euler ±Lagrange equations in F and
r, we find

�HF�2 � N 2
20 � c2

�
a
r2
ÿ mr2

�
; �19�

H�rHF� � 0 : �20�

The set of equations (19), (20) canbe regarded as the equations
of geometrical optics for ultimately short solitons. It is clear
from their derivation that a validity condition for this

E

0 tÿ z=v

a

v4 c

W1

0 tÿ z=v

o1
o1

1

2

ÿ 1

2

W2

0 tÿ z=v
o2

o2

1

2

ÿ 1

2

E

0 tÿ z=v

b

v5 c

W1

0 tÿ z=v

o1
o1

1

2

ÿ 1

2

W2

0

tÿ z=v

o2 o2

1

2

ÿ 1

2

Figure 3. Electric field profiles of the ultimately short autosoliton and the corresponding inversions of the 1- and 2-component in the comoving frame of

reference in a medium with radiation loss. The state of the 1-component changes after cessation of the autosoliton, whereas the 2-component returns to

the initial state: (a) amplifying medium: v > c; (b) amplifying ± absorbing medium: v < c.
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approach is the smallness of the change of soliton's amplitude
� rover its length. Equation (19) can be called the equation of
a soliton eikonal. It defines the velocity vof propagation of the
soliton wavefront in the direction normal to each point.
Indeed, differentiating the equation of propagation of the
soliton front r�tÿ F=c� � const and neglecting the change of
the `slow' variable r, we arrive at dt � dF=c � jHFj ds=c,
where ds is the displacement of the soliton front in the
direction of the normal. Hence it follows that
v � ds= dt � c=jHFj. In principle, it is pertinent to develop
further theHuygens type constructions [14], which canbeused
for viewing the dynamics of all parts of the soliton front at any
subsequent time. Such a stepwise procedure corresponds to
the numerical solution of the set of equations (19), (20).

In the one-dimensional case, when r and F are functions
of z, the set (19), (20) is easily integrated: r � tÿ1p � const,
F � cz=v. The slow function r here has the meaning of the
inverse duration of the soliton, in terms of which its group
velocity is directly expressed:

1

v
�

������������������������������������������
N20

c

�2

� at2p ÿ
m
t2p

s
: �21�

The wavefronts of such solitons are the planes perpendicular
to the z-axis. According to solution (17), the electric field
profile of USP is then

E � �h

2d1

qy
qt
� �h

d1tp
sech

�
tÿ z=v

tp

�
: �22�

It should be emphasized that expressions (21), (22) give the
exact solution of equation (10) at D � q2=qz2, g � 0, and
b � 3m=2 in the form of a one-dimensional ultimately short
soliton (that is, a soliton without the high-frequency carrier),
which can also be obtained using the ansatz

_y � 2

tp
sin

y
2
; �23�

where, like in Eqn (12), the dot over y denotes differentiation
with respect to tÿ z=v. The difference between solutions (12)

and (23) is due to the fact that the `areas' y1 of the autosoliton
and soliton in the conservative medium are not the same.

From formulas (17), (7) and (9) we find the appropriate
laws of variation of the population for both components:

W1 �W11

�
1ÿ 2 sech2

�
tÿ z=v

tp

��
;

W2 �W21

�
1ÿ 2

�o2tp�2
sech2

�
tÿ z=v

tp

��
: �24�

Hence it follows that both components of the medium regain
their initial state after cessation of the pulse, unlike the lossy
medium. The center of the soliton profile (22) corresponds to
the change in the sign of inversion of the 1-component, and a
slight change [see Eqn (2)] of the 2-component state, in
accordance with arguments developed in Section 2 (Fig. 4).

In addition, solution (22) involves a free parameter, for
which we have selected the length tp of the soliton. The value
of the free parameter determines the speed and the amplitude
of the signal. This is another important distinction between
the soliton passing through a conservative medium and the
autosoliton.

Now let us analyze the stability of the soliton (22). With
this purpose we note that the set of equations (19), (20) can be
rewritten as the Bernoulli integral and the continuity equation
for steady vortex-free flow of ideal liquid:

V2

2
�
�
dp

r
� const ; H�rV� � 0 ; �25�

where the `velocity'V is defined asV � HF=c, and the linkage
between `pressure' p and `density' r is expressed by the
equation

dp

dr
� a

r2
� mr2 : �26�

Hence in a straightforward way follows the condition of
stability of soliton (22) as the steady flow criterion of an ideal
liquid of the type of equations (25), (26): dp= dr > 0. Making
the replacement r � tÿ1p in the expression for dp= dr, we
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Figure 4. Stable running electric field profiles of the ultimately short autosoliton and the corresponding inversions of the 1- and 2-component in a loss-free

medium: (a) absorbing ± amplifying medium: v > c; (b) amplifying ± absorbing medium: v < c.
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obtain

at2p � mtÿ2p > 0 : �27�
Condition (27) can be readily interpreted as follows. From
Eqn (21) it appears that, as long as inequality (27) is satisfied,
the velocity v is a steadily increasing function of the parameter
tÿ1p {the soliton amplitude [see also Eqn (22)]}. Therefore, the
portions of the soliton with a larger amplitude, corresponding
to the center of the USP cross section, overtake during its
propagation the peripheral portions whose amplitude is
smaller. If condition (27) is not satisfied, we come to the
opposite pattern which eventually leads to self-focusing of the
soliton.We write the condition at which the soliton velocity is
v > c [see Eqn (21)] in the form

at2p � mtÿ2p <
1ÿN 2

20

c2
: �28�

Straightforward analysis of Eqn (28) indicates that v > c if
either a < 0 (1-component inverted) or m < 0 (2-component
inverted). As follows fromEqn (27), soliton (22) is unstable in
the case of an inverse population of both components (a < 0
and m < 0). For possible observation of the superluminal
soliton, its length must simultaneously satisfy conditions (27)
and (28).

