
Abstract. This review paper is intended to give a useful guide for
those who want to apply the discrete wavelet transform in
practice. The notion of wavelets and their use in practical
computing and various applications are briefly described, but
rigorous proofs of mathematical statements are omitted, and
the reader is just referred to the corresponding literature. The
multiresolution analysis and fast wavelet transform have be-
come a standard procedure for dealing with discrete wavelets.
The proper choice of a wavelet and use of nonstandard matrix
multiplication are often crucial for the achievement of a goal.
Analysis of various functions with the help of wavelets allows
one to reveal fractal structures, singularities etc. The wavelet
transform of operator expressions helps solve some equations.
In practical applications one often deals with the discretized
functions, and the problem of stability of the wavelet transform
and corresponding numerical algorithms becomes important.
After discussing all these topics we turn to practical applica-
tions of the wavelet machinery. They are so numerous that we
have to limit ourselves to a few examples only. The authors

would be grateful for any comments which would move us
closer to the goal proclaimed in the first phrase of the abstract.

1. Introduction

Wavelets have become a necessarymathematical tool inmany
investigations. They are used in those cases when the result of
the analysis of a particular signal 1 should contain not only a
list of its typical frequencies (scales) but also knowledge of the
definite local coordinates where these properties are impor-
tant. Thus, analysis and processing of different classes of
nonstationary (in time) or inhomogeneous (in space) signals is
the main field of application of wavelet analysis. The most
general principle of wavelet basis construction is to use
dilations and translations. Any of the commonly used
wavelets generates a complete orthonormal system of func-
tions with a finite support constructed in such a way. That is
why by changing the scale (dilations) they can distinguish the
local characteristics of a signal at various scales, and by
translations they cover the whole region in which it is
studied. Due to the completeness of the system, they also
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1 The notion of a signal is used here for any ordered set of numerically

recorded information about some processes, objects, functions etc. The

signal can be a function of some coordinatesÐ time, space or any other (in

general, n-dimensional) scale. By the `analysis' of a signal we imply not

only its mathematical (in particular, wavelet) transform but also use the of

such a transform to obtain some conclusions about specific features of the

corresponding process or object.



allow for the inverse transformation to be done. In the
analysis of nonstationary signals, the locality property of
wavelets gives a substantial advantage over the Fourier
transform which provides us only with knowledge of the
global frequencies (scales) of the object under investigation
because the system of the basic functions used (sine, cosine or
imaginary exponential functions) is defined over an infinite
interval 2. However, as we shall see, the more general
definitions and, correspondingly, a variety of forms of
wavelets are used which admit a wider class of functions to
be considered. According to Y Meyer [1], ``the wavelet bases
are universally applicable: `everything that comes to hand',
whether function or distribution, is the sum of a wavelet series
and, contrary to what happens with Fourier series, the
coefficients of the wavelet series translate the properties of
the function or distribution simply, precisely and faithfully.''

The literature devoted to wavelets is highly voluminous,
and one can easily get a lot of references by sending the
corresponding request to Internet web sites. Mathematical
problems are treated in many monographs in detail (e.g., see
[1 ± 5]). Introductory courses on wavelets can be found in the
books [6 ± 9]. A nice review paper adapted for beginners and
practical users with a demonstration of the wavelet transform
of some signals was published in this journal about four years
ago [10] and attracted much attention. However the contin-
uous wavelet transform was mostly considered there whereas
discrete wavelets were just briefly mentioned 3. This choice
was dictated by the fact that the continuous wavelets admit a
somewhat more visual and picturesque presentation of the
results of the analysis of a signal in terms of local maxima and
skeleton graphs of wavelet coefficients with continuous
variables.

At the same time, the main bulk of papers dealing with
practical applications of wavelet analysis use discrete wave-
lets which will be our main concern here. This preference for
discrete wavelets is related to the fact that widely used
continuous wavelets are not, strictly speaking, orthonormal
because the basis elements are both infinitely differentiable
and exponentially decreasing at infinity which violates the
orthonormalization property whereas there is no such
problem for discrete wavelets. That is why discrete wavelets
allow often for amore accurate transform and presentation of
the analyzed signal, and, especially, for its inverse transform
after the compression procedure. Moreover, they are better
adapted to communication theory and practice. These
comments do not imply that we insist on the use of only
discrete wavelets for signal analysis. On the contrary,
continuous wavelets may sometimes provide more transpar-
ent and analytical results in modeling the signal analysis than
discrete wavelets.

The choice of a specific wavelet, be it discrete or
continuous, depends on the analyzed signal and on the
problem to be solved. Some functions are best analyzed
using one method or another, and the advance of such an
analysis depends on the relative simplicity of the decomposi-
tion achieved. The researcher's intuition and experience are

decisive for the success. As an analogy, an example with
number systems is often considered. It is a matter of tradition
and convenience to choose systems with base 10, 2 or e.
However, the Roman number system is completely excluded
if one tries to use it for multiplication. At the same time,
different problems can demand more or less effort both in
their solution and in graphical presentation depending on the
system chosen, and our intuition is important here.

Programs exploiting the wavelet transform are widely
used now not only for scientific research but for commercial
projects as well. Some of them have been even described in
books (e.g., see [11]). At the same time, the direct transition
from pure mathematics to computer programming and
applications is non-trivial and often asks for an individual
approach to the problem under investigation and for a
specific choice of wavelets. Our main objective here is to
describe in a suitable way the bridge that relates mathematical
wavelet constructions to practical signal processing. Namely,
the practical applications considered by A Grossman and
I Morlet [12, 13] have lead to a quick development of wavelet
methods by YMeyer, I Daubechies et al.

The discrete wavelets look strange to those accustomed to
analytical calculations because they cannot be represented by
analytical expressions (except for the simplest one) or by
solutions of some differential equations, and instead are given
numerically as solutions of definite functional equations
containing rescaling and translations. Moreover, in practical
calculations their direct form is not even required, and only
the numerical values of the coefficients of the functional
equation are used. Thus the wavelet basis is defined by the
iterative algorithm of the dilation and translation of a single
function. This leads to a very important procedure called
multiresolution analysis which gives rise to the multiscale
local analysis of the signal and fast numerical algorithms.
Each scale contains an independent non-overlapping set of
information about the signal in the form of wavelet coeffi-
cients, which are determined from an iterative procedure
called the fast wavelet transform. In combination, they
provide its complete analysis and simplify the diagnosis of
the underlying processes.

After such an analysis has been done, one can compress (if
necessary) the resulting data by omitting some inessential part
of the encoded information. This is done with the help of the
so-called quantization procedure which commonly allocates
different weights to various wavelet coefficients obtained. In
particular, it helps erase some statistical fluctuations and,
therefore, increase the role of the dynamical features of a
signal. It can however falsify the diagnostic if the compression
is done inappropriately. Usually, accurate compression gives
rise to a substantial reduction of the required computer
storage memory and transmission facilities, and, conse-
quently, to a lower expenditure. The number of vanishing
moments of wavelets is important at this stage. Unfortu-
nately, the compression introduces unavoidable systematic
errors. The mistakes one has made will consist of multiples of
the deleted wavelet coefficients, and, therefore, the regularity
properties of a signal play an essential role. Reconstruction
after such compression schemes is then no longer perfect.
These two objectives are clearly antagonistic. Nevertheless,
when one tries to reconstruct the initial signal, the inverse
transformation (synthesis) happens to be rather stable and
reproduces its most important characteristics if proper
methods are applied. The regularity properties of wavelets
used also become crucial at the reconstruction stage. The

2 A comparison of the wavelet transform with the so-called windowed

(within a finite interval) Fourier transform will be briefly discussed below.
3 For short, in what follows we use the terms `discrete' and `continuous'

wavelets implying `the wavelets used for discrete and continuous trans-

form', correspondingly. Even though the `discrete' wavelets can be

represented by rather smooth functions, this terminology should not lead

to confusion because we shall also use the term `continuous wavelets' only

with the above mentioned meaning.
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distortions of the reconstructed signal due to quantization
can be kept small, although significant compression ratios are
attained. Since the part of the signal which is not recon-
structed is often called noise, in essence, what we are doing is
denoising the signals. Namely at this stage the superiority of
the discrete wavelets becomes especially clear.

Thus, the objectives of signal processing consist in
accurate analysis with help of the transform, effective
coding, fast transmission and, finally, careful reconstruction
(at the transmission destination point) of the initial signal.
Sometimes the first stage of signal analysis and diagnosis is
enough for the problem to be solved and the anticipated goals
to be achieved.

It has been proven that any function can be written as a
superposition of wavelets, and there exists a numerically
stable algorithm to compute the coefficients for such an
expansion. Moreover, these coefficients completely charac-
terize the function, and it is possible to reconstruct it in a
numerically stable way by knowing these coefficients.
Because of their unique properties, wavelets have been used
in functional analysis in mathematics, in studies of
(multi)fractal properties, singularities and local oscillations
of functions, for solving some differential equations, for the
investigation of inhomogeneous processes involving widely
different scales of interacting perturbations, for pattern
recognition, for image and sound compression, for digital
geometry processing, for solving many problems of physics,
biology, medicine, engineering etc (see the recently published
books [11, 14 ± 17]). This list is by no means exhaustive.

One should however stress that, even though this method
is very powerful, the goals of wavelet analysis are rather
modest. It helps us describe and reveal some features, in
particular, symmetries, otherwise hidden in a signal, but it
does not pretend to explain the underlying dynamics and
physical origin although it may give some crucial hints to it.
Wavelets present a new stage in optimization of this
description providing, in many cases, the best known
representation of a signal. With the help of wavelets, we
merely see things a little more clearly. To understand the
dynamics, standard approaches introduce models assumed to
be driving the mechanisms generating the observations. To
define the optimality of the algorithms of the wavelet
transform, some (still debatable!) energy and entropy criteria
have been developed. They are internal to the algorithm itself.
However, the choice of the best algorithm is also tied to the
objective goal of its practical use, i.e., to some external
criteria. That is why in practical applications one should
submit the performance of a `theoretically optimal algorithm'
to the judgements of experts and users to estimate its benefit
over the previously developed ones.

Despite very active research and impressive results, the
versatility of wavelet analysis implies that these studies are
presumably not in their final form yet.We shall try to describe
the situation in its status nascendi.

The main part of this paper (Sections 2 ± 14) is devoted
to the description of the general properties of wavelets and
the use of the wavelet transform in computer calculations.
Some applications to different fields are briefly described in
Section 15.

2. Wavelets for beginners

Each signal can be characterized by its averaged (over some
intervals) values (trend) and by its variations around this

trend. Let us call these variations fluctuations independently
of their nature, be they dynamic, stochastic, psychological,
physiological or of any other origin. When processing a
signal, one is interested in its fluctuations at various scales
because from these one can learn about their origin. The goal
of wavelet analysis is to provide tools for such processing.

