
Abstract. Mechanisms of electron phase separation in manga-
nite-type oxide materials are analyzed using a simple Kondo-
lattice model with intersite Coulomb repulsion between elec-
trons. This model predicts the instability of magnetic (or
charge) homogeneous ordering toward the formation of droplet
structures (magnetic polarons) for a wide parameter range in
the phase diagram. Various types of magnetic polarons are
examined. The transport properties and noise spectrum of
phase-separated materials are also discussed.

1. Introduction

Manganites, the Mn-based magnetic oxide materials typified
by LaMnO3, have been under investigation for more than
50 years [1, 2] but attracted particular attention after the
discovery in 1994 of the colossal magnetoresistance effect first

observed for Ca-doped LaMnO3 films [3]. There is currently
considerable review literature on these materials (see, e.g.,
Refs [4 ± 8]), and it is worthwhile noting that in Ref. [7] a
bibliography of more than 600 references is given. This large
body of original and review literature is due in part to the
potential technological applications of colossal magnetore-
sistance, but also reflects the manganites' suitability for
studying the physics of strongly correlated systems. In
particular, the interaction of spin, charge, and orbital
degrees of freedom in these materials as well as their rich
phase diagrams are of interest. On the other hand, the
possibility of various types of inhomogeneous charge and
spin states in manganites Ð lattice and magnetic polarons,
droplet and stripe structures, etc. Ð is currently receiving
special attention.

Similar phenomena occur in many strongly correlated
systems, where the potential energy of the interaction of
electrons exceeds their kinetic energy. In particular, such
phenomena are being widely discussed in connection with
high-Tc superconductors (HTSC) [9 ± 12]. Of earlier exam-
ples, ferromagnetic (FM) droplets (ferrons) in an antiferro-
magnetic (AFM) state at low doping levels [13, 14] and
ferromagnetic spin polarons in a paramagnet [15, 16] (see
also Ref. [17]) are particularly notable. A string (linear track
of frustrated spins) created by a hole passing through an
AFM insulator [18] should also be mentioned. All these
phenomena are examples of the so-called electron phase
separation effect, which results from individual charge
carriers changing their local electron environment (it is
favorable for such regions to be as far apart as possible to
minimize the Coulomb energy). Along with this small-scale
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phase separation, manganites, as many other materials
showing first-order transitions (between the AFM and FM
phases, for example), display yet another type of phase
separation, related to the fact that there is a large region of
coexistence for various phases in thematerial. One example of
such large-scale separation is the formation of relatively large
FM droplets (100 ± 1000 A

�
in size) in an AFMmatrix [19, 20].

A noteworthy feature of manganites is the strong interaction
between the electronic and lattice subsystems due to the fact
that Mn3� is a Jahn ±Teller ion and therefore any phase
separation gives rise to elastic lattice distortions which can be
detected experimentally. Another characteristic feature is
charge ordering, i.e., a regular arrangement of Mn3� and
Mn4� ions, when the material in fact obtains an additional
lattice period and hence acquires a superstructure. Alongwith
a superstructure, nontrivial spin and orbital ordering may
result from charge ordering. An example is the well-known
zigzag magnetic structure (referred to usually as CE) in
compounds of the type Pr0:5Ca0:5MnO3 [21, 22], in which
charge ordering is accompanied by the formation of zigzag
magnetic chains. The interaction of spin, charge, and orbital
degrees of freedom can also lead to stripe [23] (rather than
droplet) structures at high concentrations of an alkaline-earth
element. Because of the strong interaction with the lattice, it
turns out that in manganites (as opposed to HTSC systems)
such structures are not dynamic but static and are observable
with electron diffraction and X-ray small-angle scattering
techniques.

In this paper, we will focus on the small-scale phase
separation, in which the microscopic nature of charge
transfer manifests itself most clearly. The outline of the
paper is as follows: first, we analyze the low-doping case by
addressing the ferromagnetic Kondo lattice Ð the basic
model for manganites Ð with no Coulomb interaction
between electrons on neighboring sites. We next allow for
the Coulomb interaction and consider densities close to 1=2, a
region where charge ordering is most likely. Based on the
results thus obtained, the relation between the simplest phase
separation models and the actual phase diagram of manga-
nites is analyzed. In the last part of the review, the effects of
phase separation on the transport properties are considered.

2. Basic theoretical model

The simplest theoretical model encompassing the basic
physics of manganites is the ferromagnetic Kondo lattice
(sÿdmodel) with a Coulomb interaction between conduction
electrons:

Ĥ � ÿJH
X
i

Si ri ÿ t
X
hi j i

Pc
y
iscjsP

� Jf f
X
hi j i

Si Sj � V
X
hi j i

ni nj : �1�

The first term in Eqn (1) represents the strong on-site FM
exchange between the local spin S � 3=2 and the spin of
conduction electron. This exchange interaction is of theHund
nature, with the local spin S � 3=2 being due to the fact that
the cubically symmetric crystal field splits the five d orbitals of
Mn into three localized tg orbitals and two delocalized eg
orbitals as shown in Fig. 1. In Eqn (1), the symbol hij i
indicates summation over z nearest neighbors.

In real manganites, the Hund-rule interaction JH is on the
order of 1 eV.

The second term in Eqn (1) is the kinetic energy of the
conduction electrons. The projection operator P corresponds
to the case of singly occupied eg orbitals (a strong one-center
Coulomb repulsion prevents two conduction electrons from
occupying one and the same site). Note that a strong
electron ± lattice interaction [24] significantly reduces the
effective width W of the conduction band �W � 2tz�,
actually t � 0:3 eV.

The third term in Eqn (1) is a weak AFM exchange
between local spins on neighboring sites, with Jf f � 0:01 eV.

Finally, the last term describes the Coulomb interaction
between conduction electrons at neighboring sites. The
strength of this interaction is typically V � 0:7 eV.

Note that although this model assumes the Jahn ±Teller
gap EJT to be wide and hence neglects the presence of two
conduction bands for the eg electrons, still it is adequate to
explain the spin and charge aspects of our problem and to
provide a qualitative understanding of the global features of
the manganites' phase diagram. The physical aspects related
to the orbital ordering in the system are neglected in this
discussion [25 ± 27].

3. Low-doping case

We now return to the basic model (1) and consider first the
low-doping case, i.e., that with low density of itinerant
electrons (holes). The Coulomb interaction can then be
neglected and the ferromagnetic Kondo lattice model is
applicable in its conventional form. We can confine ourselves
to the tight-binding case as discussed at the beginning of this
section. In this limit, the following chain of inequalities holds

JHS4W4 Jf f S
2 ; �2�

and the basic physics of the problem is associated not with the
standard Ruderman ±Kittel ± Kasuya ± Yosida (RKKY)
interaction but with the so-called double-exchange mechan-
ism [28 ± 30]. The ferromagnetic Kondo lattice satisfying
inequality (2) is usually called the double-exchange model.
Our task here is to construct a phase diagram for this model at
T � 0, and we will achieve this by first finding the optimum
energies of all the homogeneous states possible for the system
and then comparing these energies with the energy of the
phase-separated state. We will consider the collinear AFM
state, canted state, and the collinear FM state as possible
homogeneous states. For the phase-separated states, the
simplest possible scenario of FM spin polarons (droplets)
within the AFM matrix will be analyzed. Before proceeding
to a more detailed analysis, we should remind the reader of
the physical origin of a canted state in the double-exchange
model [28, 30]. In the classical picture, it is known that an

EJT

Figure 1. Jahn ±Teller Mn3� ion in the octahedral environment.
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electron cannot move among antiferromagnetically aligned
spins, and it is therefore favorable for the electron to cant one
sublattice relative to the other as it jumps to a neighboring
site. The effective hopping integral in a classical canted state is
then teff � t cos�y=2� and is related to the spinor nature of the
electron wave function. The reason is that in the strong Hund
coupling limit, JH 4W, the conduction electron and the local
spin together form a coupled state with a total spin
S tot � �S� 1=2�. Therefore, if the AFM sublattices are
rotated by an angle y with respect to one another, then the
electron's spinor wave function should be rotated by y=2 as
the electron jumps between sites. The canting angle itself then
turns out to be a function of the density of conduction
electrons. In a classical problem, this angle is found from the
condition that the following expression{ for the energy of the
system be minimized:

E � ÿztn cos
y
2
� 1

2
zJf f S

2 cos y ; �3�

where z is the number of nearest neighbors, and n is the
conduction-electron density.

The first term in this equation accounts for the kinetic
energy gain related to the arising conduction band, and the
second is the loss in the antiferromagnetic interaction energy
of local spins. Note that the constant term JHS=2 related to
the Hund-rule on-site coupling is omitted in Eqn (3). The
same will be done below in any energy expression because this
term causes only a constant shift in energy zero and does not
affect our analysis. Minimization of the energy (3) with
respect to the parameter cos�y=2� yields [30]

cos
y
2
� tn

2Jf f S 2
: �4�

Consequently,

E � ÿ zt 2n2

4Jf f S 2
ÿ zJf f S

2 : �5�

Thus, in the absence of doping �n � 0�, we have the
canting angle y � p, corresponding to a collinear AFM
state. For n 6� 0, the canting angle y 6� p, and we are dealing
with a canted state. Finally, for n � nc � 2Jf f S

2=t, the
canting angle y � 0, implying a transition to a collinear FM
state.