Let us consider in greater detail the case of a > 0, m < 0
(W11 � ÿ1=2,W21 � 1=2,N20 < 1). From inequalities (27),
(28) and formulas (11) we find that the length tp of a stable
superluminal soliton must fall within the interval (see Fig. 5)

tm < tp < tc ; �29�
where

tm � 1

o2

���
2

q

s
; tc �

���
2
p

o2

�
1ÿ

�������������
1ÿ q2

p �ÿ1=2
;

q 2 � 4
n1o1

n2o2
< 1 : �30�

To have condition �o2tp�2 4 1 satisfied at the edges of the
interval (29), we must require that q5 1. Then tc will be
approximated as tc � 2=�o2q�. Observe that at the maximum
admissible value q � 1, the width of the interval (29) goes to
zero and rapidly increases with decreasing q. In other words,
the smaller q, the bigger the chance that condition (29) will be
satisfied. As follows from Eqn (21), tm corresponds to the

soliton length for which its velocity is the highest:

vmax � c
�
1ÿ Z�1ÿ q��ÿ1=2 : �31�

Assuming that q5 1, we have vmax � c=N20. This value
practically coincides with the velocity of the autosoliton in a
nonequilibriummediumwith energy dissipation [see Eqn (1)].
This conclusion is true only if the parameter Z is much less
than unity. When Z! 1, then N20 ! 0 and the velocity vmax

tends to c=
���
q
p

rather than to infinity, as would follow from the
expression vmax � c=N20. A similar situation is encountered in
the case of a superluminal autosoliton in a dissipativemedium
(see Section 4). Since the parameter q can theoretically be
arbitrarily small, there is formally no upper limit imposed on
the velocity of the soliton. At Z�1ÿ q� > 1, the value of vmax

becomes imaginary, and a soliton of the corresponding length
tp is no longer feasible.

The necessary condition q < 1, at which v > c, together
with the condition of stability of the soliton, tp > tm, can be
written as

4o1

o2
<

n2
n1
< �o1tp��o2tp�3 : �32�

Taking, for example, o1tp � 0:1, o2tp � 10 [see Eqn (2)], we
get o1=o2 � 0:01 and, as follows from Eqn (32),
0:04 < n2=n1 < 100. Setting n2 � 4n1, one finds q � 0:1,
o2tm � 4:5, o2tc � 20. Then c < v < vmax. Setting Z � 0:2,
we get vmax � 1:1c. Provided that Z � 1, then vmax � 3:2c.
Recall that vmax is achieved at tp � tm. Thus, the highest
velocities of solitons are possible when Z! 1 (N20 ! 0). In
cases like this, the soliton may travel at velocities reaching
several times the speed of light. If the medium is not so dense
and Z5 1, then v is greater than c by just a few percent.

An analysis similar to what has just been done indicates
that in the opposite case (the 1-component inverted: a < 0,
m > 0), conditions (2), (27) and (28) are incompatible. There-
fore, in such a case the stable propagation of only slower-
than-light solitons is possible (Fig. 4b). Notice also that in
strictly one-component two-level systems conditions (2), (27)
and (28) are not compatible with one another as well. Indeed,
if m � 0 (N20 � 1), from inequalities (27) and (28) we get two
opposing conditions: a > 0 and a < 0, respectively. This
implies that the superluminal (a < 0) soliton of the sine-
Gordon equation is not stable in the inverted two-level
medium [see Eqn (10) with g � b � m � 0]. This agrees with
the earlier studies of monochromatic envelope solitons in a
two-level resonancemedium [1]. However, in the absence of 1-
component (a � 0) at m > 0 (the ground-state 2-component),
conditions (27) and (28) do not contradict one another, but
Eqn (28) is incompatible with (2). In this case c=N20 < v < c
[11]. If the 2-component is inverted (m < 0) at a � 0, the
soliton is unstable because condition (27) is not satisfied.

The presence of the free parameter tp in the solutions (21),
(22) emphasizes the dependence of the characteristics of the
soliton formed in the medium on the pulse parameters at the
point of entry into the medium.

In the general case, the analytical study of the linkage
between the parameters of the input signals and the resulting
solitons is by no means simple. This is largely because
equation (10) is nonintegrable. Observe, however, that by
virtue of formula (1) each term in the right-hand side of Eqn
(10) at g � 0 is infinitesimal of a higher order with respect to
small parameters e � �o1tp�2 � �o2tp�ÿ2 5 1 than the terms
in the left-hand side. Therefore, one can apply to the

v

c

0
tm tc tp

Figure 5. Velocity v of a stable ultimately short soliton in two-component

absorbing ± amplifying loss-free medium as function of its length tp; in the

interval tm < tp < tc, we have v > c.
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approximation of unidirectional soliton propagation along
the z-axis with the velocity close to c=N20 [25]. With this
purpose we introduce the local time t � tÿN20z=c and the
`slow coordinate' z � ez. Going over to these new indepen-
dent variables, we get q=qt � q=qt, q=qz �
ÿ�N20=c�q=qt� eq=qz. Hence, neglecting e2, we find
q2=qz2 � �N20=c�2q2=qt2 ÿ 2e�N20=c�q2=qt qz. Going back
to variable z, from formula (10) at g � 0, b � 3m=2 (d1 � d2)
we come to an equation of the type

q2y
qz qt

� a sin yÿ 3

2
b

�
qy
qt

�2 q2y
qt2
ÿ b

q4y
qt4
� c

2N20
D?y ; �33�

where a � ca=�2N20�, b � cm=�2N20�, andD? is the transverse
Laplacian.

