
Abstract. A supersymmetric field-theoretical scheme is derived
based on the Langevin equation, which enables memory and
nonergodicity effects in a nonequilibrium stochastic system
with quenched disorder to be described in an optimal manner.
This scheme is applied to a disordered heteropolymer whose
effective Hamiltonian is found to be simply the free energy as
a function of the compositional order parameter. Instead of the
Langevin equation, an effective equation of motion is used here
to describe the way different monomers alternate as we move
along a polymer chain. The isothermal and adiabatic suscept-
ibilities, memory parameter, and irreversible response are de-
termined as functions of the temperature and the intensity of
quenched disorder.

1. Introduction

Traditionally, the subject matter of physics relates to
inanimate nature: elementary particles, nuclei, atoms, small
molecules and clusters, gases and plasmas, condensed media,
astronomical objects, and the like (a review of the contem-
porary `physical minimum' can be found in Ref. [1]). A
cardinal change of the situation has occurred in the past few
years, when the laws of statistical physics were applied to the

explanation of behavior of complex systems [2, 3]. Such
systems are characterized by fractal properties, anomalous
transfer phenomena, annealed relaxation, nonadditive prop-
erties, effects of self-organization, etc. [4 ± 6]. The theory of
complex systems allows the description of social phenomena
like the evolution of society and breakout of wars [7],
economic processes [8 ± 10], traffic flows and flows of
granular materials [11 ± 13], and many other things [14 ± 31].

The foundations of the theory of complex systems were
laid in the seminal works [14, 15], which discovered a new
object of studyÐ soft condensedmedia. Suchmedia constitute
nonequilibrium thermodynamic systems exhibiting memory
and nonergodicity effects which are determined by quenched
disorder in the potential distribution of the interparticle
interaction and field, conjugate to an order parameter. The
most popular examples of such systems are spin glasses [16 ±
18], the Hopfield model describing associative memory [19 ±
21], and the like [22]. A special place in this list belongs to
disordered heteropolymers, marked from the practical
standpoint by the unique combination of mechanical,
thermal, chemical and other properties [23 ± 28]. This object
is also exceptional among the others in the fact that it was
used for the first successful application of the statistical
physics of polymers to the description of complex systems
[29 ± 31]. By contrast to the theories of such systems, which
are often phenomenological in nature, the theory of polymers
proceeds from the microscopic approach formulated by
I M Lifshitz [32].

As we know, this approach is based on the use of two large
parameters. Firstly, the covalent bond energy in the polymer
chain is much greater than the characteristic magnitude of
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interaction between the particles. This allows the considera-
tion of this chain as a threadlike structure fixed by the
longitudinal covalent bonds. In other words, the polymer
chain possesses linear memory corresponding to quenched
disorder in spin glasses. The other large parameter is the total
number of monomer chain links N Ð for example, in
synthetic polymers N � 104ÿ105, and in DNA macromole-
cules N � 105ÿ107. Accordingly, one can use the thermo-
dynamic limit N!1, which allows the treatment of the
polymer chain using the standard methods of statistical
physics [33].

As the external conditions change, the polymer systems
may experience transformations of two basic types: micro-
phase separation leading to the formation of domain
structure with a mesoscopic period, and transition to the
frozen state, which fixes the conformation (geometric
shape) of the macromolecule [26, 27]. The first of these
transformations is likely to occur in block copolymers A-B,
whose structure is an alternation of different blocks
consisting each of the same monomers (for example,
. . .AAABBAAABB . . .). Transformations of the second
type, which are a form of vitrification, occur in disordered
heteropolymers formed by a random sequence of different
monomers. In this case even a minor change in the sequence
of monomer alteration (or in the parameters of interaction)
may cause a major change in the ground state of the
heteropolymer. Let us consider each of the above-mentioned
transformations.

The thermodynamic state of the block copolymer A-B is
defined by the composition parameter 04 f4 1 specifying
the proportion of monomers of type A, and the thermo-
dynamic parameter wN, where N is the polymerization index,
and w is the Flory ±Huggins parameter which characterizes
the difference in the interaction of monomers of different
types with respect to the temperature. The first theory of
microphase separation was constructed by Flory [35]; how-
ever, his macroscopic approximation did not provide for
taking into account the mesoscopic nature of phase distribu-
tion. Its description can be achieved in the limiting cases of
strong and weak segregation (in the former case the sharp
boundaries between the domains are taken into account,
whereas in the latter they are neglected). The self-consistent
microscopic theory of microphase separation [34] shows that
in the limit of weak segregation at f � 0:5 the continuous
phase transition from the `most ordered' lamellar mesostruc-
ture into the disordered state is realized. As the composition
departs from f � 0:5, a chain of the first-order transitions is
observed: the lamellar mesostructure transforms into the
threadlike hexagonal structure, which turns into the body-
centered cubic lattice composed of spheroidal precipitates of a
different composition; more complicated structures are also
observed [26]. It is characteristic that the period of these
mesostructures is of the order of the block size and does not
depend on temperature.

An important feature of microphase separation is that the
fluctuations, owing to the presence of spatially periodic
structure, modify considerably the thermodynamic pattern
of phase transition [36]. Indeed, in spatially homogeneous
systems the fluctuation correction comes from the Bogolyu-
bov singularity kÿ2 at the origin k � 0 of the wave space.
After integration over the volume of the d-dimensional k-
space, this correction assumes the order of kdÿ2

0 , where k0 is
the characteristic wave number. Because of this, fluctuations
of the order parameter in homogeneous systems (where

k0 ! 0) are only important when d < 2. The situation is
completely different in the presence of spatially periodic
structure characterized by the wave vector k0. Here, the
singularity �kÿ k0�ÿ2 reveals itself not at one point, but on
the surface of the sphere jkj � k0. This leads to the singular
positive addition to the coefficient of the quadratic term in
Landau's expansion, because of which the second-order
phase transition becomes a transition of the first order. In
block copolymers, this feature considerably modifies the
phase diagram, in particular, near the composition f � 0:5
there appears a broad `window' where the lamellar phase can
directly transfer to the disordered phase [37]. A very peculiar
situation is observed with the disordered block copolymers
which exhibit properties shown both by regular block
copolymers and by disordered heteropolymers (see below).
The study of such systems [38], based on the transfer matrix
method which allows one to take into account the short-range
correlations, indicates that the two-phase regions appear in
the phase diagram, while the characteristic period begins to
depend on the external conditions, which is a feature of
disordered systems.

As mentioned above, the disordered heteropolymer is
capable of vitrification (freezing), at which the state is
realized with a fixed configuration of the chain and a
prescribed composition sequence of monomer alternations.
The most popular example of vitrification is the protein
coagulation which consists in the capability of the macro-
molecule to find the 3D conformation and the sequence of
nucleotides corresponding to the existing external conditions.
The unique nature of this phenomenon is demonstrated by
Leveanthal's paradox, which states that a polymer chain
consisting of N4 1 monomers is capable of arranging itself
into the required conformation from the set that includes an
exponentially large number of states, exp�aN �, where a � 1.
This problemwas encountered for the first time in the study of
spin glasses which differ from disordered heteropolymers
only in that the quenched disorder in spin glasses results
from the quenching of a disordered state, whereas in polymers
it is fixed by the composition sequence of monomers, which
arises on synthesis of the macromolecule. The analogy
between spin glasses and disordered heteropolymers allowed
the vitrification temperature of the heteropolymer repre-
sented by the `many letter sequence' [39] to be found, and
the study of the simultaneous pattern of vitrification and
microphase separation that may precede freezing [40] to be
conducted. It turns out that the vitrification temperature
decreases when the overlapping between different replicas is
taken into account [41].

An understanding of the main features of the process of
vitrification may be achieved in the context of the simplest
method of random energies [28]. This method is based on the
assumption that the energy spectrum of a disordered system
consists of discrete and continuous components, the latter of
which gives the main contribution to the thermodynamic
characteristics [29], whereas the corresponding energies are
distributed in a practically independent way [42, 43]. To look
into the essence of the method we provide for the fact that the
number of microstates available for N4 1 particles amounts
toM� exp�aN� ! 1, a � 1. The probability of realization
of a microstate with energy E obeys the simplest Gauss
distribution

P�E � / exp

�
ÿ E 2

2NE 2

�
;

480 A I Olemsko|̄ Physics ±Uspekhi 44 (5)



where E is the width of energy spread. The density of states
N�E � � MP�E � assumes astronomically large values near
E � 0, and falls off rapidly at E < 0. The lower edge of the
continuous spectrum Eb is given by the conditionN�E � � 1,
according to which Eb � ÿEN. In this way, the width of the
region that gives the definitive contribution to the thermo-
dynamic characteristics is proportional to the number of
particles N. On the other hand, the width of the discrete
spectrum depends on the energy spread and is proportional to
� EN 1=2, which is negligibly small compared toEb / N in the
thermodynamic limit N!1. Precisely this circumstance
allows us to neglect the contribution from the discrete states,
in spite of the fact that these states determine the state of the
glass. In its turn the independence of the energy distribution
of microstates E allows us to perform averaging of the free
energy under the assumption that

�F � ÿT lnZ � ÿT lnZ :

In other words, the averaging of free energy in the random
energy approximation is extended to the statistical sum

Z �
�1
ÿ1

exp

�
ÿE

T

�
N�E � dE �MP�Es� exp

�
ÿEs

T

�
: �1:1�

In the second equality here we have considered that the
integrand has a maximum at the saddle point
Es � ÿ�E 2=T �N. Obviously, the continuous spectrum gives
the main contribution under the condition Es 5Eb, accord-
ing to which the freezing temperature Tf � E. At T < Tf,
when Es 4Eb, the main contribution to the statistical sum
comes from the discrete spectrum, and the random energy
approximation is no longer valid. However, since in the glassy
state all microscopic states except a few are frozen out, the
dependence on temperature disappears and the thermody-
namic quantities assume the values corresponding to the
freezing point Tf.

Of course, this situation is not a consequence of the free
energy approximation, but is an attribute of disordered
systems. This is associated with the appearance of a
hierarchy of thermodynamic variables when ergodicity is
violated, caused by the contribution from the discrete
spectrum. This hierarchy lies in the separation of the
thermodynamic parameters into the microscopic and macro-
scopic magnitudes: the former correspond to the continuous
spectrumwhose energy distributionE depends on the thermal
disorder (temperature), whereas the latter relate to the
discrete component characterized by quenched disorder. As
a result, the microscopic quantities are determined by the
temperature, and the macroscopic by the intensity of
quenched disorder [44].

As follows from the arguments developed above, themain
problem in the treatment of disordered systems is associated
with averaging of the logarithmic function. To overcome this
difficulty, Edwards and Anderson [14] proposed using the
limit

lnZ � lim
n!0

Zn ÿ 1

n
: �1:2�

The presence of the exponential function Zn indicates that in
place of one thermodynamic system with the statistical sumZ
one should take the number n! 0 of systems (replicas)
identical to the original one. Recently, the replic method was
further developed in the theory of nonadditive systems [6]. It

turned out that the behavior of such systems can only be
understood if the nonadditivity parameter n is nonzero. Then
the space of states assumes a fractal character, which leads to
its separation into isolated clusters corresponding to different
replicas.

The results obtained with the replic method were
reproduced using the Langevin equation for the `soft' spin
model [45]. This exercise resulted in a self-consistent set of
dynamic equations in the response function and structural
factor, `extended' by adding the nonergodicity and memory
parameters.

Like for all systems with quenched disorder, the descrip-
tion of disordered heteropolymers calls for averaging over the
appropriate distribution (composition disorder). As indicated
above, harnessing the random energy method assumes that
the microstates are distributed independently, which is
actually not the case. On the other hand, the replic method
is based on a mathematical trick and requires cumbersome
calculations, the physical content of which is not always clear.
The use of dynamic equations is not very promising, because
they are much complicated by the presence of the covalent
bond that leads to the formation of the polymer chain [25]. All
this points to the expedience of the construction of a
microscopic theory of disordered heteropolymers, which
gives a consistent treatment to the effects of memory and
nonergodicity. We propose to use the theory of supersym-
metric field as the scheme appropriate for resolving this
problem [46 ± 48]. It leads to a set of equations that self-
consistently describe the behavior of a nonequilibrium
thermodynamic system possessing memory and nonergodi-
city [49].

Being a version of the field-theoretical scheme, our
approach is based on the generating functional method
proposed by Martin, Siggia and Rose [50] (see also Refs [51,
52]). The formal base for the introduction of the super-
symmetric field is the nilpotent quantity representing the
square root of 0. In this sense, the superfield is similar to the
complex field in which the imaginary unit equal to square root
ofÿ1 is used in place of the anticommuting nilpotent quantity
(the Grassmann variable). By definition, the supersymmetric
field unites the commuting boson components and the
anticommuting fermion components into a unified mathema-
tical construction represented by a vector in the supersym-
metric space. Such fields were first introduced in the quantum
field theory [53 ± 55], and later applied to the analysis of
stochastic systems [56, 57]. They served as a basis for the self-
consistent microscopic theory of spin glasses [44], later
extended to the description of nonequilibrium thermody-
namic systems [58]. Within the framework of the Sherring-
ton ±Kirkpatrick model it was demonstrated that the super-
symmetric scheme is identical to the replica approach [59].
The supersymmetric field was applied to polymers in paper
[60]; however, the proposedmethods have not been developed
any further. Neither is it possible to use the supersymmetric
scheme developed in the theory of spin glasses, because the
equation of motion of the polymer chain [25] becomes so
complicated owing to the presence of the covalent bond that is
can no longer be used as the basis of the generating functional
method.

Despite the considerable progress in the supersymmetric
theory of nonequilibrium thermodynamic systems, there are
still a number of outstanding fundamental issues remained
unsettled. First of all, it turns out that the representation of
the supersymmetric field is not unique Ð both in the sense of
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the physical interpretation of its components and the number
of the latter. Consequently, the expansion of the super-
symmetric correlator in terms of the components is also not
unique, which makes it necessary to select the optimal basis
whose components would yield the structural factor and the
Green function. The ultimate task is to develop the simplest
supersymmetric scheme that would describe in a self-consis-
tent way the effects of memory and nonergodicity depending
on the intensities of thermal and quenched disorders. This
problem is solved in Section 2, and the especially formal
constructions are moved out to the appendices.

In Section 3, the Edwards Hamiltonian is used for
expressing the free energy of the heterophase polymer,
which acts as the effective Lagrangian in the supersymmetric
field theory. This expression allows one to take into account
both the overlapping of replicas and the fluctuation effects.

As indicated above, the main problem in the construction
of the field-theoretical scheme of heterophase polymer
consists in that the original equation of motion is so
complicated that it cannot be used for finding the generating
functional. Because of this, Section 4 starts with construction
of the effective equation of motion of disordered hetero-
polymer that reflects the stochastic alternation of monomers
of different kinds as we move along the polymer chain. This
allows the correlation technique developed in Section 2 to be
used for a self-consistent description of the memory and
nonergodicity effects of a disordered heteropolymer, depend-
ing on its composition, thermal and quenched disorders. The
results are summarized in Section 5.

2. Supersymmetric representation
of a nonequilibrium stochastic system

As noted in the previous section, the introduction of the
superfield Ð a combination of the conventional and Grass-
mann componentsÐ is an extension of the basis as natural as
the transition from real to complex fields. Now we shall show
that the supersymmetric approach allows a complete descrip-
tion of an arbitrary (possibly nonequilibrium) stochastic
system with quenched disorder [49, 58]. This is accomplished
by expanding the correlator of the superfield with respect to
the closed basis whose coefficients reduce to the observable
quantities: the structural factor S�o� and retarded/advanced
Green functions G��o�, where o is the frequency. The
inclusion of memory and nonergodicity gives added terms
S�0� / q,G��0� � D, which correspond to the hydrodynamic
limit o � 0. As a result, the supersymmetric self-consistent
scheme permits one to obtain the equations in parameters of
memory q and nonergodicity D.

In the construction of the supersymmetric theory it is
important to remember that the superfield, like any gauge
field, may turn out to be reducible (like the four-component
electromagnetic field can break down into the vector and
scalar components). Indeed, the condition of gauge invar-
iance leads to decomposition of the superfield into chiral
components, each one-half the dimension of the original
superfield [52]. For our case of a disordered heteropolymer,
we shall demonstrate that in the limit of weak segregation the
condition of entropy conservation, imposed on the original
four-component superfield, leads to the separation of the
irreducible component in the form of a two-component (dual)
Bose field. Then the first component has the meaning of the
order parameter, and the second component refers to the
conjugate field or the amplitude of its fluctuations.

In the calculation of observable quantities, the judicious
selection of the basis used for expanding the supercorrelator is
important. For example, a three-component basis was used in
Ref. [44], whose components G0, G1, S give the advanced
G� � G0 � G1 and the retarded Gÿ � G0 ÿ G1 Green func-
tions, as well as the structural factor S. The addition of the
fourth component in work [61] was necessary because the
supersymmetric field here contains the field itself rather than
the amplitude of fluctuations of the conjugate field whose
static correlator reduces to zero. Since the correlator of the
field is Sÿ 6� 0, the basis for expansion of the supercorrelator
must contain the quantities S,G�,Gÿ, Sÿ, andmust therefore
have four components. Further extension of the basis (to six
components) is needed when the reactive regime is taken into
account in addition to the dissipative regime [58]. Among the
considerations then are the effects of self-organization, which
lead to violation of the condition of entropy conservation
[62]. Here, however, we shall not touch upon such synergetic
effects, confining ourselves to homogeneous thermodynamic
systems, for which the correlators of the Grassmann
components of the superfield reduce to the Green functions
G�. Inasmuch as the correlator of fluctuations included in the
superfield is Sÿ � 0, and the parameters of nonergodicity and
memory are included in G�, S, it is clear that a basis of
dimension 3 is sufficient for the description of a none-
quilibrium stochastic system. Precisely this case was consid-
ered in Ref. [44]; however, the selected basis is not optimal
because it gives not the observed Green functions G�, but
their components G0; 1 � �G� � Gÿ�=2.

This section is devoted to the construction of a super-
symmetric scheme that represents the effects of memory and
nonergodicity for a nonequilibrium stochastic system in the
most rational way [49]. In Section 2.1 we present the field-
theoretical scheme based on the method of generating
functionals. Using the Langevin equation with white noise,
we find the Lagrangian of the system and derive the equations
of motion, describing the kinetics of phase transitions. In
Section 2.2 we present the simplest superfield scheme based
on the two-component dual fields: in Section 2.2.1, we
consider the case when the second component is the
amplitude of fluctuations, and the conjugate field in Section
2.2.2. Section 2.2.3 is concerned with the analysis of the
linkage between these representations, and we express the
operators of transitions between them. In Section 2.3 we
present the scheme that allows the original four-component
superfields to be reduced to the two-component form which,
however, does not coincide with the chiral superfield. In
Section 2.4 the supercorrelator is expanded in terms of the
basis operators, and the coefficients of expansion reduce to
the observables G�, S. We demonstrate that the reduction of
the four-component superfield to the two-component field
corresponds to the reduction in the dimension of the
superbasis used for the expansion of the supercorrelator.
This becomes possible thanks to the adoption of the Ward
identity which leads to the equality between correlators of
Grassmann fields and the corresponding Green functions. In
Section 2.5 we present the supersymmetric perturbation
theory used for expressing the components S�, S of the
expansion of the self-energy superfunction. Their definition
is based on the f 4 and f3 models of perturbation theory with
respect to anharmonism (Sections 2.5.1 and 2.5.2, respec-
tively). However, unlike work [44], in the definition of the
Fourier transform of the component Sÿ�o� containing
convolutions we proceed not from the use of the bare
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functions but the fluctuation-dissipative theorem which
allows the exact expression for Sÿ�o� to be found. In Section
2.6, we first (Section 2.6.1) present the self-consistent scheme
allowing one to construct the effective Lagrangian which
takes into account both the self-action and the effects of direct
and effective interactions (the latter being the result of
quenched disorder). In Section 2.6.2, we use this Lagrangian
to obtain the supersymmetric Dyson equation. Section 2.7
deals with the equations in the parameters of nonergodicity
and memory; they are analyzed in the subsequent Section 2.8.
We find here the dependences on the temperature and the
intensity of quenched disorder of microscopic and macro-
scopic susceptibilities and the corresponding memory and
nonergodicity parameters. Finally, Section 2.9 deals with the
analysis of behavior of the system occurring in a nonsta-
tionary state.