A quantum picture of a canted state was analyzed by
Nagaev [31]. According to this picture, there are two bands,
t� and tÿ, for the motion of conduction electrons, corre-
sponding to two different projections of the total spin,
S tot
z � S� 1=2 and S tot

z � Sÿ 1=2. Apparently, these two
bands are naturally in thermodynamic equilibrium, i.e., have
a common chemical potential m. The de Gennes classical
description of this situation is obtained by taking the limit
tÿ ! 0.

A quantum treatment shows that for y � p, i.e., in the case
of a collinear AFM state, we have t� � tÿ � t=

��������������
2S� 1
p

. This
is where the main difference between the quantum and
classical descriptions of spin canting lies. In the quantum
picture, the band width tÿ for S4 1 is small only as 1=

���
S
p

,
unlike the de Gennes limit, where it is small as 1=S. The
classical limit is attained only in the vicinity of a transition to a

collinear FM state, i.e., for y! 0. In this case, for S4 1, we
have t� � t and tÿ � t=�2S� 1�.

Returning again to the low-doping �n! 0� case, we see
that the collinear AFM state with an angle y � p proves to
remain energetically favorable up to the critical value of the
charge carrier density nc1 given by [31, 32]

nc1 � p 4

3

�
8
Jf f S

2

zt

1��������������
2S� 1
p

�3
: �6�

It is easy to see that the onset of the canted state
corresponds to the situation where, on the order of magni-
tude, nc1 � �Jf f S 2=t

���
S
p �3, i.e., parametrically is much smaller

than the deGennes estimate nc � �Jf f S 2=t� for a transition to
a collinear FM state.

This is another manifestation of the significant difference
which exists between the classical and quantum approaches to
the problem. In the classical treatment, nc1 � 0 in the tight-
binding large-spin limit (i.e., when Jf f S

2=t5 1, S4 1), and
spin canting occurs for arbitrarily low doping levels. In the
quantum case, spin canting occurs only for densities n > nc1.
The physical mechanism allowing the electron (hole) hopping
in an AFM environment in the quantum case is related to the
possibility of coherent string-type motion [33]. This motion
occurs as an electron hops from a state with a total spin
projection S tot

z � S� 1=2 on one site to a S tot
z � Sÿ 1=2

state on a neighboring site, then hops back to the
jS tot

z � S� 1=2i state, etc., thus leading to the formation of
a band of width 2zt=

��������������
2S� 1
p

.
At doping levels n > nc1, a two-band quantum canted

state arises, but at n � nc2 � �27=2�nc1 [34], the second
quantum canting band turns out to be empty, nÿ � 0,
n� � n, indicating a transition from a two-band to a one-
band quantum spin canting. At n0 nc2, the canting angle y is
still close to p and hence the band width t� still not much
larger than the band width tÿ �t�0 tÿ�. The one-band nature
of spin canting in this case is due to the fact that at n > nc2 the
bottom of the second band lies above the chemical potential
level (Fig. 2).

The band width t� is still determined by the quantum
formula

t� � t��������������
2S� 1
p � t

2
cos

y
2
:

A transition to a classical one-band spin canting occurs only
at much higher densities [34]

n � nc3 � 4Jf f S
2

t

1��������������
2S� 1
p : �7�

At these densities, we have

cos
y
2
� tnc3

2Jf f S 2
� 2��������������

2S� 1
p :

n5 nc1

t� � tÿ

m

nc1 5 n5 nc2

t�0tÿ

m

n4 nc2

t�4 tÿ

m

Figure 2. Location of t� and tÿ bands as a function of doping level

(schematic).

{ Note from the Editors. In the English translation some formulas were

changed by the authors.
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As a result,

t� � t cos
y
2

; tÿ � t

2S� 1
;

leading to the de Gennes classical canted state.
Finally, at n > nc4 � 2Jf f S

2=t, we have y � 0, and the
classical canted state transforms into a collinear FM state.

To summarize, we arrive at the following picture illustrat-
ing the dependence of the optimum energy of the homo-
geneous state of a system on the density n:

at 0 < n < nc1, we have a collinear AFM state;
at nc1 < n < nc2, two-band quantum spin canting arises;
at nc2 < n < nc3, one-band quantum spin canting takes

place;
at nc3 < n < nc4, the classical canted state of de Gennes

occurs; and
at n > nc4, a collinear FM state is stabilized.
The energy of the homogeneous state of the system is

plotted as a function of density n in Fig. 3.

3.1 Stability of the homogeneous state
Now let us check the stability of the solutions we have
obtained for the energy of the homogeneous state of the
system. To do this, we need to know the sign of the inverse
compressibility kÿ1 � d2E=dn2 for all the solutions. It turns
out that for n < nc1 one has d2E=dn2 > 0 and the collinear
AFM state corresponds to at least a local minimumof energy.
Similarly, for n > nc4 we have d2E=dn2 > 0, and a collinear
FM state is at least a local minimum. However, for all
densities nc1 < n < nc4 we have d

2E=dn2 < 0, and the canted
state is absolutely unstable. The simplest way to see this is to
consider the classical de Gennes spin canting, in which taking
the second derivative of the energy, Eqn (5), with respect to
the density yields

kÿ1 � ÿ zt 2

2Jf f S 2
< 0 : �8�

Of course, in deriving Eqn (8) we have ignored the
condition of local charge neutrality as well as the interaction

between the electron system and the lattice. But however
crude the estimate, formula (8) sends a very disturbing
message, leading one to question the stability of a canted
state. It is to be emphasized in this connection that the
negative sign of compressibility always indicates the instabil-
ity of a homogeneous state toward phase separation. In the
next section, we will consider the simplest case of a phase-
separated state, namely the formation of FM polarons within
an AFM matrix, and we will show that this state is more
favorable energetically than all other homogeneous states
over the entire density range of interest here, 0 < n < nc4.
Note also that at n > nc4 this state is energetically more
favorable than a collinear FM state.

3.2 The energy of a state with ferromagnetic polarons
within an antiferromagnetic matrix
The energy of the simplest phase-separated state with FM
polarons within an AFM matrix is given by the expression
[4, 32]

Epol � ÿtn
�
zÿ p 2a 2

R 2

�
� 4

3
p
Jf f zS

2

2

�
R

a

�3

n

ÿ 1

2
Jf f zS

2

�
1ÿ 4

3
pn
�
R

a

�3 �
; �9�

where R is the radius of an FM polaron (ferron), and a is the
lattice parameter. Accordingly, O � �4=3�p�R=a�3 is the
volume of an FM polaron in the three-dimensional isotropic
case measured in unit cell volumes. We assume that an FM
polaron has a spherical shape in this case. A polaronwithin an
AFM matrix is shown schematically in Fig. 4.

We emphasize that the first term in Eqn (9) describes the
kinetic energy gain (an electron in an FM spin environment
can be at the bottom of the conduction band). The ta 2=R 2

correction to the term tnz corresponds to the localization
energy of an electron in a ferromagnetic droplet of radius R.
The second term in Eqn (9) is the loss in the Heisenberg
interaction energy between localized spins within the ferro-
magnetic droplet. Finally, the third term describes the AFM
interaction energy between spins in a region free of FM
polarons.

Note that at charge-carrier densities

n � nc5 � 3

4p

�
a

R

�3

;

FM polarons start overlap, thus bringing the entire sample
into an FM state. The optimum polaron radius is obtained
from the energy minimization condition dE=dR � 0. In the
three-dimensional isotropic case [15], we have

Rpol � a

�
pt

2zJf f S 2

�1=5

�10�

E
nc1 nc2 nc3 nc4 n

Figure 3. Variation of the energy of the homogeneous state of a system

versus density n.

Figure 4. FM polarons with one conduction electron within an insulating

AFM matrix. The crosses denote conduction electrons localized at the

center of a ferron.
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and hence

nc5 � 3

4p

�
2zJf f S

2

pt

�3=5

:

Note that nc5 � 0:16 in real manganites, and consequently
R � �2ÿ3�a � 10 A

�
.

As a result, the optimum energy of an inhomogeneous
(polaron) state can be written in the form

Epol � ÿztn� 5

3
pn�pt�3=5�2zJf f S 2�2=5 ÿ 1

2
zJf f S

2 : �11�

Clearly, both the polaron energy, Eqn (11), and the energy
of the deGennes canted state, Eqn (5), were determined by the
variational procedure

dEpol

dR
� 0 ;

dEcant

d cos�y=2� � 0 :

It is, however, easy to see (Fig. 5) that the polaron state
approximates the exact ground state of the system much
better than all the optimum energies of homogeneous states
do.

3.3 Electron ± hole symmetry of the phase diagram
of a ferromagnetic Kondo lattice
The phase diagram of the ferromagnetic Kondo-lattice model
with no Coulomb interaction between the electrons exhibits a
pronounced re-entrant behavior or, in other words, elec-
tron ± hole symmetry. Indeed, let us consider now the
opposite corner of the phase diagram, one where the electron
density n! 1 and hence d � 1ÿ n5 1. Note that if n is the
electron density, then d is the hole density.

It is seen that for d � 0, in the limit of a strong on-site
Hund exchange, we again obtain an AFM ground state, but
now for the spins S� 1=2. For low hole doping, 0 < d5 1, a
few `unpaired' spins S appear amidst `paired' S� 1=2 spins
(Fig. 6).