It should be recorded that Eqn (33) can be derived from
the density of the Lagrangian

L � 1

2

qy
qz

qy
qt
ÿ a�1ÿ cos y� ÿ b

8

�
qy
qt

�4

� b

2

�
q2y
qt2

�2

ÿ c

4N20
�5?y�2 : �34�

Substituting here the trial solution (17) and taking
advantage of the slowness of function r, we find the averaged
Lagrangian

L � 1

2

��1
ÿ1
L dt � ÿr qF

qz
ÿ a

r
ÿ b

3
r3 ÿ c

2N20
r�5?y�2 :

�35�
The corresponding Euler ±Lagrange equations then

become

V2
?
2
� qf

qz
�
�
dp

r
� 0 ;

qr
qz
�5?� rV?� � 0 ; �36�

where

f �
�

c

N20

�
F ; V? � 5?f ;

dp= dr �
�

2c

N20

��
a

r2
� br2

�
:

The set of equations (36) is comprised of the dynamic
equations for the potential flow of an ideal liquid, in which the
role of time is played by the coordinate z, and the potential of
the field of velocitiesV? is proportional to the soliton eikonal.
The first equation has the meaning of the Cauchy integral for
the `nonstationary' flow, and the second is the continuity
equation. The linkage between the `pressure' p and `density' r
up to a constant coefficient coincides with Eqn (26). Because
of this, the criterion of stability of the soliton answering to
equation (33) does not differ from that in Eqn (27). Using, for
example, ansatz (23), it is easy to see that the one-soliton
solution of equation (33) at D?y � 0 in the laboratory system
of coordinates has the form (22), and the soliton's velocity as a
function of tp is given by

1

v
� N20

c
� a t2p ÿ

b

t2p
: �37�

This relation can be derived from formula (21) by expanding
the latter in a power series of a small parameter
�c=N20�2�at2p ÿ m=t2p�, which amounts to assuming that the

velocity of the soliton v is close to c=N20. Observe that the
solitons of Eqn (33) are true solitons at D?y � 0 because they
possess the property of elastic interactions with their like,
since this equation is integrated using the inverse scattering
problem technique [26]. The disadvantage of equation (33) as
compared with (10) is that it does not provide a framework
for considering the head-on interaction of pulses. It would be
worthwhile to consider analytically what the profiles of input
signals are capable of producing superluminal solitons in the
medium in question. Let us illustrate the above arguments for
the case when the input signal decomposes in the absorbing ±
amplifying medium into two solitons. The two-soliton
solution of Eqn (33) then assumes the form [26]

E�z; t� � �h

2d

qy
qt

� 2�h

d

q
qt

arctan

�
expS1 � expS2

1ÿ�tp1 ÿ tp2�2�tp1 � tp2�ÿ2 exp�S1� S2�

�
;

�38�
where Sj � �tÿ �z=vj� � tj�=tp j, 1=vj � N20=c� at2p j ÿ b=t2p j
( j � 1; 2), tp1 and tp2 are free parameters that depend on the
profile of the input signal E�0; t�, and tj are the constants that
define the time interval Dt12 � jt2 ÿ t1j between the local
maxima of the pulse profile E�0; t� applied to the input
(z � 0) of the medium (Fig. 6). Obviously, tp j and vj have the
meaning of the length and velocity of jth soliton, respectively,
when the solitons are far enough from each other. Setting
z � 0 in Eqn (38), we find the class of initial profiles that give
rise to two different solitons in themedium. If the shape of the
profile E�0; t� is such that both the parameters tp j satisfy
inequality (29), then the velocities of the two emerging solitons
are superluminal. The faster soliton will be the one for which
the parameter tp is smaller. If, for example, tp1 satisfies
constraints (29), whereas tp2 > tc, tm, then the speed of the
first soliton will be greater than c, while the second soliton will
be subluminal. Assume now that tp2 < tc, tm, while tp1 still
satisfies inequality (29). In this case at least one of the solitons
(for which tp2 < tm) will be unstable. The situation here
depends considerably on the ratio between the rates of
development of instability and the decomposition of the
input signal into separate solitons. In any case, the soliton
creation from the initial signal takes some time. Because of
this, it is not obvious that the time from themoment the signal
is fed to the input of a nonequilirbiummedium to themoment
it is detected at the exit will be less than L=c, where L is the
length of the medium sample in the direction of the soliton

0

E�0; t�

tp2

Dt12

tp1

t

Figure 6. Input pulse E�0; t� corresponding to the two-soliton solution of

equation (33). If tp1 and tp2 satisfy condition (29), both the solitons

appeared are superluminal. The stability of this solution is ensured by the

condition tp1; tp2 5Dt12.
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propagation. This issue calls for further investigation.
Obviously, the best option is to apply such a signal to the
medium input whose shape is close to profile (22) and whose
length tp satisfies condition (29). Then, according to the
arguments developed above, the speed of the soliton in the
quasi-nonequilibriummediumwill exceed the speed of light in
vacuum. Here it is important to add that our considerations
with respect to the stability of the two-soliton solution to
equation (33) hold good when Dt12 4 tp1; tp2. As a matter of
fact, criterion (27) has been obtained from the condition of
small perturbation of the exact solution (22) [see Eqn (17)]. To
be able to talk about the stability of solution (34), we have to
perform the procedure of obtaining the averaged Lagrangian
for the small perturbation of this two-soliton solution, which
meets withmathematical difficulties. If, however, in the initial
profile we have Dt12 � jt2 ÿ t1j4 tp1, tp2, and the peak of the
smaller amplitude follows the higher peak (seeFig. 6), then the
above conclusions concerning the stability of the one-soliton
solutions will also apply to solution (34). If, however, in the
input profile E�0; t� the shorter peak comes before the taller
one, then the two peaks will originally tend to come closer to
each other, which will eventually lead to the violation of the
assumption that they are distant from each other, and hence
the conclusions regarding the stability of the two-soliton
solution, based on applying criterion (27) separately to tp1
and tp2, are doubtful.Obviously, the analysis of the stability of
many-soliton solutions meets with immense mathematical
difficulties.