2.1 Generating functional
Let us represent the behavior of a stochastic system by the
amplitude of the hydrodynamic mode as a space-time
function x�r; t�, whose mean value reduces to the order
parameter [33]. The description of this function is based on
the Langevin equation [63]

_x�r; t� ÿDH 2x � ÿg qV
qx
� z�r; t� : �2:1�

Here the dot overhead denotes the time derivative H � q=qr,
D is the diffusion coefficient, g the kinetic coefficient,V�x� the
effective potential (Landau's free energy), and z�r; t� the
stochastic addition defined by the conditions of white noise:


z�r; t��
0
� 0 ;



z�r; t�z�0; 0��

0
� gTd�r�d�t� ; �2:2�

where the angle brackets h. . .i0 denote averaging with respect
to the Gaussian distribution of the quantity z, and T is the
thermostat temperature that determines the noise intensity.
The last equality in Eqn (2.2) is often written using a
normalization that is twice as large as the one adopted here.
This leads to the standard forms of the Onsager relation and
the Fokker ± Planck equation, in which the factor 1=2 does
not appear in front of the diffusion term, but the time
dependence �dx�2 � D dt features the coefficient 2, and
under the exponential of the distribution P0fz g in the
stochastic variable z appears the numerical factor 1=2 (see
Ref. [64]). Since our subsequent calculations are based on the
assumption of aGaussian distributionP0fzg, we prefer to use
a normalization (2.2) that leads to the Gaussian (2.5).

It is also convenient to use further the units
ts � �gT �2=D 3, rs � gT=D, Vs � D 3=�g 3T 2�, zs � D 3=�gT �2
for the time t, coordinate r, effective potential V and
stochastic variable z, respectively (assuming that the ampli-
tude x of the hydrodynamic mode has already been normal-
ized to xs). Then the equation of motion (2.1) takes on the
canonical form

_x�r; t� � ÿ dV
dx
� z�r; t� ; �2:3�

where we have used the compact notation for the variational
derivative

dV
dx
� dVfx�r; t�g

dx�r; t� � qV�x�
qx

ÿ H2x ;

Vfxg �
��

V�x� � 1

2
�Hx�2

�
dr : �2:4�

In equation (2.2), the coefficient gT disappears, and the
distribution in variable z assumes the standardGaussian form

P0fzg / exp

�
ÿ 1

2

�
z 2�r; t� dr dt

�
: �2:5�

Our construction of the field-theoretical scheme is based
on the generating functional method [51]

Z
�
u�r; t�	 � � Zfxg exp�� uxdr dt�Dx ; �2:6�

Z
�
x�r; t�	 � �Y

�r;t�
d
�

_x� dV
dx
ÿ z
�
det

���� dzdx
�����

0

; �2:7�

whose variation with respect to the test field u�r; t� yields the
correlators of the observables [see Eqn (2.84)]. Obviously,
Zfug is the functional Laplace transform for the function
Z�x�; the d function in Eqn (2.7) takes into account the form
of equation (2.3), and the determinant describes the transition
from the continual integration over z to x.

2.2 The use of dual fields
For further development of the field-theoretical scheme we
need to establish the type of linkage between the stochastic
variables z and x. As shown in Section 2.3, for thermody-
namic systems in which the state of the thermostat does not
depend on x, this linkage is characterized by the constant
value of the Jacobian det jdz=dxj � 1 in expression (2.7). As
will be shown below, the thermodynamic system in this case is
represented by the two-component commuting fields that
contain the nilpotent quantity # � ���

0
p

. Such fields are aptly
referred to as dual.

2.2.1 Amplitude of fluctuations as a component of a dual field.
We start off with the functional representation

d
�
x�r; t�

�
�
� i1

ÿi1
exp

�
ÿ
�
px dr dt

�
Dp ; �2:8�

where we introduced the field p�r; t� whose physical meaning
will be identified later. After averaging with respect to
distribution (2.5), the functional (2.7) reduces to the standard
form

Z
�
x�r; t�	 � � exp�ÿS�x�r; t�; p�r; t�	�Dp : �2:9�

Here, the action S � � L dr dt measured in units of
Ss � g2�T=D�3 is defined by the Lagrangian of the Euclidean
field theory:

L�x; p� �
�
p _xÿ 1

2
p2
�
� p

dV
dx

: �2:10�

To bring the Lagrangian (2.10) to the canonical form, we
introduce the dual field

fp � x� #p �2:11�

with the Bose components x, p, and the nilpotent quantity #,
as defined by the equations

## 0 ÿ # 0# � 0 ;

�
d# � 0 ;

�
# d# � 1 : �2:12�

May, 2001 Supersymmetric éeld theory of a nonequilibrium stochastic system as applied to disordered heteropolymers 483



As shown in Appendix A, in the representation (2.11) the
expression in the first parentheses of the Lagrangian (2.10)
takes on the form

k � 1

2

�
fDf d# �2:13�

inhering in the kinetic energy in Dirac's field-theoretical
scheme [51]. The Hermitian operator D is given by the
expression

Dp � ÿ q
q#
�
�
1ÿ 2#

q
q#

�
q
qt

�2:14�

and satisfies conditions (6.6). On the other hand, the
conditions of nilpotency permit one to write the last term in
equality (2.10) in the standard form (see Appendix A):

p �
�
V�f� d# : �2:15�

As a result, the Lagrangian (2.10) takes on the canonical
form 1

L � k� p �
�
l d# ; l�f� � 1

2
fDf� V�f� : �2:16�

As shown in Appendix A, expressions (2.10), (2.16) are
invariant with respect to the transform exp �eD�, set by the
generator (2.14). The parameter e! 0 is then purely
imaginary, and the fields x�r; t�, p�r; t� are complex.

When an infinitesimal increment df is added to the field
f, the action

s
�
f�z�	 � � lÿf�z��dz ; z � fr; t; #g ; �2:17�

acquires the addition ds � 0, if Euler's equation is valid:

D
dl

d�Df� �
dl
df
� 0 : �2:18�

Substituting here the expression (2.16), we arrive at the
equation of motion

Df� dV
df
� 0 �2:19�

which defines the most probable value

f �max�
p � Z� #j ; Z � x �max� ; j � p �max� ; �2:20�

of the dual field (2.11). Taking the projections of Eqn (2.19)
onto the real and the nilpotent axes, we get the set of
equations

_Z � ÿ dV
dZ
� j ; �2:21�

_j � d 2V

dZ 2
j �2:22�

that describe the kinetics of change of the most probable
values x �max� � Z, p �max� � j. The comparison of equation
(2.21) with the Langevin equation (2.3) indicates that the
ghost field p�r; t� introduced in the integral representation
(2.8) reduces to the amplitude of fluctuations z�r; t� of the
force conjugate to the amplitude of the hydrodynamic mode,
and the quantity j � p �max� � z �max� gives its most probable
value. Although the latter may be different from the mean
value, we shall call the quantity Z � x �max� the order
parameter.

Equations (2.21), (2.22) corresponding to the minimum of
the Lagrangian (2.10) determine the most probable realiza-
tion P Z�r; t�;j�r; t�f g of the distribution function

P
�
x�r; t�; p�r; t�	 � Zÿ1 exp

�
ÿ
�
L�x; p� dr dt

�
�2:23�

of the original fluctuating fields. Here the statistical sum
Z � Zfu � 0g reduces to the generating functional Zfug set
by equality (2.6). Obviously, the distribution function
P Z�r; t�;j�r; t�f g of the most probable fields Z � x �max�,
j � p �max� answers to the classical approximation of the
quantum field theory, which corresponds to the probability
density (2.23) (see Ref. [51]).

2.2.2 Conjugate field as a component of a dual field. Let us
demonstrate that expression (2.11) is not the only possible
dual field that allows the construction of the self-consistent
field-theoretical scheme. With this purpose we introduce the
field f �r; t�, as defined by the relation

_x � f� p : �2:24�

Then the Lagrangian (2.10) becomes

L�x; f � � 1

2
� _x 2 ÿ f 2� ÿ dV

dx
f� dV

dx
_x : �2:25�

The last term can be dropped out because it is the total
derivative dVfxg=dt which corresponds to the equilibrium
statistical sum

Z0 �
�
exp

�
ÿDVfZi; Zfg

T

�
DZi DZf ;

DVfZi; Zfg � VfZig ÿ VfZfg > 0 ; �2:26�
which does not depend on the intermediate states. Here we
returned to the dimensional potential V, where
Zi�r� � x�r; ti�, Zf �r� � x�r; tf� are the initial and the final
fields of the order parameter, determined by the appropriate
distributions of the amplitude of the hydrodynamic mode.
Substituting the Lagrangian (2.25) into the Euler equation
(2.18), we get the equations of motion

�Z � ÿ d 2V

d 2Z
f ; �2:27�

f � ÿ dV
dZ

; �2:28�

which are equivalent to the set (2.21), (2.22). Indeed, if we
differentiate equations (2.21) with respect to time, using
equality (2.22) and the relation

_Z � f� j �2:29�
1Hereinafter we drop the subscripts (in this expression p) as long as the

resulting expressions do not depend on the selection of field components.
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that follows from Eqn (2.24), we immediately arrive at
Eqn (2.27). As far as equation (2.28) is concerned, it reduces
to the definition of the force f �r� conjugate to the order
parameter Z�r; t�. Since the fluctuations do not affect the
macroscopic potential V�r�, their inclusion does not change
equation (2.28), and therefore the conjugate force f which
does not depend explicitly on the time t. It is this circumstance
that ensures the similarity of equations (2.24) and (2.29) for
random and the most probable fields.

Following definition (2.11), we introduce the dual field
[61]

ff � xÿ # f �2:30�
whose Bose components are the amplitude x of the hydro-
dynamic mode and the conjugate force f taken with the
opposite sign. According to Appendix A, the replacement of
the second component p in Eqn (2.11) by ÿf in definition
(2.30) retains the dual form of the Lagrangian (2.16) and
conditions (6.6). However, the generator of the correspond-
ing symmetry group takes on the form

Df � ÿ
�

q
q#
� # q2

qt 2

�
�2:31�

which, differently from relation (2.14), involves the time
derivative of the second order rather than of the first.

2.2.3 Linkage between different dual representations. Let us
prove the similarity of the field-theoretical schemes based on
the fields (2.11) and (2.30).With this purpose we introduce the
transformation operators t� � exp ��#qt�, qt � q=qt whose
action on the fields fp, ff is expressed by the following
relations

t�f� p�t� � f� f �t� ; t�f� f �t� � f� p�t� : �2:32�

In this way, the operators t� transform the dual representa-
tions (2.11), (2.30) one into the other if we take the opposite
signs for the operator t� and field f� p, and the same signs for
t� andf� f . On the other hand, performing an expansion into
a power series of # with due account for Eqns (2.12), (2.24),
we get

f� p�t� #� � f� f �t� ; f� f �t� #� � f� p�t� : �2:33�

Comparing expressions (2.32), (2.33) we see that the opera-
tors t� shift the physical time t by the magnitude of the
nilpotent coordinate�# if the amplitude p of fluctuations has
the opposite sign, and the sign of force coincides with the sign
in the subscript of operator t�:

t�f� p�t� � f� p�t� #� ; t�f� f �t� � f� f �t� #� : �2:34�

These equalities can also be expressed in the framework of the
matrix representation as defined by expressions (6.7), (6.9)
and (6.10) in Appendix A. Transformations of dual fields,
t�ff � fp, tÿfp � ff, correspond to the relations between
generators (2.14), (2.31):

Df � tÿDp t� ; Dp � t�Df tÿ : �2:35�

It is easy to verify that the condition _f � 0 leads to the
invariance of the kernel l in the definition of Lagrangian
(2.16).

2.3 Reduction of a supersymmetric field to the dual form
The approach developed in the previous section is based on
the simplest assumption that the Jacobian in equality (2.7) is
det jdz=dxj � 1. In the general case, for an arbitrary matrix
jAj we have

det jAj �
�
exp�cAc� d2c ; d2c � dc dc ; �2:36�

where c�r; t�, c�r; t� are the Grassmann conjugate anti-
commuting fields subject to the conditions [cf. Eqn (2.12)]

cc� cc � 0 ;

�
dc � 0 ;

�
c dc � 1 ;�

dc � 0 ;

�
cdc � 1 : �2:37�

Physically speaking, the appearance of the new degrees of
freedom c, c is conditioned by the inclusion of feedback that
makes the state of the thermostat dependent on the order
parameter. Such a situation is inherent in self-organizing
systems [62]. As a result, the Lagrangian (2.10) supplemented
by the Grassmann fields c, c becomes

L�x; p;c;c � �
�
p _xÿ p 2

2
� dV

dx
p

�
ÿ c

�
q
qt
� d 2V

dx 2

�
c : �2:38�

Introducing the four-component superfield

Fp � x� yc� cy� yyp ; �2:39�

similarly to the previous section we get the supersymmetric
Lagrangian

L �
�
L d2y ; d2y � dy dy ;

�2:40�
L�Fp� � 1

2
�DpFp��DpFp� � V�Fp� ;

where y, y are the Grassmann conjugate coordinates defined
by expressions similar to Eqns (2.37):

yy� yy � 0 ;

�
dy � 0 ;

�
y dy � 1 ;�

dy � 0 ;

�
y dy � 1 : �2:41�

Later on we shall establish a link between the Grassmann
coordinates y, y and the earlier introduced nilpotent quantity
# defined by conditions (2.12). As compared with equality
(2.16), where the kernel l had the first power of the generator
(2.14), the Lagrangian (2.38) involves a pair of operators

Dp � q

qy
ÿ 2y

q
qt
; Dp � q

qy
�2:42�

that do not satisfy the conditions of Grassmann conjugation.
The corresponding supersymmetric Euler equation is

ÿ 1

2
� D;D�F� dV

dF
� 0 ; �2:43�

where the brackets denote the commutator. Taking the
projections of Eqn (2.43) onto the axes 1, y, y, and yy, we
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get the equations of motion

_Zÿ H2Z � ÿ qV
qZ
� j ; �2:44�

_j� H2j � q2V
qZ2

jÿ q3V
qZ3

cc ; �2:45�

_cÿ H2c � ÿ q2V
qZ2

c ; �2:46�

ÿ _c ÿ H2c � ÿ q2V
qZ2

c �2:47�

that define the most probable realizations of the fields
Z � x �max�, j � p �max�, c �max�, and c

�max�
(in the last two we

dropped out the superscripts `max' for brevity). At
c � c � 0, these equations reduce to the corresponding
equalities (2.21), (2.22) for dual fields. Combining the pair
of equations (2.46), (2.47), we get the conservation law
_S� Hj � 0 for the quantities

S � cc ; j � �Hc �cÿ c�Hc� : �2:48�

In the case of inhomogeneous thermodynamic systems, the
quantity S acts as the density of the interphase boundaries,
and j is the corresponding flux [58]. In this way, in the theory
of polymers the four-component field corresponds to the limit
of strong segregation, used in Ref. [65]. For self-organizing
systems, the quantity S is the entropy, and j is the probability
flux [49]. For thermodynamic systems, where the entropy is
conserved, the Grassmann fields c�r; t�, c�r; t� � const can
be dropped out, and the four-component supersymmetric
field (2.39) reduces to the two-component dual form (2.11).

To accomplish this reduction, we write down the kinetic
energy of the super-Lagrangian (2.40) in the form

ÿ 1

4
Fj
�Dj;Dj

�
Fj ;

where, accurately to the replacement p! j, the quantities
Fj, Dj are defined by the equalities (2.39), (2.42), and the
commutator assumes the form

ÿ 1

2

�Dj;Dj
� � ÿ q2

qy qy
�
�
1ÿ 2y

q
qy

�
q
qt
: �2:49�

Obviously, this expression reduces to the dual form (2.14) if
we set# � yy. Then, the anticommutingGrassmann variables
y, y transform into the self-conjugate commuting variable #.

Similarly to Sections 2.2.1, 2.2.2, wemay show that the use
of linkage (2.24) allows one to go from the amplitude p of
fluctuations to the conjugate force f. Then, the first parenth-
esis in the Lagrangian (2.38) takes on the form (2.25), and in
place of the system (2.44) ± (2.47) we get the equation [cf. Eqn
(2.27)]

�Z � ÿ d2V
dZ2

fÿ d 3V

dZ3
cc �2:50�

supplemented by definition (2.28) and equations (2.46), (2.47)
for the Grassmann fields c�r; t�, c�r; t�. By analogy with the
case of dual fields considered above, the equation of motion
(2.50) can be found by time-differentiation of equality (2.44),
using formulas (2.29), (2.45). The corresponding Lagrangian
L�x; f;c;c � assumes the following supersymmetric form [cf.

Eqn (2.40)]

L �
�
L d2y ; L�Ff� � ÿ 1

2
FfDfDfFf � V�Ff� ; �2:51�

if we introduce the superfield [cf. definition (2.30)]

Ff � x� yc� cyÿ yyf ; �2:52�
Ff � Fp ÿ yy _Ff � TÿFp ;

T� � exp��yy qt� ; qt � q
qt
:

The Grassmann conjugate operatorsDf,Df appear as follows
[cf. Eqn (2.42)]

Df � q

qy
ÿ y

q
qt
; Df � q

qy
ÿ y

q
qt
: �2:53�

It is easy to demonstrate that the superfields (2.39), (2.52) are
transformed into each other similarly to equalities (2.32) ±
(2.34) if we replace the transformation operators
t� � exp ��#qt� by T� � exp ��y y qt�. On the other hand,
by analogy with Eqn (2.35), the pairs of conjugate super-
operators (2.42), (2.53) are linked by the transformation

Df � TÿDjT� ; Df � TÿDjT� : �2:54�

According to Eqn (2.53), for the product of operators in the
kernel of supersymmetric Lagrangian (2.51) we have [cf. Eqn
(2.49)]

ÿDfDf � ÿ
�
q
qy

q

qy
� yy

q2

qt 2

�
�
�
y
q

qy
ÿ y

q
qy

�
q
qt
: �2:55�

This expression reduces to operator (2.31) if we set yy � # and
note that y�q=qy � � y�q=qy�.

In this way, the four-component Grassmann fields (2.39),
(2.52) reduce to the two-component forms (2.11), (2.30).
Accordingly, the supersymmetric generators (2.42), (2.53) go
over into expressions (2.14), (2.31).

This reduction of superfields can be derived from the
calibration conditions

DF � 0 ; DF � 0 : �2:56�
Indeed, in accordance with definitions (2.39), (2.42), (2.52),
(2.53), the equalities (2.56) produce the linkage

yc� cyÿ 2yyf � 0 �2:57�
which, given that # � yy, reduces the supersymmetric field
(2.52) to the form (2.30) with the opposite sign in front of f.