Furthermore, electron motion between neighboring local
spins is in fact equivalent to interchanging an unpaired spin S
with a paired spin S� 1=2. Thus, for a small number of holes,
d5 1, the objects that effectively act as charge carriers are
unpaired spins S, the direction of their motion being opposite
to that of the holes. This situation is entirely equivalent to that
in the tÿJmodel [35]. In our case holes (Zhang ±Rice singlets

in the tÿJ model [35]) are presented by the paired spins
S� 1=2. In HTSCs, the Zhang ±Rice singlet is a local Kondo
singlet contracted to a magnetic copper site [36]. We wish to
emphasize that in our case, a bound state of a local spin plus a
conduction electron spin, with a total spin S� 1=2 � 2,
contracts to a magnetic Mn site. The qualitative arguments
above allow us to obtain the expressions we need for the
dominating matrix elements for the case of low hole doping,
d5 1. In particular, Jf f S

2 ! Jf f �S� 1=2�2. Accordingly, for
the hopping matrix element for the string motion of an
unpaired spin S in the AFM medium of S� 1=2 spins, the
replacement

t��������������
2S� 1
p ! t�������������������������������

2�S� 1=2� � 1
p

must be made. At the same time, for the motion of an
unpaired spin S in the FM medium of S� 1=2 spins, the
effective hopping matrix element remains unchanged and is t
as before. As a result, also for the opposite corner of the phase
diagram �1ÿ n � d5 1�, the global energy minimum will
correspond to FM polarons within an AFM matrix of
S� 1=2 spins. The critical hole density, i.e., one at which
polarons start overlapping and the entire sample becomes
FM, will then be given by

dc5 � 3

4p

�
2zJf f �S� 1=2�2

pt

�3=5

: �12�

Finally then, the phase diagram of the ferromagnetic
Kondo-lattice model with no Coulomb interaction has the
schematic form shown in Fig. 7.

At an electron density n � 0, an AFM insulator with spin
S is stabilized. For 0 < n < nc5, FM metal polarons arise
within an insulating AFMmatrix. For nc5 < n < 1ÿ dc5, FM
metal is stabilized over the entire volume of the sample. At an
electron density 1ÿ dc5 < n < 1, the phase diagram of the

E

0

nc1 nc4 nc5

n

Collinear
AFM state

Polaron state

Canted
state

Collinear
FM state

FM state

Figure 5. Energies of homogenous and polaron states as functions of the

charge-carrier density.

d � 0 05 d5 1

Figure 6.Unpaired spins S in the midst of paired spins S� 1=2 for the low
hole doping case 0 < d5 1.

AFM
S

AFM
S� 1=2

FM
polarons

FM
polarons

FM
metal

0

T

nc5 1ÿ dc5 1 n

Figure 7. Phase diagram of temperature versus electron density for the

ferromagnetic Kondo-lattice model (schematic).
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ferromagnetic Kondo-lattice model has a clearly pronounced
re-entrant character with FM polarons within an AFM
matrix. Finally, for an electron density n � 1 we again obtain
an AFM insulator, but this time with a sublattice spin
S� 1=2. Note that in real manganites the phase diagram has
a marked asymmetry between electron �n5 1� and hole
�d� 1ÿ n5 1� doping and is dominated by orbital ordering
[21, 23, 25 ± 27]. Along with this strong asymmetry, there are
other features in the phase diagram of real manganites which
together make it much richer than that of Fig. 7. This is seen
particularly clearly in the electron density range
nc5 < n < 1ÿ dc5, where the metallic FM phase is stabilized
in the simplest ferromagnetic Kondo model. This richness
depends crucially on the Coulomb interaction between
electrons, to be considered in detail in the next section.

4. Role of the Coulomb interaction
between electrons

We now return to the basic theoretical model (1) and modify
the Hamiltonian of the ferromagnetic Kondo lattice by
adding the interaction between conduction electrons located
at neighboring sites. The discussion of Section 2 shows that
we are dealing with the strong interaction, V > t, case. More
specifically, we have the following chain of inequalities for the
basic model (1):

JHS > V > zt > Jf f S
2 : �13�

We emphasize that the condition V > t actually holds for
a dilute Coulomb gas with correlation length rs > 1. Thus,
instead of the weak binding case, where perturbation theory
and the random phase approximation may be applied, the
essentially nonperturbative tight binding case is to be
considered. Note that, strictly speaking, rs 0 4 in manga-
nites, so that in fact both approaches (tight andweak binding)
have the right to life. In our view, however, the tight binding
approximation should be preferred as it allows all major
phenomena encountered in this field to be explained in a
simple language at a qualitative level. A characteristic feature
of this approach is the occurrence of Wigner crystallization
type phenomena. Note that in the limit V > t at electron
densities n! 1=2, the charge ordering will appear in the
system. Postponing a discussion of this phenomenon, we will
here address the low density regime, n5 1. In this case, the
ferromagnetic Kondo-lattice model stabilizes the state with
FM polarons within an AFM matrix. For n5 nc5 �
�3=4p��a=Rpol�3, the polaron radius Rpol obeys the inequal-
ities a=n1=3 4Rpol 4 a, implying (Fig. 8) that the mean
distance between the conduction electrons far exceeds the
polaron radius, which in turn is much larger than the lattice
parameter a.

Thus, for FM polarons (ferrons) with one conduction
electron per ferron, even the allowance for the strong

Coulomb interaction between neighboring electrons does
not lead to a charge redistribution. Therefore, upon includ-
ing the Coulomb interaction, both the energy of the phase-
separated state with FMpolarons within an AFMmatrix and
that of a homogeneous state acquire only a Hartree ± Fock
correction term proportional to �z=2�Vn2, so that the energy
difference Epol ÿ Ehom between the polaron and homoge-
neous states remains unchanged, and the global minimum
for the energy of the system again corresponds to the FM
polaron/AFM matrix state. The most important point to
reemphasize here is that there is only one conduction electron
in each ferron. Here lies the main difference between the
small-scale phase separation and the large-scale separation
with a large number of conduction electrons per FM cluster
(droplet). Note, however, that within the simplest model (1)
and in the case of large-scale separation, the electrical charge
within an FM droplet may be made rarefied enough to avoid
strong increase in the Coulomb interaction energy. This is
likely to be a qualitative explanation of the experiments [19,
20, 23] showing FM droplets, 100 ± 1000 A

�
across, with a

large number of conduction electrons. Note also that the
analysis of large-scale phase separation probably requires
considering the elastic energy of the lattice distortions caused
by the formation of an inhomogeneous state. Such distortions
may make it easier to change the electron density without
violating the electrical neutrality.

4.1 Charge ordering at densities n! 1=2
We consider next the case of large density of conduction
electrons, namely that of a quarter-filled band, n! 1=2. At
half-filling, n! 1, we know that in the limit of strong on-site
repulsion, U4W � 2zt, so-called Mott ±Hubbard localiza-
tion occurs [37], when all sites are singly occupied and
hopping from site to site is not possible because of the strong
loss in Coulomb energy. Consider now a situation in which
the band width W is so small that not only U4W, but also
V4W, whereV is the Coulomb repulsion between neighbor-
ing sites. We address, in other words, the case in which
U4V4W. The simplest Hamiltonian for this problem can
then be written as

Ĥ � ÿt
X
hi j i

Pc
y
iscjsP� V

X
hi j i

ni nj ; �14�

where the projection operator again prevents the double
occupancy of a lattice site.

Hamiltonian (14) describes two possible localization
transitions in the system: in addition to the Mott ±Hubbard
transition at n! 1, a Verwey localization transition occurs as
n! 1=2. This scenario, first proposed to explain a dramatic
change in the conductivity of the magnetite Fe3O4 (Verwey
transition) [38], involves the stabilization of charge-ordered
state with a checkerboard arrangement of electrons and holes
(Fig. 9).

In this case, hops from one site to another (unoccupied)
one are forbidden to an electron because of the high loss in the
Coulomb interaction energy of neighboring electrons. Note
that if the band width W is even smaller than the Coulomb
interaction between electrons located at more distant

Rpol

1

pF
� a

n 1=3

Figure 8. Distribution of conduction electrons in a phase-separated state

with FM polarons within an AFMmatrix. Figure 9. Verwey localization scenario for electron densities n! 1=2.
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sites (V4V2 4V3 4 . . . 4Vm 4W, where Vm

P
i nini�m

accounts for the Coulomb interaction between electrons a
distance ma apart), then varying the carrier density will give
rise to a whole cascade of localization phase transitions
differing in their ground-state structures. Thus, for V2 >W,
the system will exhibit an additional phase transition to a
localized state at electron densities n! 1=3.

A more general localization criterion for narrow-band
�aHV�r� >W� systems was proposed by Kagan and Maksi-
mov [39].

We now return to our simple model, Eqn (14), and first
consider the homogeneous state of the system at densities
close to 1=2 for the caseV4W. Note that for a density of 1=2,
charge ordering appears for any value of V, including very
low values, the reason being the nesting effect occurring in the
simplest model with a constant density of one-electron states.
In a more general case, charge ordering at n � 1=2 occurs in a
thresholdmanner atV > Vcr, where the critical valueVcr is on
the order ofW [40]. A similar result was obtained for the two-
orbital model [26].