Somewhat different is the situation with the breather
solutions of Eqn (33), which can be obtained from Eqn (38)
if we assume that tp1 and tp2 are complex conjugate. Taking
tp1;2 � tp=�1� iotp�, t1 � t2 � 0, we find from Eqn (38) the
following solution

E � �h

2d1

qy
qt
� 2�h

d1

q
qt
arctan

�
1

otp
sech

�
tÿ z=v

tp

�
� sin

�
o
�
tÿ z

vph

���
; �39�

where v and vph are the group and the phase velocities of the
breather, respectively, which are expressed in terms of its
frequency o and length tp as follows:

1

v
� N20

c
� a

o2 � tÿ2p

� b�3o2 ÿ tÿ2p � ; �40�

1

vph
� Nph

c
� N20

c
ÿ a

o2 � tÿ2p

� b�o2 ÿ 3tÿ2p � : �41�

Here we have introduced the phase refractive index Nph.
From Eqn (39) we see that the area of the breather is
y1 � 0. Then as follows from Eqns (7) and (9), after the
passage of the breather the medium returns to its initial state.
At otp < 1, solution (39) describes an ultimately short pulse
type breather, whose length is just about one period of
electromagnetic oscillations. If, on the other hand, otp 4 1,
then, as follows from Eqns (39) ± (41), the breather becomes
an envelope soliton

E � 2�h

d1tp
sech

�
tÿ z=v

tp

�
cos

�
o
�
tÿ z

vph

��
; �42�

1

v
� N20

c
� a

o2
� 3bo2 ;

1

vph
� Nph

c
� N20

c
ÿ a

o2
� bo2 :

�43�

This solution can be obtained by applying the approxima-
tion of a slowly changing envelope directly to Eqn (33). In
accordance with this, we represent the field of the pulse as
follows

E � 1

2
E�z; r?; t� exp

�
i�otÿ qz��� c:c: ; �44�

where E�z; r?; t� is the slowly changing envelope, o is the
carrier frequency of the pulse, and q is the wave number in the
comoving frame of reference, linked with the wave number k
in the laboratory system of coordinates by the relation
k � q� oN20=c. According to the approximation of a slowly
changing envelope, we have���� qEqt

����5ojEj ;
���� qEqt

����5 qjEj : �45�

Using multiple integration by parts, we arrive at

y � 2d1
�h

�t
ÿ1

E dt0

� 2d1
�h

� E
io
� 1

o2

qE
qt
� i

o3

q2E
qt2
� � � �

�
� c:c: �46�

The role of the characteristic time scale of the pulse is played
here by the inverse frequency oÿ1. Then the nonresonance
condition (2) holds true. Since the spectral width do of the
envelope pulse is much less thano, its spectrum, according to
Eqn (42), does not contain resonant Fourier components.
Because of this, the excitation of each of the medium
components by the pulse field is negligible. Consequently,
one obtains sin y � yÿ y3=6. Also substituting field strength
(44) into equation (33) and using Eqns (45), (46), we arrive at
the nonlinear SchroÈ dinger equation (NLS)

i
qE
qz
� k2

2

q2E
qT 2
ÿ o

c
N2jEj2E � c

2N20o
D?E ; �47�

where T�tÿ�a=o2� 3bo2�z, k2�q2k=qo2�2�3boÿ a=o3�
is the parameter of group dispersion, N2 � ÿ�1=4��c=o��
�d1=�h�2k2 is the nonlinear index of refraction of the medium,
found from the expression

Nph � N�N2jEj2 ; �48�
whereN is the linear part of the phase index of refraction (48)
[see Eqn (1)]. As we see, the condition of feasibility to form
envelope solitons, k2N2 < 0, is automatically satisfied here
[27]. The one-soliton solution of Eqn (47) atD?E � 0with due
account for expression (44) exactly coincides with formulas
(42), (43). In this way, the envelope soliton of the nonlinear
SchroÈ dinger equation (47) is the limiting case of the breather
of equation (33) at otp 4 1. Earlier a similar conclusion for
other equations was made in Refs [27, 28]. NLS solitons are
stable with respect to self-focusing if N2 < 0 (a defocusing
medium) [29]. The same conclusion is implied by the method
of the averaged Lagrangian applied to the NLS [12]. Then,
using the explicit expression for N2, we may write out the
following condition

a

o4
ÿ 3b < 0 : �49�

In the general case, the phase velocity of the breather is given
by expression (41). As the amplitude of the pulse field Em

increases, the rate of induced transitions becomes higher.
Because of this, the duration of solitons and breathers
becomes shorter. Accordingly, the amplitude is a steadily
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increasing function of the variable r � tÿ1p . Expressions (22),
(39) and (42) confirm this general property of the soliton-like
solutions.

Let us expand formula (41) in a Taylor series in r2:

1

vph
� 1

vph�0� � n2rr2 � . . . ;

where 1=vph�0� � N20=cÿ a=o2 � go2 is an expression coin-
ciding with that for the envelope soliton [see Eqn (43)], and
n2r � �q�1=vph�=qr2�r�0 � a=o4 ÿ 3g � N2. In line with the
conclusion about the monotonic increase of Em�r�, the
quantities n2r and N2 have the same sign. Then the condition
of stability of the envelope soliton N2 < 0 can also be written
as n2r < 0, which coincides with inequality (49).

In order to extend condition (49) to the case of breathers
with arbitrary values of otp, we use the following considera-
tions. If the index of refraction Nph � c=vph increases with
increasing Em (or r), then the core of the breather in its cross
section, where Em is the highest, is travelling slower than its
peripheral parts. This leads to self-focusing of the breather. If
Nph decreases with increasing r, then the breather is stable
with respect to transverse perturbations. Thus, one finds

q
qr2

�
1

vph

�
< 0 : �50�

From this and from equation (41) we find the condition of
stability of the breather (39):

a

�o2 � tÿ2p �2
ÿ 3b < 0 ; �51�

which becomes inequality (49) when �otp�2 4 1. The criterion
(51) together with the conditions

a

o2 � tÿ2p

� b�3o2 ÿ tÿ2p � <
1ÿN20

c
�52�

[see Eqn (40)] and

o2
1 5o2 � tÿ2p 5o2

2 �53�
defines the feasibility of stable propagation in our two-
component medium of superluminal breathers, whose limit-
ing cases (at otp 4 1) are nonresonant envelope solitons.
Condition (53) is a natural extension of above condition (2),
as well as of conditiono2