In spite of their having an equal number of components,
the physical meaning of the above-introduced dual fields
(2.11), (2.30) is different from that of the Grassmann
conjugate pair of chiral fields (6.26), which are the result of
the supersymmetric gauge invariance (see Appendix B). The
main distinction is that the dual fields fp, ff consist of the
pairs of Bose components x, p and x, f, whereas the chiral
superfieldsf�,fÿ are combinations of the Bose component x
and the Fermi components c, c. This distinction comes from
the fact that when the chiral superfields are singled out, the
condition of supersymmetric gauge invariance (6.24) is
imposed not on the original supersymmetric field F satisfy-
ing equalities (2.56) but rather on the componentsF� that are
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obtained fromF by the action of operatorsT� � exp ��yy qt�
[see Eqn (6.18)].

To visualize the difference between the dual fields (2.11),
(2.30) and the chiral field (6.26), let us consider the super-
symmetric field (2.52) as a vector in the four-dimensional
space with axes y 0 � y 0 � 1, y, y, yy � #. Then calibration
(2.56) reduces the field (2.52) to the vector (2.30) located in the
plane running along the axes 1, #. Accordingly, the calibra-
tion (6.24) leads to the partition of the total supersymmetric
space into two orthogonal subspaces, the first of which is
formed by the axes 1, y and contains the vector fÿ, whereas
the second is formed by the axes 1, y and contains the vector
f�. Since these subspaces are Grassmann conjugate
(fÿ � f�), it will suffice to consider only one of them, using
either vector fÿ or f� (see Appendix B). Such a program was
carried out in Ref. [66], where the earlier used dual field (2.30)
was obtained by projecting the chiral vectors f� onto the
plane formed by the axes 1, #. Hence it follows that our
approach based on the adoption of dual fields (2.11), (2.30) is
equivalent to the theory developed in Ref. [66]. The super-
symmetric method [67] proceeds from the introduction of
nonconjugate chiral fieldsfx � x� yc,fp � pÿ icy [cf. Eqn
(6.26)] in which the Bose component is both the amplitude x
of the hydrodynamic mode and the amplitude p of fluctua-
tions.

According to the arguments developed above, the
operators T� that shift the time t by the Grassmann amount
�yy transform one into another the supersymmetric fields
(2.39), (2.52) and the corresponding generators (2.42), (2.53).
Characteristically, only the latter of these generators are
Grassmann conjugate. Such a symmetry is due to the fact
that the equation of motion (2.50) is invariant with respect to
the time reversion only when the conjugate force f is used,
whereas equations (2.44), (2.45) which contain the amplitude
j of fluctuations are not invariant. However, apart from the
superfield Fp � F� that corresponds to j � p �max� and is
generated by the action of operatorT� onFf, the operatorTÿ
which shifts the time in the opposite direction generates
another superfield Fÿ. According to equalities (6.22), (2.24),
the fieldsF� � Fp��t� correspond to the reverse directions of
time.

It is easy to see that the action of operators T� preserves
the invariance of equations (2.46), (2.47) for the Grassmann
conjugate components c�r; t�, c�r; t�. To break such invar-
iance, we introduce the operators

eT� � exp
�
e�d�yc� d�cy�

�
; �2:58�

where we assume e! 0; d� � 1, dÿ � 0 for the positive time
direction, and d� � 0, dÿ � 1 for the negative time direction.
The Euler equation (2.43) for the transformed superfieldeF� � eT�Fp reduces to the components

_Zÿ H2Z � ÿ qV
qZ
� jÿ ecc ; �2:59�

_j� H2j � q2V
qZ2

jÿ q3V
qZ3

cc� ec _c ; �2:60�

_cÿ H2c � ÿ q2V
qZ2

c ÿ e

(
dÿ

� _c
c

�
Z

� d�

�
� _Zÿ j� � q2V

qZ2
Z
�)

c ; �2:61�

_c� H2 c � q2V
qZ2

cÿ e

(
d�

� _c

c

�
Z

ÿ dÿ

�
� _Zÿ j� � q2V

qZ2
Z
�)

c ; �2:62�

where we have retained the terms of the first order in e. In the
limit e! 0, these equations become (2.44) ± (2.47). Combin-
ing equations (2.61), (2.62) with e 6� 0, for the entropy (2.48)
we get

_S� Hj � �eFS ; F � ÿ qV
qx
� 2

q2V
qZ2

Z ; �2:63�

where the upper sign corresponds to the positive direction of
time, and the lower to the negative. For a closed system
(Hj � 0) the entropy Smay not decrease, and the positive time
arrow is only realized for the negative values of the effective
force F � ÿqV=qZ� 2�q2V=qZ2�Z. Since this force is internal
for the system under consideration, this means that the
corresponding force Fext � ÿF of (counter)action of the
thermostat will be positive.

In this way, the positive direction of time is realized if the
effective potential V�Z� increases with the order parameter,
and is convex. Near the equilibrium, where qV=qZ � 0, we
have Z5 1 and F ' 2�q2V=qZ2�Z, and such a situation
requires that the system should be unstable: q2V=qZ2 < 0. In
the degenerate case qV=qZ � 0, q2V=qZ2 � 0, the effective
force F � 0, and the derivation of the (2.63)-type equation
must involve terms of higher order in e.

2.4 Supersymmetric correlation technique
The superfield-theoretical scheme described above provides
for the self-consistent treatment of thememory effects and the
loss of ergodicity using the correlators of superfields (2.39),
(2.52). Further we shall demonstrate that themost simple case
corresponds to the employment of the two-component field
(2.11).

The problem consists in the definition of the supersym-
metric correlator

C�z; z 0� � 
F�z�F�z 0�� ; z � fr; t; y; yg ; �2:64�

which is the average computed over distribution (2.23). First
we find the bare supercorrelator C �0��z; z 0� corresponding to
the harmonic potential V0 � �1=2�F2. In this case, the
supersymmetric equation of motion (2.43) yields

Lko�y�C �0�ko �y; y 0� � d�y; y 0� ; L � 1ÿ 1

2
� D;D � ; �2:65�

where we have introduced the Grassmann d-function

d�y; y 0� � �yÿ y 0��yÿ y 0� �2:66�

and carried out the space-time Fourier transformation (o is
the frequency, and k is the wave vector). In the general form,
the solution of equation (2.65) is written down as follows

C �0��y; y 0� � 1� �1=2�� D;D �
1ÿ �1=4�� D;D �2 d�y; y 0� ; �2:67�

where we have dropped the subscriptso, k. With due account
for definitions (2.42), (2.66) and the equality � D;D�2 � ÿ4o2

that follows from (6.11), the bare supercorrelator correspond-
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ing to superfield (2.39) takes on the form

C �0�j �y; y 0� �
1� �1ÿ io��yÿ y 0�yÿ �1� io��yÿ y 0�y 0

1� o2
:

�2:68�

According to Eqn (2.54), upon passage to superfield (2.52),
the numerator acquires another summand io�yyÿ y 0y 0�.

Given the Grassmann structure of expression (2.68), it is
further convenient to introduce the basis vectors

T�y; y 0� � 1 ; B0�y; y 0� � yy ; B1�y; y 0� � y 0y 0 ;

F0�y; y 0� � ÿy 0y ; F1�y; y 0� � ÿyy 0 : �2:69�
We define the functional product of arbitrary vectors X, Y, Z
by the equality

X�y; y 0� �
�
Y�y; y 00�Z�y 00; y 0� d2y 00 : �2:70�

Then the components (2.69) of the basis obey the
following multiplication table (Table 1):

In this way, vectors T, B0;1, F0;1 form a closed basis that is
convenient for decomposing the main supercorrelators of the
superfield. According to Eqns (6.33), (6.36), (2.69), these
decompositions acquire the form

Cj � ST� G��B0 � F0� � Gÿ�B1 � F1� ; �2:71�
Cf � ST�m�B0 �mÿB1 � G�F0 � GÿF1 :

Here, in accordance with the Ward identity (6.32), where the
first of the generators in Eqn (6.31) is used, the term
proportional to yyy 0y 0 vanishes. From the formal stand-
point, expressions (2.71) are similar to the result of decom-
position of a vector in terms of Cartesian coordinates, with
the distinction that the supersymmetric components (2.69)
are not orthogonal.

Substituting the formulas of superfields (2.39), (2.52) into
definition (2.64), for the coefficients in expansions (2.71) we
get [cf. Eqns (6.34), (6.37)]

S � hjxj2i ; m� � hx �i fext ; mÿ � hxi f �ext ; fext � ÿf ;

G� � hpx�i � hcc�i; Gÿ � hxp�i � hc �ci: �2:72�

Hence it follows that the quantity S is the autocorrelator of
the amplitude x of the hydrodynamicmode; the quantitiesm�
satisfying the condition m�� � mÿ reduce to the standard
definition Z � xh i of the order parameter corresponding to
the external force fext � ÿf. The retarded and advanced
Green functions G� give the response of the amplitude x of

the hydrodynamic mode to the amplitude p of fluctuations,
and vice versa (in addition, according to the Ward identity,
functions G� define the correlator of Grassmann fields c, c).
Comparison between equalities (2.68), (2.71) leads to the bare
correlators

S �0� � m
�0�
� � �1� o2�ÿ1 ; G

�0�
� � �1� io�ÿ1 : �2:73�

As is known [68], the Fourier transforms G��o� of the
retarded and advanced Green functions are analytical in the
upper and lower half-planes of the complex frequency o with
the cut along the real axis o 0; along the axis o 0 itself is the
jump Gÿ�o 0� ÿ G��o 0� � 4i ImGÿ�o 0�.

This leads to equations (6.35), (6.38) which express the
fluctuation-dissipative theorem:

G��o� � m��o� � ioS�o� ; S�o 0� � 2

o 0
ImGÿ�o 0� ;

�2:74�

where the frequency o 0 is purely real. Integrating the last
expression in Eqn (2.74) with due account for the spectral
representation

C�o� �
�1
ÿ1

ImC�o 0�
o 0 ÿ o

do 0

p
; �2:75�

we find

S�t � 0� � G��o � 0� � w ; �2:76�

where the last equality is revealed as the definition of the
susceptibility w.

Decompositions (2.71) allow the supercorrelator (2.64) to
be treated as a vector in the space formed by the direct
product of superfields (2.39) or (2.52). According to Eqn
(2.71), the use of representation (2.39) gives rise to the
pairwise combination of the basis vectors:

B0 � F0 � A ; B1 � F1 � B : �2:77�

This allows their number to be reduced to the set A, B, T
which obeys the multiplication table (Table 2; cf. Table 1).

As a result, the first of the decompositions in Eqn (2.71)
assumes the simple form

Cj � G�A� GÿB� ST : �2:78�

Observe that it only contains the retarded and advanced
Green functions G�, and the structural factor S.

It is readily seen that this decomposition can be obtained if
we use the dual field (2.11) from the outset. Indeed, when
comparing the equations of motion (2.19), (2.43), we see that
the commutator ÿ�1=2�� D;D � in Eqn (2.67) becomes the
generator (2.14). Then, using the definition of the nilpotent

Table 1.

r
l

T B0 B1 F0 F1

T 0 T 0 0 0

B0 0 B0 0 0 0

B1 T 0 B1 0 0

F0 0 0 0 F0 0

F1 0 0 0 0 F1

Table 2.

r
l

T A B

T 0 T 0

A 0 A 0

B T 0 B
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d-function d�#ÿ # 0� � #� # 0, we get in place of Eqn (2.68):

C �0��#; # 0� � 1� �1ÿ io�#� �1� io�# 0
1� o 2

: �2:79�

It is easy to see that the definitions [cf. Eqn (2.69)]

T�#; # 0� � 1 ; A�#; # 0� � # ; B�#; # 0� � # 0 �2:80�

lead to the decomposition (2.78). Thus, the use of a two-
component field (2.11) yields the same results as the superfield
(2.39). In particular, definitions�

C�#; # 00�C ÿ1�# 00; # 0� d2# 00 � d�#; # 0� ;

d�#ÿ # 0� � #� # 0 ;
C C ÿ1 � A� B �2:81�

give the expression for the inverted supersymmetric correlator
(2.78):

C ÿ1 � G ÿ1� A� G ÿ1ÿ Bÿ G ÿ1� SG ÿ1ÿ T : �2:82�

Observe finally that, according to definitions (2.77),
(2.69), at A � B � 0 the condition y � y 0 is satisfied, and
the decomposition (2.78) reduces to a conventional (non-
Grassmann) quantity: C�y; y� � C�#; #� � S. Hence immedi-
ately follow the important equalities�

C�z; z� dz �
�
S�r; t; r; t� dr dtd2y � 0 ;

�2:83��
C�z; z� dz �

�
S�r; t; r; t� dr dtd# � 0 ;

where z � fr; t; y; yg, z � fr; t; #g. Further on, we shall
demonstrate that conditions (2.83) imply the zero contribu-
tion from the ring diagrams of perturbation theory, which
corresponds to the replica limit n! 0 [59].

2.5 Supersymmetric perturbation theory
We start with the definition

C�z; z 0� � d 2Zfu�z�g
du�z�du�z 0�

����
u�0

; �2:84�

where the generating functional (2.6) is conveniently repre-
sented as the average

Zfug �
�
exp

��
fu dz

��
�2:85�

computed over the distribution [cf. Eqn (2.23)]

Pffg � Z ÿ1 exp
ÿÿSffg� ; Sffg �

�
l�f� dz �2:86�

set by the Lagrangian l in Eqn (2.16). In the zero (harmonic)
approximation, the action is represented by the quadratic
form

S0 � 1

2

�
fLf dz ; L � 1�D ; �2:87�

where the generator D is given by equality (2.14). The
corresponding distribution presents the supersymmetric
Gaussian [cf. Eqn (2.5)]

P0ffg �
�
det jLj
2p

�1=2

exp

�
ÿ 1

2

�
fLf dz

�
: �2:88�

Hence, for the bare supercorrelator we get the expression

C �0��z; z 0� � Lÿ1d�z; z 0� ; d�#; # 0� � #� # 0 �2:89�

that reduces to Eqn (2.67) if we replaceÿ�1=2�� D;D � byD in
close agreement with Eqns (2.87), (2.14). The linear operator
L � �C �0��ÿ1, decomposed with respect to basis (2.80), with
due account for Eqn (2.82) is written as

L � L�A� LÿB� LT ;

L� � 1� io ; L � ÿ1 : �2:90�

In order to go beyond the scope of zero approximation,
we single out the term S1ffg corresponding to the self-action
(anharmonism) in the exponential of distribution (2.86), and
expand it in a power series. Then the definition (2.84) gives

C�z; z 0� �
X1
n�0

�ÿ1�n
n!



f�z�ÿS1ffg

�nf�z 0��
0
; �2:91�

where, as differentiated from Eqn (2.85), the average is
computed over the bare distribution (2.88). Then, in accor-
dance with the Wick theorem, we must uncouple expression
(2.91), which in the nth order of perturbation theory gives

C �n��z; z 0� �
��

C �0��z; z1�S �n��z1; z2�C �0��z2; z 0� dz1 dz2 :
�2:92�

Here we have introduced the supersymmetric self-energy
function of the nth order, S �n��z1; z2�, that has to be defined.
The result will depend considerably on the form of the self-
action potential. Let us consider the most popular models.

2.5.1 ff4 model. Here, the self-action potential assumes the
form

V1�z� � l
4!

f4�z� ; z � fr; t; #g ; �2:93�

where the anharmonism constant is l > 0. To the two first
orders, the expansion (2.91) yields

C �1��z; z 0� � ÿ l
4!

�D
f�z�ÿf�z1��4f�z 0�E

0
dz1 ; �2:94�

C �2��z; z 0� � 1

2!

�
ÿ l
4!

�2

�
��D

f�z�ÿf�z1��4ÿf�z2��4f�z 0�E
0
dz1 dz2 : �2:95�

In expression (2.94), the number of possible pairings resulting
from decoupling is 12, and formula (2.94) becomes

C �1��z; z 0� � ÿ l
2

�
C �0��z; z1�C �0��z1; z1�C �0��z1; z 0� dz1 � 0 ;

�2:96�
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where we have taken into account equalities (2.64), (2.83). To
the second order, the number of pairings is 192, and the
application to the Wick theorem in Eqn (2.95) results in

C �2��z; z 0�� l2

6

��
C �0��z; z1�

ÿ
C �0��z1; z2�

�3
C �0��z2; z 0� dz1 dz2:

�2:97�

According to definition (2.92), expressions (2.96), (2.97) give
the supersymmetric self-energy function

S�z; z 0� � l2

6

ÿ
C�z; z 0��3 : �2:98�

Here, in the spirit of the conventional diagram ideology, we
have moved to the exact supersymmetric correlators.

In the diagram representation, expressions (2.94), (2.95)
appear as

According to definition (2.83), the ring diagram vanishes, and
the second diagram gives the term (2.98).

Similarly to the decomposition (2.78), it is convenient to
represent the supersymmetric self-energy function in the form

R � S�A� SÿB� ST : �2:99�
In the determination of coefficients S�, S one must bear in
mind that the rules of multiplication in Eqn (2.98) are
different from those shown in Table 2. This is because in
equality (2.98) we have to use not the functional but the
conventional product of dual fields [59]. The corresponding
multiplication table looks like

As a result, for the components of decomposition (2.99)
we get

S�t� � l2

6
S 3�t� ; �2:100�

S��t� � l2

2
S 2�t�G��t� : �2:101�

Further we shall need the frequency representation, in which
equations (2.100), (2.101) become

S�o� � l2

6

�
S�oÿ o1 ÿ o2�S�o1�S�o2� do1 do2

�2p�2 ; �2:102�

S��o� � l2

2

�
G��oÿ o1 ÿ o2�S�o1�S�o2� do1 do2

�2p�2 :

�2:103�

The obvious disadvantage of these expressions consists in the
presence of convolutions. This problem can be avoided by
using the fluctuation-dissipative theorem

S�t � 0� � S��o � 0� ; �2:104�

which has the form (2.76). Then the expressions (2.100), (2.76)
yield

S��o � 0� � l2

6
w 3 : �2:105�

2.5.2 ff3 model. Important in the theory of polymers is the
cubic anharmonism set by the potential

V1�z� � m
3!

f3�z� ; z � fr; t; #g ; �2:106�

whose magnitude is determined by the parameter m [27]. The
first nonvanishing contribution to the supersymmetric corre-
lator (2.92) assumes the form

C �2��z 0; z 0� � 1

2!

�
ÿ m
3!

�2

�
��D

f�z�ÿf�z1��3ÿf�z2��3f�z 0�E
0
dz1 dz2 : �2:107�

When uncoupling, it is convenient to proceed from the
second-order diagrams in the form

The first of these contains a ring and, according to rule (2.83),
gives a zero contribution; the second reduces to the form

m 2

2

��
C �0��z; z1�

ÿ
C �0��z1; z2�

�2
C �0��z2; z 0� dz1 dz2 : �2:108�

As a result, definition (2.92) gives rise to the expression

S�z; z 0� � m 2

2

ÿ
C�z; z 0��2 ; �2:109�

where the bare supersymmetric correlators are replaced with
the exact correlators. Using Table 3, we get the coefficients in
decomposition (2.99):

S�t� � m 2

2
S 2�t� ; �2:110�

S��t� � m 2S�t�G��t� : �2:111�

Together with expressions (2.100), (2.101), these formulas
define the supersymmetric self-energy function. Similarly to
Eqn (2.105), in the o-representation we arrive at

S��o � 0� � S�t � 0� � m 2

2
w 2 : �2:112�

In conclusion, let us report on the complete expressions
for the coefficients of decomposition of the self-energy

Table 3.