For an arbitrary electron density n 6� 1=2, we will apply to
the homogeneous charge-ordered state the same ansatz that
was used by Khomski|̄ [40], namely,

ni � n
�
1� �ÿ1�it� : �15�

This expression implies the doubling of the lattice
parameter and local densities n1 � n�1� t� and
n2 � n�1ÿ t� at neighboring sites. For t! 1, this ansatz
appears to be quite a natural choice because for n! 1=2 we
have n1 ! 2n! 1 and n2 ! 0 in accord with the simplest
checkerboard structure for a charge-ordered state (see Fig. 9).
We will later show that in the tight-binding case, V4 t, the
value of t is indeed close to unity. Note that the spectrum of
quasiparticles for the charge-ordered state defined by ansatz
(15) is given by

ek� � Vnzÿ m� ok ; �16�

where

ok �
��������������������������
�Vntz�2 � t 2k

q
: �17�

Here tk � 2t�cos kx � cos ky � cos kz� is the spectrum of non-
interacting electrons in a cubic lattice, and m denotes the
chemical potential. Note that the quasiparticle spectrum
given by Eqns (16), (17) is much like that in a super-
conductor. Therefore, the first term under the square root in
Eqn (17) plays the role of a gap for a charge-ordered state,

D � Vnzt : �18�

Accordingly,

ok �
����������������
D2 � t 2k

q
�19�

and the only difference from the quasiparticle spectrum of a
superconductor,

ok �
�����������������������������
D2 � �tk ÿ m�2

q
;

is the absence of the chemical potential m under the square
root in Eqn (19).

Thus, the problem of a homogeneous charge-ordered
state reduces to that of self-consistently determining the gap
D and the chemical potential m as functions of density and
temperature. More specifically, the values of D and m are
determined from the set of equations [41]

2n �
�
d3k

OBZ

�
fF�ekÿ� � fF�ek��

�
;

1 � Vz

2

�
d3k

OBZ

1

ok

�
fF�ekÿ� ÿ fF�ek��

�
; �20�

where the fF�ek�� � 1=�expfek�=Tg � 1� are the Fermi
distribution functions, and OBZ is the volume of the first
Brillouin zone. It is readily seen that the first equation of set
(7) is that for the total particle number density, whereas the
second is analogous to the self-consistency equation for the
superconducting gap in the Bardeen ±Cooper ± Schrieffer
theory. For T � 0, we have fF�ek�� � y�ek��, and the gap D
and the chemical potential m in fact depend only on the total
particle number density n.

Consider the tight-binding case, V4 t. Here for electron
densities less than but close to 1=2 (i.e., for densities
n � 1=2ÿ d) the set of equations (20) yields

m�d� � Vnz�1ÿ t� ÿ 4W 2

Vz
d 2 � W 2

3Vz
� 4W 2

3Vz
d�O�d 2� ;

D � Vz

2

�
1ÿ 2dÿ 2W 2

3V 2z 2
�1� 4d�

�
: �21�

Accordingly,

t � 1ÿ 2W 2

3V 2z 2
�1� 6d� ; �22�

confirming our assumption that t! 1 in the tight-binding
limit V4 t. It is important to note that the total energy of the
system in a charge-ordered state is given by

Eco�d� � Eco�0� �W 2

3Vz
dÿ 2W 2

3Vz
d 2 �O�d 3� ; �23�

whereEco�0� � ÿW 2=6Vz is the energy of the charge-ordered
state for quarter-filling, i.e., for the density n � 1=2.Note that
jEco�0�j5W in the tight-binding limit.

We now proceed to the case of electron densities slightly
above 1=2, i.e., when n � 1=2� jdj. In this case, the energy of
a charge-ordered state starts to increase rapidly due to the
Coulomb interaction contribution, and for each electron
added to the system there necessarily exist filled neighboring
sites in the checkerboard structure, which increases the total
energy of the system by Vzjdj at densities n � 1=2� jdj. One
can say that the upper Verwey band starts filling. As a result,
for densities n � 1=2� jdj, the total energy of the system
becomes

Eco�d� � Eco�0� �
�
Vzÿ W 2

3Vz

�
jdj ÿ 2W 2

3Vz
d 2 �O�d 3� :

�24�

The chemical potential is then

m � dE

dn
� Vzÿ W 2

3Vz
ÿ 4W 2

3Vz
jdj �O�d 2� : �25�
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It is easily seen that for t! 1 the chemical potential
experiences a jump by Vz at the point n � 1=2. Note that the
charge-ordering gap is symmetric at n > 1=2 and is given by
the formula

D � Vz

2

�
1ÿ 2jdj ÿ 2W 2

3V 2z 2
ÿ
1� 4jdj�� : �26�

As already discussed, the expression for the chemical
potential is asymmetric with respect to the transition from
densities n < 1=2 to n > 1=2. This asymmetry, however, is
easily removed by shifting all one-electron energy levels and
the chemical potential of the system by Vz=2, i.e., by defining
the quantity m 0 � mÿ Vz=2. In terms of m 0, Eqns (21) and (25)
become

m 0 � ÿVz

2
� W 2

3Vz
� 4W 2

3Vz
d ; n <

1

2
;

m 0 � Vz

2
ÿ W 2

3Vz
ÿ 4W 2

3Vz
jdj ; n >

1

2
:

By analogy with the semiconductor situation, exactly at the
point n � 1=2 the chemical potential m 0 � 0 (Fig. 10) lies in
the middle of the band gap. For densities n � 1=2ÿ 0, the
chemical potential m 0 � ÿVz=2 coincides with the upper edge
of the filled Verwey band.

4.2 Stability of a charge-ordered state
at densities close to n � 1=2
We now proceed to examine the stability properties of the
charge-ordered state. For densities close to n � 1=2, the
dependence of its energy on the density is as shown in Fig. 11.

FromFig. 11 it can be seen that the charge-ordered state is
unstable. Indeed, a calculation of the inverse compressibility
kÿ1 � d2E=dn2 using expressions (23), (24) for the energy of
the system yields

1

k
� d2E

dn2
� d2E

dd 2
� ÿ 4W 2

3Vz
< 0 : �27�

The negative sign indicates that the system is unstable toward
phase separation at d 6� 0. We wish to emphasize that the

presence of a kink (discontinuity in the first derivative) in
Fig. 11 related to the rapidly growing linear term Vzjdj in the
total energy at n > 1=2 leads to profound consequences.
Indeed, from the global energy and particle number con-
servation conditions, a state with a density of n < 1=2 can
only be separated into phases with densities n1 < n < 1=2 and
n2 � 1=2. Correspondingly, a state with density n > 1=2 can
only be separated into phases with densities 1=2 < n < n1 and
n2 � 1=2. Now consider the case in which the density of the
system is exactly n � 1=2. From particle number conserva-
tion, such a state can be separated only into phases with
densities n1 < 1=2 and n2 > 1=2. This separation is energeti-
cally unfavorable, however, because of the presence of a
rapidly growing linear term in the energy of the second
�n2 > 1=2� phase. Thus, the decay of a state with a density
n � 1=2 is energetically forbidden and the state is stable in a
certain sense. The following section considers the simplest
phase-separation scenario for a state with a density n < 1=2.
We will show that in simple models this scenario corresponds
to the formation of metallic droplets of small radius within a
charge-ordered matrix.

4.3 The simplest example of phase separation
in the Verwey model at densities n < 1=2
We now return to the model (14) and write down the
expression for the energy in the framework of the simplest
phase-separation scenario of small-radius metallic droplets
in a charge-ordered matrix. This expression has the form
[41]

Edrop � ÿtndrop
�
zÿ p 2a 2

R 2

�
ÿ W 2

6Vz

�
1ÿ 4

3
pndrop

�
R

a

�3 �
;

�28�

which corresponds to the situation illustrated in Fig. 12 and
describes the process in which metallic droplets with one
conduction electron are formed in a charge-ordered matrix.

In this expression, as in Eqn (9), R is the radius of the
droplet, and a is the interatomic spacing. The first term in
Eqn (28) describes the kinetic energy gain due to the
localization of an electron within the droplet. The second

m 0 � 0
2D � Vz

Figure 10. Band structure of the Verwey model for n � 1=2. The lower

Verwey band is completely filled. The upper Verwey band is empty. The

chemical potential m 0 � 0 is in the middle of the band gap of width 2D.

E

n

1=2

Figure 11. Energy of the charge-ordered state as a function of the density

for n! 1=2.