Actually, physicists dealing with experimental histograms
analyze their data at different scales when averaging over
different size intervals. This is a particular example of a
simplified wavelet analysis treated in this section. To be
more definite, let us consider the situation when an experi-
mentalist measures some function f �x� within the interval
04 x4 1, and the best resolution obtained with the measur-
ing device is limited to 1/16th of the whole interval. Thus the
result consists of 16 numbers representing the mean values of
f �x� in each of these bins and can be plotted as a 16-bin
histogram shown in the upper part of Fig. 1. It can be
represented by the following formula

f�x� �
X15
k�0

s4; kj4; k�x� ; �2:1�
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Figure 1.Histogram and its wavelet decomposition. The initial histogram

is shown in the upper part of the figure. It corresponds to the level j � 4

with 16 bins [Eqn (2.1)]. The intervals are labeled on the vertical axis on

their left-hand sides. The next level j � 3 is shown below. The mean values

over two neighboring intervals of the previous level are shown on the left-

hand side. They correspond to eight terms in the first sum in Eqn (2.4). On

the right-hand side, the wavelet coefficients d3; k are shown. Other graphs

for the levels j � 2; 1; 0 are obtained in a similar way.
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where s4;k � f�k=16�=4, andj4; k is defined as a step-like block
of the unit norm (i.e. of height 4 and width 1/16) different
from zero only within the k-th bin. For an arbitrary j, one
imposes the condition

� jjj; kj2 dx � 1, where the integral is
taken over the intervals of the lengths Dxj � 1=2 j and,
therefore, jj; k have the following form jj; k � 2 j=2j�2 jxÿ k�
with j denoting a step-like function of the unit height over
such an interval. The label 4 is related to the total number of
such intervals in our example. At the next coarser level the
average over the two neighboring bins is taken as is depicted
in the histogram just below the initial one in Fig. 1. Up to the
normalization factor, we will denote it as s3; k and the
difference between the two levels shown to the right of this
histogram as d3; k. To be more explicit, let us write down the
normalized sums and differences for an arbitrary level j as

sjÿ1; k � 1���
2
p �sj; 2k � sj; 2k�1� ; djÿ1;k � 1���

2
p �sj; 2k ÿ sj; 2k�1� ;

�2:2�

or for the backward transform (synthesis)

sj; 2k � 1���
2
p �sjÿ1; k � djÿ1; k� ; sj; 2k�1� 1���

2
p �sjÿ1; k ÿ djÿ1; k� :

�2:3�

Since, for the dyadic partition considered, this difference
has opposite signs in the neighboring bins of the previous fine
level, we introduce the function c which is 1 and ÿ1,
correspondingly, in these bins and the normalized functions
cj; k � 2 j=2c�2 jxÿ k�. This allows us to represent the same
function f�x� as

f�x� �
X7
k�0

s3; kj3; k�x� �
X7
k�0

d3; kc3; k�x� : �2:4�

One proceeds further in the same manner to the sparser
levels 2, 1 and 0 with averaging done over the interval lengths
1/4, 1/2 and 1, correspondingly. This is shown in the
subsequent drawings in Fig. 1. The most sparse level with
the mean value of f over the whole interval denoted as s0;0
provides

f�x� � s0;0j0;0�x� � d0;0�x�c0;0�x� �
X1
k�0

d1; kc1; k�x�

�
X3
k�0

d2; kc2; k�x� �
X7
k�0

d3; kc3; k�x� : �2:5�

The functions j0;0�x� and c0;0�x� are shown in Fig. 2. The
functions jj; k�x� and cj; k�x� are normalized by the conserva-

tion of the norm, dilated and translated versions of them. In
the next section we will give explicit formulae for them in a
particular case of Haar scaling functions and wavelets. In
practical signal processing, these functions (and more
sophisticated versions of them) are often called low and
high-pass filters, correspondingly, because they filter the
large and small scale components of a signal. The subsequent
terms in Eqn (2.5) show the fluctuations (differences dj; k) at
finer and finer levels with larger j. In all the cases (2.1) ± (2.5)
one needs exactly 16 coefficients to represent the function. In
general, there are 2 j coefficients sj; k and 2 jn ÿ 2 j coefficients
dj; k, where jn denotes the finest resolution level (in the above
example, jn � 4).

All the above representations of the function f �x� [Eqns
(2.1) ± (2.5)] are mathematically equivalent. However, the
latter one representing the wavelet analyzed function directly
reveals the fluctuation structure of the signal at different
scales j and various locations k present in a set of coefficients
dj; k whereas the original form (2.1) hides the fluctuation
patterns in the background of a general trend. The final
form (2.5) contains the overall average of the signal depicted
by s0;0 and all its fluctuations with their scales and positions
well labeled by 15 normalized coefficients dj; k while the initial
histogram shows only the normalized average values sj; k in
the 16 bins studied. Moreover, in practical applications the
latter wavelet representation is preferred because for rather
smooth functions, strongly varying only at some discrete
values of their arguments, many of the high-resolution d-
coefficients in relations similar to Eqn (2.5) are close to zero
(compared to the `informative' d-coefficients) and can be
discarded. Bands of zeros (or close to zero values) indicate
those regions where the function is fairly smooth.

At first sight, this simplified example looks somewhat
trivial. However, for more complicated functions and more
data points with some elaborate forms of wavelets it leads to a
detailed analysis of the signal and to possible strong
compression with subsequent good quality restoration. This
example also provides an illustration of the very important
feature of the whole approach with successive coarser and
coarser approximations to f called themultiresolution analysis
which is discussed in more detail below.

3. Basic notions and Haar wavelets

To analyze any signal, one should, first of all, choose the
corresponding basis, i.e., the set of functions to be considered
as `functional coordinates'. In most cases we will deal with
signals represented by the square integrable functions defined
on the real axis (or by the square summable sequences of
complex numbers). They form the infinite-dimensional
Hilbert space L2�R� (l 2�Z�). The scalar product of these
functions is defined as

hf; gi �
�1
ÿ1

f �x� �g�x� dx ; �3:1�

where the bar stands for the complex conjugate. For finite sets
it becomes a finite-dimensional Hilbert space. Hilbert spaces
always have orthonormal bases, i.e., families of vectors (or
functions) en such that

hen; emi � dnm ; �3:2�

jj f jj2 �
�
j f �x�j2 dx �

X
n

��h f; eni��2 : �3:3�
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Figure 2. Haar scaling function j�x� � j0;0�x� and `mother' wavelet

c�x� � c0;0�x�.
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In the Hilbert space, there exist some more general
families of linear independent basis vectors called a Riesz
basis which generalize equation (3.3) to

ajj f jj2 4
X
n

��h f; eni��2 4bjj f jj2 �3:4�

with a > 0; b <1. It is an unconditional basis where the
order in which the basis vectors are considered does not
matter. Any bound operator with a bound inverse maps an
orthonormal basis into a Riesz basis.

Sometimes we will consider the spacesLp�R� �14 p <1;
p 6� 2�, where the norm is defined as

jj f jjLp �
� �
j f �x�jp dx

�1=p
; �3:5�

as well as some other Banach spaces 4 (see Sections 11, 12).
The Fourier transform with its trigonometric basis is well

suited for the analysis of stationary signals. Then the norm
jj f jj is often called energy. For nonstationary signals, e.g., the
location of that moment when the frequency characteristics
has abruptly been changed is crucial. Therefore the basis
should have a compact support. The wavelets are just such
functions which span the whole space by translation of the
dilated versions of a definite function. That is why every
signal can be decomposed into a wavelet series (or integral).
Each frequency component is studied with a resolution
matched to its scale. The above procedure of normalization
of functions jj; k is directly connected with the requirement of
conservation of the norm of a signal at its decompositions.

The choice of the analyzing wavelet is, however, not
unique. One should choose it in accordance with the problem
to be solved. The simplicity of operations (computing, in
particular) and of representation (minimum parameters used)
also plays a crucial role. A bad choice of a particular wavelet
shape may even prevent one from getting any result as in the
above example with Roman numbers. There are several
methods of estimating how well the chosen function is
applicable to the solution of a particular problem (see
Section 6).

Let us try to construct functions satisfying the above
criteria. An educated guess would be to relate the function
j�x� to its dilated and translated version. The simplest linear
relation with 2M coefficients is

j�x� �
���
2
p X2Mÿ1

k�0
hk j�2xÿ k� �3:6�

with the dyadic dilation 2 and integer translation k. At first
sight, the chosen normalization of the coefficients hk with the
`extracted' factor

���
2
p

looks somewhat arbitrary. Actually, it is
defined a posteriori by the traditional form of fast algorithms
for their calculation [see Eqns (5.2) and (5.3) below] and
normalization of functions jj; k�x�;cj; k�x�. It is used in all the
books cited above. However, sometimes (see [2], Chapter 7) it
is replaced by ck �

���
2
p

hk.
For discrete values of the dilation and translation

parameters one gets discrete wavelets. The value of the
dilation factor determines the size of cells in the lattice

chosen. The integer M defines the number of coefficients
and the length of the wavelet support. They are interrelated
because from the definition of hk for orthonormal bases

hk �
���
2
p �

j�x��j�2xÿ k� dx �3:7�

it follows that only finitely many hk are nonzero if j has a
finite support. The normalization condition is chosen as�1

ÿ1
j�x� dx � 1 : �3:8�

The functionj�x� obtained from the solution of this equation
is called a scaling function 5. If the scaling function is known,
one can form a `mother wavelet' (or a basic wavelet ) c�x�
according to

c�x� �
���
2
p X2Mÿ1

k�0
gk j�2xÿ k� ; �3:9�

where

gk � �ÿ1�kh2Mÿkÿ1 : �3:10�

The simplest example would be for M � 1 with two non-
zero coefficients hk equal to 1=

���
2
p

, i.e., the equation leading to
the Haar scaling function jH�x�:

jH�x� � jH�2x� � jH�2xÿ 1� : �3:11�

One easily gets the solution of this functional equation

jH�x� � y�x� y�1ÿ x� ; �3:12�

where y�x� is the Heaviside step-function equal to 1 for
positive arguments and 0 for negative ones. The additional
boundary condition is jH�0� � 1, jH�1� � 0. This condition
is important for the simplicity of the whole procedure of
computing the wavelet coefficients when two neighboring
intervals are considered.

The `mother wavelet' is

cH�x� � y�x� y�1ÿ 2x� ÿ y�2xÿ 1� y�1ÿ x� �3:13�

with boundary values defined as cH�0� � 1, cH�1=2� � ÿ1,
cH�1� � 0. This is theHaar wavelet [18] known since 1910 and
used in the functional analysis . Namely this example was
considered in the previous section for the histogram decom-
position. Both the scaling function jH�x� and the `mother
wavelet' cH�x� are shown in Fig. 2. It is the first one of a
family of compactly supported orthonormal wavelets

Mc : cH � 1c. It possesses the locality property since its
support 2Mÿ 1 � 1 is compact.

The dilated and translated versions of the scaling function
j and the `mother wavelet' c

jj; k � 2 j=2j�2 jxÿ k� ; �3:14�

cj; k � 2 j=2c�2 jxÿ k� �3:15�

4 These are linear spaces with a normwhich generally is not derived from a

scalar product and complete with respect to this norm [Lp�R� (14 p <1;

p 6� 2) is a particular example of it]. 5 It is often also called a `father wavelet ' but we will not use this term.
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form the orthonormal basis as can be (easily for Haar
wavelets) checked 6. The choice of 2 j with the integer valued
j as a scaling factor leads to the unique and selfconsistent
procedure of computing the wavelet coefficients. In principle,
there exists an algorithm of derivation of the compact
supported wavelets with an arbitrary rational number in
place of 2. However, only for this factor, it has been shown
that there exists an explicit algorithm with the regularity of
the wavelet increasing linearly with its support. For example,
for the factor 3 the regularity index only grows logarithmi-
cally. The factor 2 is probably distinguished here as in music
where octaves play a crucial role. If the dilation factor is 2,
then the Fourier transform of the `mother' wavelet is
essentially localized between p and 2p. However, for some
practical applications, a sharper frequency localization is
necessary, and it may be useful to have wavelet bases with a
narrower bandwidth. The fractional dilation wavelet bases
provide one of the solutions of this problem but there also
exist other possibilities.

The Haar wavelet oscillates so that�1
ÿ1

c�x� dx � 0 : �3:16�

This condition is common for all the wavelets. It is called the
oscillation or cancellation condition. From it, the origin of the
name wavelet becomes clear. One can describe a `wavelet' as a
function that oscillates within some interval like a wave but is
then localized by damping outside this interval. This is a
necessary condition for wavelets to form an unconditional
(stable) basis. We conclude that for special choices of
coefficients hk one gets the specific forms of `mother'
wavelets, which give rise to orthonormal bases.