T�#; # 0� A�#; # 0� B�#; # 0�
T�#; # 0� T�#; # 0� A�#; # 0� B�#; # 0�
A�#; # 0� A�#; # 0� 0 0

B�#; # 0� B�#; # 0� 0 0
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function (2.99):

S�t� � 1

2

�
m 2 � l2

3
S�t�

�
S 2�t� ; �2:113�

S��t� �
�
m 2 � l2

2
S�t�

�
S�t�G��t� ; �2:114�

S��o � 0� � 1

2

�
m 2 � l2

3
w
�
w 2 : �2:115�

2.6 Self-consistent scheme
Our next task consists in deriving the set of equations that
would give a self-consistent description of the main correla-
tors S, G�. In the mean field theory, the solution of this
problem is obtained as follows: from the effective Hamilto-
nian that takes into account the quenched disorder in the
spread of values of the interparticle potential and the
conjugate field, the quadratic component is selected, corre-
sponding to the linear approximation in the supersymmetric
field theory (Section 2.6.1). The immediate procedure of
developing the self-consistent set of equations is based on
the supersymmetric Dyson equation (Section 2.6.2).

2.6.1 Effective supersymmetric Lagrangian. In the site repre-
sentation, the supersymmetric action is given by

S � S0 � S1 � Sint ; �2:116�

where the following notation was used:

S0 � 1

2

X
l

�
fl �t; #�

�
1�D�#��fl �t; #� dt d# ; �2:117�

S1 �
X
l

�
V1

ÿ
fl �t; #�

�
dtd# ; �2:118�

Sint �
��
V int dt dt 0 d# d# 0 ;

�2:119�
V int � Vint

�
fl �t; #�;fl �t 0; # 0�;fm�t; #�;fm�t 0; # 0�

	
d�tÿ t 0�;

Vint � V�W :

Here, the subscripts l,m denote the node numbers, and in the
self-energy part of Eqn (2.118) we separated the kernelV1�fl �
that takes into account the effects of self-action and is defined
by equalities (2.93), (2.106). The last termSint includes the real
two-particle interaction V and the effective interaction W
which represents the quenched disorder. In the case of
attractive interaction, for the former we have [69]

V � ÿ 1

2

X
l m

vl mfm�t; #�fl �t 0; # 0�fl �t 0; # 0�fm�t; #�

ÿ 1

2

X
l m

vl mfl �t; #�fl �t 0; # 0�fm�t; #�fm�t 0; # 0� : �2:120�

In the mean field approximation, one obtains

V ' ÿ v
2
C�t; #; t; #�

X
l

fl �t 0; # 0�fl �t 0; # 0�

ÿ v
2
C�t; #; t 0; # 0�

X
l

fl �t; #�fl �t 0; # 0� : �2:121�

Hereinafter v �Pm vl m > 0 is the attraction constant, and
C�t; #; t 0; # 0� � 
fm�t; #�fm�t 0; # 0�

�
is the supersymmetric

correlator written in site representation. In the Sherring-
ton ±Kirkpatrick model, the quenched disorder in the spread
of values of the internodal overlap integral reduces to the
effective attraction [44]

W � ÿ 1

2

X
l m

wlmfl �t; #�fl �t 0; # 0�fm�t; #�fm�t 0; # 0� : �2:122�

Hence, similarly to Eqn (2.121), it follows that

W ' ÿw

2
C�t; #; t 0; # 0�

X
l

fl �t; #�fl �t 0; # 0� ;

w �
X
m

wlm > 0 : �2:123�

In this way, if the real interaction (2.121) contains
diagonal and nondiagonal supercorrelators, then quenched
disorder only leads to the nondiagonal component (2.123). In
the framework of the replica approach, this supersymmetric
structure answers to the interreplica overlapping responsible
for the spin-glass behavior [16].

Finding the action of a nonequilibrium system, one
should remember that, in addition to the contribution
(2.119) which leads to the effective interaction potential
(2.122), quenched disorder is also possible in the spread of
values of the force conjugate to the order parameter. This
leads to an additional contribution to the supersymmetric
action [44]:

DS0 � h 2

2

X
l

�
flo�#�d�o�flo�#� do d# ; �2:124�

where o is the frequency, and the intensity of quenched
disorder is given by the expression

h 2 � � fl ÿ f �2 ÿ �Dj�2
�Dj�2 : �2:125�

Here the over-line denotes averaging over a volume, fl is the
magnitude of the force in the node l, and �Dj�2 � j2

o�0 are
the root-mean-square fluctuations of this force.

The final expression for the supersymmetric action in the
node ± frequency representation becomes

S �
X
l

�
llo�#� do

2p
d#�

X
l

�
llo�#; # 0� do

2p
d# d# 0 ;

�2:126�

where the diagonal and nondiagonal Lagrangians are
expressed by equalities

l�#�� 1

2
f�#���1�D�#��� 2ph2d�o�ÿ vS	f�#�� V1

ÿ
f�#��;
�2:127�

l�#; # 0� � ÿ 1

2
�v� w�f�#�C�#; # 0�f�# 0� ; �2:128�

where the subscripts l, o are dropped for brevity, and the
generator D is given by Eqn (2.14).

In the case of a disordered heteropolymer, the interaction
potentials retain the forms (2.120), (2.122), but the indices l,m
assume the meaning of wave vectors. For the passage to wave
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representation, it is sufficient to replace the indices with wave
vectors l, m in Eqns (2.126) ± (2.128), and replace the
constants v, w with potentials v �Pm vl m, w �

P
m wl m in

Eqns (2.121), (2.123), (2.127), (2.128).

2.6.2 Supersymmetric Dyson equation. The supersymmetric
effective Lagrangian (2.126) ± (2.128) answers to the Dyson
equation

Cÿ1 � Lÿ R ÿ �v� w�C : �2:129�

Here, the supercorrelators involved are represented by
decompositions (2.78), (2.99), (2.90) with respect to the
supersymmetric basis (2.80). Then, in accordance with
equalities (2.127), (2.128), the coefficient L in decomposition
(2.90) becomes

L � L0 � vS ; L0 � ÿ
ÿ
1� 2ph2d�o�� : �2:130�

Projecting the superequation (2.129) onto the axes (2.80), we
find the components of the Dyson equation in the frequency
representation:

S � �Sÿ L0�G�Gÿ
1ÿ wG�Gÿ

; �2:131�

Gÿ1� � �v� w�G� � L� ÿ S� : �2:132�
Here we have taken into account equality (2.82). These
equations together with expressions (2.113) ± (2.115) form a
closed system that describes the self-consistent behavior of a
nonequilibrium stochastic system.

2.7 Memory and nonergodicity effects
Following Edwards and Anderson [14], we introduce the
memory parameter

q � 
x�t � 1�x�t � 0�� : �2:133�
Its inclusion leads to the extension of the structural factor in
the time-domain representation:

S�t� � q� S0�t� ; �2:134�
where the component S0�t� ! 0 as t!1. In a similar way,
the loss of ergodicity leads to the extension of the retarded
Green function in the frequency-domain representation:

Gÿ�o� � D� Gÿ0�o� : �2:135�
The nonergodicity parameter (irreversible response)

D � w0 ÿ w �2:136�
is given by the difference between the adiabatic Kubo
susceptibility w0 � Gÿ�o � 0� and the thermodynamic (iso-
thermal) quantity 2 w � Gÿ0�o! 0�. While the former is
expressed by the standard formula w0 � dZ=�dfext� (where
Z � hxi is the order parameter, fext � ÿf is the external
force), the definition of the latter requires using the correla-
tion technique described in Section 2.4.

With this purpose, we substitute the extended correlators
(2.134), (2.135) into expressions (2.113), (2.114). Then the
renormalized components of the self-energy function become

S�t� � 1

2

�
m 2 � l2

3
q

�
q 2 �

�
m 2 � l2

2
q

�
qS0�t� � S0�t� ;

�2:137�
S0�t� � 1

2
�m 2 � l2q�S 2

0 �t� �
l2

6
S 3
0 �t� ;

S��t� �
�
m 2 � l2

2
q

�
q
�
D� G�0�t�

�� S�0�t� ;
�2:138�

S�0�t� � �m 2 � l2q�S0�t�G�0�t� � l2

2
S 2
0 �t�G�0�t� :

These expressions are written down in such a way that the
terms nonlinear with respect to the correlators S0, G�0 are
collected in the expressions for S0, S�0, whereas the terms
that go first vanish in the absence of memory �q � 0�. In
addition, we have dropped the terms containing S0 D ' 0.

Substituting Fourier transforms of expressions (2.134),
(2.137) into the Dyson equation (2.131) and using (2.130), we
get in the o-representation:

q0

�
1ÿ ww 2

0 ÿ
1

2

�
m 2 � l2

3
q0

�
q0w 2

0

�
� h 2w 2

0 ; �2:139�

S0 � �1� S0�G�Gÿ
1ÿ �w� �m 2 � l2q=2�q�G�Gÿ : �2:140�

The first of these equalities corresponds to the memory-
attributed d-shaped contribution at the frequency o � 0 (as
denoted by the subscript 0), and the second to o 6� 0. In the
limit o! 0, the characteristic product is G�Gÿ ! w 2, and
the pole of the structural factor (2.140) defines the point of
ergodicity loss:

w�
�
m 2 � l2

2
q0

�
q0 � wÿ20 : �2:141�

Going over to the o-representation in Eqn (2.138), from
relation (2.132) we get the equation for the retarded Green
function:

Gÿ1ÿ �
�
�v� w� �

�
m 2 � l2

2
q

�
q

�
Gÿ � Sÿ0 ÿ �1ÿ io� � 0 :

�2:142�

Given expression (2.115), for the determination of thermo-
dynamic susceptibility w � Gÿ�o! 0� follows the equation

1ÿ w� �v� w�w 2 � m 2

2
w
��w� q�2 ÿ q 2

�
� l2

6
w
��w� q�3 ÿ q 3

� � 0 : �2:143�

The memory parameter q0 is found in that case from the
equation�

m 2

2
� l2

3
q0

�
q 2
0 � h 2 ; �2:144�

which follows from equations (2.139), (2.141).

2 For the definition of both susceptibilities w0 and w, one can employ the

common response function Gÿ�o�, assuming that the quantities

w0 � Gÿ�o � 0� and w � Gÿ�o! 0� correspond to the equilibrium

(macroscopic) and nonequilibrium (microscopic) states, respectively.

Then in equations (2.76), (2.113) ± (2.115), where the subscript 0 must be

attached to the correlators, we use not the exact equality o � 0, but the

passage to the limit o! 0 [22].
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2.8 Analysis of equations for the memory
and nonergodicity parameters
The set of equations (2.139), (2.143), (2.141), (2.136), (2.144)
allows one to give a complete description of a nonergodic
system with quenched disorder. The first two of the above
equations are the Sherrington ±Kirkpatrick equations for the
adiabatic �w0� and isothermal �w� susceptibilities and the
corresponding memory parameters q0, q [16]. Equation
(2.141) defines the point T0 of ergodicity loss, equation
(2.136) defines the parameter D of nonergodicity, and
equation (2.144) gives the memory parameter q0 conditional
on the quenched disorder h. As indicated above, in the
nonergodic state one must distinguish among the macro-
scopic (q0, w0) and the microscopic (q, w) quantities (the
former correspond to the frequency o � 0, and the latter to
the limit o! 0). One feature of such a hierarchy is that the
macroscopic quantities depend on the amplitude h of
quenched disorder, and the microscopic quantities depend
on the temperature T. Because of this, for the definition of
macroscopic parameters q0, w0 in the nonergodic state one
must fix the temperature T by the value T0�h� in the curve of
ergodicity loss, and for the definition of microscopic para-
meters q, w, the amplitude h of quenched disorder must be
taken equal to the corresponding value h0�T �.

In this way, in the ergodic state, where the macroscopic
values coincide with the microscopic values, the set of
equations (2.139), (2.143) is found to be sufficient for the
definition of the memory parameter q � q0 and the suscept-
ibility w � w0, and the addition of equation (2.141) defines the
temperature T0�h� of ergodicity loss. Upon transition to the
nonergodic state, the macroscopic quantities q0, w0 retain
their values q0�h0�, w0�T0� corresponding to the point of
ergodicity loss, and there is only one equation (2.143) left for
finding the microscopic quantities q, w. It must be supple-
mented with an equation of the type (2.139):

q

�
1ÿ ww 2

0 ÿ
1

2

�
m 2 � l2

3
q

�
qw 2

0

�
� h 2w 2

0 ; �2:145�

where the memory parameter q assumes a microscopic
character. In line with the idea of the infinite hierarchy of
relaxation times [45], this equation corresponds to the
microscopic level of hierarchy that is the closest to the
macroscopic level.

In these equations, the quantity h, the anharmonism
parameters l, m and interaction parameters v, w, as well as
the inverse susceptibility wÿ1, are measured in units of
temperature T. Let us now go over to the physical units of
measurement for T, h, v, w, w, q:

Ts �
�
3

2

�3=2 m 4

l 3
; hs � 3

2

m 3

l2
; vs � ws �

�
3

2

�ÿ1=2
l ;

ws �
�
3

2

�ÿ1=2 l
m 2

; qs � 3

2

m 2

l2
� u :

�2:146�

As a result, our main equations become

�1ÿ uTw� � �v� w�Tw 2 � w
2T

��Tw� q�2 ÿ q 2
�

� w
4T

��Tw� q�3 ÿ q 3
� � 0 ; �2:147�

wT� q

2

�
1� q

2

�
� h 2

q
� wÿ20 ; �2:148�

wT� q0
2

�
1� q0

2

�
� h 2

q0
� wÿ20 ; �2:149�

wT0 � q0

�
1� 3

4
q0

�
� wÿ20 ; �2:150�

�1� q0�q 2
0 � 2h 2 ; �2:151�

D � uT�w0 ÿ w� : �2:152�
The pattern of behavior of the system is conditional on the

parameter u introduced in the last equality in Eqn (2.146).
This parameter defines the ratio of nonlinear terms of the
third and fourth orders: when u5 1, the main contribution
comes from the biquadratic term (2.93), and when u4 1, the
cubic anharmonism (2.106) is definitive. The former case
corresponds to strong quenched disorder h4 hs, and the
latter to weak (h5 hs).

The dependence of themacroscopic memory parameter q0
on the amplitude h of quenched disorder is defined by Eqn
(2.151). As seen from Fig. 1, the linear portion of the curve

q0 � 21=2 h

m
; u4 1 ; �2:153�

realized in the limit h5 hs, at h4 hs becomes a power-law
dependence

q0 � 31=3

�
h

l

�2=3

; u5 1 : �2:154�

Here, like in the subsequent equations (2.155) ± (2.157),
(2.159) ± (2.163), we use dimensionful quantities. Simulta-
neous solution of equations (2.147), (2.149), (2.150), where
w � w0, q � q0, gives the temperature T0�h� of ergodicity loss
for the given field spread h. The shape of the corresponding
phase diagram, which for different values of interaction

104

q0

102

10ÿ2

10ÿ4

10ÿ6

10ÿ6 10ÿ4 10ÿ2 100 102 104 106 h

Figure 1. Macroscopic memory parameter q0 vs. the intensity h of

quenched disorder.
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parameters w, v defines the range of the possible thermo-
dynamic states in the hÿT plane, is depicted in Fig. 2. In the
absence of quenched disorder h in the spread of the conjugate
field, the temperature T00 � T0 �h � 0� is given by

T00 � w

(�
1� v

2w
� 1

12

l2

w 2

�

�
��

1� v

2w
� 1

12

l2

w 2

�2

� 1

2

m 2

w 2

�1=2)2

�2:155�

and increases steadily with the increasing intensity v of
interaction between particles, its dispersion w, the cubic �m�
and biquadratic �l� anharmonisms. At large values of the
amplitude h of quenched disorder, when q 2

0 4 q0 4wT0, the
isothermal susceptibility w0 in Eqn (2.150) is small, and from
equations (2.147) ± (2.150) it follows that w0 � 2=�uT0�. Then
in the limit m 2 4 l2 we get

T0 � 25=4m
�
h

m

�1=2

;

�
w

m

�2

m5 h5

�
m
l

�2

m ; �2:156�

and for l2 4 m 2 one finds

T0 � 21=23 1=3l
�
h

l

�2=3

; h4

�
m
l

�2

m ;
�
w

l

�3=2

l :

�2:157�

As ought to be expected, the increase in quenched disorder
intensity leads to infinite expansion of the nonergodic region.
However, in the range of values of the effective interaction
parameter w < 0:5, and also for the interaction parameter
v > 1, the function T0�h� becomes nonmonotonic (see Figs 2
and 3).

The solution of equations (2.147) ± (2.150) leads to the
temperature dependences of susceptibilities w, w0 shown in
Fig. 4. In the nonergodic region T < T0, the microscopic
susceptibility w is only nonzero at temperatures above the
freezing point Tf. Its value is determined by the condition
qw=qT � 1, which together with Eqn (2.147) yields the
equation

�v� w�Tf � Tfw� q� 3

4
�Tfw� q�2 � wÿ2 ; �2:158�

where the values w � w�T �, q � q�T � � q0�h0�T �� are taken
at T � Tf. From Fig. 4 we see that Tf < T0 always. At h � 0,
in the limit m 2; l2 5w 2, we get

Tf � 4�v� w�
�
1� m 2 � �2=3�l2

4�v� w�2
�
: �2:159�
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Figure 2. Temperature T0 of ergodicity loss (thick lines) and temperature

Tf of vitrification (thin lines) vs. the intensity h of quenched disorder

�u � 0:5, v � 0� for different values of the effective parameter of interac-

tion: w � 0:5 (a), w � 0:2 (b).
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Figure 3. Temperature T0 of ergodicity loss vs. the intensity h of quenched

disorder and (a) effective interaction parameter w at u � 0:5, v � 0,

(b) direct interaction parameter v at u � 1, w � 0:5.
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The effect of parameters w, v, u on the temperature
dependence of susceptibility w�T � is shown in Fig. 5. We see
that the increase of dispersion w in the spread of interparticle
interaction leads to a decrease in w, which is accompanied by
an increase in the characteristic temperaturesT00,Tf (Fig. 5a).
A similar pattern is observed when the interaction parameter
v increases (Fig. 5b), whereas the increase of parameter u has
the opposite effect (Fig. 5c).

Let us finally consider the parameters of nonergodicity,D,
and memory, q, whose values are determined by the set of
equations (2.147) ± (2.152). The corresponding temperature
dependences are illustrated in Fig. 6. At temperatures below
freezing point, where w � 0 and the adiabatic susceptibility w0
is constant, we have a linear dependence of the nonergodicity
parameter (2.152) on the temperature. The finite values of
thermodynamic susceptibility w above the freezing point Tf

lead to an abrupt decrease in D. As the temperature further
increases, the irreversible response declines steadily and goes
to zero at T0 (Fig. 6a). As the temperature increases, the
microscopic memory parameter q � q0�h0�T �� decreases
monotonically to a minimum at the point T0 of ergodicity
loss. Above this temperature, the quantity q0�T � increases
(Fig. 6b). As ought to be expected, quenched disorder
expands the temperature range of nonergodicity. By analogy
with phase transitions, one may assume that the microscopic
memory parameter q above T0 corresponds to the soft mode
which transforms into the mode of ergodicity restoration
below the temperature T0. Then the role of the order
parameter is played by the nonergodicity parameter D.