1 5 tÿ2p 5o2
2 used for pulses without

high-frequency carrier.
The analysis of inequalities (51) ± (53) indicates that the

existence of stable superluminal breathers is possible in
AmAbM and AmM. In the first case (W11 � 1=2,
W21 � ÿ1=2 or a < 0, b > 0), the breather is absolutely
stable, since at a < 0 and b > 0 inequality (51) is satisfied
automatically. Given condition (53), it is easy to find from
formula (52) the realizability criterion for v > c:

o2 � tÿ2p <
3o4

c

o2
2

�
�
n1
n2

�
o1o2 ; �54�

where the frequency parameter oc is given by the expression

o4
c �

n1
2n2

o1o3
2 : �55�

Since, according to condition (53), we have o2 � tÿ2p 4o2
1,

then n1=n2 4o1=o2. The last inequality is easily satisfied, for
example, at n1 � n2. From criterion (54) at otp 4 1 we find
the condition that the group velocity of the envelope soliton is
v > c: o1 5o5

���
3
p

o2
c=o2.

In the case of AmM (W11 �W21 � 1=2 or a < 0, b < 0),
the range of stability of the breather (39), as follows from
conditions (51) and (53), is defined by the dual inequality

o2
1 5o2 � tÿ2p < o2

c : �56�
Then the group velocity of the breather, expressed by formula
(40), is always greater than the speed of light in vacuum. The
condition o2

c 4o2
1 required for the formation of the breather

in a two-component nonresonant medium is rewritten in the
form [see Eqn (55)] 3n2=n1 5 �o2=o1�3. This inequality is
easily satisfied, for example, at n2 ' n1, because o2 4o1.
Observe that when only the second component is present
(n1 � 0), there are no stable envelope breathers or nonreso-
nant solitons in the amplifying medium. Condition (56) for
envelope nonresonant solitons can be written as
o2

1 5o2 < o2
c .

The issue about information transfer by electromagnetic
solitons in conservative media, like in the case of dissipative
media, calls for special treatment. In a nonequilibrium lossy
medium, as noted in the previous section, the superluminal
solitons whose formation depends on the presence of energy
dissipation (autosolitons) do not carry information about the
input pulse, because the corresponding solutions do not
contain free parameters. At the same time, the soliton type
solutions in conservative medium involve free parameters
(length tp for solitons without high-frequency carrier or o
and tp for breathers), whose values depend on the profile of
the input pulse. It would seem therefore that the ultimately
short subluminal solitons in nonequilibrium lossless medium
carry information about the profiles of input pulses which
initially gave rise to such solitons.

A more comprehensive analysis indicates, however, that
this is not the case. Let us use the example of USP (22) for
analyzing the mechanisms of their propagation in absorbing
(v < c) and amplifying (v > c) media. In the former case, the
leading edge of the incoming pulse `is eaten away' by the
absorbing atoms (Fig. 7a). This shapes the front portion of
the pulse profile, and the atoms start to move to the excited
states. The photons from the middle portion of the pulse are
absorbed to a lesser extent than the leading photons, because
on their way forward they meet fewer atoms in the ground
state (Fig. 4b). The trailing photons of the pulse, which meet
with little resistance in the medium, start `pushing on' the
photons travelling in front (thus causing self-compression of
the pulse and increasing its peak intensity as compared with
the intensity of the input signal) and cause induced radiation
from the excited atoms. As the atoms drop back to the ground
state, the probability of induced radiation decreases and in
this way the smooth tail of the soliton is formed. The
important circumstance here is that the leading and the
trailing edges are formed by the pulse itself through absorp-
tion and further reemission of its energy. The greater the
amplitude of the input signal, themore intensive the processes
of absorption and reemission, and the steeper the edges of the
soliton formed in themedium. Thus, in the absorbingmedium
(v < c) the solitons formed carry information about the
profiles of input pulses.

The situation with a nonequilibrium medium is different.
Consider first the case when a nearly rectangular pulse is
applied to the point of entry of a nonequilibrium medium
(Fig. 7b). The spectrum of the leading edge of this pulse is
dominated by the high frequencies satisfying the conditions
o4o1;o2. Accordingly, for both components of the
medium we have solutions similar to formulas (7). Then the
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wave equation for this part of the input pulse coincides with
the sine-Gordon equation (g � 0, d1 � d2 � d)

Dyÿ 1

c2
q2y
qt2
� a12 sin y ; �57�

where a12 � ÿ�16pd 2=�hc2��o1n1W11 � o2n2W21�. In the
case of an AbAmM (W11 < 0, W21 > 0) and n1 ' n2, since
o1 5o2, we have a12 < 0.

To analyze the solution (57) in this case we introduce,
following Ref. [10], the self-simulated variable x � z2 ÿ c2t 2,
after which relation (57) at D � q2=qz2 and a12 < 0 assumes
the form [10]

xy 00 � y 0 � ÿ ja12j
4

sin y ; �58�
where the prime at y denotes differentiation with respect to x.

Numerical calculations indicate that the solution of
equation (58) for E, decreasing over the interval �ÿ1, �1�,
is a sign-alternating function of variable x with a total area
equal to p (a p-pulse) [30]. This function differs from zero
mainly near x � 0 [which allows us to write
x � �z� ct��zÿ ct� � 2z�zÿ ct�], increasing during propa-
gation along the z-axis in amplitude with simultaneous self-

compression. This circumstance allows us to carry out an
approximate analytical study of the solution of equation (58).
Taking advantage of the fact that near x � 0 Ð that is, near
the maximum of E Ð the function y is smooth, we disregard
the first term in the left-hand side of Eqn (58). After
integration of the resulting equation, we find

tg
y
2
� exp

�
ÿ ja12j

2
z�zÿ ct�

�
;

E � �hja12j
4d

z sech

� ja12j
2

z�zÿ ct�
�
: �59�

Substituting Eqn (59) into (7), we get

W1;2 �W1;21 tanh

� ja12j
2

z�zÿ ct�
�
: �60�

From formulas (59) we see that the amplitude and the
inverse width of the p-pulse travelling in the AbAmM with
velocity c both grow in proportion to z [10]. As follows from
Eqn (60), the amplifying p-pulse switches the 2-component to
the ground state (W21 > 0) and, at the same time, excites the
1-component (W11 < 0).