One may decompose any function f of L2�R� at any
resolution level jn into a series

f �
X
k

sjn ; k jjn; k �
X

j5 jn; k

dj; k cj; k : �3:17�

At the finest resolution level jn � jmax only s-coefficients are
left, and one gets the scaling-function representation

f �x� �
X
k

sjmax; k jjmax ; k : �3:18�

In the case of the Haar wavelets it corresponds to the initial
experimental histogram with the finest resolution. Since we
will be interested in its analysis at varying resolutions, this
form is used as an initial input only. The final representation
of the same data (3.17) shows all the fluctuations in the signal.
The wavelet coefficients sj; k and dj; k can be calculated as

sj; k �
�
f �x�jj; k�x� dx ; �3:19�

dj; k �
�
f �x�cj; k�x� dx : �3:20�

However, in practice their values are determined from the fast
wavelet transform described below.

In reference to the particular case of the Haar wavelet,
considered above, these coefficients are often referred to as

sums (s) and differences (d), thus related to mean values and
fluctuations.

For physicists familiar with experimental histograms, it
generalizes the particular example discussed in the previous
section. The first sum in (3.17) with the scaling functions jj;k

shows the average 7 values of f within the dyadic intervals
�k2ÿj; �k� 1�2ÿj�, and the second term contains all the
fluctuations of the function f in this interval. They come
from ever smaller intervals which correspond to larger values
of the scale parameter j. One would say that it `brings into
focus' the finer details of a signal. This touching in of details is
regularly spaced, taking account of dimension Ð the details
of dimension 2ÿj are placed at the points k2ÿj. At the lowest
(most sparse) level j0 the former sum consists of a single term
with the overall weighted average h f i � sj0; k0 , where k0 is the
center of the histogram. The second sum in (3.17) shows
fluctuations at all the scales. At the next, more refined level
j1 > j0, there are two terms in the first sum which show the
average values of f within half-intervals with their centers
positioned at k1, k2. The number of terms in the second sum
becomes less by one term which was previously responsible
for the fluctuations at the half-interval scale. The total
number of terms in the expansion stays unchanged. Here we
just mention that according to (3.17) the number of terms in
each sum depends on a definite resolution level. Changing the
level index by 1, we move some terms to another sum, and
each of these representations are `true' representations of the
histogram at different resolution levels.

Formally a similar procedure may be done the other way
round by going to the sparser resolutions j < j0. Even if we
`fill out' the whole support of f, we can still keep going with
our averaging trick. Then the average value of f diminishes,
and one can neglect the first sum in (3.17) in the L2 sense
because its L2-norm (3.3) tends to zero. In the histogram
example, it decreases as jh f ij / Nÿ1 and jh f ij2 / Nÿ2

whereas the integration region is proportional to N, i.e.,

jjh f ijj2 / Nÿ1 ! 0 for N!1 :

That is why often only the second term in (3.17) is
considered, and the result is often called the wavelet
expansion. It also works if f is in the space Lp�R� for
1 < p <1 but it can not be done if it belongs to L1�R� or
L1�R�. For example, if f � 1 identically, all wavelet coeffi-
cients dj; k are zero, and only the first sum matters. For the
histogram interpretation, the neglect of this sum would imply
that one is not interested in its average value but only in its
shape determined by fluctuations at different scales. Any
function can be approximated to a precision 2 j=2 (i.e., to an
arbitrary high precision at j! ÿ1) by a finite linear
combination of Haar wavelets.

The Haar wavelets are also suitable for the studies of
functions belonging to Lp spaces, i.e., possessing higher
moments.

Though the Haar wavelets provide a good tutorial
example of an orthonormal basis, they suffer from several
deficiencies. One of them is the bad analytic behavior with the
abrupt change at the interval bounds, i.e., its bad regularity
properties. By this wemean that all finite rankmoments of the
Haar wavelet are different from zero Ð only its zeroth
moment, i.e., the integral (3.16) of the function itself is zero.
It shows that this wavelet is not orthogonal to any polynomial

6We return to the general case and therefore omit the index H because the

same formula will be used for other wavelets. 7 The averaging is done with the weight functions jj; k�x�.
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apart from a trivial constant. The Haar wavelet does not have
good time-frequency localization. Its Fourier transform
decays like jojÿ1 for o!1.

It would be desirable to build up wavelets with better
regularity. The advantage of them compared to the Haar
system shows up in the smaller number of wavelet coefficients
which are sufficient to account for and in their applicability to
a wider set of functional spaces besidesL2. The former feature
is related to the fact that the wavelet coefficients are
significantly different from zero only near singularities of f
(strong fluctuations!). Therefore wavelet series of standard
functions with isolated singularities are `sparse' series in
contrast to the Fourier series which are usually dense ones
for rather regular functions. The latter feature allows us to get
access to local and global regularities of the functions under
investigation. The way to this program was opened by
multiresolution analysis .

4. Multiresolution analysis
and Daubechies wavelets

Relation (3.17) shows that a general function f can be
approximated by a sequence of very simple functions jj; k ,
cj; k . The above example has demonstrated that the Haar
functions are local and cover the whole space L2�R� using the
translation k. They are orthogonal for different resolution
scales j. The transition from j to j� 1 is equivalent to the
replacement of x by 2x, i.e., to the rescaling which allows for
the analysis to be done at various resolutions.

However the Haar wavelets are oversimplified and not
regular enough. The goal is to find a general class of those
functions which would satisfy the requirements of locality,
regularity and oscillatory behavior. Note that in some
particular cases the orthonormality property sometimes can
be relaxed. They should be simple enough in the sense that
they are sufficiently explicit and regular to be completely
determined by their samples on the lattice defined by the
factors 2 j.

The general approach which respects these properties is
known as the multiresolution approximation. A rigorous
mathematical definition is given in Section 17.1. Here we
just describe its main ingredients.

Multiresolution analysis consists of a sequence of succes-
sive approximation spaces Vj which are scaled and invariant
under integer translation versions of the central functional
space V0. To explain the meaning of these spaces in a simple
example, we show in Fig. 3 what the projections of some
function on theHaar spacesV0,V1 might look like. One easily
recognizes the histogram representation of this function. The
comparison of histograms at the two levels shows that the first
sum in Eqn (3.17) provides the `blurred image' or `smoothed
means' of f �x� in each interval, while the second sum of this
equation adds finer and finer details of smaller sizes. Thus the
general distributions are decomposed into a series of correctly
localized fluctuations having a characteristic form defined by
the wavelet chosen.

The functions jj; k form an orthonormal basis in Vj. The
orthogonal complement of Vj in Vj�1 is called Wj. The
subspaces Wj form a mutually orthogonal set. The sequence
ofcj; k constitutes an orthonormal basis forWj at any definite
j. The whole collection of cj; k and jj; k for all j is an
orthonormal basis for L2�R�. This ensures us that we have
constructed a multiresolution analysis approach, and the
functions cj; k and jj; k constitute the small and large scale

filters, correspondingly. The whole procedure of multiresolu-
tion analysis is demonstrated in the graphs of Fig. 4.

In accordance with the above declared goal, one can
define the notion of wavelets (see Section 17.1) so that the
functions 2 j=2c�2 jxÿ k� are the wavelets (generated by the
`mother'c), possessing the regularity, the localization and the
oscillation properties.

At first sight, from our example with Haar wavelets, it
looked as if one is allowed to choose the coefficients hk freely.
This impression is, however, completely wrong. The general
properties of scaling functions and wavelets define these
coefficients in a unique way in the framework of the multi-
resolution analysis approach.

Figure 3. Analyzed function (a) and its Haar projections onto two

subsequent spaces V0 and V1.

Vj�1 . . .Vj Vjÿ1

Wj Wjÿ1

Figure 4. Graphical representation of multiresolution analysis with

decomposition of Vj�1 space into its subspace Vj and the orthogonal

complementWj iterated to the lower levels.
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Let us show how the program of the multiresolution
analysis works in practice when applied to the problem of
finding out the coefficients of any filter hk and gk. They can be
directly obtained from the definition and properties of the
discrete wavelets. These coefficients are defined by relations
(3.6) and (3.9)

j�x��
���
2
p X

k

hkj�2xÿ k� ; c�x��
���
2
p X

k

gkj�2xÿ k� ;

�4:1�

where
P

k jhkj2 <1. The orthogonality of the scaling
functions defined by the relation�

j�x�j�xÿm� dx � d0m �4:2�

leads to the following equation for the coefficients:X
k

hk hk�2m � d0m : �4:3�

The orthogonality of wavelets to the scaling functions�
c�x�j�xÿm� dx � 0 �4:4�

gives the equationX
k

hk gk�2m � 0 ; �4:5�

having a solution of the form

gk � �ÿ1�kh2Mÿ1ÿk : �4:6�

Thus the coefficients gk for wavelets are directly defined by
the scaling function coefficients hk.

Another condition of the orthogonality of wavelets to all
polynomials up to the power �Mÿ 1�, defining its regularity
and oscillatory behavior�

xnc�x� dx � 0 ; n � 0; . . . ;Mÿ 1 ; �4:7�

provides the relationX
k

kngk � 0 ; �4:8�

giving rise toX
k

�ÿ1�k kn hk � 0 : �4:9�

when the formula (4.6) is taken into account.
The normalization condition�
j�x� dx � 1 �4:10�

can be rewritten as another equation for hk:X
k

hk �
���
2
p

: �4:11�

Let us write down equations (4.3), (4.9), (4.11) forM � 2
explicitly:

h0h2 � h1h3 � 0 ;

h0 ÿ h1 � h2 ÿ h3 � 0 ;

ÿ h1 � 2h2 ÿ 3h3 � 0 ;

h0 � h1 � h2 � h3 �
���
2
p

:

The solution of this system is

h3 � 1

4
���
2
p �1�

���
3
p
� ; h2 � 1

2
���
2
p � h3 ;

h1 � 1���
2
p ÿ h3 ; h0 � 1

2
���
2
p ÿ h3 ; �4:12�

that, in the case of the minus sign for h3, corresponds to the
well known filter

h0 � 1

4
���
2
p �1�

���
3
p
� ; h1 � 1

4
���
2
p �3�

���
3
p
� ;

h2 � 1

4
���
2
p �3ÿ

���
3
p
� ; h3 � 1

4
���
2
p �1ÿ

���
3
p
� : �4:13�

These coefficients define the simplest D4 (or 2c) wavelet
from the famous family of orthonormal Daubechies wavelets
with finite support. It is shown in the upper part of Fig. 5 by
the dotted line with the corresponding scaling function shown
by the solid line. Some other higher rank wavelets are also
shown there. It is clear from this figure (especially, for D4)
that wavelets are smoother at some points than at others. The
choice of the plus sign in the expression for h3 would not
change the general shapes of the scaling function and wavelet
D4. It results in their mirror symmetrical forms obtained by a
simple reversal of the signs on the horizontal and vertical
axes, correspondingly. However, for higher rank wavelets
different choices of signs would correspond to different forms
of the wavelet. After the signs are chosen, it is clear that
compactly supported wavelets are unique, for a given multi-
resolution analysis up to a shift in the argument (translation)
which is inherently there. The dilation factor must be rational
within the framework of the multiresolution analysis. Let us
note that 2j is HoÈ lder continuous with the global exponent
a � 0:55 [see Eqn (11.1) below] and has different local HoÈ lder
exponents on some fractal sets. Typically, wavelets are more
regular at some points than at others.