Analytical expressions for the functions D�T �, q�T � can
only be obtained near the curve T0�h� of ergodicity loss. At

h � 0, when T0 � T00, from equations (2.147), where

jT00 ÿ T j5T00 ; w � w00 ÿ
D

uT00
; D5 uw00T00 ;

in the first order in e � T=T00 ÿ 1, �uw00T00�ÿ1D we get

D � ÿA0e ; A0 � T00

w

�
w

m

�2

� 1ÿ l2=�6w 2�
1� �l2=�2m 2� � vw=m 2

��T00=w�1=2
; e < 0 ; �2:160�

q � Qe ; Q � 4

3

T00

w

�
lw
m2

�2
1ÿ l2=�12w 2�

1��l2=�2m 2���T00=w�1=2
; e > 0;

�2:161�
where we have allowed for equality (2.155). In the case of
h 6� 0, when the temperature is varied, we arrive at

D � ÿAe ;

A � 2

l2w 2
0

1ÿ �w=2�w 2
0T0 ÿ �l2=12�w 4

0T
2
0

v=�l2w0� � m 2=l2 � q0 � �1=2�w0T0

; e < 0 :

�2:162�
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Figure 4. Temperature dependence of thermodynamic �w� and adiabatic

�w0� susceptibilities: (a) at w � 0:5, u � 0:5, v � 0, and different intensities
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Accordingly, at fixed temperature in the linear approxima-
tion with respect to qÿ q0 5 q0, we find

D � B�qÿ q0� ; Bÿ1 � 1� v

l2w0

�
m 2

l2
� q0 � 1

2
w0T0

�ÿ1
:

�2:163�

2.9 Incomplete loss of ergodicity
So far we have considered the steady state of a nonergodic
system, which is known to take astronomically large times
to reach [16]. Therefore, a real nonergodic system is always
nonstationary, and one has to consider its kinetic (or, to be
more precise, dynamic) behavior. Such studies have been
conducted repeatedly and they affected spin glasses [45, 70,
71] and Brownian particles in a random potential [72, 73]
(see also review [74]). The main object of interest are the
two-time correlators that represent the memory function
C�t; t 0� and the response R�t; t 0� (in the latter case the time t
of measurement must be not less than the expectation
time t 0).

An important feature of the nonequilibrium systems is
the existence of two characteristic time regimes: the steady-
state regime and the regime of annealed relaxation (aging).
The former corresponds to the case considered above and
is realized in the limit of the infinite expectation time
t 0 ! 1. This gives rise to the complete loss of ergodicity,
defined by the irreversible response (2.152), where the
adiabatic �w0� and isothermal �w� susceptibilities are given
by the equalities

w0 � lim
tÿt 0!1

w�t; t 0� ; w � lim
tÿt 0!1

lim
t 0!1

w�t; t 0� ;

w�t; t 0� �
� t

t 0
R�t; t� dt : �2:164�

In addition, the system acquires memory characterized by the
dynamic Edwards ±Anderson parameter

q � lim
tÿt 0!1

lim
t 0!1

C�t; t 0� : �2:165�

According to Ref. [45], this is conditional on the appearance
of a hierarchy of infinitely high barriers that divide the phase
space into isolated regions. Accordingly, the evolution of the
system reduces to the conventional process of relaxation in
these regions, where the property of homogeneity of time is
preserved, and the fluctuation-dissipative theorem holds true
for the microscopic (thermodynamic) component of the
susceptibility w defined at a given temperature T. When,
however, t 0 decreases to finite values, the heights of these
barriers go finite too, and not only the difference tÿ t 0

becomes important but also the ratio l � t 0=t. If the
condition tÿ t 05 t 0 <1 is satisfied, the situation reduces
to our previous case t 0 ! 1: the behavior of the system is
stationary, thus being determined by the correlators
Cst�tÿ t 0�, Rst�tÿ t 0� that obey the fluctuation-dissipative
theorem. It is exactly this situation that has been considered
above.

As the observation time t increases to values such that
tÿ t 0 � t 0, we are faced with the surmount of barriers that
defines the ageing process. According to Refs [70, 71], this
manifests itself in that the main correlators

C�t; t 0� � Cst�tÿ t 0� � Cag

�
t 0

t

�
;

R�t; t 0� � Rst�tÿ t 0� � tÿ1Rag

�
t 0

t

�
�2:166�

acquire anomalous additions Cag�t 0=t�, tÿ1Rag�t 0=t�, for
which the fluctuation-dissipative relation becomes 3

TRag�l� � X
ÿ
Cag�l�

� dCag�l�
dl

; l � t 0

t
< 1 ; �2:167�

where the coefficient X < 1 defines the degree of deviation
from normal behavior. As indicated above, such behavior is
realized in the limit t 0 ! 1, where X! 1, and the
integration of equality (2.167) between the limits from l to
1 gives Twag�l� � Cag�1� ÿ Cag�l�. Since a similar relation
holds good for the stationary components, the total
correlators are linked by the relation Tw�t; lt� �
C�t; t� ÿ C�t; lt�, from which in the limits t!1, l! 1
follows the linkage

Tw � q�0� ÿ q ; �2:168�

where w � liml!1 limt!1 w�t; lt� is the thermodynamic (iso-
thermal) susceptibility, q � liml!1 limt!1 C�t; lt� is the
Edwards ± Anderson parameter [cf. definitions (2.164),
(2.165)], and q�0� � C�t; t� is the initial value of the memory
parameter.

When the condition tÿ t 0 � t 0 that ensures the weak loss
of ergodicity is satisfied, we have X < 1, and relation (2.167)
leads to the definitions (2.152), (2.164) under the assumption
that in the limit t 0 ! 1, taken after the passage to the limit

q
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Figure 6. Temperature dependence of (a) nonergodicity parameter D; (b)
microscopic memory parameter q (u � w � 0:5, v � 0; curves 1, 2

correspond to h � 0, 4).

3 Observe that usually this relation features total correlators rather than

their nonstationary components [70 ± 75].
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tÿt 0 ! 1, we have the equality (see Ref. [75])

x�q� � ÿ dw�l�
dq�l� ; w�l� � lim

t!1 w�t; lt�;

q�l� � lim
t!1Cag�t; lt� ; �2:169�

where the overlap parameter is q�l� < q. Indeed, in this case
the integration of expression (2.167) gives wag�l� �
w�l� ÿ w�1�, where the minuend corresponds to the total
response function, and the subtrahend to its stationary
component. This expression assumes the form of equality
(2.164) if we adopt the definition D � ÿT liml!1 wag�l� [22]
and note that the macroscopic summand limt!1 w�t; t� � w0
reduces toKubo's adiabatic susceptibility. On the other hand,
the substitution of relation (2.169) into expression (2.167)
taken in the limit t!1 leads to a nontrivial linkage between
the total susceptibility and its nonstationary component:

Rag�l� � ÿ lim
t!1

dR�t; lt�
dl

; lim
t!1R�t; lt� � ÿwag�l� :

�2:170�
Similarly to the linkage between Fourier transforms of the
response function R and the relaxation function w in
stationary systems, the last of these equalities presents the
dispersion relation

R�t; t 0� � ÿ
� t

t 0
Rag

�
t 00

t

�
dt 00

t
: �2:171�

As distinct from its counterpart which features not the time
ratios but the frequency differences, this equality links the
total and the nonstationary response functions which appear
in place of the components of complex susceptibility.

Finally, let us quote the expression for the distribution
function over the regions of phase space, separated by
barriers, that follows from Eqn (2.169) [16, 18]:

P�q� � dx

dq
� ÿT lim

l!1

d2w�l�
dq 2�l� : �2:172�

Hence it follows that in order to define P�q� one needs to
know the asymptotic dependences of the susceptibility
w�l� � limt!1 w�t; lt� and the overlap parameter q�l� �
limt!1 Cag�t; lt�, which govern the behavior of the self-
similar system [76 ± 79].

3. The effective Hamiltonian
of a disordered heteropolymer

A disordered heteropolymer makes up a statistical ensemble
ofmonomers of different kinds, which are randomly bound in
chains that assume different geometric configurations. As a
result, the monomer distribution exhibits both compositional
disorder (which obviously is frozen) in the alternation of
different monomers along the chain and thermal disorder
associated with the sorting of configurations [80]. Our task
consists in the definition of the effective Hamiltonian which
represents the free energy as a function of the order
parameter, which in turn defines the spatial distribution of
monomers of different kinds. In the framework of the
generating functional method, such a problem has first been
solved for a block copolymer, in which quenched disorder is
absent [34, 37]. For the transition to disordered polymer, one
must carry out additional averaging over the quenched
disorder. This is accomplished either using the transfer
matrix method [27, 38] or the replic method. According to

Refs [27, 38], quenched disorder has a minor effect on the free
energy of a regular block copolymer (see Ref. [34]), whereas in
the framework of the replica approach it has been demon-
strated [41, 81] that the overlapping of replicas adds a
negative term. Of course, such a considerable difference in
the representation of free energy leads to opposite conclu-
sions about the phase diagram of a disordered polymer:
according to Ref. [81], fluctuations suppress not only the
effect of microphase separation but also the effects of
vitrification, found in Refs [27, 38].

Thus we see that it is necessary to define the form of the
effective Hamiltonian of a disordered heteropolymer. In this
section we shall demonstrate that the approaches described
above are complementary rather than contradictory [47].

3.1 Generating functional
We start off with the expression

Z
�
c�r�	 � � exp�C2w

�
m 2�r� dr

�
� 
dÿr�r� ÿ 1

�
d
ÿ
c�r� ÿm�r���Dm�r� ; �3:1�

whose structure includes the condition of incompressibility
for the density r, and the definition of the order parameter m
[38]. Here, C2 � 4 f �1ÿ f �, f is the volume fraction of one of
the copolymer components, and w is the Flory ±Huggins
parameter; the over-bar denotes averaging over the composi-
tional disorder fsng in the alternation of segments of different
kinds; the angle brackets stand for averaging over the
conformations fr�n�g corresponding to the Hamiltonian of
the Gaussian chain [25]:

h. . .i �
�

. . . exp
�ÿH0�r�n��

	
Dr�n� ;

H0

�
r�n�	 � 3

2b 2

X
n

�
r�n� 1� ÿ r�n��2 ; �3:2�

and b is the length of the segment. The density r � hr�r�i and
the order parameter m � hc�r�i represent the mean values of
the microscopic variables

r�r� �
X
n

d
ÿ
rÿ r�n�� ;

c�r� � 2ÿ1Cÿ1=22

X
n

snd
ÿ
rÿ r�n�� ; �3:3�

where summation is carried out along the chain. Representing
d-functions as continual integrals over the fields Jr, Jm, we
bring expression (3.1) into the structure of the Laplace
transform

Z
�
m�r�	 � � exp�� Jm�r�m�r� dr�Z�Jm�r�	DJm�r� �3:4�

for a statistical sum of the system under the action of field
Jm�r�:

Z
�
Jm�r�

	 � � exp�C2w
�
m 2�r� dr

�
Dm�r�

�
�
exp
ÿÿF 0fJr; Jmg�DJr ; �3:5�

F 0fJr; Jmg

� ÿln
�
exp

�
ÿ
�ÿ
Jr�r�r�r� � Jm�r�c�r�

�
dr

��
ÿ
�
Jr�r� dr :
�3:6�
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Further it is convenient to go over to the fields

hr�r� � Jr�r� ÿ V ÿ1
�
Jr�r� dr ;

hm�r� � Jm�r� ÿ V ÿ1
�
Jm�r� dr �3:7�

counted with respect to the volume-averaged values. The
corresponding Fourier transforms

h�k� � N ÿ1=2
�
h�r� exp�ÿikr� dr �3:8�

are defined by the wave vector k and satisfy the conditions

hr�k � 0� � hm�k � 0� � 0 : �3:9�
Substitution of fields (3.7) into the free energy (3.6) brings it to
the form

F 0fhr; hmg � ÿln
�
exp

�
ÿN ÿ1=2

X
n k

�
exp
ÿÿikr�n��hr�k�

�2ÿ1C ÿ1=22 sn exp
ÿÿikr�n��hm�k����; �3:10�

where we have taken into account the equalities (3.3), (3.8),
hsni � 0 and assumed that the elementary volume is
V=N � 1.

Expanding expression (3.10) in terms of the moments of
random quantities

er � N ÿ1=2
X
n k

exp
ÿÿikr�n��hr�k� ;

�3:11�
em � 2ÿ1�C2N�ÿ1=2

X
n k

sn exp
ÿÿikr�n��hm�k�

accurately to terms of the fourth order, we get the cumulant
series

F 0fhr; hmg ' ÿ 1

2!
he 2r i ÿ

1

2!
he 2mi �

1

3!
he 3mi �

1

2!
here 2mi

ÿ 1

4!

h
he 4mi ÿ 3he 2mi2

i
: �3:12�

Given the definitions (3.11), it is convenient to introduce the
designations

he 2r i �
X
k1 ;k2

S
�2�
r �k1; k2� hr�k1�hr�k2� ; �3:13�

he 2mi �
X
k1 ;k2

S
�2�
m �k1; k2� hm�k1�hm�k2� ; �3:14�

he 3mi �
X

k1 ;k2; k3

S
�3�
m �k1; k2; k3� hm�k1�hm�k2�hm�k3� ; �3:15�

here 2mi �
X

k1; k2;k3

S
�3�
mr �k1; k2; k3� hr�k1�hm�k2�hm�k3� ; �3:16�

he 4mi�
X

k1 ;k2; k3; k4

S
�4�
m �k1; k2; k3; k4� hm�k1�hm�k2�hm�k3�hm�k4� ;

�3:17�
he 2mi2 �

X
k1; k2; k3;k4

S
�2�
m �k1; k2�S �2�m �k3; k4�

� hm�k1�hm�k2�hm�k3�hm�k4� : �3:18�

Here, by virtue of the homogeneity of the system, the
correlators S �i� differ from zero under the condition that the
sum of wave vectors in their arguments is zero:

S �2��k1; k2� � S �2��k1�dk12; 0; S �2��k1� � S �2��k1;ÿk1� ;
�3:19�

S �3��k1; k2; k3� � S �3��k1; k2�dk13; 0 ; �3:20�
S �3��k1; k2� � S �3��k1; k2;ÿk12� ;
S �4��k1; k2; k3; k4� � S �4��k1; k2; k3�dk14 ; 0 ; �3:21�
S �4��k1; k2; k3� � S �4��k1; k2; k3;ÿk13� ;

where we have used the notation

k12 � k1 � k2 ; k13 � k1 � k2 � k3; . . .

3.2 Configuration correlators
Consider the explicit expressions for correlators

S �2�r �k1� � N ÿ1
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D
exp
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ik1�r�n2� ÿ r�n1��

�E
; �3:22�
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�3:23�
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�
D
exp
ÿ
ik1�r�n2� ÿ r�n1��

�
exp
ÿ
ik12�r�n3� ÿ r�n2��

�E
; �3:24�

S �3�m �k1; k2� � �4C2N �ÿ3=2
X

n1; n2; n3

�sn1sn2sn3�

�
D
exp
ÿ
ik1�r�n2� ÿ r�n1��

�
exp
ÿ
ik12�r�n3� ÿ r�n2��

�E
; �3:25�

S �4�m �k1; k2; k3� � �4C2N �ÿ2
X

n1; n2; n3; n4

�sn1sn2sn3sn4�

�
D
exp
ÿ
ik1�r�n2� ÿ r�n1��

�
exp
ÿ
ik12�r�n3� ÿ r�n2��

�
� exp

ÿ
ik13�r�n4� ÿ r�n3��

�E
; �3:26�

S �2�m �k1�S �2�m �k3� � �4C2N �ÿ2
X

n1 ; n2; n3; n4

�sn1sn2sn3sn4�

�
D
exp
ÿ
ik1�r�n2� ÿ r�n1��

�ED
exp
ÿ
ik3�r�n4� ÿ r�n3��

�E
: �3:27�

Here we have regrouped the terms in the exponentials to take
into account the existence of d-shaped multipliers in the
definitions (3.19) ± (3.21). The configurational means reduce
to pair correlatorsD

exp
ÿ
ik�r�n2� ÿ r�n1��

�E � exp

�
ÿ b 2 k 2

6
jn2 ÿ n1j

�
; �3:28�

the expression for which is obtained as a result of expanding
the exponent in the left-hand side and taking into account
that a nonzero contribution only comes from the even powers
of the root-mean-square difference [25]D�

r�n2� ÿ r�n1�
�2E � b 2

3
jn2 ÿ n1j : �3:29�

Application of the Wick theorem in expressions
(3.22) ± (3.26) brings the total correlators (3.13) ± (3.18) to
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the form

S
�2�
r �k1; k2� � N ÿ1dk12 ; 0

X
n1 ; n2

exp
ÿÿq21jn2 ÿ n1j

�
; �3:30�

S
�2�
m �k1; k2� � �4C2N �ÿ1dk12 ; 0

X
n1; n2

sn1sn2 exp
ÿÿq21jn2 ÿ n1j

�
;

�3:31�
S
�3�
mr �k1; k2; k3�

� �4C2�ÿ1N ÿ3=2dk13; 0
X

n1; n2; n3

ÿ
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�
� exp
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�
exp
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�
; �3:32�

S
�3�
m �k1; k2; k3� � �4C2N �ÿ3=2dk13; 0

X
n1; n2 ; n3

sn1sn2sn3

� exp
ÿÿq21jn2 ÿ n1j

�
exp
ÿÿq212jn3 ÿ n2j

�
; �3:33�

S
�4�
m �k1; k2; k3; k4� � �4C2N �ÿ2

X
n1; n2; n3; n4

sn1sn2sn3sn4

�
h
dk14; 0 exp

ÿÿq21jn2 ÿ n1j
�
exp
ÿÿq212jn3 ÿ n2j

�
� exp

ÿÿq213jn4 ÿ n3j
�

� dk1�k3 ; 0 dk12; 0 dk34; 0 exp
ÿÿq21jn2 ÿ n1j

�
exp
ÿÿq23jn4 ÿ n3j

�i
;

�3:34�
3S

�2�
m �k1; k2�S �2�m �k3; k4� �
� �4C2N �ÿ2

X
n1; n2; n3; n4

sn1sn2sn3sn4 dk12 ; 0 dk34; 0�

�
�
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ÿÿq21jn2 ÿ n1j

�
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��
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ÿÿq21jn4 ÿ n1j
�
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ÿÿq23jn3 ÿ n2j

��
� exp

ÿÿq21jn3 ÿ n1j
�
exp
ÿÿq23jn4 ÿ n2j

��
; �3:35�

where we have introduced the dimensionless wave vector
q � a k, a � 6 ÿ1=2b. In uncoupling the triple correlators
(3.24), (3.25) into pair and single correlators we have noted
that the latter are only nonzero when the wave vector is zero.
So, according to Eqns (3.7), (3.8), the contribution of such an
expansion into expressions (3.15), (3.16) disappears.

The compositional correlators are given by equalities [38]:

sn1sn2 � C2 exp
ÿÿl ÿ1jn2 ÿ n1j

�
; �3:36�

sn1sn2sn3 � 2C2C3 exp
ÿÿl ÿ1jn2 ÿ n1j

�
exp
ÿÿl ÿ1jn3 ÿ n2j

�
;

�3:37�
sn1sn2sn3sn4 � C 2

2 exp
ÿÿl ÿ1jn2 ÿ n1j

�
exp
ÿÿl ÿ1jn4 ÿ n3j

�
� 4C2C

2
3 exp

ÿÿl ÿ1jn2 ÿ n1j
�
exp
ÿÿl ÿ1jn3 ÿ n2j

�
� exp

ÿÿl ÿ1jn4 ÿ n3j
�
; �3:38�

where l is the correlation length, C2 � 4 f �1ÿ f �, and C3 �
1ÿ 2 f. Replacing the summation over the nodes fnig of the
polymer chain in Eqns (3.30) ± (3.35) by integration over the
total number of segments N4 1, we obtain

S
�2�
r �k1; k2� � Ng�Nq21�dk12 ; 0 ; �3:39�

S
�2�
m �k1; k2� � N

4
g
ÿ
N�l ÿ1 � q21�

�
dk12; 0 ; �3:40�

S
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N
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�
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12�
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12
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N�l ÿ1 � q212�

�ÿ g�Nq21�
�l ÿ1 � q 2

12� ÿ q21

�)
dk13; 0 ; �3:41�

S
�3�
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4

�
N
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g
ÿ
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ÿ
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12�
�
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12

�
dk13; 0; �3:42�
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3
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�
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�
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q21q

2
3

� g
ÿ
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�
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�3:43�
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4
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�
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ÿ
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�
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ÿ
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�
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�
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ÿ
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�
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ÿ
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�
�l ÿ1 ÿ q21��q23 ÿ q21�

� 4
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3
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�
g
ÿ
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�
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� g�Nl ÿ1�
q21q

2
3

� g
ÿ
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�
q23�q23 ÿ q21�
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ÿ
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�
q23q

2
3
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ÿ
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�
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ÿ
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�
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3
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ÿ
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�
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�3:44�
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Here we have introduced the Debye function

g�x� � 2xÿ2
�
exp�ÿx� ÿ 1� x

�
; �3:45�

whose asymptotics are g�x� ' 2=x at x4 1, and g�x� '
1ÿ x=3 at x5 1.