Figure 12. Simplest phase separation scenario involving the formation of

metallic droplets with one conduction electron within a charge-ordered

matrix.
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term is the energy of charge ordering in the insulating region
of the sample. The parameter ndrop in Eqn (28) is the
concentration of metallic droplets. Note that both in Eqn (9)
for a magnetic polaron and in Eqn (28) for a metallic droplet,
a surface energy term can be incorporated into the total
energy of the system. This term, however, is of orderW 2R 2=V
for a metallic droplet in a charge-ordered matrix, so that for
R4 a it is always small compared to the volume energy term
proportional to R 3 and will be neglected in the following
discussion. Minimization of the energy (28) with respect to
the droplet radius R yields the condition

R

a
/
�
V

t

�1=5

: �29�

As a result, at the critical droplet concentration

ndrop cr � 3

4p

�
a

R

�3

/
�
t

V

�3=5

�30�

the metallic droplets overlap and the entire sample undergoes
a transition to a metallic state. Expression (30) is in fact the
analogue of the Nagaoka theorem for the Verwey model (14).
Note that, when using Eqn (30) for the critical droplet
concentration, the total energy of the system (28) can be
rewritten as

Edrop � ÿtndrop�zÿ an 2=3
drop cr� ÿ

W 2

6Vz

�
1ÿ ndrop

ndrop cr

�
; �31�

where a is a numerical coefficient of order unity.
Note that the ratio ndrop=ndrop cr in Eqn (31) describes the

relative volume Odrop=O occupied by droplets. This volume
can be found from the condition for the conservation of the
total number of particles in the system, which reads

N � 1

2
�Oÿ Odrop� � ndrop crOdrop � nO ; �32�

where n is the average density of conduction electrons.
From condition (32), the required relation follows

immediately as [41]

Odrop

O
� 1=2ÿ n

1=2ÿ ndrop cr
: �33�

The droplet concentration in Eqn (31) is then

ndrop � ndrop cr
1=2ÿ n

1=2ÿ ndrop cr
� ndrop cr

d
dcr

; �34�

where again, as in the homogeneous state, d � 1=2ÿ n is the
deviation of the density from 1=2. From Eqn (32) it follows
that ndrop � 0 at n � 1=2. Accordingly, at the density
ndrop � ndrop cr we have d � dcr � 1=2ÿ ndrop cr. Finally, the
energy of the phase-separated state is

Edrop � ÿt d
dcr

ndrop cr

�
zÿ an 2=3

drop cr

�
ÿW 2

6Vz

�
1ÿ d

dcr

�

� ÿW

2

d
dcr

ndrop cr ÿ W 2

6Vz

�
1ÿ d

dcr

�
: �35�

Comparison of the energy (35) with the energy (23) of the
charge-ordered state shows that we have, for densities

ndrop cr < n < 1=2,

Edrop ÿ Eco � ÿW

2

d
dcr

ndrop cr < 0 :

Thus, a phase-separated state with small metallic droplets
is more favorable than a homogeneous state. Note that a
phase-separated state with small metallic droplets within a
charge-ordered matrix is also more favorable than the
complete separation into two large clusters, one metallic and
the other charge-ordered (Fig. 13).

Indeed, the energy of a fully separated state is given by

Etot sep � Emet
Omet

O
� Eco

Oco

O
; �36�

whereOmet=O andOco=O are the relative volumes occupied by
the metallic and charge-ordered clusters,

Emet � ÿtznmet � btn 5=3
met �

z

2
Vn 2

met �37�

is the energy density in the metallic cluster, and

Eco � ÿW 2

6Vz

is the energy density in the charge-ordered cluster.
Minimization of the energy density (37) with respect to

nmet now yields for the metallic cluster

nmet 0 � t

V
;

Emet � ÿ t 2z

2V
� ÿW 2

8Vz
: �38�

As a result, for densities nmet 0 < n < 1=2, the system
separates fully into a metallic phase with density nmet 0 and a
charge-ordered phase with density 1=2. By analogy with Eqn
(32), the relative volumes of the phases are given by

Omet

O
� 1ÿ Oco

O
� 1=2ÿ n

1=2ÿ nmet 0
� d

d0
: �39�

Accordingly, the energy of the fully separated state takes
the form

Etot sep � ÿW 2

8Vz

d
d0
ÿW 2

6Vz

�
1ÿ d

d0

�
: �40�

It is readily seen that, by analogy with the Nagaoka
theorem for the Hubbard model, the density of a metallic
cluster is nmet 0 < ndrop cr in the Verwey model, and hence
Edrop < Etot sep. Physically, this is related to the fact that even
when metallic droplets overlap, each conduction electron is
within a sphere of radius R=a � �V=t�1=5 and thus is

Omet Oco

Figure 13.Complete phase separation into two large clusters (metallic and

charge-ordered).
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effectively farther from other electrons than it would be in the
case of full phase separation. Therefore, at full phase
separation the energy of Coulomb interaction between
electrons turns out to be higher than for metallic droplets of
small radius.

Note that along with one-electron metallic droplets, a
small-scale phase-separation scenario of the kind shown in
Fig. 14 can be organized, in which ametallic droplet is formed
by replacing one electron with a hole at the center of a droplet.

Note, however, that the energy of such an undermelted
charge-ordered state (`a resonance-valence bond state' for the
Verwey model) is much more difficult to calculate than that
for a one-electron metallic droplet, and this problem will not
be considered in this review.

In conclusion, we can summarize the main results of this
section as follows.

For V4W and densities �t=V�3=5 < n < 1=2, the Verwey
model (14) is unstable toward phase separation, and in the
simplest case the most energetically favorable phase-separa-
tion scenario is that involving small metallic droplets with one
conduction electron within a charge-ordered matrix.

Let us now return to the basic model of the ferromagnetic
Kondo lattice with a Coulomb interaction, Eqn (1), and
determine for it the structure of a phase-separated state for
densities close to 1=2.

4.4 Phase separation in the basic model of the
ferromagnetic Kondo lattice with a Coulomb interaction
for densities close to n � 1=2
The energy of a phase-separated state in the basic model (1)
for densities close to 1=2 has the form

Edrop � ÿtndrop
�
zÿ p 2a 2

R 2

�
� zJf f S

2

2

4

3
p
�
R

a

�3

ndrop

ÿ 1

2
zJf f S

2

�
1ÿ 4

3
p
�
R

a

�3

ndrop

�

ÿ W 2

6Vz

�
1ÿ 4

3
p
�
R

a

�3

ndrop

�
: �41�

The first three terms in Eqn (41) are in fact identical to the
magnetic polaron energy in the double-exchange model (9)
but with the electron density n replaced by the droplet density
ndrop. At the same time, the last term in Eqn (41) is identical to
the second term of (28) corresponding to the energy of a
homogeneous charge-ordered Verwey state. These coinci-
dences are not surprising, because the basic model (1) is
obtained from the double-exchange model by adding the
Coulomb term. Minimization of the droplet energy, Eqn
(41), with respect to radius R yields [41]

R

a
� 1

�t=V� Jf f S 2=t�1=5
: �42�

Note that for t=V5 Jf f S
2=t, we obtain R=a �

�t=�Jf f S 2�1=5�, and the double-exchange result (10) is repro-
duced for the metallic-droplet radius. In the opposite limit
t=V4 Jf f S

2=t, we have R=a � �V=t�1=5, and we arrive at the
Verweymodel result (30). Accordingly, the critical concentra-
tion for the overlap of metallic droplets is

ndrop cr �
�
t

V
� Jf f S

2

t

�3=5

: �43�

Naturally, the droplet concentration in the energy expres-
sion (41) for the phase-separated state is again given by

ndrop � ndrop cr
d
dcr

with ndrop cr from Eqn (43). Physically, minimization of the
total energy (41) with respect to the droplet radius implies that
there is only one conduction electron inside a metallic droplet
and that this electron is surrounded by ferromagnetically
ordered local spins. At the same time, outside the droplets, we
have a charge-ordered (checkerboard) arrangement of con-
duction electrons surrounded by antiferromagnetically
ordered local spins (Fig. 15).

This last result illustrates the main difference between the
phase-separated states that are obtained in the basicmodel (1)
at densities n! 0 and n! 1=2. At low densities �n5 1�, the
conduction electron density outside FM polarons is zero and
the entire electrical charge is contained within metallic
droplets. At the same time, at densities close to 1=2, most
conduction electrons are localized in charge-ordered regions
outside the metallic droplets.

Finally, the phase diagram of the model of a ferromag-
netic Kondo lattice with a Coulomb interaction includes the
following regimes:

(1) For 0 < n < �Jf f S 2=t�3=5, the system separates into
metallic FM droplets within an AFM insulating matrix.

(2) For �Jf f S 2=t�3=5 < n < �t=V� Jf f S
2=t�3=5 < 1=2, the

system is an FM metal. Of course, we must have a certain
`window' of parameters to satisfy the inequality on the right-
hand side of this expression. As discussed in Section 2, in real
manganites we have t=V � 1=2ÿ 1=3 and Jf f S

2=t � 0:1.
Therefore, the inequality

n <

�
t

V
� Jf f S

2

t

�3=5

< 1=2

is not necessarily met. Experimental evidence indicates that
the desired parameter range exists for La1ÿxCaxMnO3, but
definitely not for Pr1ÿxCaxMnO3.

(3) Finally, for �t=V� Jf f S
2=t�3=5 < n < 1=2, phase

separation into metallic FM droplets within an AFM
charge-ordered matrix occurs. It is to be emphasized that an
ideal AFM structure can only be formed by local spins S. The

Figure 14. Small-scale phase-separation scenario with an undermelted

charge-ordered state within a metallic droplet.

Figure 15. Formation of metallic FM droplets of small radius within a

charge-ordered AFM matrix.
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large Hund-rule exchange between a local spin S and a
conduction electron spin leads to ferrimagnetism in a
charge-ordered matrix. Note that for n5 1=2 the phase
diagram of the basic model (1) has a qualitatively the same
features. At n � 1=2 a homogeneous charge-ordered state is
stabilized. For n > 1=2, metallic FM droplets first appear
within a charge-ordered AFMmatrix. Qualitatively, the only
difference is that, instead of one electron, one hole will now be
localized inside the droplet (Fig. 16).

As a result of the strong Hund exchange, the phase
separation diagram of Fig. 16 becomes equivalent to that
shown in Fig. 17.

In this latter diagram, the effective charge carrier is an
unpaired spin S localized at the center of a metallic droplet
against the background of ferromagnetically ordered spins
S� 1=2. Accordingly, outside metallic droplets a ferrimag-
netic structure with two antiparallel sublattices of spins
S� 1=2 and S occurs.