For the filters of higher order in M, i.e., for higher rank
Daubechies wavelets, the coefficients can be obtained in an
analogous manner. It is however necessary to solve the
equation of the M-th power in this case. Therefore, the
numerical values of the coefficients can be found only
approximately, but with any predefined accuracy. The
wavelet support is equal to 2Mÿ 1. It is wider than for the
Haar wavelets. However the regularity properties are better.
The higher order wavelets are smoother compared to D4 as
seen in Fig. 5. The Daubechies wavelet with M vanishing
moments has mM continuous derivatives where m � 0:2 as
was estimated numerically 8. This means that about 70 ± 80%

8 This asymptotic estimate was obtained with the help of the Fourier

transform [2]. More precise methods at finite values of M allow us to get

the relation between the regularity and the number of vanishing moments

of any function. The linear interpolation in the region of the practically

used values 6 <M < 12 leads to the estimate m � 0:275.
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of zero moments are `wasted'. As the regularity M increases,
so does the support in general. For sufficiently regular
functions, Daubechies wavelet coefficients are much smaller
(2Mj times) than the Haar wavelet coefficients, i.e., the signal
can be compressed much better with Daubechies wavelets.
Since they are more regular, the synthesis is also more
efficient.

One can ask the question whether the regularity or the
number of vanishingmoments is more important. The answer
depends on the application, and is not always clear. It seems
that the number of vanishing moments is more important for
stronger compression which increases for a larger number of
vanishing moments, while the regularity can become crucial
in inverse synthesis to smooth the errors due to the
compression (omission of small coefficients).

In principle, by solving the functional equation (3.6) one
can find the form of the scaling function and, from (3.9), the
form of the corresponding `mother wavelet'. There is no
closed-form analytic formula for the compactly supported
j�x�, c�x� (except for the Haar case). Nevertheless one can
compute their plots, if they are continuous, with arbitrarily
high precision using a fast cascade algorithm with the wavelet
decomposition of j�x� which is a special case of a refinement
scheme (for more details, see [2]). Instead of a refinement
cascade one can compute j�2ÿjk� directly from Eqn (3.9)
starting from appropriate j�n�. However, in practical
calculations the above coefficients hk are used only without
referring to the shapes of the wavelets.

Except for the Haar basis, all real orthonormal wavelet
bases with compact support are asymmetric, i.e., they have
neither a symmetry nor an antisymmetry axis (see Fig. 5). The
deviation of a wavelet from symmetry is judged by howmuch
the phase of the expression m0�o� �

P
k hk exp�ÿiko� devi-

ates from a linear function. The `least asymmetric' wavelets
are constructed by minimizing this phase. Better symmetry
for a wavelet necessarily implies better symmetry for the
coefficients hk but the converse statement is not always true.

5. Fast wavelet transform and coiflets

After calculation of the coefficients hk and gk, i.e., the choice
of a definite wavelet transform of a signal f �x�, one is able to
perform its wavelet analysis because the wavelet orthonormal
basis (cj;k, jj;k) has been defined. Any function f 2 L2�R� is
completely characterized by the coefficients of its decomposi-
tion in this basis and may be decomposed according to
formula (3.17). Let us make the sum limits in this formula
more precise. The function f �x�may be considered at any n-th
resolution level jn. Then the separation of its average values
and fluctuations at this level looks like

f �x� �
X1

k�ÿ1
sjn; kjjn; k�x� �

X1
j�jn

X1
k�ÿ1

dj; kcj; k�x� : �5:1�

Over the infinite interval, the first sum may be omitted as
explained above, and one gets the pure wavelet expansion. As
we stressed already, the coefficients sj; k and dj; k carry
information about the content of the signal at various scales.
They can be calculated directly using the formulas (3.19),
(3.20). However this algorithm is inconvenient for numerical
computations because it requires many (N 2) operations
where N denotes the number of the sampled values of the
function. We will describe a faster algorithm. It is clear from
Fig. 6, and the fast algorithm formulas are presented below.
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Figure 5.Daubechies scaling functions (solid lines) and wavelets (dotted lines) forM � 2; 4.
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Figure 6. Fast wavelet transform algorithm.
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In real situations with digitized signals, we have to deal
with finite sets of points. Thus, there always exists the finest
level of resolution where each interval contains only a single
number. Correspondingly, the sums over k will get finite
limits. It is convenient to reverse the level indexation
assuming that the label of this fine scale is j � 0. It is then
easy to compute the wavelet coefficients for more sparse
resolutions j5 1.

Multiresolution analysis naturally leads to an hierarchical
and fast scheme for the computation of the wavelet coeffi-
cients of a given function. The functional equations (3.6),
(3.9) and the formulas for the wavelet coefficients (3.19),
(3.20) give rise, in the case of Haar wavelets, to the relations
(2.2), or for the backward transform (synthesis) to (2.3).

In general, one can get the iterative formulas of the fast
wavelet transform

sj�1; k �
X
m

hm sj; 2k�m ; �5:2�

dj�1; k �
X
m

gm sj; 2k�m �5:3�

where

s0; k �
�
f �x�j�xÿ k� dx : �5:4�

These equations yield fast algorithms (the so-called
pyramid algorithms) for computing the wavelet coefficients,
asking now just forO�N� operations to be done. Starting from
s0; k, one computes all other coefficients provided the
coefficients hm; gm are known. The explicit shape of the
wavelet is not used in this case any more. The simple form of
these equations is the only justification for introducing the
factor

���
2
p

into the functional equation (3.6). In principle, the
coefficients hm; gm could be renormalized. However, in
practice Eqns (5.2) and (5.3) are used much more often than
others, and this normalization is kept intact. After choosing a
particular wavelet for analysis, i.e., choosing hm; gm, one uses
only Eqns (5.2) and (5.3) for computing the wavelet coeffi-
cients, and additional factors in these equations would
somewhat complicate the numerical processing.

The remaining problem lies in the initial data. If an
explicit expression for f �x� is available, the coefficients s0;k
may be evaluated directly according to (5.4). But this is not
so in the situation when only discrete values are available.
To get good accuracy, one has to choose very small bins (a
dense lattice) which is often not accessible with finite steps
of sampling. In such a case, the usually adopted simplest
solution consists in directly using the values f �k� of the
available sample in place of the coefficients s0; k and starting
the fast wavelet transform using formulas (5.2), (5.3). This is
a safe operation since the pyramid algorithm yields perfect
reconstruction, and the coefficient s0; k essentially represents
a local average of the signal provided by the scaling
function.

In general, one can choose

s0; k �
X
m

cm f �kÿm� : �5:5�

The above supposition s0; k � f �k� corresponds to cm � d0m.
This supposition may be almost rigorous for some specific
choices of scaling functions named coiflets after R. Coifman
whose ideas inspired IDaubechies to build up these wavelets).
It is possible to construct multiresolution analysis with the

scaling function having vanishing moments, i.e., such that�
xmj�x� dx � 0 ; 0 < m <M : �5:6�

To construct such wavelets (coiflets), one has to add to the
equations for determining the coefficients hk a new conditionX

k

hk k
m � 0 ; 0 < m <M ; �5:7�

which follows from the requirement (5.6).
Coiflets are more symmetrical than Daubechies wavelets

as is seen from Fig. 7 if compared to Fig. 5. The latter do not
have the property (5.6). The price for this extra generalization
is that coiflets are longer than Daubechies wavelets. If in the
latter case the length of the support is 2Mÿ 1, for coiflets it is
equal to 3Mÿ 1. The error in the estimation of sj; k decreases
with the number of vanishing moments as O�2ÿjM�. At the
same time, the variation of the smoothness for coiflets of a
given order is larger than that for Daubechies wavelets of the
same order.

There are other proposals to improve the first step of the
iterative procedure of the fast wavelet transform promoted by
using T-polynomials by W Sweldens [19] or the so-called
`lazy' or interpolating wavelets by S Goedecker and O Ivanov
[20]. The latter is most convenient for simultaneous analysis
at different resolution levels, in particular for non-equidistant
lattices.

Inverse fast wavelet transform allows for the reconstruc-
tion of the function starting from its wavelet coefficients.

6. Choice of wavelets

Above, we demonstrated three examples of discrete ortho-
normal compactly supported wavelets. The regularity
property, the number of vanishing moments and the
number of wavelet coefficients exceeding some threshold
value were considered as possible criteria for the choice of a
particular wavelet not to mention computing facilities.
Sometimes the so-called information cost functional used
by statisticians is introduced, and one tries to minimize it
and thus select the optimal basis. In particular, the entropy
criterion for the probability distribution of the wavelet
coefficients is also considered [4, 11]. The entropy of f
relative to the wavelet basis measures the number of
significant terms in the decomposition (3.17). It is defined
by exp�ÿPj; k jdj; kj2 log jdj; kj2�. If we have a collection of
orthonormal bases, we will choose for the analysis of f the
particular basis that yields the minimum entropy.

The number of possible wavelets at our disposal is much
larger than the above examples show. We will not discuss all
of them, just mentioning some and referring the reader to the
cited books.
� First, let us mention splines which lead to wavelets with

non-compact support but with exponential decay at infinity
and with some (limited) number of continuous derivatives.
Special orthogonalization tricks should be used here. The
splines are intrinsically associated with interpolation schemes
for finding more precise initial values of s0; k relating them to
some linear combinations of the sampled values of f �x�.
� To insure both the full symmetry and exact reconstruc-

tion, one has to use so-called biorthogonal wavelets. This
means that two dual wavelet bases cj; k and ~cj; k , associated
with two different multiresolution ladders, are used. They can
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have very different regularity properties. A function fmay be
represented in two forms, absolutely equivalent until the
compression is done:

f �
X
j; k

h f;cj; kiecj; k ; �6:1�

f �
X
j; k

h f; ecj; kicj; k ; �6:2�

where c and its dual wavelet satisfy the biorthogonality
requirement hcj; kjecj 0; k 0 i � dj; k; j 0; k 0 . In contrast to Daube-
chies wavelets, where regularity is tightly connected with the
number of vanishing moments, biorthogonal wavelets have
much more freedom. If one of them has a regularity of the
order r, then its dual partner wavelet has automatically at
least r vanishing moments. If ecj; k is much more regular than
cj; k, then cj;k has many more vanishing moments than ~c j; k.
This allows us to choose, e.g., very regular ecj; k and get many
vanishing moments of cj; k. The large number of vanishing
moments ofcj; k leads to better compressibility for reasonably
smooth f. If compression has been done, formula (6.1) is
much more useful than (6.2). The number of significant terms
is much smaller, and, moreover, the better regularity of ecj; k

helps reconstruct f more precisely. Biorthogonal bases are
close to an orthonormal basis. Both wavelets can be made
symmetric. Symmetric biorthogonal wavelets close to ortho-
normal basis are close to coiflets. The construction of
biorthogonal wavelet bases is simpler than of orthonormal
bases.
�The existence of two-scale relations is themain feature of

the construction of wavelet packets. The general idea of the
wavelet packets is to iterate further the splitting of the
frequency band, still keeping the same pair of filters. The
scaling function introduced above acquires the name w0, and

the packet is built up through the following iterations

w2n�x� �
X
k

hkwn�2xÿ k� ; �6:3�

w2n�1�x� �
X
k

gkwn�2xÿ k� : �6:4�

The usual mother wavelet is represented by w1. This family of
wavelets forms an orthonormal basis in L2�R� which is called
the fixed scale wavelet packet basis. Figure 8 demonstrates the
whole construction.

� One can abandon the orthonormality property and
construct non-orthogonal wavelets called frames. An impor-
tant special class of frames is given by the Riesz bases of
L2�R�. A Riesz basis is a frame, but the converse is not true in
general. The frames satisfy the following requirement:

Ajj f jj2 4
X
j2 J
jh f;jjij2 4Bjj f jj2 : �6:5�

The constantsA andB are called the frame bounds. ForA � B
one calls them tight frames. The case A � B � 1 corresponds
to orthonormal wavelets.
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Figure 7. Coiflets (dotted lines) and their scaling functions (solid lines) forM � 4.