Away from x � 0, equation (58) can be linearized by
writing y � p� Y, jYj5 1. Then we arrive at

xY 00 � Y 0 ÿ
� ja12j

4

�
Y � 0 : �61�

The solution of this last equation is expressed in terms of the
zero-order (for Y) and first-order (for E) Bessel functions:

Y � J0

� �������������������������������
ja12j�c2t 2 ÿ z2�

q �
;

E � z
J1

� �������������������������������ja12j�c2t 2 ÿ z2�p �
�������������������������������ja12j�c2t 2 ÿ z2�p : �62�

Expressions (62) hold true when ct > jzj (oscillating tail of the
p-pulse, see Fig. 7b). If jzj > ct, we get the solution of
equation (61) as the MacDonald function, which for E in
the asymptotic limit ja12jx4 1 assumes the form

E�z
h
ja12j�z2 ÿ c2t 2�

iÿ3=4
exp

n
ÿ

�����������������������������
ja12j�z2ÿc2t 2�

q o
: �63�

According to expressions (60) and (63), as the p-pulse travels
on, its leading edge becomes steeper and steeper, leaving in its
wake the weak quasi-periodical pulsations of the electric field
strength, accompanied by small oscillations of inverse
population in the vicinities of W1 � ÿW11 � 1=2 and
W2 � ÿW21 � ÿ1=2 [see Eqns (62) and (7) at y � p� Y].

In this way, in the wake of the p-pulse an amplifying ±
absorbing medium forms (for which a12 > 0), which in our
case is not capable of hosting the superluminal solitons.
Accordingly, subluminal solitons are formed from the
remaining part of the rectangular input pulse, whose mechan-
ism of formation has been discussed above. Information
about the profile of the input pulse in this case is carried
across the nonequilibriummediumby the p-pulse travelling at
the speed of light, which plays the role of a precursor, and by
the solitons that follow. The trailing front of the rectangular
input pulse, like the leading front, contains frequencies
o5o1;o2 in its spectrum. However, the corresponding
Fourier components are not strong enough to excite the
atoms of the 2-component and to form the 2p-soliton of
equation (57) by the trailing front, where a12 > 0 (because

E

0
zÿ ct

v5 c

a

v5 c

v � c
E

0
zÿ ct

b

v4 c

E

0
zÿ ct

c

Figure 7. Mechanisms of soliton formation in equilibrium (a) and

nonequilibrium (b, c) media. In case (a) the initial squared pulse (solid

line) gives rise to a subluminal ultimately short soliton (dashed line) which

carries information about the parameters of the input pulse. A squared

pulse applied to the nonequilibriummedium [case (b)] does not give rise to

superluminal solitons. Instead, an enhancing leading edge is created,

whose velocity equals c (precursor), followed by one or several sublumi-

nal solitons (dashed line) which carry information about the parameters of

the input pulse profile. Case (c) corresponds to superluminal solitons in

nonequilibrium medium. Their formation and stable propagation require

that the initial profile should have a descending leading edge defined over

the entire length of the medium. Therefore, no information is transmitted

in this case. The up and down arrows correspond to absorption or

emission of the pulse energy.

June, 2001 Superluminal electromagnetic solitons in nonequilibrium media 641



W11 > 0;W21 < 0). For the same reason, the leading and
the trailing edges of the rectangular pulse, fed to the
absorbing medium, are not capable of each separately giving
rise to solitons.

The mechanism of faster-than-light propagation of the
pulse in a nonequilibrium medium has been described in
sufficient detail in Ref. [1]. The descending portion of the
pulse running before its core causes induced radiation from
the excited atoms (2-transitions), so that some of them drop
back to the ground state. As a result, the descending portion is
replaced by the new core (Fig. 7b). At the site of its local
disposition, the atoms occur in the ground state after emitting
radiation (Fig. 4a). The former core is absorbed by the 1-
component and by some of the 2-transitions that have fallen
back to the ground state. As a result, what used to be the core
becomes the exponentially falling off tail. In this way, by
virtue of local amplification in a nonequilibriummedium, the
pulse profile travels faster than the photons themselves. In
papers [5, 31] this mechanism of superluminal propagation
was called `reshaping'.

It should be noted that the pulse energy in this case is not
transferred from one point to another, as was the case in the
absorbing medium, but is instead taken from the inverted
medium by the exponentially falling off portion travelling far
ahead of the core. The slow abatement of the front portion
(tp > tc) results in the slow proceeding of the induced
processes. As a result, the rate of the profile reshaping can
be slower than c. When the front edge becomes steeper
(tp < tc), the amplitude of the profile increases, which speeds
up the induced processes of emission and reabsorption. As a
consequence, the speed of the pulse profile propagation may
be faster than the speed of light. If in some way we cut off the
leading portion of the pulse, this will lead to a gradual
steepening of its front edge (that is, to its deformation) [1].
This steepening facilitates the broadening of the pulse
spectrum towards the higher frequencies o4o1;o2. In this
case, the speed of the pulse front portion becomes close to c.
The trailing edge of the pulse, whose velocity is v > c, pushes
on the leading edge from behind, which leads to strong
compression of the pulse and amplification of its peak.
Eventually such a pulse is transformed into the p-pulse
discussed above, which travels in the unbounded medium in
the regime of amplification with the group velocity v � c.

Thus, the steady propagation of superluminal ultimately
short solitons, breathers, and envelope solitons in a non-
equilibrium medium requires their smooth exponentially
localized profiles to be set from the outset for 0 < z < �1.
Therefore, the information about the initial parameters of the
pulses with the profiles like those defined in Eqns (22), (39) or
(42), for which v > c, is known over the entire expanse of the
medium even before they start to traverse it.