3.3 Free energy
The statistical sum (3.5) is determined by the dependence
F 0fhr; hmg of the free energy (3.6) on the fields (3.7). The
main contribution into the integrals over the fields Jr, Jm in
equalities (3.4), (3.5) comes from the neighborhood of a
saddle point, whose position is given by the conditions

dF 0

dhr�ÿk� � 0 ;
dF 0

dhm�ÿk� � m�k� : �3:46�

With due account for relations (3.12), (3.13) ± (3.18), the first
of these gives the stationary field

hr�k1� � 1

2

�
S
�2�
r �k1�

�ÿ1
�
X
k2

S
�3�
mr �k1; k2� hm�k2�hm�ÿk1 ÿ k2� : �3:47�

Substituting this expression into Eqns (3.12), (3.13) ± (3.18),
we find the free energy as a power series in the field hm:

F 0fhmg � 1

2!

X
k1; k2

g �2��k1; k2�hm�k1�hm�k2�

� 1

3!

X
k1 ;k2; k3

g �3��k1; k2; k3�hm�k1�hm�k2�hm�k3�

� 1

4!

X
k1 ;k2; k3; k4

g �4��k1; k2; k3; k4�hm�k1�hm�k2�hm�k3�hm�k4�;

�3:48�
where the coefficients are given by the expressions

g �2��k1; k2� � ÿS �2�m �k1; k2� ;
g �3��k1; k2; k3� � S

�3�
m �k1; k2; k3� ; �3:49�

g �4��k1; k2; k3; k4� � ÿS �4�m �k1; k2; k3; k4�

� 3

�
S
�2�
m �k1; k2�S �2�m �k3; k4� �

�
S
�2�
r �k1 � k2�

�ÿ1
� S

�3�
mr �k1 � k2; k3� S �3�mr �k3 � k4; k2�

�
dk14 ; 0 :

The corresponding dependence on the order parameter

F fmg � 1

2!

X
k1;k2

G �2��k1; k2�m�k1�m�k2�

� 1

3!

X
k1; k2; k3

G �3��k1; k2; k3�m�k1�m�k2�m�k3�

� 1

4!

X
k1; k2; k3;k4

G �4��k1; k2; k3; k4�m�k1�m�k2�m�k3�m�k4�
�3:50�

defines the thermodynamic potential

F fmg � F 0fhmg ÿ
�
hm�r�m�r�dr ; �3:51�

which is the Legendre transformation corresponding to the
Laplace transform (3.4). Accordingly, the conjugate field
assumes the form [cf. Eqn (3.46)]

hm�k� � ÿ dF
dm�ÿk� : �3:52�

To determine the coefficients in the expansion (3.50), one
must substitute the dependence hmfmg [which results from
this expansion and the definition (3.52)] into the inverse
functional mfhmg which is defined by the second equality in
Eqn (3.46), into which the expansion (3.48) is substituted.
Comparing the coefficients with the same powers of m, in
accordance with Ref. [34] we get

G �2��k1; k2� � ÿ
ÿ
g �2��k1; k2�

�ÿ1
;

G �3��k1; k2; k3� � g �3��k1; k2; k3�
�Y3

i�1
g �2��ki;ÿki�

�ÿ1
;

G �4��k1; k2; k3; k4� �
�
g �4��k1; k2; k3; k4�

ÿ 3
X
k

g �3��k1; k2; k�
ÿ
g �2��k;ÿk��ÿ1g �3��k; k3; k4��

�
�Y4

i�1
g �2��ki;ÿki�

�ÿ1
: �3:53�

Using equalities (3.50), (3.53), (3.49) for the effective
Hamiltonian

H � F fmg ÿ C2w
X
k

��m�k���2 ; �3:54�

we arrive at the following expression

H �
X
k

tk
��m�k���2 � 1

2

X
kk 0

W�k; k0���m�k���2��m�k0���2
ÿ 1

3!

X
k1k2k3

��G �3��k1; k2; k3���m�k1�m�k2�m�k3�
� 1

4!

X
k1k2k3k4

G �4��k1; k2; k3; k4�m�k1�m�k2�m�k3�m�k4� ;
�3:55�

where

tk �
�
2S
�2�
m �k�

�ÿ1
ÿ C2w ;
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4
S
�2�
m �k;ÿk�S �2�m �k0;ÿk0�

�Y4
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S
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m �ki;ÿki�
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;

��G �3��k1; k2; k3��� � S
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�Y3
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m �ki;ÿki�

�ÿ1
;

G �4��k1; k2; k3; k4� �
(
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� 3
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k

�
S
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�ÿ1
S
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m �k1; k2; k� S �3�m �k; k3; k4�

�
�
S
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S
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�
�Y4
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S
�2�
m �ki;ÿki�

�ÿ1
: �3:56�
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3.4 The long-wave limit
The above expressions (3.39) ± (3.44) are good for arbitrary
values of wave vectors k and the number of segments N. In
practice, as a rule, the largest contribution comes from the
long-wave region k! 0, and the range of valuesN4 1. Then
the equalities (3.39) ± (3.44) assume a simpler form

S
�2�
r �k� � 2

q2
; �3:57�

S
�2�
m �k� � 2ÿ1�l ÿ1 � q2�ÿ1 ; �3:58�

S
�3�
mr �k1; k2� � N ÿ1=2

l

2
�l� 2qÿ21 � ; �3:59�

S
�3�
m �k1; k2� � 3

2
�NC2�ÿ1=2C3l

2 ; �3:60�

S
�4�
m �k1; k2; k3; k4� � 3

2

l 2

N

�
qÿ212 � 4l

C 2
3

C2

�
dk14; 0

� 3

4
l 2dk1�k3; 0 dk12 ; 0 dk34 ; 0 ; �3:61�

S
�2�
m �k1; k2�S �2�m �k3; k4� � l 2

�
1

4
� 1

N�q21 � q23�
�
dk12; 0 dk34; 0 :

�3:62�
Substitution of these expressions into equalities (3.56) gives

tk � �l ÿ1 ÿ C2w� � q 2 ;

W�k; k0� � l ÿ2
�
1� 4

N�k2 � k 02�

�
; �3:63�

��G �3��k1; k2; k3��� � m � 12l ÿ1�NC2�ÿ1=2C3 ;

G �4��k1; k2; k3; k4� � 24

Nl

�
1� 5

C 2
3

C2

�
ÿ 12l ÿ2dk1�k3; 0 dk12 ; 0 dk34 ; 0 :

As a result, the Hamiltonian (3.54) becomes

H �
X
k

tk
��m�k���2 � 1

2

X
k1k2

wk1k2

��m�k1���2jm�k2�j2 � � v�r� dr;
�3:64�

tk � t� �ak�2 ; t � l ÿ1 ÿ C2w ; �3:65�

wk1k2 � l ÿ2
�
�1ÿ dk1k2� �

4

Na 2�k21 � k22�

�
; �3:66�

v � ÿ m
3!

m 3 � l
4!

m 4 ; m � 12C3C
ÿ1=2
2 l ÿ1 ;

�3:67�
l � 24

�
1� 5C 2

3

C2

�
l ÿ1 :

Observe that if in the original expression (3.1) we neglect
the d-function that reflects the condition of incompressibility,
r � 1, then the coefficient G �4� in expansion (3.55) acquires
the form

G �4��k1; k2; k3; k4� � 24

Nl

�
5
C 2

3

C2
ÿ 1

lq 2
12

�
ÿ 12l ÿ2dk1�k3 ; 0 dk12; 0 dk34; 0 ;

and in the long-wave limit we have G �4� ! ÿ1. This means
that the neglect of incompressibility leads, as ought to be
expected, to the system instability at large values of the order
parameter.

3.5 Inclusion of nonergodicity effects
The technique developed above is based on the formulas
(3.36) ± (3.38) which allow the correlators of quenched
disorder to be expressed using the transfer matrix method
[38]. More commonly used is the replic method, by which the
field hm and the order parameterm receive the replica index a,
with respect to which the summation from 1 to n! 0 is
carried out in the Hamiltonian (3.64) [16]. Retaining in the
expansion (3.12) only the term quadratic with respect to the
field hm ) ha, whose steady-state value is given by the second
equality in (3.46), we get

F fmag � 1

2

X
ka

ÿ
S
�2�
aa �k�

�ÿ1��ma�k�
��2

� 1

2

X
k

a 6�b

�
S
�2�
ab �k�

�ÿ1
ma�k�mb�ÿk� : �3:68�

Here, the first term corresponding to the coinciding
replicas a � b gives in the limit of n! 0 the quadratic
contribution into the expansion (3.50), and the second term
describes the overlapping of replicas a 6� b. The analysis of
systems with quenched disorder, using the example of spin
glasses, revealed that their space of states features a
hierarchical structure, which is characterized by random
overlapping of replicas [82]. Accordingly, the overlap para-
meter

Iab�k� �
�
S
�2�
ab �k�

�ÿ1
in the second term of expression (3.68) is a random quantity,
over which averaging has to be performed.

We shall use the simplest distribution

P�Iab�k�	 / exp

"
ÿ 1

2

X
k1k2
a 6�b

sÿ1k1k2
Iab�k1�Iab�ÿk2�

#
�3:69�

characterized by the dispersion parameter sk1k2 . Then the
averaging of the statistical sum Z � exp�ÿF � adds the
following term to the mean value of the free energy (3.68):

ÿ 1

8

X
k1k2
a 6�b

sk1k2ma�k1�mb�ÿk1�ma�ÿk2�mb�k2� : �3:70�

Adding and subtracting the diagonal termwith a � b, we find
the replica form of the Hamiltonian (3.64):

H �
X
ka

tk
��ma�k�

��2
� 1

2

X
k1k2
a

�
wk1k2 �

1

4
sk1k2

���ma�k1�
��2��ma�k2�

��2
�
X
a

�
v�ma� dr

ÿ 1

8

X
k1k2
ab

sk1k2ma�k1�mb�ÿk1�ma�ÿk2�mb�k2� : �3:71�

May, 2001 Supersymmetric éeld theory of a nonequilibrium stochastic system as applied to disordered heteropolymers 501



The effective Hamiltonian (3.71), which generalizes the
expressions used in Refs [27, 34, 38, 41, 81], constitutes the
main result of this section. Of fundamental importance here is
the interreplica term, whose negative sign is the cause of the
ergodicity loss in the system [16]. According to Ref. [41], the
dispersion parameter sk1k2 has the same form as the second
term in the potential (3.66):

sk1k2 � 4l ÿ2
s 2

Na 2�k21 � k22�
: �3:72�

Another feature is the structure of the potential wk1k2 which,
differently from the potential used in Refs [27, 38], contains
the first term in brackets from equality (3.66). This is
associated with the existence of the multiplier dk1�k3; 0 in the
second term of expression (3.61), which takes care of the
condition k14 � 0 in the definition (3.21) at k12 � k34 � 0.

3.6 Inclusion of fluctuations
A characteristic feature of the Hamiltonian (3.71) consists in
the different replica structures of the even terms. The
manifestation of this is that the first of these, being diagonal,
leads to the renormalization of the quantity tk, while the
nondiagonal term is responsible for the memory and non-
ergodicity effects. To carry out the above renormalization
(see Refs [37, 81]), we must use the mean field approximation
and replace one of the multipliers jma�k�j2 by the mean value

Gk �
�
r� c�qÿ q0�2

�ÿ1
; q � ak ; �3:73�

which represents the Green function. For a definition of the
parameters r, c, q0, we substitute equality (3.73) into the
Dyson equation:

G ÿ1k � tk �
X
k 0

ukk 0Gk 0 ; ukk 0 � wkk 0 � 1

4
skk 0 ; �3:74�

which corresponds to the first two terms in the Hamiltonian
(3.71). Then, assuming that ukk 0 � �u2=N ��la�ÿ2�k2 � k 0 2�ÿ1
where u is a constant, we find

c � 2 ; qÿ10 � p1=2
2

u
l�2r�1=4 ; r � t� 3u 2

4p
l ÿ2�����
2r
p :

�3:75�

According to the last of these equalities, the parameter r is
always positive for all values falling into ÿ1 < t <1. As a
result, the renormalized replica Hamiltonian (3.71) assumes
the final form

H �
X
ka

G ÿ1k

��ma�k�
��2 �X

a

�
v
ÿ
ma�r�

�
dr

ÿ 1

8

X
k1k2
ab

sk1k2ma�k1�mb�ÿk1�ma�ÿk2�mb�k2� : �3:76�

3.7 Supersymmetric Hamiltonian
As found in the previous section, the replic method is
equivalent to the supersymmetric approach based on the use
of the field [cf. Eqn (2.39)]

Fk�y� � m�k� � c�k�y� yc�k� � yyj�k� : �3:77�

Here, y, y are the Grassmann conjugate coordinates, the
quantity c�ÿk�c�k� defines the density of interphase bound-

aries, andj�k� is the amplitude of fluctuations. The transition
from the replica Hamiltonian (3.76) to the supersymmetric
Hamiltonian is accomplished by replacing the order para-
meter ma�k� by the superfield Fk�y�. Besides, from the sum
over replicas a one must go over to the integral over the
supercoordinate y. As a result, we get

H �
�
H�y; y 0� d2y d2y 0 ; �3:78�

d2y � dy dy ;

H�y; y 0� � H�y�d�yÿ y 0� �H�y; y 0� ;
d�y; y 0� � �yÿ y 0��yÿ y 0� ;
H�y� �

X
k

G ÿ1k

��Fk�y�
��2 � � vÿF�r; y�� dr ;

H�y; y 0� � ÿ 1

8

X
k1k2

sk1k2Fk1�y�Fÿk1�y 0�Fÿk2�y�Fk2�y 0� :

From the analysis carried out in the previous section we
see that the supersymmetric approach has many advantages
over the replic method based on expression (3.76). Therefore,
in our description of the thermodynamic properties of a
disordered heteropolymer in the next section we shall use the
supersymmetric Hamiltonian (3.78).

4. Supersymmetric theory
of a disordered heteropolymer

As already indicated, a disordered heteropolymer constitutes
a linear chain of monomers of different kinds, sometimes
represented as a many letter sequence. As the temperature
decreases, such a system will either suffer microphase
separation like that observed in the protein biomolecules
(see Refs [27, 31, 80] and references cited therein) or go into
the frozen state (undergoes vitrification) [39]. This section
deals with the description of the latter, based on the super-
symmetric approach developed in Section 2. It is proceeded
from the stochastic equation of motion which, as applied to
the polymer, becomes so sophisticated that the dynamic
approach is no longer powerful. Accordingly, our first task
consists in finding the effective equation ofmotion that allows
us to describe the structural features of heteropolymer
exhibiting thermal and quenched disorders.

4.1 Effective equation of motion
Consider initially the simplest case of a homopolymer
constituting a Gaussian chain for which the probability
density of finding vector R that connects the origin of the
chain with Nth node is given by the function C�R;N�. This
function satisfies the SchroÈ dinger equation with the imagin-
ary time ÿiN [25]:

qC
qN
�
�
D

q2

qR2
ÿU�R;N �

�
C ; �4:1�

where the number of monomers N4 1, D � b 2=6 is the
effective diffusion coefficient determined by the length of
Kuhn's segment b, and U�R;N� is the external field. In the
limit N!1, the solution of equation (4.1) can be repre-
sented as

C�R;N� �
�
exp

�
ÿSRN fr�n�g

2D

�
Dr�n� ; �4:2�
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where the functional integration is carried out over the
function r�n� of the monomer coordinate versus its number
in the chain; the action

SRNfr�n�g � S�R;N� �
�N
0

L0

ÿ
r�n��dn �4:3�

corresponding to the ends of the chain at the points r�0� � 0
and r�N� � R is defined by the Lagrangian of Euclidean field
theory [51]:

L0 � 1

2

�
dr�n�
dn

�2

� 2DU�r; n� : �4:4�

Here, the first term obtained in the continual approximation
r�n� 1� ÿ r�n� ! dr�n�=dn plays the role of the kinetic
energy and reflects the existence of the covalent bond
between the monomers in the chain [25]. Substitution of the
distribution (4.2) into equation (4.1) yields an equation of
Jacobi type

qS
qN
� D

q2S

qR2
ÿ 1

2

�
qS
qR

�2

� 2DU : �4:5�

Introducing the generalized momentum p � qS=qR and the
total derivative dp=dN � qp=qN� �pq=qR�p, we reduce the
nonlinear equation (4.5) to the Burgers equation

dp

dN
� D

�
q2p

qR2
� 2

qU
qR

�
: �4:6�

Expressions (4.1) ± (4.6) form the basis for the theory of
directed polymers, the kinetic theory of surface roughening,
etc. (see Ref. [5]).

The SchroÈ dinger equation (4.1) becomes the Fokker ±
Planck equation [63]

qP
qN
�
�
D

q2

qR2
ÿ q
qR

F

�
P ; �4:7�

if we introduce the probability

P�R;N� � C�R;N� exp
�
ÿV�R�

2D

�
: �4:8�

Its dependence on R is determined by the effective potential

V � ÿ
�
F dR : �4:9�

Force F in equation (4.7) is related to the initial potential U:

U � 1

4D
F 2 � 1

2

qF
qR

: �4:10�
According to the theory of stochastic systems [63], the
Fokker ± Planck equation (4.7) corresponds to the Langevin
equation

qR
qN
� F�R;N � � z�N � �4:11�

which determines the stochastic dependence R � R�N�. Here
the Langevin source z is fixed by the conditions of white noise:


z�N �� � 0 ;


z�N �z�N 0�� � 2Dd�NÿN 0� ; �4:12�

where the angle brackets denote averaging over the distribu-
tion (4.8).

To go over from the case of a homopolymer to the main
object of our study, i.e. the disordered heteropolymerA-B, we
need to note that stochasticity here concerns not only the
spatial arrangement of monomers, but also the alternation of
segments of different kinds A, B along the chain. Formally
this is reflected by associating each node with the Ising
variable y�n�, which takes on the value y�n� � 1 if the nth
monomer is of the type A, and y�n� � ÿ1 otherwise. As the
number n of the node increases, the quantity y�n� varies
similarly to the spin reorientation in Glauber dynamics [83].
For the effective spin s�n� � y�n� ÿ y�n�, counted from the
mean value y�n�, the transfer matrix method leads to the
correlator [38]

s�n�s�n 0� � C2 exp

�
ÿ jnÿ n 0j

l

�
;

�4:13�
C2 � 4 f �1ÿ f � ; f � 1

2

ÿ
1� y�n� � ;

where the over-bar denotes averaging over the compositional
(quenched) disorder, l is the correlation length, and f is the
fraction of monomers of the type A.