Figure 8.Wavelet packet construction.\

May, 2001 Wavelets and their uses 457



�When acting by (singular) operators, one sometimes gets
infinities when usual wavelets are considered. Some suitable
function b�x� may be used to specify the extra conditions
which will be necessary and sufficient for the result of the
(singular integral) operator action to be continuous in L2. In
this case one chooses the so-called `wavelets which are
adapted to b'. Any function f is again decomposed as

f �x� �
X
l

a�l�c�b�l �x� ; �6:6�

but the wavelet coefficients are now calculated according to

al �
�
b�x� f �x�c�b�l �x� dx : �6:7�

They satisfy the normalization condition�
b�x�c�b�l �x�c�b�l 0 �x� dx � dl; l0 : �6:8�

The cancellation condition now reads�
b�x�c�b�l �x� dx � 0 : �6:9�

As we see, the cancellation is also adapted to the function
b (in general, to the `complex measure' b�x� dx).
�Up to nowwe have considered wavelets with the dilation

factor equal to 2. It is most convenient for numerical
calculations. However, it can be proved [2, 21] that within
the framework of a multiresolution analysis, the dilation
factor must be rational, and no other special requirements
are imposed. Therefore one can construct schemes with other
integer or fractional dilation factors. Sometimes they may
provide a sharper frequency localization. For wavelets with
the dilation factor 2, their Fourier transform is essentially
localized within one octave between p and 2p, whereas the
fractional dilation wavelet bases may have a bandwidth
narrower than one octave.
� Moreover, one can use the continuous wavelets as

described at some length in Ref. [10]. The element of the
wavelet basis is written in the form

ca; b�x� � jajÿ1=2 c
�
xÿ b

a

�
: �6:10�

The direct and inverse formulas of the wavelet transform look
like

Wa; b � jajÿ1=2
�
f �x�c

�
xÿ b

a

�
dx ; �6:11�

f �x� � Cÿ1c

�
Wa; b ca; b�x�

da db

a2
: �6:12�

Here

Cc �
�
jc�o�j2 do

joj �
� ���� � exp�ÿixo�c�x� dx����2 do

joj :
�6:13�

From here one easily recognizes that the oscillation of
wavelets required by Eqn (3.16) is a general property. The
vanishing Fourier transform of a wavelet as o! 0, which is
just directly the condition (3.16), provides a finite value of Cc

in (6.13). One of the special and often used examples of

continuous wavelets is given by the second derivative of the
Gaussian function which is called the Mexican hat (MHAT)
wavelet after its shape. Actually, it can be considered as a
special frame as shown by Daubechies. The reconstruction
procedure (synthesis) is complicated and can become unstable
in this case. However it is widely applied for the analysis of
signals. Formula (6.11) is a kind of a convolution operation.
That is why the general theory of so-called Calderon ±
Zygmund operators [3] (see Section 17.2) is, in particular,
applicable to problems of wavelet decomposition.

7. Multidimensional wavelets

Multiresolution analysis can be performed in more than 1
dimensions. There are two ways [4] to generalize it to the two-
dimensional case, for example, but we will consider the most
often used construction given by tensor products. The tensor
product method is a direct way to construct an r-regular
multiresolution approximation which produces multidimen-
sional wavelets of compact support. This enables us to
analyze every space of functions or distributions in n
dimensions whose regularity is bound by r.

The trivial way of constructing a two-dimensional
orthonormal basis starting from a one-dimensional ortho-
normal wavelet basis cj; k�x� � 2 j=2c�2 jxÿ k� is simply to
take the tensor product functions generated by two one-
dimensional bases:

Cj1 ; k1; j2; k2�x1; x2� � cj1; k1
�x1�cj2; k2

�x2� : �7:1�

In this basis the two variables x1 and x2 are dilated
independently.

More interesting for many applications is another con-
struction, in which dilations of the resulting orthonormal
wavelet basis control both variables simultaneously, and the
two-dimensional wavelets are given by the following expres-
sion:

2 jC�2 jxÿ k; 2 jyÿ l � ; j; k; l 2 Z ; �7:2�

where C is no longer a single function: on the contrary, it
consists of three elementary wavelets. To get an orthonormal
basis ofW0 one has to use in this case three families

j�xÿk�c�yÿ l �; c�xÿ k�j�yÿ l �; c�xÿ k�c�yÿ l � :

Then the two-dimensional wavelets are

2 jj�2 jxÿ k�c�2 jyÿ l�; 2 jc�2 jxÿ k�j�2 jyÿ l�;
2 jc�2 jxÿ k�c�2 jyÿ l� :

In the two-dimensional plane, the analysis is done along the
horizontal, vertical and diagonal strips with the same
resolution in accordance with these three wavelets.

Figure 9 shows how this construction looks. The sche-
matic representation of this procedure in the left-hand side of
the figure demonstrates how the corresponding wavelet
coefficients are distributed for different resolution levels
( j � 1 and j � 2). In the figure, a set of geometrical objects
is decomposed into two layers. One clearly sees how vertical,
horizontal and diagonal edges are emphasized in the
corresponding regions. One should also notice that the
horizontal strip is resolved into two strips at a definite
resolution level.

458 I M Dremin, O V Ivanov, V A Nechita|̄lo Physics ±Uspekhi 44 (5)



In the general n-dimensional case, there exist 2 nÿ1

functions which form an orthonormal basis and admit the
multiresolution analysis of any function from L2�Rn�. The
normalization factor is equal to 2 nj=2 in front of the function,
as can be guessed already from the above two-dimensional
case with this factor equal to 2 j in contrast to 2 j=2 in one
dimension.

There also exists a method to form wavelet bases which
are not reducible to tensor products of one-dimensional
wavelets (see [4]). In dimension 1, every orthonormal basis
arises from a multiresolution approximation. In dimensions
greater than 1, it is possible to form an orthonormal basis
such that there is no r-regular multiresolution approximation
(r5 1) from which these wavelets can be obtained [3].

8. The Fourier and wavelet transforms

In many applications (especially, for non-stationary signals),
one is interested in the frequency content of a signal locally in
time, i.e., tries to learn which frequencies are important at
some particular moment. As has been stressed already, the
wavelet transform is superior to the Fourier transform, first
of all, due to the locality property of wavelets. The Fourier
transform uses sine, cosine or imaginary exponential func-
tions as the main basis. It is spread over the entire real axis
whereas the wavelet basis is localized. It helps analyze the
local properties of a signal using wavelets while the Fourier
transform does not provide any information about the
location where the scale (frequency) of a signal changes.

The necessity to use different functions was mentioned by
L I Mandelstam 9 as early as in 1920 when he stated that ``the

physical meaning of the Fourier transform is to a high extent
related to the resonance properties of linear systems with
constant parameters; when considering linear systems with
variable parameters, the Fourier expansion becomes inade-
quate and the functions cos and sin should be replaced by
other functions''.

Decomposition into wavelets allows singularities to be
located by observing the places where the wavelet coeffi-
cients are (abnormally) large. Obviously, nothing of the
kind happens for the Fourier transform. Once the wavelets
have been constructed they perform incredibly well in
situations where Fourier series and integrals involve subtle
mathematics or heavy numerical calculations. But wavelet
analysis cannot entirely replace Fourier analysis, indeed,
the latter is often used in constructing the orthonormal
bases of wavelets needed for analysis with wavelet series.
Many theorems of wavelet analysis are proven with the
help of the Fourier decomposition. The two kinds of
analysis are thus complementary rather than always
competing.

The Fourier spectrum fo of a one-dimensional signal f �t�
having finite energy (i.e., square-integrable) is given by

fo �
�1
ÿ1

f �t� exp�ÿiot� dt : �8:1�

The inverse transform restores the signal

f �t� � 1

2p

�1
ÿ1

fo exp�iot� do : �8:2�

It is an unitary transformation� �� f �t���2 dt � 1

2p

�
j foj2 do : �8:3�

This is the so-called Parseval identity which states the
conservation of energy between the time and the frequency
domains. Formula (8.1) asks for information about the signal
f �t� from both past and future times. It is suited for a
stationary signal when the frequency o does not depend on
time. Thus its time-frequency band is well located in
frequency and practically unlimited in time, i.e., Eqn (8.1)
gives a representation of the frequency content of f but not of
its time-localization properties. Moreover, the signal f �t�
should decrease fast enough at future and past infinities for
the integral (8.1) to be meaningful.

An attempt to overcome these difficulties and improve
time-localization while still using the same basis functions is
made by the so-called windowed Fourier transform. The signal
f �t� is considered within some time interval (window) only. In
practice, one has to restrict the search for the optimal window
to the easily generated windows. A simple way of doing so
amounts tomultiplying f �t� by a simple compactly supported
window function, e.g., by gw � y�tÿ ti�y�tf ÿ t�, where y is
the commonly used Heaviside step-function different from
zero at positive values of its argument only, ti; tf are the initial
and final cut-offs of the signal (more complicated square-
integrable window functions g, well concentrated in time, e.g.,
Gaussian or canonical coherent states 10, can be used as well).

Figure 9. Example of the wavelet analysis of a two-dimensional plot. One

sees that either horizontal or vertical details of the plot are more clearly

resolved in the corresponding coefficients. Also, the small or large size

(correlation length) details are better resolved depending on the level

chosen.

9 We are grateful to E L Fe|̄nberg for pointing this out to us. (See:

Mandel'stam L I Collection of papers Vol. I (Ed. S M Rytov) (Moscow:

Izd. AN SSSR, 1948) p. 46.)

10 In quantum mechanics, they are introduced for quantizing the classical

harmonic oscillator. In signals they are known by the name of Gabor

functions.
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Thus one gets

fo;w �
�1
ÿ1

f �t� g�t� exp�ÿiot� dt : �8:4�

In its discrete form it can be rewritten as

fo;w �
�
f �t� g�tÿ nt0� exp�ÿimo0t� dt ; �8:5�

where o0, t0 > 0 are fixed, and m, n are some numbers which
define the scale and location properties.

The time localization of the transform is limited now but
the actual window is fixed by different functions in time and
frequency which do not depend on the resolution scale and
have fixed widths. Moreover, the orthonormal basis of the
windowed Fourier transform can be constructed only for the
so-called Nyquist density (corresponding to the condition
o0t0 � 2p; see Section 14), whereas there is no such restriction
imposed on wavelets. At this critical value, frames are
possible, but the corresponding functions are either poorly
localized, or have poor regularity. This result is known as the
Balian ±Low phenomenon. In practical applications of the
windowed Fourier transform, to achieve better localization
one should choose o0t0 < 2p thus destroying the orthonorm-
ality.

The difference between the wavelet and windowed Four-
ier transforms lies in the shapes of the analyzing functions c
and g. All g, regardless of the value ofo, have the same width.
In contrast, the wavelets c automatically provide the time (or
spatial location) resolution window adapted to the problem
studied, i.e., to its essential frequencies (scales). Namely, let
t0; d and o0; do be the centers and the effective widths of the
wavelet basic function c�t� and its Fourier transform. Then
for the wavelet family cj; k�t� (3.15) and, correspondingly, for
wavelet coefficients, the center and the width of the window
along the t-axis are given by 2 j�t0 � k� and 2 jd. Along the o-
axis they are equal to 2ÿjo0 and 2ÿjdo. Thus the ratios of
widths to the center position along each axis do not depend on
the scale. This means that the wavelet window resolves both
the location and the frequency in fixed proportions to their
central values. For the high-frequency component of the
signal it leads to a quite large frequency extension of the
window whereas the time location interval is squeezed so that
the Heisenberg uncertainty relation is not violated. That is
why wavelet windows can be called Heisenberg windows.
Correspondingly, the low-frequency signals do not require
small time intervals and admit a wide window extension along
the time axis. Thus wavelets well localize the low-frequency

`details' on the frequency axis and the high-frequency ones on
the time axis. This ability of wavelets to find a perfect
compromise between the time localization and the frequency
localization by automatically choosing the widths of the
windows along the time and frequency axes well adjusted to
their centers location is crucial for their success in signal
analysis. The wavelet transform cuts up the signal (functions,
operators etc) into different frequency components, and then
studies each component with a resolution matched to its scale
providing a good tool for time-frequency (position-scale)
localization. That is why wavelets can zoom in on singula-
rities or transients (an extreme version of very short-lived
high-frequency features!) in signals, whereas the windowed
Fourier functions cannot. In terms of traditional signal
analysis, the filters associated with the windowed Fourier
transform are constant bandwidth filters whereas the wavelets
may be seen as constant relative bandwidth filters whose
widths in both variables linearly depend on their positions.