Consequently, there is no reason to speak about the
transmission of information in a nonequilibrium medium at
superluminal speed by electromagnetic solitons, and there is
no reason to question the fundamental causality principle.

The envelope solitons discussed here are nonresonant
with respect to quantum transitions of both the compo-
nents. Therefore, their carrier frequencies lie far from the
absorption (amplification) bands (see Fig. 2). The case of
AmM (Fig. 2d) in this respect is similar to the situation
considered in Ref. [32]. The authors of monograph [32]
observed a superluminal pulse in nonequilibrium atomic
vapor of cesium excited by two waves of continuous Raman
pumping at the frequencies o1 and o2, respectively. Then the

frequencyo of the superluminal pulse lay betweeno1 ando2,
and its Rabi frequency was much smaller than the detuning
o2 ÿ o1. This last circumstance prevented the pulse from
containing Fourier components in resonance with the
pumping waves.

From the standpoint of quantum transitions, the l-scheme
was realized in a three-level system with two close lower levels
and a remote third level. The nonequilibrium state wasmainly
produced by the initial population of the middle level. In this
case, the situation is formally similar to that shown in Fig. 2d,
where the role of eigenfrequencies o1 and o2 is played by the
frequencies of the pumping waves. Since the carrier frequency
of a superluminal pulse lies outside of the lines of resonant
Raman amplification, the authors of Ref. [32] concluded that
in such a case the mechanism of pulse propagation cannot be
explained by the process of reshaping, described above in this
paper and in a series of earlier works [1, 3, 5, 31].

Instead of reshaping, they suggested a mechanism based
on the wave properties of light: the interference in different
Fourier components of the wave packet in a medium with an
anomalous dispersion.

In this respect it should be noted that anomalous
dispersion in nonresonant region between the two lines of
resonance amplification is such only because the medium is
nonequilibrium (see Section 2 above). The presence of
nonequilibrium state implies that the medium has stored a
certain amount of energy. The induced release of this energy
at the site of location of the pulse front edge, and its return by
the tail portion, provide for superluminal propagation of the
wave packet maximum.

In this way, as we see it, in both resonant and nonresonant
cases the group velocity of the pulse may exceed the speed of
light in vacuum through the mechanism of reshaping. The
only difference is that in the resonant case the nonequilibrium
medium releases amuch greater amount of stored energy, and
the populations of quantum levels change considerably; in the
nonresonant case, however, the deformation of initial
populations is small because the interaction between the
field and the medium is not strong.

Thus, the process of reshaping involves only a small
portion of the energy stored in the medium. In any case, the
electric field of the pulse produces dipole moments in the
atoms (brings them into quantum superposition states),
which, according to the second equation in (3), brings about
a change in the population inversion. Because of this, the
reshaping is still the most likely mechanism of superluminal
propagation of the pulse, observed in Ref. [32].

Since for the envelope solitons we have y5 1, then one
finds cos y � 1ÿ y2=2. Accordingly, from Eqns (7), (9), (39),
and (42) we get

W1 �W11

�
1ÿ

�
2

otp

�2

sech2
�
tÿ z=v

tp

��
;

W2 �W21

�
1ÿ

�
2

otpo2tp

�2

sech2
�
tÿ z=v

tp

��
: �64�

Hence, as well as from the condition �o2tp�2 4 1, it follows
that the level populations actually do not change much in the
medium hosting nonresonant envelope solitons �otp 4 1�,
including superluminal solitons.

The stability of solitons with respect to dispersion
spreading is ensured exclusively by nonlinearity. The inver-
sion of the population, being the energy characteristic of the
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medium, exhibits a nonlinear dependence on the field of the
pulse. Therefore, its change (whether large or small) is caused
by nonlinearity. We see that the stable propagation of the
wave packet in the dispersion frequency range, nonlinearity,
the change in the population inversion, and the mechanism of
reshaping (at v > c) are all very closely connected with one
another.

To end this section, let us note that the application to the
two-component model is very important. In all cases
considered above, one component of the medium provides
for the superluminal propagation of the pulse, while the other
ensures the stability of this process.

6. Conclusions

The model of the two-component medium, proposed in this
paper, has allowed us to trace the qualitative differences in the
superluminal propagation of solitons in dissipative and
conservative nonequilibrium (quasi-nonequilibrium) media.

The solitons considered here in lossy and loss-free media
are stable only as a matter of convention, because the media
that host these solitons are unstable themselves. The lifetime
TR of the excited states undergoing transitions in the optical
spectrum (2-transitions) is� 10ÿ8 s to an order ofmagnitude,
which is much less than the corresponding time for the IR
range, into which the 1-transitions fall. Therefore, it is far
from easy to create in an experiment the conditions when
v > c. The propagation time tprop of a soliton in a quasi-
nonequilibrium medium must satisfy the condition
tprop � L=c5TR. Taking TR�10ÿ8 s, we find that L<1 m.
Assuming also that o1 � 1013 sÿ1, o2 � 1015 sÿ1, we find
that conditions (2) can be satisfied at tp � 10ÿ14 s.

Along with the electromagnetic pulse, the superluminal
propagation involves the polarization P � 2�d1n1U1�
d2n2U2� of the nonequilibrium medium, which ought to be
accompanied by superluminal Cherenkov ±Vavilov radia-
tion [1, 33, 34]. Related to the dynamic polarization are the
elementary excitations of the medium (quasi-particles),
known as polaritons. Accordingly, one may say that
expression (40) defines the group velocity of polaritons
with the energy �ho and lifetime tp in the state with the
given energy. Indeed, the finiteness of the pulse length tp
leads to broadening of its spectrum or the spectrum of
elementary excitations (do � tÿ1p ). Accordingly, tp may be
interpreted as the lifetime of such excitations. Setting in
formula (40) o � 0, we get the polariton condensate
centered at zero frequency with a bandwidth of the order
of tÿ1p . This bandwidth results from the interaction between
polaritons as a result of nonlinearity. In this case, expres-
sion (40) goes over into (37) and defines the group velocity
of an ultimately short soliton. Therefore, soliton (22) may
be regarded as a bunch of polaritons whose lifetime in the
state with zero energy equals tp. Since in this case
tÿ1p > o � 0, this implies that polaritons (as quasi-parti-
cles) lose their individuality. Interaction between quasi-
particles turns out to be very strong. The situation is
different with polaritons corresponding to the envelope
solitons (42), for which o4 tÿ1p . Here we have the
condensate of polaritons at a frequency o with a small
spectral width, which implies that the interaction between
quasi-particles is weak. Because of this, the individual
characteristics of polaritons in this case are emphasized.