It is easy to see that the pseudospin stochastic variable
s�n�, whose correlator has the exponential form (4.13), obeys
the Ornstein ±Uhlenbeck equation

ds
dn
� ÿ s

l
� s�n� ; �4:14�

where the stochastic source s�n� is represented as white noise:

s�n� � 0 ; s�n�s�n 0� � 2C2

l
d�nÿ n 0� : �4:15�

According to Eqn (4.14), the linkage between the
microscopic quantity s�n� and the stochastic variable s�n�
has the form of the Laplace transform

s�n� �
�n
0

exp

�
ÿ nÿm

l

�
s�m� dm : �4:16�

Conditions (4.15) are satisfied if the white noise s�n� is
governed by the Gaussian distribution

Pfs�n�g �
�
4pC2

l

�ÿ1=2
exp

�
ÿ l

4C2

�N
0

s 2�n� dn
�
�4:17�

with the intensity 4C2l
ÿ1 of quenched disorder. Then the

order parameter, normalized to unity, is determined by the
local mean

Z�r; n� � �4C2�ÿ1=2s�n�d
ÿ
rÿ r�n�� : �4:18�

Hereinafter the monomer volume is taken equal to unity.
Let us find the effective equation of motion for the field

(4.18). As compared with the corresponding equality (4.11),
the left-hand side of the desired equation must contain the
contribution ÿD�q2Z=qr2� which takes into account the
presence of inhomogeneity (see Ref. [84]). Going over to the
Fourier transform

Zk�n� � N ÿ1=2
�
Z�r; n� exp�ÿikr� dr ; �4:19�
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for which this inhomogeneity takes on the form Dk2Zk, we
arrive at [cf. Eqn (2.1)]

qZk
qn
� �ak�2Zk � ÿ

qH
qZ�k
� zk : �4:20�

Here, as before, for the effective time n we used the continual
limit n4 1; the characteristic scale of themonomer is given by
the renormalized length of Kuhn's segment a � D 1=2 �
6ÿ1=2b, and the force fk � ÿqH=qZ�k [cf. Eqn (4.9)] is
determined by the effective HamiltonianH. Similarly to Eqn
(4.12), the white noise is fixed by the conditions

hzki � 0 ;


z �k �n�zk 0 �n 0�

� � dkk 0d�nÿ n 0� ; �4:21�

where the angle brackets denote averaging over thermal
disorder.

According to Section 3, the effective Hamiltonian of the
disordered heteropolymer is written in the form

H �
X
k

rkjZkj2 ÿ
1

2

X
kk 0

wkk 0 jZkj2jZk 0 j2 �
�
v�r� dr ; �4:22�

rk � r� 2D�kÿ k0�2 ; r � t� 3

4p
l ÿ2�2r�ÿ1=2 ;

t � l ÿ1 ÿ C2w ; kÿ10 � 2�pD�1=2l�2r�1=4 ;

wkk 0 � 4s 2l ÿ2�ND�ÿ1�k2 � k 02�ÿ1 ; �4:23�

v � ÿ m
3!

Z 3 � l
4!

Z 4 ; m � 12C3C
ÿ1=2
2 l ÿ1 ;

l � 24

�
1� 5C 2

3

C2

�
l ÿ1; C2 � 4 f �1ÿ f � ; C3 � j1ÿ 2f j :

Its salient feature consists in the renormalization of Landau's
bare parameter t into the effective value r. This renormaliza-
tion is due to the effects of fluctuations, and is onlymanifested
when the wave number k0 is finite. As seen from Fig. 7
showing the function r�t�, for the correlation length l4 1 at
t > 0 we have r ' t, and at t < 0 we have r ' 0. As l
decreases, the curve r�t� becomes more flat, and is approxi-

mated by the asymptotes r � tÿ2 at t < 0, and r � t at t4 1.
The fundamentally new feature of this renormalization is that
at all values falling withinÿ1 < t < �1we have r > 0. This
means that the inclusion of fluctuations converts the second-
order phase transition into a first-order phase transition
[36, 37].

4.2 Supersymmetric theory
Following Section 2, we start off with the generating
functional

ZfZkg �
�
d
�
qZk
qn
� dH
dZ �k
ÿ zk

�
det

���� dzkdZk

����� ; �4:24�
dH
dZ �k
� qH

qZ �k
� 2a 2�kÿ k0�2Zk ;

where the angle brackets denote averaging over the noise
zk�n�, the d-function takes into account the structure of the
effective equation of motion (4.20), and the determinant gives
the Jacobian of transition from the variable zk to Zk. We write
down the d-function as the functional Laplace integral over
the field jk�n� which, according to Section 2, represents the
amplitude of fluctuations of the conjugate field. To bring
expression (4.24) into the exponential form, we represent the
determinant in terms of the Grassmann conjugate fields
ck�n�, ck�n� [see Eqn (2.36)]. Carrying out averaging in Eqn
(4.24) with respect to zk�n� and using the Gaussian distribu-
tion defined with the moments (4.21), we get

ZfZg �
�
PfZ;j;c;c g djd2c ;

PfZ;j;c;c g � exp
ÿÿSfZ;j;c;c g�; S �

�N
0

L dn ; �4:25�

L �
���

j _Zÿ c _cÿ j2

2

�
� �H 0fZgjÿ cH 00fZgc�

�
dr :

The dot overhead here denotes the derivative with respect to
the effective time n, and the prime stands for the functional
derivative over the field (4.18).

It is easy to prove by straightforward substitution that the
Lagrangian corresponding to the last equality in Eqn (4.25)
assumes the canonical form

L �
�
L�F� d2y ;

L �
X
k

1

2
�DF �k ��DFk� � HfFkg ; d2y � dy dy ; �4:26�

D � q

qy
ÿ 2y

q
qn

; D � q
qy

after the introduction of the four-component superfield [cf.
Eqn (2.39)]

F � Z� cy� yc� yyj ; �4:27�

where the Grassmann coordinates y; y satisfy conditions
(2.41). The functional HfFg has the form (4.22), where the
order parameter Zk is replaced with the superfield Fk, and the
term �dH=dZ �k � _Zk � c:c: which defines the total derivative
dHfZk�n�g=dn can be dropped. According to Section 2, the
combination cc corresponds to the density of interphase
boundaries, and hence the employment of the four-compo-

1

r

ÿ2 ÿ1 0 1 t

1

2

3

Figure 7. Renormalized parameter r vs. the bare parameter t for different
values of the correlation length l (curves 1, 2, 3 correspond to l � 0:5, 1,
10).
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nent superfield (4.27) corresponds to the limit of strong
segregation. Further on we shall confine ourselves to the
simpler case of weak segregation, which assumes that there
are no boundaries altogether. According to Section 2.2, in this
case the four-component superfield (4.27) reduces to the two-
component (dual) form

f � Z� #j ; �4:28�

where we have introduced the self-conjugate nilpotent
quantity # � yy. Accordingly, the Lagrangian (4.26)
assumes a simple form

L � 1

2

�
L�f� d# ;

L �
X
k

f �kDfk �Hffkg ; �4:29�

D � ÿ q
q#
�
�
1ÿ 2#

q
q#

�
q
qn

:

The equation of motion for the nilpotent field (4.28) is
given by

Dfk � ÿ
dH
df �k

: �4:30�

In the componentwise form it leads to the equations of
motion for the order parameter Z�n� and the amplitude of
the most probable fluctuation j�n�.

4.3 Correlation technique
We introduce now a supercorrelator of the type (2.64):

Ck�n; #; n 0; # 0� � 
f�k�n; #�fk�n 0; # 0�
�
: �4:31�

Multiplying the equation of motion (4.30) by f�k and
averaging the result, for the bare correlator corresponding
to the parameters v � w � 0 in the Hamiltonian (4.22) we get
[cf. Eqn (2.79)]

C
�0�
nk �#; # 0� �

1� �rk ÿ in�#� �rk � in�# 0
r 2k � n 2

: �4:32�

Here we have used the `frequency-domain' Fourier transform

Cn �
�N
0

C�n� exp �inn� dn : �4:33�

As found in Section 2.4, the Grassmann structure of the
supercorrelator allows it to be decomposed over the basis
supervectors (2.80), whose functional product obeys the rules
from Table 2. According to Eqn (2.78), this decomposition is
as follows

C � GÿA� G�B� ST : �4:34�

Here and further we drop the subscripts k, n for the sake of
brevity. The coefficients of decomposition (4.34):

Gÿ � hZj�i ; G� � hZ�ji ; S � 
jZj2� �4:35�

are the retarded and the advanced Green functions and the
structural factor, respectively. For the bare correlator C �0�

they look like

G
�0�
� � �r� in�ÿ1; S �0� � G

�0�
� G �0�ÿ � �r 2 � n 2�ÿ1: �4:36�

The self-consistent behavior of the system is described by
the Dyson equation (2.129), which for the case of a
heteropolymer becomes

Cÿ1 � �C �0��ÿ1 ÿ wCÿ R : �4:37�

Here w � 2s 2�ND�ÿ1�lk0�ÿ2 is the characteristic value of the
effective interaction potential, corresponding to the wave
vectors k � k0 � k0 [cf. Eqn (3.72)]; R is the self-energy
function, for which expansion (2.99) is applied. Using Eqn
(4.36), we write down the components of the Dyson equation
(4.37) in the form [cf. Eqns (2.131), (2.132)]

Gÿ1� � wG� � �r� in� ÿ S� ; �4:38�

S � �1� 2pC2l
ÿ1d�n� � S�G�Gÿ�1ÿ wG�Gÿ�ÿ1: �4:39�

Here the term containing the delta-function is due to the
presence of quenched disorder. To close the system (4.38),
(4.39), we have to express the components S�, S of the self-
energy function in terms of the components G�, S of the
supercorrelator. The supersymmetric perturbation theory
presented in Section 2.5 leads to the expression

S�z; z 0� � m 2

2
d�z; z 0�

�
C�z; z 00�C�z 00; z 00� dz 00

� m 2

2

ÿ
C�z; z 0��2 � l2

6

ÿ
C�z; z 0��3 ; �4:40�

where z � fr; n; #g, d�z� � #d�r�d�n�, and the product of
supercorrelators is understood not in the functional but in
the common sense (see Table 3). As a result, equation (4.40)
gives

S��n� �
�
m 2 � l2

2
S�n�

�
S�n�G��n� ; �4:41�

S�n� � 1

2

�
m 2 � l2

3
S�n�

�
S 2�n� : �4:42�

Observe that here we employed the space ± time representa-
tion, whereas the Dyson equations (4.38), (4.39) are written
down in the frequency ±wave representation.

4.4 Inclusion of memory and nonergodicity effects
Following Edwards and Anderson [14], we introduce the
compositional memory parameter q � hZ�n � N�Z�
�n � 0�i whose magnitude determines the correlation in
the alternation of monomers along the polymer chain.
Also, we deduce the nonergodicity parameter D � g0 ÿ g
defined as the difference between the adiabatic,
g0 � Gÿ�n � 0�, and isothermal, g � Gÿ�n! 0�, suscept-
ibilities. According to Section 2, the basic correlators then
assume the extended form

G��n� � D� G�0�n� ; S�n� � q� S0�n� ; �4:43�

where the subscript 0 denotes the terms corresponding to the
ergodic system without memory. Substituting the compo-
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nents of Eqn (4.43) into Eqns (4.41), (4.42), we get

S��n� �
�
m 2 � l2

2
q

�
q
ÿ
D� G�0�n�

�� S�0�n� ;
�4:44�

S�0�n� � �m 2 � l2q�S0�n�G�0�n� � l2

2
S 2
0 �n�G�0�n� ;

S�n� � 1

2

�
m 2 � l2

3
q

�
q 2 �

�
m 2 � l2

2
q

�
qS0�n� � S0�n� ;

S0�n� � 1

2
�m 2 � l2q�S 2

0 �n� �
l2

6
S 3
0 �n� :

�4:45�

First here are those terms that vanish in the absence of
memory; the contributions nonlinear with respect to correla-
torsG�0,S0 are brought together in the termsS�0,S0, and the
product S0D � 0 was dropped. For the transition from the
time-domain representation of the self-energy function
components (4.44), (4.45) to the frequency-domain represen-
tation used in the Dyson equation, we apply to the fluctua-
tion-dissipative theorem (2.76), (2.104):

S0�n! 0� � G�0�n! 0� � g ; �4:46�

S�0�n! 0� � S0�n! 0� � 1

2
�m 2 � l2q�g 2 � l2

6
g 3 ; �4:47�

where in the last equality we have accounted for Eqn (4.45)
Substituting the Fourier transforms of the components

(4.43) ± (4.45) into the Dyson equation (4.39), we arrive at

q0

�
1ÿ wg 2

0 ÿ
1

2

�
m 2 � l2

3
q0

�
q0g

2
0

�
� C2l

ÿ1g 2
0 ; �4:48�

S0 � �1� S0�G�Gÿ
1ÿ �w� �m 2 � l2q=2�q�G�Gÿ : �4:49�

The first of these equations corresponds to the delta-shaped
contributions and reflects the memory effects, while the
second is defined when the frequency n 6� 0. In the limit
n! 0, the characteristic product exhibits G�Gÿ ! g 2, and
the pole of structural factor (4.49)

w�
�
m 2 � l2

2
q0

�
q0 � gÿ20 ; g0 � Gÿ�n � 0� �4:50�

defines the point of ergodicity loss. Substituting the corre-
sponding components (4.44) and (4.47) for the self-energy
part into the Dyson equation (4.38) and using definition
g � Gÿ�n! 0�, we get the equation that links the micro-
scopic values of susceptibility and the memory parameter:

1ÿ rg� wg 2 � m 2

2
g
��g� q�2 ÿ q 2

�
� l2

6
g
��g� q�3 ÿ q 3

� � 0 : �4:51�

The set of equations (4.48) ± (4.51) describe the thermo-
dynamic behavior of a disordered heteropolymer near the
point of ergodicity loss. Like in the theory of spin glasses [16],
expressions (4.48), (4.51) represent the Sherrington ±Kirkpa-
trick equations, while condition (4.50) defines the de
Ailmaida ±Thouless point. According to Section 2.8, in the
analysis of these equations one must distinguish between the

macroscopic and the microscopic magnitudes of the memory
parameter q0, q and the susceptibility g0, g. Such a hierarchy
reflects the fact that the microscopic characteristics corre-
sponding to the limit n! 0 are the ordinary thermodynamic
parameters and depend on the temperature (the Flory ±
Huggins parameter w). By contrast, the macroscopic quan-
tities q0, g0 correspond to n � 0 and depend on the quenched
disorder parameter l. In the nonergodic region, the macro-
scopic quantities assume the values corresponding to the
point of ergodicity loss.

When it comes to the behavior of these variables, the
simplest is the dependence of the macroscopic memory
parameter q0 on the intensity of quenched disorder. It is
described by a cubic equation which follows from equalities
(4.48), (4.50):�

m 2

2
� l2q0

3

�
q 2
0 � C2l

ÿ1 : �4:52�

The characteristic curve of the macroscopic memory
parameter versus the intensity of quenched disorder is
depicted in Fig. 8. When the amounts of the two monomers
A and B are the same � f � 0:5�, the first term in Eqn (4.52)
vanishes, and we have q0 / l 1=3. In the case of a dilute
copolymer ( f5 1, C2 5C3), we face q0 / f l 1=2.

The simultaneous solution of equations (4.48), (4.50),
(4.51) yields the point w0 of ergodicity loss, whose position
depending on the correlation length l is shown in Fig. 9 (thick
lines). Observe that the nonzero value of the parameter w0
appears at some value of l above critical and, as l continues to
increase, w0 reaches its maximum and begins to decline
steadily. At moderate values of the correlation length l, the
width of the ergodic region beneath the curve w0�l� decreases
with increasing l. The condition dg=dw � ÿ1 together with
equalities (4.48), (4.50) leads to the equation

w� m 2�gf � q� � l2

2
�gf � q�2 � gÿ2f �4:53�

which defines the value of the Flory ±Huggins parameter at
the vitrification point; below this point the microscopic
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Figure 8. Macroscopic memory parameter q0 vs. the value of the
correlation length l (curves 1, 2, 3 correspond to f � 0:5, 0.3, 0.1).

506 A I Olemsko|̄ Physics ±Uspekhi 44 (5)



susceptibility g is zero (Fig. 10). The corresponding depen-
dence wf�l� on the correlation length is plotted in Fig. 9 (thin
lines). Observe that curve wf�l� lies below the curve of
ergodicity loss w0�l� and has the same shape. According to
Fig. 9a, the parameters w0 and wf increase as we go away from
the composition f � 0:5. More sophisticated behavior is
associated with the increasing parameter s of interreplica
overlapping (see Fig. 9b): at small l, the increase in s causes an
increase in both w0 and wf, whereas at large values of the
correlation length the parameter w0 decreases.

Figure 10 illustrates the macroscopic �g0� and the
microscopic �g� susceptibilities as functions of the Flory ±
Huggins parameter w. Below the point w0 of ergodicity loss
these susceptibilities, like the corresponding values q0, q of
the memory parameter, are merged. At w � wf, the curve g�w�
has a break, below which the susceptibility g assumes a zero
value corresponding to the frozen state (see Section 2.8).
Above the point w0 of ergodicity loss we have a constant
value g0 of the macroscopic susceptibility, and the steadily
declining microscopic value g (the latter is found by solving
equation (4.51) together with Eqn (4.48), in which the
macroscopic parameters w0, q0 must be replaced with the
microscopic parameters w, q). According to Fig. 10a, as we
go away from the composition f � 0:5, the values of
susceptibilities at the points of ergodicity loss and freezing
decrease, while the corresponding values of parameters w0
and wf increase. Figure 10b shows the curves g�w�, g0�w� for
different values of the correlation length l; as ought to be
expected, the ergodic region narrows down as the correlation
length increases. According to Fig. 10c, as the interreplica
overlap parameter s increases, the values of susceptibilities g
and g0 decrease, and hence this overlapping prevents the
vitrification of a heteropolymer.

The effects of the thermodynamic parameter w on the
magnitude of the microscopic memory parameter q are
illustrated in Fig. 11. The characteristic feature is the absence
of memory below wf. A nonzero value of q appears at the
freezing point wf, and as w increases further the memory
parameter steadily increases. The jump of parameter q at
w � wf indicates that this transition is a first-order transition.
Obviously, the physical cause of this jump is the contribution
of fluctuations into the thermodynamic potential of the
heteropolymer. According to Fig. 11a, as we go away from
the composition f � 0:5, the curve q�w� becomes more flat.
The increase of the correlation length l, on the contrary,
increases the rate of increase of the memory parameter
(Fig. 11b). Finally, from Fig. 11c we see that the effects of
the interreplica overlap parameter s above and below the
point of ergodicity loss are opposite.

The nonergodicity parameter D, shown in Fig. 12 as a
function of w, increases steadily as we recede from the point
w0. The deviation from the composition f � 0:5, the decrease
of the correlation length l, and the increase of the interreplica
overlap parameter s all work to play down the effects of
nonergodicity.

Figure 13 displays the phase diagram picturing the
thermodynamic states of disordered heteropolymer at differ-
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ent values of the Flory ±Huggins parameter w and composi-
tion f. We see that both at the vitrification point and at the
point of ergodicity loss the curves wf� f �, w0� f � are concave.
The region of large values of w, lying next to the composition
f � 0:5, corresponds to the nonergodic nonfrozen state; as w
and j fÿ 0:5j decrease, the system first goes into the ergodic
state, and then vitrification takes place. Comparison between
Figs 13a and 13b reveals that the increase of the correlation
length l leads to the expansion of the frozen out and
nonergodic phases. By contrast, from Figs 13a and 13c we
see that overlapping between replicas gives rise to their
narrowing.