In Figure 10 we show the difference between these two
approaches. It demonstrates the constant shape of the
windowed Fourier transform region and the varying shape
(with a constant area) of the wavelet transform region. The
density of localization centers is homogeneous for the wind-
owed Fourier transform whereas it changes for the wavelet
transform so that at low frequencies the centers are far apart
in time and become much denser for high frequencies.

From the mathematical point of view, it is important that
orthonormal wavelets give good unconditional 11 bases for
other spaces than that of the square integrable functions, out-
performing the Fourier basis functions in this respect. It is
applied in the subsequent sections to a characterization of
such functions using only the absolute values of wavelet
coefficients. In other words, by looking only at the absolute
values of wavelet coefficients we can determine to which space
this function belongs. This set of spaces is much wider than in
the case of the Fourier transform by which only Sobolev
spaces 12 can be completely characterized.

As we mentioned already, the wavelet analysis concen-
trates near the singularities of the function analyzed. The
corresponding wavelet coefficients are negligible in the
regions where the function is smooth. That is why wavelet
series with plenty of non-zero coefficients represent really
pathological functions, whereas `normal' functions have

o

t

o

t

Figure 10. The lattices of time-frequency localization for the wavelet transform (left) and windowed Fourier transform (right).

11 For unconditional bases, the order in which the basis vectors are taken

does not matter. All of the known constructions of unconditional bases of

wavelets rely on the concept of multiresolution analysis.
12 The function f belongs to the Sobolev space Ws�R� if its Fourier

transform provides the finite integrals
� �1� joj2�sj f �o�j2 do.
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`sparse' or `lacunary' wavelet series and are easy to compress.
On the other hand, the Fourier series of the usual functions
have a lot of non-zero coefficients, whereas `lacunary' Fourier
series represent pathological functions. Let us note finally
that, nevertheless, the Fourier transform is systematically
used in the proof of many theorems in the theory of the
wavelet transform. It is not at all surprising because they
constitute the stationary signals by themselves.

9. Wavelets and operators

The study of many operators acting on a space of functions or
distributions becomes simple when suitable wavelets are used
because these operators can be approximately diagonalized
with respect to this basis. Orthonormal wavelet bases provide
a unique example of a basis with non-trivial diagonal, or
almost-diagonal, operators. The operator action on the
wavelet series representing some function does not have
uncontrollable sequences, i.e., wavelet decompositions are
robust. One can describe precisely what happens to the initial
series under the operator action and how it is transformed. In
a certain sense, wavelets are stable under the operations of
integration and differentiation. That is why wavelets, used as
a basis set, allow us to solve differential equations character-
ized by widely different length scales found in many areas of
physics and chemistry. Moreover, wavelets reappear as
eigenfunctions of certain operators.

To deal with operators in the wavelet basis it is
convenient, as usual, to use their matrix representation. For
a given operator T it is represented by the set of its matrix
elements in the wavelet basis:

Tj; k; j 0; k 0 �


c�j; kjT jcj 0; k 0

�
: �9:1�

For linear homogeneous operators, their matrix representa-
tion can be explicitly calculated [22].

It is extremely important that it is sufficient to first
calculate the matrix elements at some (j-th) resolution level.
All other matrix elements can be obtained from it using the
standard recurrence relations. Let us derive the explicit matrix
elements rj; l; j; l 0 of the homogeneous operatorT of the order a:

rj; l; j; l 0 �


jj; ljT jjj; l 0

�
: �9:2�

Using the recurrence relations between the scaling functions
at the given and finer resolution levels, one gets the following
equation relating the matrix elements at neighboring levels:

rj; l; j ;l 0 �
��X

k

hk jj�1; 2lÿk
�
jT j
�X

k 0
hk 0 jj�1; 2l 0ÿk 0

��
�
X
k

X
k 0

hkhk 0rj�1; 2lÿk; j�1; 2l 0ÿk 0 : �9:3�

For the operator T having the homogeneity index a one
obtains

rj; l; j; l 0 � 2a
X
k

X
k 0

hkhk 0rj; 2lÿk; j; 2l 0ÿk 0 : �9:4�

The solution of this equation defines the required coefficients
up to the normalization constant which can be easily obtained
from the results of the action by the operator T on a
polynomial of a definite rank. For non-integer values of a,
this is an infinite set of equations.

The explicit equation for the n-th order differentiation
operator is

r
�n�
k �

�
j�x�

���� dn

dxn

����j�xÿ k�
�

�
X
i;m

hi hm

�
j�2xÿ i�

���� dn

dxn

����j�2xÿmÿ 2k�
�

� 2n
X
i;m

hi hmr
�n�
2kÿi�m : �9:5�

This leads to a finite system of linear equations for rk (the
index n is omitted):

2ÿnrk � r2k �
X
m

a2mÿ1
ÿ
r2kÿ2m�1 � r2k�2mÿ1

�
; �9:6�

where both rk and am �
P

i hi hi�m (a0 � 1) are rational
numbers in the case of Daubechies wavelets. 13 The wavelet
coefficients can be found from these equations up to a
normalization constant. The normalization condition reads
[22]:Xn

k

rk � n !: �9:7�

For the support region of length L, the coefficients rk differ
from zero forÿL� 24 k4Lÿ 2, and the solution exists for
L5 n� 1. These coefficients possess the following symmetry
properties:

rk � rÿk �9:8�
for even n, and

rk � ÿrÿk �9:9�

for odd values of n.
Here, as an example, we show in Table the matrix

elements of the first and second order differential operators
in the Daubechies wavelet basis with four vanishing moments
(D8).

13 The matrix elements rk are the same for all Daubechies wavelets with a

fixed number of vanishing moments M, while there are several wavelet

bases for a givenM depending on the choice of roots of polynomials as has

been demonstrated in formulas (4.12), (4.13). Formulas (9.5), (9.6) have

been corrected in the English proofs. (This footnote has been added to the

English proofs.)

Table.

k hk hj�x�jHjj�xÿ k�i hj�x�jH2jj�xÿ k�i

ÿ6
ÿ5
ÿ4
ÿ3
ÿ2
ÿ1
0
1
2
3
4
5
6

0
0
0
0
ÿ0.07576571
ÿ0.02963552
0.49761866
0.80373875
0.29785779
ÿ0.09921954
ÿ0.01260396
0.03222310
0

0.00000084
ÿ0.00017220
ÿ0.00222404
0.03358020
ÿ0.19199897
0.79300950
0
ÿ0.79300950
0.19199897
ÿ0.03358020
0.00222404
0.00017220
ÿ0.00000084

0.00001592
ÿ0.00163037
ÿ0.01057272
0.15097289
ÿ0.69786910
2.64207020
ÿ4.16597364
2.64207020
ÿ0.69786910
0.15097289
ÿ0.01057272
ÿ0.00163037
0.00001592
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For a continuous linear operator T represented by a
singular integral

T f �x� �
�
K�x; y� f �y� dy ; �9:10�

with some definite conditions imposed on the kernel K (see
Section 17.2), there exists an important theorem [called the
T �1� theorem] which states a necessary and sufficient
condition for the extension of T as a continuous linear
operator on L2�Rn� (more details and the elegant wavelet
proof of the theorem are given in Ref. [3]).

Let us note that a standard difficulty for any spectral
method is the representation of the operator of multiplication
by a function. As an example for physicists, we would
mention the operator of the potential energy in the SchroÈ din-
ger equation. However, it is well known that this operation is
trivial and diagonal in real space. Therefore for such
operations one should deal with a real space, and after all
the operations are done there, return. Such an algorithm
would need O�N� operations only.

10. Nonstandard matrix multiplication

There are two possible ways to apply operators to functions
within wavelet theory. They are called the standard and
nonstandardmatrix forms.

For smooth enough functions most wavelet coefficients
are rather small. For a wide class of operators, most of their
matrix elements are also quite small. Let us consider the
structure of the elements of the matrix representation of some
operator T that are large enough. The matrix elements satisfy
the following relations

Tj; k; j 0; k 0 ! 0 at jkÿ k 0j ! 1 ; �10:1�

Tj; k; j 0; k 0 ! 0 at j jÿ j 0j ! 1 : �10:2�

The topology of the distribution of these matrix elements
within the matrix can be rather complicated. The goal of the
nonstandard form is to replace the latter equation (10.2) by
another, more rigorous one:

Tj; k; j 0; k 0 � 0 at j 6� j 0 : �10:3�

It avoids taking the matrix elements between the different
resolution levels. To deal with it, one should consider, instead
of the wavelet space, the overfull space with the basis
containing both wavelets and scaling functions at various
resolution levels.

Let us consider the action of the operator T on the
function f which transforms it into the function g:

g � T f : �10:4�

Both g and f have wavelet representations with the wavelet
coefficients �f sj; k; f dj; k� and �gsj; k; g dj; k�. At the finest
resolution level jn only the s-coefficients differ from zero,
and the transformation looks like

gsjn; k �
X
k 0

TSS� jn; k; jn; k
0�f sjn; k 0 : �10:5�

At the next level, in both the standard and nonstandard
approaches one gets

gsjnÿ1; k �
X
k 0

TSS� jn ÿ 1; k; jn ÿ 1; k 0�f sjnÿ1; k 0

�
X
k 0

TSD� jn ÿ 1; k; jn ÿ 1; k 0�f djnÿ1; k 0 ; �10:6�

gdjnÿ1; k �
X
k0

TDS� jn ÿ 1; k; jn ÿ 1; k 0�f sjnÿ1; k 0

�
X
k 0

TDD� jn ÿ 1; k; jn ÿ 1; k 0�f djnÿ1; k 0 ; �10:7�

where

TSS� jn; k; jn; k
0� �

�
�jjn; k
�x�Tjjn; k 0 �x� dx

and the replacement of subscripts S! D corresponds to the
substitution j! c in the integrals.

There is coupling between all resolution levels because all
s-coefficients at this �jn ÿ 1�-th level should be decomposed
by the fast wavelet transform into s- and d-coefficients at
higher levels. Therefore even for the almost diagonal initial
step the standard matrix acquires a rather complicated form
as demonstrated in Fig. 11 for 4-level operations (similar to
those discussed above in the case of the Haar wavelets). It is
thus inefficient for numerical purposes.

As we see in Fig. 11, in the final stage of the standard
approach we have to deal with the wavelet representation
corresponding to formula (3.17) with only one s-coefficient
left in the vectors which represents the overall weighted
average of the functions (the SS-transition from f to g is
given by the upper left box in the figure). At the same time, in
the process of approaching it from the scaling-function
representation (3.18), (2.1) we had to deal with average
values at intermediate levels decomposing them at each step
into s and d parts of further levels. These intermediate s-
coefficients have been omitted since they were replaced by s-
and d-coefficients at the next levels. That is why the matrix of
the standard approach looks so complicated.