At higher densities, a hole FM metal, or in other words a
metallic system of unpaired spins S, appears. At still higher
densities n! 1, when d � 1ÿ n5 1, FM droplets, with
unpaired spins S as carriers, appear within an insulating
AFM matrix of effective spins S� 1=2. The structure of this
state is depicted in Fig. 18 and has already been discussed in
Section 3 of this review.

Finally, at n � 1 �d � 0�, the whole of the sample will be
an antiferromagnet with spin S� 1=2.

The phase diagram discussed above is in good qualitative
agreement both with experiments on small-scale phase
separation in manganites [42 ± 47] and with numerical
calculations by Dagotto et al. [48]. Note that real manganites
are usually hole-doped, so that experimentally n often means
the hole concentration. This does not matter much, however,
because of the re-entrant character of the phase diagram for
the basic model (1). Nevertheless, the phase diagram of a real
manganite differs considerably depending on whether it is
electron- or hole-doped. The mechanisms of this asymmetry
are not yet completely understood. In particular, the
asymmetry can be related to the specificity of orbital
ordering in manganites and on the possible formation, as we
have mentioned above, of inhomogeneous states other than
the droplet structures discussed here, charge- and orbital-
ordered stripes, for example. To include all these aspects,
however, a theory that goes beyond the model (1) is needed.

Turning now to the experimental confirmation of our
results, the beautiful nuclear magnetic resonance experiments
on La1ÿxCaxMnO3 [42] should be mentioned first. These
experiments, which employed 55Mn nuclei, provided evidence
for the existence of twoNMR frequencies in a sample (instead
of only one as is typical for a homogeneous state), whose
frequencies are naturally attributed to the ferromagnetic and
antiferromagnetic domains resulting from the phase separa-
tion in manganites. NMRmeasurements at La nuclei in La ±
Pr manganites led to similar conclusions [43].

Further experimental confirmation of phase separation in
manganites comes from recent neutron scattering experi-
ments [44, 47]. They showed that in the case of inelastic
scattering there are two spin-wave modes, one of which has
quadratic dispersion and corresponds to FM magnons,
whereas the other has linear dispersion and corresponds to
magnons in the AFM phase.

Note that in elastic neutron scattering experiments the
peak intensity I�q� has a Lorentzian shape. The half-width of
the peak at low densities n � 0:05 corresponds to the
characteristic polaron radius Rpol � 1=q0 � 10 A

�
[44]. At

densities n close to 1=2, the line half-width again corresponds
to small-scale phase separation with a characteristic polaron
size Rpol � 10ÿ20 A

�
.

Note that similar measurements of the spin wave
spectrum in a magnetic field using the antiferromagnetic
resonance technique are interpreted in Ref. [49] as favoring
some nontrivial compromise between magnetic polaron
formation and homogeneous spin canting. The possibility
of such a compromise, first noted by de Gennes in his
classical paper [30], relates to a certain amount of
inhomogeneous spin canting against the FM background
within a magnetic polaron and to a certain amount of
inhomogeneous spin canting against the FM background
outside the magnetic polaron. Such a structure can in
principle be achieved if the ferron wave function decays
exponentially, rather than according to a power law, as the
distance increases.

Quite recently, further experimental evidence in favor of
the polaron picture was obtained by Babushkina et al. [45],
who discovered a strongly nonlinear current ± voltage char-
acteristic in La ±Pr manganites close to the phase boundary
between the ferromagnetic and charge-ordered states. This
provides indirect evidence for percolative charge transfer [50]
naturally activated by the phase separation process. The
critical density for the overlap of polarons actually appears
as the percolation threshold in this picture [50].

S S

Figure 16. Metallic FM droplet against the background of a charge-

ordered AFM structure at densities n > 1=2.

S

S� 1=2

Figure 17. Effective phase-separation diagram at densities n0 1=2.

S
S� 1=2

Figure 18. Structure of a phase-separated state at the conduction electron

density n! 1.
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Finally, the experiments of Voloshin et al. [46] showed a
shifted magnetization hysteresis in manganites, with the
center of the hysteresis loop shifting from the magnetic field
H � 0 to H � 4ÿ6 T in the low-density regime. The shift
appears quite naturally within the polaron picture. To see
this, note that in a magnetic field the effective Heisenberg
exchange is

J eff
f f S

2 � Jf f S
2 ÿ gmBHS ;

where g is the gyromagnetic ratio, and mB is the Bohr
magneton. Therefore, the polaron radius
R=a � �t=J eff

f f S
2�1=5 increases, with the result that in strong

magnetic fields polarons start overlapping at lower densities:
ncr�H� < ncr�0� � 0:16.

Note that, recently, more direct experiments supporting
the phase separation scenario have been carried out [19, 51].
In Ref. [51], metallic regions inside the insulating matrix were
visualized via scanning tunnelingmicroscopy, and in Ref. [19]
electron-diffraction and dark-field microscopy showed the
existence of metallic domains against the background of a
charge-ordered matrix. However, both Ref. [51] and [19]
actually report large-scale phase separation, with metallic
domains measuring L � 100 ± 200 A

�
in size. Thus, the

experiments reported in Refs [19] and [51] neither contradict
nor decisively verify the polaron picture.

Note also that a phase diagram containing two types of
separation and similar to that discussed in this section was
predicted in Refs [52, 53] in the analysis of spontaneous
ferromagnetism in doped exciton insulators.

4.5 `Temperature' ferrons
In concluding this section, we turn our discussion to yet
another kind of inhomogeneous state predicted by the basic
model (1)Ð self-trapped states of conduction electrons of the
FM-droplet type (small-radius FM fluctuations) in a ferro-
magnet near the Curie point. Note that at T > TC, for this
concentration range �n � 0:2ÿ0:4�, a transition from the
metallic FM phase to the paramagnetic insulator region
occurs. This possibility was widely discussed as long ago as
in the 1970s (see, for example, Refs [15, 16]), and at present
there is direct evidence for this effect from neutron scattering
experiments on manganites.

Indeed, by analogy with Eqn (9), above the Curie
temperature TC the change in the free energy DF due to the
formation of ferromagnetic droplets can be written in the
form

DF � ÿtn
�
zÿ p 2a 2

R 2

�
� 4

3
pT
�
R

a

�3

n ln �2S� 1� : �44�

Here the first and second terms represent, respectively, the
changes in the energy and entropy of the system due to the
formation of FM droplets. We assume that
Jf f S

2 9TC < T < t, and that the density n at low tempera-
tures corresponds to the region of existence of the ferromag-
netic phase.

Minimization of Eqn (44) with respect to R yields the
following estimate for the radius of `temperature' ferrons:

R � a

�
t

T ln �2S� 1�
�1=5

: �45�

Thus, we have arrived at a formula of the type (10), with
Jf f S

2 replaced byT ln �2S� 1�. Note that such `temperature'

ferrons can significantly affect the magnetic and transport
properties of manganites near the Curie point.

5. Phase separation in layered manganites

In the previous sections, we have been mainly concerned with
La1ÿxCaxMnO3, La1ÿxSrxMnO3, and La1ÿxBaxMnO3 man-
ganites that have a cubic perovskite structure. Along with
these, layered manganites with a (La, Sr)n�1MnnO3n�1 struc-
ture, commonly known as Ruddelsden ± Popper phases, are
currently attracting great attention. The best known of them
are La2MnO4, the analogue of the basic HTSC compound
La2CuO4 (n � 1), and the bilayer compound La3Mn2O7

�n � 2�. Note that for n!1 we again obtain
La1ÿxSrxMnO3, i.e., a normal cubic perovskite.

In the absence of doping and at low concentrations of Sr,
layered manganites usually exhibit the so-called A structure
(Fig. 19), in which spins in the conducting MnO layer are
aligned ferromagnetically but the ferromagnetic moments of
neighboring layers are antiparallel to one another. On
doping, the physics of layered manganites is similar to that
of HTSC compounds.

Indeed, all themajormagnetic and transport properties of
layered manganites are determined by the two-dimensional
metallic layers of LaO or SrO, the latter serving the same
charge-reservoir role as in HTSCs. At low doping levels the
properties of layered manganites are adequately described by
the anisotropic double-exchange model. The Hamiltonian of
this model is

Ĥ � ÿJH
X
ia

Siaria ÿ tk
X
hi j ias

c
y
iascjas ÿ t?

X
ias

c
y
iascia�1; s

ÿ JFM
X
hi j ia

SiaSja � Jf f
X
i a

SiaSia�1 ; �46�

where a denotes the number of a layer, and i and j refer to a
lattice site within the layer, the summation running over the
neighboring sites. Accordingly, tk and t? denote the hopping
integrals in and normal to a layer, respectively. Finally, JFM
accounts for the FM exchange between local spins inside a
layer, and Jf f describes the AFM exchange between local
spins in neighboring layers. We again consider the case of a
large spin,S4 1, andwork in the tight-binding limit, inwhich

Mn

Mn

Mn

Mn

O

O

O

O

Mn

Mn

Mn

Mn
O

O

O

O

Conducting MnO layer

Conducting MnO layer

Charge-reservoir layer
LaO or SrO

Figure 19. Spin and charge arrangement in layered manganites.
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the chain of inequalities

JHS4 ftk; t?g4 fJf f S 2; JFMS 2g

holds.
In the following sections, we consider the homogeneous

canted state and phase separation in layered manganites.
Some of the results presented belowwere obtained byNagaev
[54], the notable exception being the case of ellipsoidal ferrons
which he did not consider.