On the other hand, the superluminal solitons of equations
(33) and (47) exhibit the `particle-like' property of elastic

interaction with their like. Therefore, the solitons themselves,
which are bunches of polaritons, may be regarded as quasi-
particles (nonlinear excitations) in a nonequilibriummedium.
However, one must remember that solitons in the strict
meaning of this term (solitary pulses that retain their shape
after interaction with one another) are only the spatially one-
dimensional solutions of equation (47), because at D?E 6� 0
this equation is nonintegrable [12, 13, 29]. As far as equation
(33) is concerned, this question has not yet been investigated.
It is easy to see, however, that Eqn (33) includes as special
cases the sine-Gordon equation for y (b � D?y � 0), and the
modified Korteweg ± de Vries equation for E � qy=qt
(a � D?y � 0). As is known, these two equations are
nonintegrable in the spatially inhomogeneous case [13, 29].
Therefore, one may assume that equation (33) is also
nonintegrable at D?y 6� 0, and therefore its solutions in the
form of superluminal pulses in all three dimensions do not
exhibit the soliton (particle-like) properties of elastic interac-
tion with their like.

On the strength of the arguments developed above, one
may speak of superluminal group velocities in the system of
elementary and nonlinear excitations of a nonequilibrium
medium, which, like polaritons, have a finite lifetime TR. It is
clear that one can ascribe a lifetime tp to the polaritons in a
certain state only if tp 5TR. When tp � TR, it is not possible
to separate the lifetime of the polaritons from the lifetime of
the medium in the nonequilibrium state. Here the constitutive
equations (3)must be supplementedwith the relaxation terms,
which will make the mathematics much more complicated.

The Kramers ±Kronig type dispersion relations, which
introduce asymmetry between the past and the future on the
microscopic level [35], express the principle of microscopic
causality [36, 37]. On the other hand, as we know, the second
law of thermodynamics is based on the irreversibility of
relaxation processes which over the time bring different
objects into the state of thermodynamic equilibrium with
respect to each other. As a result of such processes, the
entropy of the system tends to its maximum. In this way the
`arrow of time' [38] (the absence of symmetry between the past
and the future) stands out on the macroscopic level. The
causality related to the second law of thermodynamics can be
called macroscopic causality [36].

The treatment used in this work relates to `ideal' media
[39], for which TR � 1. Formally this leads to a situation
when the atomic excited state becomes in a certain sense
stable. In this case it is possible to distinguish clearly two
subsystemswithin themedium: the excited subsystem, and the
subsystem thermalized according to the Boltzmann statistics.
Such a sharp distinction between the two subsystems implies
that the medium does not occur in the state with maximum
entropy, and is therefore far from equilibrium. The assump-
tion that the lifetime of such a state is TR � 1, in some sense
contradicts the second law of thermodynamics. This circum-
stance ought to lead to violation of themacroscopic causality,
which seems to open the way for superluminal propagation of
a signal (that is, the transmission of information). One must
remember, however, that in our case the superluminal objects
(electromagnetic solitons) are extended (in the macroscopic
sense) rather than point-like objects. Because of this, the
violation of causality principle is fictitious Ð it occurs
through the mechanism of reshaping and is only observed
on the macroscopic level. This fictitious effect is manifested
when we look at the wave packet crossing the boundary
between the equilibrium and nonequilibrium media: under

June, 2001 Superluminal electromagnetic solitons in nonequilibrium media 643



certain conditions the wave packet may emerge from the
nonequilibrium medium sooner than the maximum of the
input pulse reaches the medium of interest [32]. In reality,
however, because of reshaping the descending front edge of
the pulse is replaced by another maximum, and it is this
maximum that is registered at the exit. All this time the
original maximum is to be found close to the interface. This
effect can bemanifested especially clear when pulses are fed to
nonequilibrium media prepared in the form of thin films [40].
At the same time, a superluminal pulse will propagate in a
homogeneous nonequilibrium medium (without interfaces)
virtually without changing its shape [1, 39].

`Violated' macroscopic causality does not affect the
fundamental principle of microscopic causality, therefore
each photon travels from one atom to another at the velocity
c. One can speak about violation of the macroscopic causality
principle, associated with the dynamics of a large number of
photons interacting with the electric dipole transitions, only
when tprop < TR.

Equations (10), (33) and (47) do not possess the property
of Lorentz invariance (there is asymmetry between the space
and time derivatives) because the constitutive equations (3),
(4), unlike the Maxwell equations, are nonrelativistic. In this
case there is no need for the strictly relativistic approach,
because the characteristic velocities of electrons in atoms
subjected to interaction with electromagnetic pulses are
much less than the speed of light. This once again confirms
the fact that the superluminal solitons are to a large extent the
creature of the nonequilibrium medium, and not only the
consequence of the relativistic nature of the electromagnetic
field. Themechanism of reshaping once again puts everything
in place.

Assuming that the irreversibility of physical phenomena is
a fundamental law [41], there is no real equality between time
and space, as stated by the special theory of relativity, because
of the existence of the `time arrow' [38]. The problem of the
linkage between irreversibility and the feasibility of super-
luminal group velocities [38], leaving unshakeable the funda-
mental principle of microscopic causality, is still awaiting
solution.
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