To simplify the form of the matrix, it was proposed [23] to
use the redundant set of wavelet coefficients. Now, let us keep

S 0

D 0

D 1

D 2

D 3

S 0

D 0

D 1

D 2

D 3

� �

Figure 11.Matrix representation of the standard approach to the wavelet

analysis. The parts containing non-zero wavelet coefficients are shaded.
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these average values in the form of the corresponding s-
coefficients of the intermediate levels both in the initial and
final vectors representing functions f and g. Surely, we will
deal with redundant vectors which are larger than necessary
for the final answer. However, it should not bother us because
we know the algorithm to reduce the redundant vector to a
non-redundant form. At the same time, this trick simplifies
both the form of the transformation matrix and the computa-
tion. This non-standard form is shown in Fig. 12. Different
levels have been completely decoupled because there are no
blocks in this matrix which would couple them. The block
with SS-elements has been separated, and in its place the zero
matrix is inserted. The whole matrix becomes artificially
enlarged. Correspondingly, the vectors, characterizing the
functions f and g, are also enlarged. Here all intermediate s-
coefficients are kept for the function f (compare the vectors in
the right-hand sides of Figs 11 and 12). Each Sj�1 is generated
from Sj andDj. That is where the coupling of different levels is
still present. In the transformation matrix all SS-elements are
zero except for the lowest one S0S0. All other SD, DS, DD
matrices are almost diagonal due to the finite support of
scaling functions and wavelets. The redundant form of the g-
function vector of Fig. 12 may be reduced to its usual wavelet
representation of Fig. 11 by splitting up any Sj into Sjÿ1 and
Djÿ1 by a standard method. Then these Sjÿ1 and Djÿ1 are
added to the corresponding places in the vector. This iterative
procedure allows one, by going from Sjÿ1 down to S0, to get
the usual wavelet series of the function g. We get rid of all s-
coefficients apart from S0. The computation becomes fast.

11. Regularity and differentiability

The analysis of any signal includes finding the regions of its
regular and singular behavior. One of the main features of
wavelet analysis is its capacity of doing a very precise analysis
of the regularity properties of functions. When representing a
signal by a wavelet transform, one would like to know if and
at which conditions the corresponding series is convergent
and, therefore, where the signal is described by the differenti-
able function or where the singularities appear. For certain
singular functions, essential information is carried by a

limited number of wavelet coefficients. Such information
may be used in the design of numerical algorithms. We start
with the traditional HoÈ lder conditions of regularity and, in
the next section, proceed to their generalization following
Ref. [24].

The HoÈ lder definition of the pointwise regularity at a point
x0 of a real-valued function f defined onRn declares that this
function belongs to the spaceC a�x0� (a > ÿn) if there exists a
polynomial P of order at most a such that

j f �x� ÿ P�xÿ x0�j4C jxÿ x0ja ; �11:1�

where C is a constant.
The supremum of all values of a such that (11.1) holds is

called theHoÈlder exponent of f at x0 and denoted a�x0� 14.
Correspondingly, a point x0 is called a strong a-singularity

�ÿn < a4 1� of f if, at small intervals, the following
inequality is valid�� f �x� ÿ f �y���5C jxÿ yja �11:2�

for a relatively large set of x's and y's close to x0.
Such definitions work quite well for a rather smooth

function. However, in the case of a function drastically
fluctuating from point to point they are difficult to handle at
each point because, e.g., the derivative of f may have no
regularity at x0, condition (11.1) may become unstable under
some operators such as the Hilbert transform etc. The
generalized definition of pointwise regularity will be given in
the next section by introducing two-microlocal spaces. Here,
we concentrate on global properties of the function f.

The uniform regularity of a function f at positive non-
integer values of a consists in the requirement forEqn (11.1) to
hold for all real n-dimensional x0 with a uniform value of the
constant C. At first sight, this condition looks rather trivial
because for smooth functions the uniform regularity coincides
with the pointwise regularity, which is everywhere the same.
To understand that this is non-trivial, one could consider, e.g.,
the function f �x� � x sin�1=x� with pointwise exponents
a�0� � 1, a�x0� � 1 for any fixed x0 different from 0, and
uniformHoÈ lder exponent a � 1=2which appears for the set of
points x0 / jxÿ x0j1=2 4 jxÿ x0j.

The requirement of a definite uniform regularity of an n-
dimensional function f �x� on the whole real axis at positive
non-integer values of a can be stated in terms of wavelet
coefficients as an inequality

jdj; kj4C2ÿ�n=2�a� j : �11:3�

Thus from the scale behavior of wavelet coefficients one gets
some characteristics of the uniform regularity of the function.
In particular, the linear dependence of the logarithms of
wavelet coefficients on the scale j would indicate the scaling
properties of a signal, i.e., the fractal behavior whose
parameters are determined from higher moments of wavelet
coefficients (see below). For pointwise regularity determining
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Figure 12.Nonstandard matrix multiplication in the wavelet analysis.

14 In principle, the expression jxÿ x0ja on the right-hand side of Eqn (11.1)
can be replaced by a more general function satisfying definite conditions

and called a modulus of continuity but we shall use only the above

definition. In general, amodulus of continuity defines the largest deviation

from that best polynomial approximation of a function f which is

characterized by the set of smallest deviations compared to other

polynomial approximations.
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the local characteristics, the similar condition is discussed in
the next section.

Now, let us formulate the conditions under which wavelet
series converge at some points, or are differentiable. It has
been proven that
� if f is square integrable, the wavelet series of f converges

almost everywhere;
� the wavelet series of f is convergent on a set of points

equipotent to R if

jdj; kj � 2ÿj=2Zj ; �11:4�

where Zj tends to 0 when j tends to �1;
� the function f is almost everywhere differentiable and the

derivative of the wavelet series of f converges almost every-
where to f 0, if the following condition is satisfiedX

j

jdj; kj22 2 j 41; �11:5�

� the function f is differentiable on a set of points
equipotent to R and, at these points the derivative of its
wavelet series converges to f 0, if

jdj; kj4 2ÿ3 j=2Zj ; �11:6�

where Zj tends to 0 when j tends to �1.
Limitations imposed on wavelet coefficients are general-

ized in the next section to include the pointwise regularity
condition when two-microlocal spaces are considered. These
better estimates do not hold just uniformly, but hold locally
(possibly, apart from a set of points of small Hausdorff
dimension which can be determined by wavelet analysis ).

Note finally that one can also derive the global regularity
of f from the decay ino of the absolute value of its windowed
Fourier transform, if the window function g is chosen to be
sufficiently smooth. In most cases, however, the value of the
uniform HoÈ lder exponent computed from the Fourier
coefficients will not be optimal. Nothing can be said from
Fourier analysis about the local regularity, in contrast to two-
microlocal wavelet analysis discussed below.

12. Two-microlocal analysis

The goal of two-microlocal analysis is to reveal the pointwise
behavior of any function from the properties of its wavelet
coefficients. The local regularity of the function is thus
established.

The scalar product of an analyzed one-dimensional
function and a wavelet maps this function into two-dimen-
sional wavelet coefficients which reveal both the scale and
location properties of a signal. In the above definitions of the
pointwise regularity of the function at x0 determined by the
HoÈ lder exponent only local but not scaling properties of the
signal are taken into account. The problem of determining the
exact degree of the HoÈ lder regularity of a function is easily
solved if this regularity is everywhere the same, because in
such a case it usually coincides with the uniform regularity.
The determination of the pointwise HoÈ lder regularity,
however, becomes much harder if the function changes
wildly from point to point, i.e., its scale (frequency)
characteristics depend strongly on the location (time). In
this case we have to deal with a very non-stationary signal.
To describe the singularity of f �x� at x0 only by the HoÈ lder
exponent a�x0�4 1 one looks for the order of magnitude of

the difference j f �x� ÿ f �x0�j when x tends to x0, without
taking into account, e.g., the possible high-frequency oscilla-
tions of f �x� ÿ f �x0�, i.e., its scale behavior.

The properties of the wavelet coefficients as functions of
both scale and location 15 provide a unique way of describing
the pointwise regularities. It is more general than the
traditional HoÈ lder approach because it allows us to investi-
gate, characterize and easily distinguish some specific local
behaviors such as approximate selfsimilarities and very
strong oscillatory features like those of indefinitely oscillat-
ing functions which are closely related to so-called `chirps' of
the form xa sin�1=xb� (reminiscent of bird, bat or dolphin
sonar signals with very sharp oscillations which accelerate at
some point x0). Chirps are well known to everybody dealing
with modern radar and sonar technology. In physics, they are
known, e.g., in theoretical considerations of dark matter
radiation and of gravitational waves. Sometimes, a similar
dependence can reveal itself even in the more traditional
correlation analysis [25 ± 27]. A large value of the second
derivative of the phase function of a frequency modulated
signal is a typical feature. Such special behavior with
frequency modulation laws hidden in a given signal can be
revealed [24] with the help of two-microlocal analysis.
Actually, there is no universally accepted definition of a
chirp. Sometimes, any sine of a non-linear polynomial
function of time is also called a chirp.

The two-microlocal space Cs; s 0 �x0� of the real-valued n-
dimensional functions f (distributions) is defined by the
following simple decay condition on their wavelet coeffi-
cients dj; k

jdj; k�x0�j4C2ÿ�n=2�s� j
ÿ
1� j2 jx0 ÿ kj�ÿs 0 ; �12:1�

where s and s 0 are two real numbers. This is a very important
extension of the HoÈ lder conditions. The two-microlocal
condition is a local counterpart of the uniform condition
(11.1). It is very closely related to the pointwise regularity
condition (11.1) because it expresses, e.g., the singular
behavior of the function itself at the point x0 in terms of the
k-dependence of its wavelet coefficients at the same point.
Such an estimate is stable under derivation and fractional
integration.

For s 0 � 0, the space thus defined is the global HoÈ lder
space Cs�Rn�.

If s 0 > 0, these conditions are weaker at x0 than far from
x0 so that they describe the behavior of a function which is
irregular at x0 in a smooth environment, i.e., the regularity of
f gets worse as x tends to x0. If s

0 is positive, the inequality
(12.1) implies that

jdj; kj4C2ÿ�n=2�s�j ;

so that f belongs to Cs�Rn�. The HoÈ lder norms do not give
any information about this singularity because one has to
consider them in domains that exclude x0, and the HoÈ lder
regularity of f deteriorates when x gets close to x0. That is
why we need a uniform regularity assumption when s 0 is
positive.

If s 0 < 0, the converse situation persists when x0 is a point
of regularity in a nonsmooth environment.

15 Let us note that the word `location' (and, correspondingly, `scale') does

not necessarily imply a single dimension but could describe the position

(and size or frequency) in any n-dimensional space.
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Thus the inequality Eqn (12.1) clarifies the relationship
between the pointwise behavior of a function and the size
properties of its wavelet coefficients. If s > 0 and s 0 > s, then
Cs;ÿs�x0� is included in Cs�x0�. One can prove that the
elements of the space Cs; s 0 �x0�, for s 0 > ÿs, are functions
whereas the elements of Cs;ÿs�x0� are (in general) not
functions but distributions (and, moreover, quite `wild
distributions' for which the local HoÈ lder condition (11.1)
cannot hold and should be generalized by multiplying the
right-hand side by the factor log 1=jxÿ x0j). However, if f
belongs to the spaceCs�x0� then it belongs toCs;ÿs�x0� too. In
particular, if at x close to x0 the following inequality�� f�x���4Cjxÿ x0js is valid for s4 0 ;

imposing some limit on the nature of the singularity at this
point, then the estimates for wavelet coefficients are given by

jdj; kj4C2ÿ�n=2�s�jjkÿ 2 jx0js ; �12:2�

if the support of cj;k is at least at a distance 2
ÿj from x0, and

jdj; kj4C2ÿ�n=2�s�j ; �12:3�

if the support of cj; k is at a distance less than 2ÿj from x0,
which demonstrate the above statement.