5.1 A canted state in layered manganites
In this case, a conduction electron traveling parallel to the
layer must be at the bottom of the conduction band. At the
same time its motion perpendicular to the layers must be the
one-dimensional analogue of de Gennes' classical spin
canting picture. It is therefore reasonable to assume that the
spectrum of conduction electrons in the layered case is of the
form

e � ÿ4tk ÿ 2t? cos
y
2
; �47�

where y is the canting angle between the FM moments of
neighboring metallic MnO layers, and z � 4 is the number of
the nearest neighbors in a MnO layer on a square lattice. The
exact solution of Nagaev's [32] equations for the layered case
confirms our assumption. The electron spectrum described by
Eqn (47), as in the isotropic case, corresponds to the total site
spin S tot � S� 1=2, and to the total spin projection
S tot
z � S� 1=2. At the same time, unlike the isotropic

situation, the second conduction band, which corresponds
to the total spin projection S tot

z � Sÿ 1=2, has the spectrum

eÿ � ÿ
4tk ÿ 2t? cos�y=2�

2S� 1
: �48�

Thus, in the layered case the electron spectrum corre-
sponding to the second band contains a small parameter
eÿ � 1=�2S� 1� (cf. Section 3 of the present review). As a
result, whatever the level of doping, one can ignore the second
band and consider de Gennes' purely classical spin canting
picture. Thus, in the layered case there is no such thing as the
first critical concentration nc1 (see Section 3), and a canted
state arises even at densities n! 0. Minimization of the
classical canting energy with respect to the parameter
cos�y=2� leads to the following layered-case result:

cos
y
2
� t?n

2Jf f S 2
: �49�

At the critical concentration nc2 � 2Jf f S
2=t?, the canting

angle is y � 0, and the system undergoes a transition to a
collinear FM state.

However, a stability analysis of the optimum spin canting
energy once again leads to a negative compressibility. There-
fore, the conclusion about the instability of a homogeneous
canted state toward phase separation also applies to the
layered case. To the global minimum of energy there again
corresponds phase separation to small-radius FM polarons
within an AFM matrix. Let us determine the size and
structure of a polaron in this case.

5.2 Magnetic polarons in layered manganites
(a) Consider, first, magnetic polarons of ellipsoidal shape [55].
Analogous to the isotropic case, the energy of a magnetic

polaron can be written as

Epol � E0 ÿ 4tknÿ t?n
�
2ÿ a 2p 2

R 2
?

�
� 2Jf f S

2nO ; �50�

where O is the volume of the FM polaron, R? is the polaron
radius in the direction perpendicular to the layers, and E0 is
defined by

E0 � ÿJf f S 2 ÿ 2JFMS 2 : �51�

Note that the volume of an ellipsoidal magnetic polaron
(Fig. 20) is

Oell � 4

3
p
R?R 2

k
a 3

:

Furthermore, in the anisotropic double-exchange model,
we have

Rk � R?

�����
tk
t?

r
> R? :

This result is consistent with neutron scattering experiments
on layered manganites [44]. Thus, the expression for the
volume of a polaron can be rewritten as

Oell � 4

3
p
�
R?
a

�3 tk
t?
:

Minimizing the magnetic polaron energy (50) with respect to
the free parameter R? gives

R? � a

�
pt 2?

4Jf f S 2tk

�1=5

: �52�

Consequently, the optimum volume of a magnetic
polaron of ellipsoidal shape is

Oell � 4

3
p
�

pt 2?
4Jf f S 2tk

�3=5 tk
t?
: �53�

R?

Rk

Rk

Figure 20.Magnetic polaron of ellipsoidal shape in layered manganites.
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(b) We now proceed to magnetic polarons of cylindrical
shape (Fig. 21).

The volume of a cylindrical polaron is

Ocyl � pr 2L

a 3
; �54�

and its energy is, accordingly,

Epol � E0 ÿ tkn
�
4ÿ 9p 2a 2

16r 2

�
ÿ t?n

�
2ÿ a 2p 2

L 2

�
� 2Jf f S

2nO : �55�
Note here that the coefficient 9p2=16 in the expression for the
shift in energy from the band bottom,ÿ4tkn, is determined by
a zero of the Bessel function: J0�x� � 0 for x � 3p=4.
Simultaneously minimizing the polaron energy with respect
to L and r yields

r � 0:53L

�����
tk
t?

r
;

L � 0:98a

�
4pt 2?

tkJf f S 2

�1=5

: �56�

As a result, the optimum volume of a cylindrical polaron
is

Ocyl � p
L3

a 3

tk
4t?
� 0:26p

�
4pt 2?

Jf f S 2tk

�3=5 tk
t?
: �57�

A direct comparison of the optimum energies for the
ellipsoidal and cylindrical cases shows that

Eell pol ÿ ~E0

Ecyl pol ÿ ~E0

� Oell

Ocyl
� 0:96 ; �58�

where ~E0 � E0 ÿ 4tknÿ 2t?n.
The conclusion is that the ellipsoid is the optimum

polaron shape. This is quite reasonable physically because
the optimum shape of a polaron (its `ground state' in a
manner) mimics the shape which the electronic spectrum has
in the layered case, i.e., e� p� � tk p 2

k � t? p 2
?. Note that in the

layered case polarons start overlapping at the critical

concentration

nc5 � 1

Oell
� 3

4p

�
4Jf f S

2tk
pt 2?

�3=5
t?
tk
: �59�

Note also that for all densities in the range 0 < n < nc5,
the energy of a polaron state is less than that of any
homogeneous state.

Finally, we have the following picture of the energy
variation for different possible states as a function of density
in the layered case (Fig. 22):

for 0 < n < nc5, the system is separated into FM polarons
of ellipsoidal shape within an insulating AFM matrix;

for n > nc5, the system becomes an FM metal.

6. Transport properties
of phase-separated manganites

In the last section of this review, we will discuss the transport
properties of phase-separated manganites by applying the
theoretical results obtained in previous sections. The primary
transport characteristics are the behavior of resistance and
magnetoresistance at low doping levels. In addition, the
problem of giant 1=f noise will be considered. Note that the
study of transport properties in materials with colossal
magnetoresistance is as important as the study of super-
conducting characteristics in HTSCs.

6.1 Resistance in the percolation regime
in phase-separated manganites
As discussed in Section 3.2, at low electron densities the
system separates into FM polarons within an AFM matrix,
each polaron containing one conduction electron (see Fig. 4).

When discussing the transport mechanisms in such a
system, two possibilities should be considered, the motion of
an FM polaron as a whole and percolation-like hops of
conduction electrons from one polaron to a neighboring
one. The first mechanism is ineffective, however, because of
a fairly large effective mass of an FM polaron due to spins
localized on it. Ferrons therefore move extremely slowly in
the material. Furthermore, in real manganites ferrons are
very often trapped by impurity centers (the `pinning effect').
Thus, we are left with the percolation-like hopping of
conduction electrons from ferron to ferron as the dominant
mechanism.

Let us consider the first step in the percolation process.
The typical situation is as shown in Fig. 23.

L

r

Figure 21.Magnetic polaron of cylindrical shape in layered manganites.

nc2
E

nc5

Collinear
FM state

FM polarons
of ellipsoidal shape

Classical canting

FM

n

Figure 22. Energy of the system as a function of density in layered

manganites.
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This step requires overcoming an energy barrier of height
[56]

A � 2E�1� ÿ E�2� ÿ E�0� : �60�

Note that in Eqn (60) E�1� is the energy of a ferron with a
single conduction electron, E�2� is the same for a ferron with
two electrons, andE�0� is the energy of an `empty' ferron. The
lifetime of an empty ferron is assumed to bemuch longer than
the characteristic time of electron hopping from a doubly
occupied to an empty ferron. This assumption has been
shown to be valid by a lifetime estimate of Ref. [56]. Without
the loss of generality, we can setE�0� � 0. The value ofE�1� is
determined mainly by the energy of electron delocalization
within a ferron and can be estimated as

E�1� � t
a 2

R 2
pol

: �61�

Expressing the polaron radius in terms of the critical
concentration for the overlap of ferrons nc, we obtain

E�1� � tn
2=3
c5 ; �62�

where the density nc5, as already discussed, in fact corre-
sponds to the percolation threshold [50]. In real manganites,
we have nc5 � 0:16, which gives E�1� � 200ÿ300 K. Natu-
rally, we can estimate E�2� by writing

E�2� � 2E�1� � VCoul ; �63�

where VCoul is the Coulomb energy.
From this we conclude that, in order of magnitude, the

energy barrier height is

A � VCoul � e2

eRpol
; �64�

where e is the static dielectric constant.
In real manganites, as already discussed in Section 4, the

correlation length is rs 0 4, leading to A of order 1000 K. It
can be seen that the physics governing transport in phase-
separated manganites is similar to the elegant Coulomb
blockade physics one encounters in the theory of mesoscopic
phenomena [57, 58].

By analogy with the Coulomb blockade, it is clear that the
system should have high resistance at temperatures T5A.

Now let us consider the second percolation step. For this,
the typical situation is as shown in Fig. 24.