5. Conclusions

Supersymmetry is one of the most beautiful and productive
conceptions in contemporary physics, used for the description
of the microworld (for introductory reading we recommend
the reviews dealing with supersymmetry in quantummechan-
ics [85, 86], the theory of disordered metals [87], and the
theory of superstrings [88 ± 91]). Following the idea expressed
in paper [56] and developed in work [57], we demonstrated
earlier [58] how supersymmetry can be employed for the
description of a macroscopic object that can be reduced to a
fluctuating field (an example being the phase transition
associated with the loss of symmetry). The present work is
concerned with the study of stochastic systems whose phase
space features a much more profound restructuring asso-
ciated with the loss of ergodicity [92]. We apply to the field-

theoretical scheme based on the standard Martin ± Siggia ±
Rose method [50], and on the idea of unifying the stochastic
fields into the supersymmetric structure [56] (see also
Ref. [51]).

Laying no claims whatsoever as to the originality of this
method, we used a physical example that is interesting by
itself to demonstrate that the use of supersymmetric field for
the description of nonergodicity effects is as natural as the
application to a complex field in the theory of phase
transitions. From Section 2 we see that there are no
associated fundamental difficulties as long as one has
mastered the more sophisticated mathematical tools.

Unfortunately, the same cannot be said about the
methodological problems that are associated both with the
employment of the field-theoretical scheme and with the
construction of the supersymmetric theory. As a matter of
fact, a rare field-theoretical work avoids using the Hubbard ±
Stratonovich transformation, or a more intricate procedure
by which unity is written down as the integral of a delta-
function, which then is expanded in terms of the Fourier
integral over the ghost field. As a result, one arrives at
fictitious fields whose physical meaning gets no interpreta-
tion, and which are not even distinguished by special notation
(`capping the symbols', etc.). The main purpose of this review
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is to break free from the situation when the clouds of ghosts
obscure the physical meaning 4. Of course, it is not possible to
avoid the specific field procedures like the integral representa-
tions (2.8), (2.36) for the delta-function, and the Jacobian of
transition from the stochastic component z of the conjugate
field to the amplitude x of the hydrodynamic mode. But we
then establish the physical meaning of the associated ghost
field p and Grassmann fields c, c.

Our other task is related to overcoming the technical
bottlenecks encountered in the construction of a supersym-
metric scheme. These difficulties are due to the fact that,
depending on the selection of the time origin, there are two
possible variants of supersymmetric fields. Besides, a super-
symmetric field can have either four or two components, in
the latter case being not necessarily chiral. Given this variety
of possibilities, we gave a comprehensive treatment in Section
2 to establish the linkage between different variants. This
allowed us to pave the proper way for constructing the self-
consistent supersymmetric scheme representing the stochastic
system.

Finally, the practical purpose of this review consisted in
the application of our supersymmetric scheme to a nontrivial
object, the description of which with other methods seems to
be either not feasible or highly contradictory. The ideal
example, in our opinion, is the disordered heteropolymer.
Indeed, while the random energy approximation only gives a
qualitative picture of its behavior (see Section 1), the use of
the replic method (Section 3) can lead to mutually exclusive
results. Therefore, a basically new method of description of a
disordered heteropolymer would be highly welcome from
both theoretical and practical standpoints. Here, the main
obstacle in the application of the concept of supersymmetry is
the extreme complexity of the equation of motion of the
polymer, which does not render itself for the construction of
the generating functional. We avoided this difficulty by using
the effective equation of motion, which describes the random
alternation of monomers of different kinds when moving
along the polymer chain.

The author is grateful to V G Bar'yakhtar for his support
of this work, to V A Brazhny|̄ for cooperation and help in
preparation of the manuscript, and to S I Kuchanov for an
introduction to the theory of polymers. The author is also
grateful to the Max Planck Institute for the Physics of
Complex Systems (Germany) for their hospitality.

6. Appendices

6.1 Appendix A
Let uswrite out in the Lagrangian (2.10) of the Euclidean field
theory the kinetic �k� and the potential �p� energies:

L � k� p ; �6:1�
k � j _Zÿ 1

2
j2 ; �6:2�

p � qV
qZ

j : �6:3�

To derive the kinetic energy (6.2) in the form (2.13), we need
to find an operator D. In the general case it is represented in
the following way

D � a� b
q
q#
� c#� d#

q
q#

; �6:4�

where the coefficients a, b, c, d are functions of the derivative
qt � q=qt. Substitution of expressions (2.11), (6.4) into (2.13)
with due account for equalities (2.12) leads to the required
expression (6.2) with the values

a � qt ; b � ÿ1 ; c � 0 ; d � ÿ2qt : �6:5�

4 In this connection we would like to recall the famous phrase of John

Ziman: ``A theoretical physicist is responsible for the purity of logical ways

in construction of the theory, in the struggle against the flourishing

phenomenological approach, with the hectic juggling with physical

concepts, with the tautology of empty formalisms, with the hallucinations

created by nonrealistic hypotheses'' [93].

0.5 1.00

40

b

f

w0
wf

NN

NE

FE

0.5 1.00

40

c

f

w0
wf

NN

NE

FE

0.5 1.00

40

a

f

w0
wf

NN

NE

FE

Figure 13. Phase diagram of a disordered heteropolymer: (a) at s � 0,

D � 1 l � 0:1; (b) at s � 0, D � 1 l � 5, and (c) at s � 1, D � 1 l � 0:1.
The thick lines correspond to the loss of ergodicity, the thin lines conform

to freezing, and the regions FE,NE,NN correspond to the frozen ergodic,

frozen out ergodic and frozen out nonergodic phases, respectively.

May, 2001 Supersymmetric éeld theory of a nonequilibrium stochastic system as applied to disordered heteropolymers 509



As a result, operator (6.4) takes on the form (2.14). It also
satisfies the equality

D2 � q2t : �6:6�
Using definitions (2.11), (2.12), (2.14), it is easy to prove that
the operator D is Hermitian.

The action of the infinitesimal operator

d � exp�eD� ÿ 1 ' eD ; e! 0

on the quantities t and # results in increments dt � e, d# � ÿe
which only differ in sign. In the treatment of the correspond-
ing field variation jdfjj � ejDjjjfjj, it is convenient to use
the matrix representation of the nilpotent field (2.11) and the
operator D:

jfjj �
Z
j

� �
; jDjj � qt ÿ1

0 ÿqt
� �

; qt � q
qt
: �6:7�

Hence it follows that the change in the order parameter is
proportional to the difference between the rate of change of
its magnitude and the amplitude of fluctuations, whereas the
change of the latter is proportional to its rate taken with the
opposite sign.

To reduce the nilpotent form (2.15) to the potential energy
(6.3), we expand the thermodynamic potential at hand in
powers of the term #j in Eqn (2.20):

p �
� �

V�Z� � dV
dZ

j#
�
d# : �6:8�

Here all terms of higher order vanish because of the
nilpotency condition. Given the properties of equalities
(2.12), the integration of Eqn (6.8) leads to the desired result
(6.3).

The transition to the nilpotent field (2.30) is accomplished
in a trivial way, so it will suffice to point to the differences
from the case already considered. The infinitesimal transfor-
mation d ' eD, where the generator D is given by equality
(2.31), gives dt � 0, d# � ÿe. The field variation jdff j �
ejDf jjff j is represented by matrices

jff j �
Z
ÿf
� �

; jDf j � 0 ÿ1
ÿq2t 0

� �
; qt � q

qt
: �6:9�

Here the operator Df exhibits the same property (6.6). It is
easy to see that the Lagrangians (2.10), (2.25) are invariant
with respect to transformations defined by generators Dj, Df

if the infinitesimal parameter e is purely imaginary, while the
fields Z�r; t�, j�r; t�, f �r; t� are complex.

The matrices that provide the transition from field (6.9) to
field (6.7) and back [see Eqns (2.32), (2.35)] look like

jt�j � 1 0
�qt 1

� �
: �6:10�

Now let us consider the four-component supersymmetric
fields (2.39), (2.52). As differentiated from Eqn (6.6), the
corresponding pairs of operators (2.42), (2.53) obey the
conditions

D2 � D 2 � 0 ;
�D;D	 � ÿ2qt ; �D;D�2 � �2qt�2 ;

fDj;Dfg �
�Dj;Df

	 � 0 ;
�Dj;Df

	 � ÿqt ; �6:11��Df;Dj
	 � ÿ3qt ;

where the braces and square brackets denote, respectively,
anticommutators and commutators. For operators
D��� � D��t�, D��� � D��t� which correspond to different
directions of time t, the generalized anticommuting relations
acquire the form�D���;D���	 � �D���;D���	 � �D���f ;D���f

	 � 0 ;�D���;D���	 � ÿ�D���j ;D���j

	 � �2qt ;�D���j ;D���f

	 � �D���j ;D���f

	 � 0 ;
�D���j ;D���f

	 � �qt ;�D���f ;D���j

	 � �3qt ;�D���j ;D���f

	 � �D���j ;D���f

	 � 0 ;�D���j ;D���f

	 � �D���f ;D���j

	 � �qt : �6:12�

Relations (6.11), (6.12) are especially easily proved using a
matrix representation similar to Eqns (6.7), (6.9):

jFjj �
Z
c
ÿc
j

0BB@
1CCA ;

jDjj �
0 1 0 0
0 0 0 0
ÿ2qt 0 0 1
0 2qt 0 0

0B@
1CA ; jDjj �

0 0 1 0
0 0 0 ÿ1
0 0 0 0
0 0 0 0

0B@
1CA;

�6:13�

jFfj �
Z
c
ÿc
ÿf

0BB@
1CCA ;

jDfj �
0 1 0 0
0 0 0 0
ÿqt 0 0 1
0 qt 0 0

0B@
1CA ; jDfj �

0 0 1 0
ÿqt 0 0 ÿ1
0 0 0 0
0 0 ÿqt 0

0B@
1CA:
�6:14�

The transition matrices from field (6.14) to (6.13) are as
follows [cf. Eqn (6.10)]

jT�j �
1 0 0 0
0 1 0 0
0 0 1 0
�qt 0 0 1

0B@
1CA : �6:15�

The action of infinitesimal operators d ' eD, d ' De yields
djy � 0 ; djy � e ; djt � ÿ2ey ;

djy � e ; djy � 0 ; djt � 0 ;

df y � 0 ; df y � e ; df t � ÿey ;

df y � e ; df y � 0 ; df t � ÿye ; �6:16�

jdFjj � ejDjjjFjj ; jdFjj � jDjjjFjje ;

jdFf j � ejDf jjFf j ; jdFf j � jDf jjFf je :
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By analogy with Eqn (6.8), for field (2.39) we have�
V�Fj� d2y � dV

dZ
jÿ c

d2V
dZ2

c : �6:17�

Upon transition to field (2.52), in place of j we observe ÿf.

6.2 Appendix B
Following the standard field-theoretical scheme [52], we split
the four-component supersymmetric field (2.52) into a pair of
chiral Grassmann conjugate two-component parts F�. They
may be obtained from the original superfield Ff in the
following way

F� � T�Ff ; T� � exp��q� ; q � yyqt ; qt � q
qt
: �6:18�

Accordingly, the generators (2.53) become

D� � T�Df T� ; D� � T�Df T� : �6:19�

Taking advantage of the Grassmann nature of the parameter
q in operator T�, we rewrite Eqn (6.19) as

D� � Df � �q;Df � ; D� � Df � �q;Df � ; �6:20�

where the brackets denote a commutator. In the explicit form,
we have

D� � q
qy
ÿ 2yqt ; Dÿ � q

qy
;

�6:21�
D� � q

qy
; Dÿ � q

qy
ÿ 2yqt :

It is easy to show that the operatorsD�,D� coincide with the
generators Dj;Dj expressed by equalities (2.42).

According to definition (2.52), the transformations (6.18)
give

F� � Z� yc� cy� yy� _Z� f � ; �6:22�

where the over-dot denotes the time derivative. Comparing
Eqn (6.22) with definition (2.39), we come to the identity
F� � Fj. Applying operators (6.21) to the field (6.22), we get

D�F� � cÿ y� _Z� f � � 2yy _c ;

�6:23�
ÿ D�F� � c� y� _Zÿ f � ÿ 2yy _c ;

where the underlined terms correspond to the superscripts.
By definition, the chiral supersymmetric fields are defined

by the gauge conditions [52]

DÿFÿ � 0 ; D�F� � 0 �6:24�

which, in accordance with Eqn (6.21), imply thatFÿ does not
depend on y, and F� does not depend on y. On the other
hand, according to Eqn (6.23), the choice of the gauge (6.24)
leads to the conditions

cÿ y� f� _Z� � 0 ; �6:25�
c� y� _Zÿ f � � 0

for the fieldsFÿ andF�, respectively. Substituting (6.25) into
(6.22), we arrive at the final equations for chiral fields

fÿ � Z� cy ;
�6:26�

f� � Z� yc :

They give the irreducible representation of supersymmetric
fields (2.39), (2.52) with the gauge (6.24). The component
f��t� corresponds to the positive direction of time t, and
fÿ�t� to the negative direction [52].

6.3 Appendix C
Consider the invariant properties of the supersymmetric
action

S �
� h

K
ÿ
F�z��� V

ÿ
F�z��i dz ;

K�F� � 1

2
�DF��DF� ; z � fr; t; y; yg ; �6:27�

with respect to the transformations

dF �
X
a

eaD�a�F ; dF �
X
a

D�a�Fea �6:28�

determined by the supersymmetric generators D�a�, D�a�.
These transformations are the combinations of derivatives
with respect to time t and Grassmann coordinates y; y.
According to Eqn (6.17), the potential energy in Eqn (6.27)
is invariant because its kernel does not depend on the time t.
Accurately to the total time derivative, the Grassmann
conjugate virials of the kinetic energy

dK � 1

2
D
�X

a

eaD�a�F
�
�DF� � 1

2
�DF�D

�X
a

eaD�a�F
�
;

�6:29�

dK � 1

2
D
�X

a

D�a�Fea
�
�DF� � 1

2
�DF�D

�X
a

D�a�Fea
�

are written in the form

dK � 1

2

X
a

eaD�a�
��DF��DF�� ;

�6:30�
dK � 1

2

X
a

D�a���DF��DF��ea
if the anticommutators fD;D�a�g, fD;D�a�g, fD;D�a�g,
fD;D�a�g are zero or can be reduced to a time derivative.
According to relations (6.11), (6.12), these conditions hold
true for the original operators D, D, for operators D�, D�
transformed according to relations (6.19), and for operators
D���� , D���� corresponding to the opposite time directions. As
combinations of derivatives with respect to time t and
Grassmann coordinates y, y, these operators yield zero
variation of action (6.27) when substituted into expressions
(6.30).

Out of the relations mentioned above, nontrivial proper-
ties are displayed by the operators

D�ÿ�ÿ �
q

qy
; D�ÿ�ÿ � q

qy
� 2y

q
qt

�6:31�
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and by their anticommutator fD�ÿ�ÿ ;D�ÿ�ÿ g � 2qt [see Eqn
(6.12)]. They result from the double application of transfor-
mation Tÿ to the original generators Dj;Dj and correspond
to the generators Dÿ, Dÿ with the reversed time direction.
This explains the fundamental importance of generators
D�ÿ�ÿ � Dÿ�ÿt�, D�ÿ�ÿ � Dÿ�ÿt� defined by equalities (6.31).

Using straightforward algebra, it is easy to show that
conditions dS � 0, dS � 0 lead to the Ward identities [51]Xn

i�1
D�a�i G �n�

ÿfzig� � 0 ;
Xn
i�1
D�a�i G �n�

ÿfzig� � 0 �6:32�

for the supersymmetric n-point irreducible vertex G�n� of the
supercorrelator C�z2; z1� type, or the self-energy superfunc-
tion S�z2; z1�. At D�a� � qt, D�a� � D�ÿ�ÿ , conditions (6.32)
imply that the supercorrelators can only depend on the
differences t2 ÿ t1, y2 ÿ y1:

Cj�z2; z1� � S�t2 ÿ t1� � �y2 ÿ y1�
� �G��t2 ÿ t1�y2 ÿ Gÿ�t2 ÿ t1�y1

�
; �6:33�

where we have dropped for brevity the dependence on
coordinates. According to the definition of superfield (2.39),
we have

S�t2 ÿ t1� �


Z�t2� Z�t1�

�
;

G��t2 ÿ t1� �


j�t2� Z�t1�

�
#�t1 ÿ t2�

� 
c�t2�c�t1��#�t1 ÿ t2� ; �6:34�
Gÿ�t2 ÿ t1� �



Z�t2�j�t1�

�
#�t2 ÿ t1�

� 
c�t1�c�t2��#�t2 ÿ t1� ;

where #�t� � 1 at t > 0, and #�t� � 0 at t < 0. According to
the causality condition, the advanced Green function
G��t2 ÿ t1� in front of y1y2 vanishes at t1 < t2; on the other
hand, the retarded function Gÿ�t2 ÿ t1� corresponding to the
term y2y1 vanishes at t1 > t2. The condition of symmetry,
C�z1; z2� � C�z2; z1�, leads to relations S�t2 ÿ t1�� S�t1ÿ t2�,
Gÿ�t2 ÿ t1� � G��t1 ÿ t2�. Substitution of operatorD�ÿ�ÿ into
the Ward identity (6.32) gives the equation

2 _S�t� � G��t� ÿ Gÿ�t� �6:35�

which reduces to the fluctuation-dissipative theorem in the
time-domain representation. Obviously, these arguments
apply not only to the supercorrelator, but also to the self-
energy superfunction whose components S�t2 ÿ t1�,
S��t2 ÿ t1� correspond to S�t2 ÿ t1�, G��t2 ÿ t1�.

The supersymmetric nature of relations (6.34) is mani-
fested in that they link the correlators of the Bose components
Z, j and Fermi components c, c. Ward identities (6.32), used
above, allowed these relations to be obtained as a trivial
implication of the definition of supersymmetric field (2.39).
However, these equations can also be obtained in an
elementary way. Indeed, according to the definitions (2.23),
(2.38), the Fermi correlator



cc
�
is �d2V=dZ2�ÿ1. On the

other hand, using the definition of susceptibility and equal-
ities (2.24), (2.28), for the Bose correlator we have
hZji � hdZ=dji � h�dj=dZ�ÿ1i � �d2V=dZ2�ÿ1, which gives
us the result wanted.

Obviously, for the transition to the correlators of a two-
component nilpotent field (2.11), we need to replace the

multipliers �y2 ÿ y1�y2, �y2 ÿ y1�y1 in Eqn (6.33) with the
nilpotent coordinates #2, ÿ#1, and drop out the term #2#1.

The supersymmetric correlator

Cf �z2; z1� � Tÿ�z2�Tÿ�z1�Cj�z2; z1�

corresponding to the supefields (2.30), (2.52) is represented as

Cf �z2; z1� � S� y2y2m� � y1y1mÿ ÿ y2y1Gÿ ÿ y1y2G� ;
�6:36�

where we have dropped out the arguments t2 ÿ t1 in the terms
S, m�, G� and, with due account for expression (2.24),
introduced the functions [cf. Eqn (6.34)]

m��t� �


Z�ÿt��#�ÿt� fext ;

mÿ�t� �


Z�t��#�t� fext ; fext � ÿf ; �6:37�

which define the linkage between the mean order parameter
hZ�t�i and the external force fext � ÿf (it is assumed that the
latter is switched on at t � 0 and keeps its magnitude).
Correlators (6.37) are linked with the Green functions by the
equality

G��t� � m��t� � _S�t� �6:38�

and comply with the symmetry condition m��ÿt� � mÿ�t�.
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