At the second step, there is clearly no energy barrier to
overcome. Since the same is true for all the successive

percolation steps, a situation similar to that in nondegene-
rate semiconductors obtains: once a carrier has overcome the
energy barrier, it is in the conduction band and moves freely
there. Such is the qualitative picture of how polaron
conduction takes place in manganites. Note that at low
temperatures, T5A, and low applied voltages, Udc 5A,
the characteristic electron hopping time for the first percola-
tion step can be written [56] as

g � 1

t
� o0 exp

�
ÿ r

l
ÿ A

2T

�
; �65�

where l is the tunneling length �l0 2Rpol�, and o0 is a
characteristic frequency related to the rearrangement (depo-
larization) of the spin structure within an FM polaron. In
order of magnitude, the frequency o0 is equal to the Fermi
energy of the conduction electrons, i.e., o0 � eF � tn 2=3.

The crucial point here is that the exponential exp�ÿA=2T�
dominating Eqn (65) is associated with the Coulomb
blockade. The additional exponential exp�ÿr=l� is of the
order exp

�ÿ�nc5=n�1=3� and is associated with the under-
barrier tunneling of a conduction electron through the
insulating matrix between ferrons.

From here on, we actually ignore the AFM structure of
this insulating matrix. Note that the factor 2T in the term
A=2T relates to the requirement that the detailed balance
condition be met for the creation of two-electron ferrons
[56].

Thus, in the limit of strong Coulomb interaction, we have

A

T
4

�
nc5
n

�1=3

> 1 : �66�

This limit is opposite to the high-temperature limit
�nc5=n�1=3 4A=T usually considered in percolation pro-
blems in doped semiconductors [59]. Physically, our limit is
closer to that considered in Mott's monograph [17]. The
conductivity calculation in Ref. [56] led to the following
results:

s � 1

r
� Bsmin

o0

T
exp

�
ÿ A

2T

�
; �67�

where smin is the minimum conductivity in our system.
It is seen that the conductivity increases with the

temperature as �1=T� exp�ÿA=2T�, a behavior typical of
tunneling systems [17]. The temperature-independent coeffi-
cient B in Eqn (67), in addition to numerical factors,
presumably contains the percolation exponential
exp�ÿb=�n 1=3l ��, although the authors have no rigorous
mathematical proof of this. Note that, formally, formula
(67) leads to a maximum in the conductivity (minimum in the
resistivity) at a temperature T � A=2. This minimum, how-
ever, lies at the boundary of the validity range of our theory
[see the inequality chain (66)].

6.2 Magnetoresistance in phase-separated manganites
Magnetoresistance is one of the most important character-
istics of manganites. In this class of compounds it is usually
large and negative, so that in writing the standard definition
of magnetoresistance is

jMRj � r�0� ÿ r�H�
r�H� � r�0�

r�H� ÿ 1 : �68�

Figure 23. First percolation step in phase-separated manganites.

Figure 24. Second percolation step in phase-separated manganites.
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The modulus sign is used to account for the negative
magnetoresistance in our system. Substituting for the
resistance from Eqn (67), we obtain

jMRj � exp

�
A�H � 0� ÿ A�H�

2T

�
ÿ 1 : �69�

It is now necessary to determine A�H�. To do this, we
again use the estimate (64) and write A�H� in the form

A�H� � e2

eRpol�H� :

But, as already discussed in Section 2, the polaron radius in a
magnetic field can be written as

Rpol�H� � a

�
t

J eff
f f S

2

�1=5

;

where J eff
f f S

2 � Jf f S
2 ÿ gmBHS.

Thus, in the experimentally accessible magnetic field
range, gmBHS < Jf f S

2, one has

A�H� � A�0��1ÿ bH � ; �70�

where b � �1=5�gmB=�Jf f S�.
From this it follows that for T < A the magnetoresistance

is indeed negative and that in the phase-separated region it is
given by

jMRj � exp

�
A

2T
bH

�
ÿ 1 : �71�

We emphasize that, for small magnetic fields and low
temperatures, the absolute magnitude of the magnetoresis-
tance is small:

jMRj � A

2T
bH5 1 :

In higher fields (but such that the condition bH5 1 still
holds), as the temperature is lowered, the absolute value of
magnetoresistance ultimately becomes greater than unity and
starts growing exponentially:

jMRj � exp

�
A

2T
bH

�
:

Note that for not very low temperatures, T9A, and typical
values of the gyromagnetic ratio, g � 10, the absolute value of
magnetoresistance in the phase-separated region becomes
larger than unity only in high enough magnetic fields,
H � 10 T.

The analysis presented here does not include the effects
related to the dependence of scattering probability on the
angle between the conduction electron spin and the magnetic
moment of a droplet. These effects might lead to an
exponential prefactor in Eqn (71) depending in a nontrivial
way onH and T.

6.3 1=f noise in phase-separated manganites
The nontrivial physics of the low-frequency 1=f noise
occurring in many semiconductor and metallic systems has
been discussed widely in the literature since the early 1980s
(see Refs [60, 61] for reviews). Serious interest in 1=f noise in

phase-separated manganites has been spurred by the experi-
ments of Podzorov et al. [62] who observed that, even far
away from the percolation threshold, the 1=f noise amplitude
in phase-separated regions is 5 to 6 orders ofmagnitude larger
than typically observed in semiconductor and metallic
systems. We will explain this phenomenon by again consider-
ing a simple ferron model and examining how the voltage
fluctuations characteristic of 1=f noise relate to conductivity
fluctuations [56]. These latter will in turn be related to
fluctuations in the number of doubly occupied (or empty)
ferrons caused by ferron-to-ferron hopping of conduction
electrons.

In mathematical terms, the ideology behind all this is
described by the relations

hdU 2io
U 2

dc

� hds
2io

s 2
� hdn

2
2 io
n 2
2

; �72�

where ds is the conductivity fluctuation, dn2 is the fluctuation
in the number of double-electron ferrons, and n2 is the
thermodynamic average of this number. The symbol h. . .io
in Eqn (72) denotes the spectral component of the quantity
under study. Using the relaxation equation for the density
fluctuation dn2,

d _n2 � ÿ dn2
t�r� ; �73�

where the relaxation time is again given by Eqn (65),

1

t
� o0 exp

�
ÿ r

l
ÿ A

2T

�
;

we find that

hdn 2
2 io � 8pn2hdn 2

2 iT
�1
0

t�r�
1� o 2t 2�r� r

2 dr ; �74�

where hdn 2
2 iT � n2=2Vs is the thermal average of the fluctua-

tion squared in the number of double-electron ferrons, and
Vs � L1L2L3 is the sample volume.

Finally,

hdn 2
2 io � 4p

n 2
2

Vs

�1
0

t�r�r 2 dr
1� o 2t 2�r� ; �75�

and accordingly

hdU 2io
U 2

dc

� 4p
Vs

�1
0

t�r�
1� o 2t 2�r� r

2 dr : �76�

Note that the characteristic 1=f-noise frequencies typically
lie in a wide range (see Ref. [60]) defined by the inequalities

~o0 exp

�
ÿLs

l

�
5o5 ~o0 ; �77�

where ~o0 � o0 exp�A=2T �, and Ls � 10ÿ1ÿ1 cm is the
minimal sample size. Therefore, for low temperatures
T5A, we find from Eqn (76), to a logarithmic accuracy, that

hdU 2io
U 2

dc

� 2p 2l 3

Vs

1

o
ln2
�

~o0

o

�
: �78�

568 M Yu Kagan, K I Kugel' Physics ±Uspekhi 44 (6)



Thus, over awide low-frequency range determined byEqn
(77) the spectrum of voltage fluctuations squared is indeed of
the form 1=f. Note that the quantity which was actually
measured by Podzorov and colleagues [62] was the coeffi-
cient a defined by

a � hdU
2ioVso
U 2

dc

� 2p 2l 3 ln2
�

~o0

o

�
: �79�

Note also that the characteristic frequencies in this experi-
ment were in the range o � 1 Hz to 1 MHz.

Inserting typical tunneling length values l � 2Rpol �
20ÿ30 A

�
into Eqn (79) and noting that at temperatures

T9A the quantity ~o0 0 200 K (i.e., ~o0 0 2� 1013 Hz), we
obtain a � 10ÿ16 ± 10ÿ17 cm3. This is indeed several orders of
magnitude larger than in conventional semiconductor sys-
tems (see review article [60]). The additional increase in a is
due to the large value of the logarithm squared in Eqn (79).
Note that, as the percolation threshold is approached,
n! nc5, the coefficient a increases even more rapidly.

In conclusion, in this section the transport properties of
separated manganites have been examined using a simplified
model that neglects FM ferronmoments and the properties of
the insulating AFM matrix. Introducing large FM moments
of neighboring ferrons into the description of the tunneling of
electrons from one ferron to a neighboring one will add the
beautiful physics of the so-called spin-assistant tunneling [63]
to the picture. As a result, the exponential prefactor in the
expressions for the conductivity, Eqn (67), and the magne-
toresistance, Eqn (71), will depend on the relative orientation
of the magnetic moments of neighboring ferromagnetic
droplets. Also, inclusion of the interaction of a tunneling
electron with the AFM fluctuations of the insulating matrix
will make the problem very similar to the famous problem of
tunneling with dissipation [64 ± 66].

7. Summary

In the present review, we have attempted to describe, in a
general model, the ground state and transport properties of
phase-separated systems, restricting our attention to the
physically transparent case of small-scale phase separation.
The study of transport properties in systems with small-scale
separation provides a bridge between two fields currently the
most active in solid-state research, namely the physics of
strongly correlated systems and mesoscopic physics. This
makes phase-separated manganites very attractive for both
theoretical and experimental research, as shown by the large
number of publications in this area in the last two years.
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