The two-microlocal spaces have some stability properties.
In particular, the pseudodifferential operators of order 0 are
continuous in these spaces (in contrast with the usual
pointwise HoÈ lder regularity condition which is not preserved
under the action of these operators, for example, of the
Hilbert transform). The position of the points of regularity
of a function f which belongs to the space Cs; s 0 �x0� is
essentially preserved under the action of singular integral
operators such as the Hilbert transform. This property leads
to a pointwise regularity result for solutions of partial
differential equations which is formulated [24] by the
following theorem.

Let L be a partial differential operator of order m, with
smooth coefficients and elliptic at x0. IfLf � g and g belongs to
Cs; s 0 �x0�, then f belongs to Cs�m; s 0 �x0�.

Thus, if Lf � g, and if g is a function that belongs to
Cs�x0�, then there exists a polynomial P of degree less than
s�m such that, for jxÿ x0j4 1,�� f �x� ÿ P�x���4C jxÿ x0js�m :

All the above conditions look as if the wavelets were
eigenvectors of the differential operators d a, jaj4 r, with
corresponding eigenvalues 2 j jaj.

The more general functional spaces which admit the
power dependence of wavelet coefficients on the scale j
defined by an extra parameter p are considered in Ref. [24].
In particular, these are the Sobolev spaces where the
integrability is required up to some power of both the
function itself and its derivatives up to a definite order. In
this case, the additional factor j 2=p appears in the right-hand
side of the inequality (11.1), or, in other words, in addition to
the linear term in the exponent one should consider another
logarithmically dependent term. Thus there is no rigorous
selfsimilarity (fractality) of the function any more. However,
the wavelet analysis allows us to determine the fractal
dimensions of the sets of points where the function f is
singular.

For continuous wavelets, the condition equivalent to Eqn
(11.1) takes the form

��W�a; b���4Cas
�
1� jbÿ x0j

a

�ÿs0
: �12:4�

The definite upper limits on the behavior of jW�a; b�j can also
be obtained if f is integrable in the neighborhood of the origin
(see [24]). They are somewhat complicated, and we do not
show them here.

It is instructive to examine the meaning of the conditions
of the type (12.4). Let us consider the cone in the �b; a� half-
plane defined by the condition jbÿ x0j < a. Within this cone
we have jW�a; b�j � O�a s� as a! 0. Outside the cone, the
behavior is governed by the distance of b to the point x0.
These two behaviors are generally different and have to be
studied independently. However, it is shown in [28] that non-
oscillating singularities may be characterized by the behavior
of the absolute values of their wavelet coefficients within the
cone. It is also shown in [28] that rapidly oscillating
singularities, which we consider below, cannot be character-
ized by the behavior of their wavelet transform in the cone.

The two-microlocal methods proved especially fruitful in
the analysis of oscillating trigonometric and logarithmic
chirps.

A simple definition of trigonometric chirps at the origin
x � 0 could simply be read

f �x� � xag�xÿb� ; �12:5�

where g is a 2p-periodic Cr function with vanishing integral.
This type of behavior leads to the following expansion of
continuous wavelet coefficients at small positive b4d on
curves a � lb 1�b

W�lb1�b; b� � baml�bÿb� ; �12:6�

where ml is a 2p-periodic function with a definite norm. It
shows that rapidly oscillating singularities cannot be char-
acterized by the behavior of their wavelet transform in the
cone as in the previous examples. In this case, the wavelet
coefficients should be carefully analyzed not in the cone but
on definite curves because they are concentrated along these
ridges. For small enough scales, such a ridge lies outside the
influence cone of the singularity. A typical example is given by
the function f �x� � sin�1=x� whose instantaneous frequency
tends to infinity as x! 0. The wavelet coefficient modulus is
maximum on a curve of equation b � Ca2 for some constant
C depending only on the wavelet and this curve is not a cone.
Therefore it is not sufficient to study the behavior of wavelet
coefficients inside the cone to characterize the rapidly
oscillating singularities. Let us note, that in case of noisy
signals, the contribution of the deterministic part of the signal
may be expected to be much larger than that of the noise just
near the ridges of the wavelet transform because the wavelet
transform of the noise is spread over the whole � j; k�-plane. It
can be thus used for denoising the signal.

Logarithmic chirps have an approximate scaling invar-
iance near the point x0. A function f has a logarithmic chirp
of order (a; l) and of regularity g5 0 at the origin x � 0 if for
x > 0 there exists a log l-periodic function G�log x� in C g�R�
such that

f �x� ÿ P�x� � xaG�log x� : �12:7�
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The continuous wavelet coefficients of it satisfy the condition

W�a; b� � aaH

�
log a;

b

a

�
; �12:8�

where H is log l-periodic in the first argument and its
behavior in b=a is restricted by some decay conditions. In
other words, if the following scaling property is observed

C�la; lb� � laC�a; b� �12:9�

for l < 1 and small enough a and b, then f has a logarithmic
chirp of order (a; l). More general and rigorous statements
and proofs can be found in Ref. [24]. Thus we conclude that
the type and behavior of a chirp can be determined from the
behavior of its wavelet coefficients.

As an example of the application of the above statements,
let us mention the continuous periodic function s�x�
represented by the Riemann series

s�x� �
X1
n�1

1

n2
sin�pn2x� ; �12:10�

which belongs to the space C 1=2. It is best analyzed by a
continuous wavelet transform using the specific complex
wavelet c�x� � �x� i�ÿ2 proposed by Lusin in the 1930s in
functional analysis. Then the wavelet transform of the
Riemann series is given by the well known Jacobi Theta
function. The behavior of wavelet coefficients determines the
chirp type and its parameters. With the help of the two-
microlocal analysis it was proven that this function has
trigonometric chirps at some rational values of x � x0 which
are ratios of two odd numbers (also, its first derivative exists
only at these points) and logarithmic chirps at quadratic
irrational numbers (near these points its wavelet transform
possesses scaling invariance properties).

For practical purposes, however, it may happen that very
large values of j are needed to determine HoÈ lder exponents
reliably from the above conditions. For the global HoÈ lder
exponent, no assumptions about regularity of wavelets is
required whereas determination of the local HoÈ lder expo-
nents requires a more detailed approach.

A nice illustration of the application of wavelet analysis
for studies of local regularity properties of the function f �x� is
given in [2] for the following function

f �x� � 2 exp�ÿjxj� y�ÿxÿ 1�
� exp�ÿjxj� y�x� 1�y�1ÿ x�
� exp�ÿx���xÿ 1�2 � 1

�
y�xÿ 1� ; �12:11�

which is infinitely differentiable everywhere except at
x � ÿ1; 0; 1 where, respectively, f; f 0; f 00 are discontinuous.
One computes for each of the three points the maxima of
wavelet coefficients Aj � maxk jWj; kj at various resolution
levels 3 < j < 10 and plots logAj= log 2 versus j. The linear
dependences on j are found at these points. The slopes at
x � ÿ1; 0; 1 are, correspondingly, ÿ0:505; ÿ1:495; ÿ2:462,
leading with a pretty good accuracy of 1.5% to rather precise
estimates of the HoÈ lder exponents 0, 1, 2.

Even better accuracy in determining the local regularity of
a function can be achieved with the help of redundant wavelet
families (frames) where the translational non-invariance is
much less pronounced, the wavelet regularity plays no role
and only the number of vanishing moments is important.

If orthonormal wavelets are used, then their regularity
can become essential. Typically, they are continuous, have a
non-integer uniform HoÈ lder exponent and different local
exponents at different points. In fact, there exists a whole
hierarchy of (fractal) sets in which these wavelets have
different HoÈ lder exponents. There is a direct relation
between the regularity of the function c and its number of
vanishing moments. The more moments are vanishing, the
smoother is the function c. For example, for the widely used
Daubechies wavelets with a compact support the degree of
regularity increases linearly with the maximum number of
vanishing moments M for higher-tap wavelets as mM with
m � 0:2 and, correspondingly, with the support width, as was
already mentioned in Section 4. These properties justify the
name `mathematical microscope', which is sometimes
bestowed on the wavelet transform. Let us note that the
choice of the hk that leads to maximal regularity is, however,
different from the choice with maximal number of vanishing
moments for c. How well the projections of a multiresolu-
tion approximation Vj converge to a given function f
depends on the regularity of the functions in V0.

There exists a special class of wavelets called vaguelets.
They possess regularity properties characterized by the
following restrictions:��cj; k�x�

��4C2nj=2
ÿ
1� j2 jxÿ kj�ÿnÿa ; �12:12���cj; k�x0� ÿ cj; k�x�
��4C2 j�n=2�b�jx0 ÿ xjb �12:13�

with 0 < b < a < 1 and a constant C. Surely, the cancellation
condition (3.16) must be also satisfied. The norm of any
function f is then limited by its wavelet coefficients as

jj f jj4C 0
�X

j; k

jdj; kj2
�1=2

; �12:14�

with a constant C 0. Any continuous linear operator T on L2

which satisfies the condition T�1� � 0 transforms an ortho-
normal wavelet basis into vaguelets.

In practice, the regularity of a wavelet can become
especially important during the synthesis when after omis-
sion of small wavelet coefficients it is better to deal with a
rather smooth c to diminish possible mistakes at the
restoration stage. On the contrary, for analysis it seems to be
more important to have wavelets with many vanishing
moments to `throw out' the smooth polynomial trends and
reveal potential singularities. Also, the large number of
vanishing moments leads to better compression but can
enlarge mistakes in the inverse procedure of reconstruction
because of the worsened regularity of wavelets. The use of the
biorthogonal wavelets helps a lot at this stage because among
two dual wavelets one has many vanishing moments whereas
the other possesses good regularity properties. By choosing
an appropriate pair of the biorthogonal wavelets one can
minimize possible mistakes.

13. Wavelets and fractals

Some signals (objects) possess self-similar (fractal) properties
(see, e.g., [29 ± 32]). This means that by changing the scale one
observes features at a new scale similar to those previously
noticed at other scales. This property leads to power-like
dependences. The formal definition of a (mono)fractal
Hausdorff dimension DF of a geometrical object is given by
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the condition

0 < lim
e!0

N�e� eDF <1 ; �13:1�

which states thatDF is the only value for which the product of
the minimal number of the (covering this object) hypercubes
N�e� with a linear size l � e and of the factor eDF stays
constant for E tending to zero. In the common school
geometry of homogeneous objects, this coincides with the
topological dimension. The probability pi�e� to belong to a
hypercube Ni�e� is proportional to eDF , and the sum of
moments is given byX

i

p
q
i �e� / eqDF : �13:2�

The fractal dimension is directly related to the HoÈ lder
exponents.

Moreover, for more general objects called multifractals,
the `fractal exponents' a�x0� [see Eqn (11.1)] vary from point
to point. The Hausdorff dimension of the set of points x0,
where a�x0� � a0, is a function of d�a0� whose graph
determines the multifractal properties of a signal, let it be
Brownian motion, fully developed turbulence or a purely
mathematical construction of the Riemann series. Thus the
weights of various fractal dimensions inside a multifractal
differ for different multifractals, and the value DF is now
replaced byDq�1 which depends on q. It is called theRenyi (or
generalized) dimension [33]. Usually, it is a decreasing function
of q. The fractal (Hausdorff) information and correlation
dimensions are, correspondingly, obtained from the Renyi
dimension at q � ÿ1, 0, 1. The difference between the
topological and Renyi dimensions is called the anomalous
dimension (or codimension). Fractals and multifractals are
common among the purely mathematical constructions (the
Cantor set, the Serpinsky carpet etc) and in nature (clouds,
lungs etc).

The pointwise HoÈ lder exponents are now determined
using wavelet analysis. As we have seen, all wavelets of a
given family cj; k�x� are similar to the basic wavelet c�x� and
derived from it by dilations and translations. Since wavelet
analysis just consists in studying the signal at various scales by
calculating the scalar product of the analyzing wavelet and
the signal explored, it is well suited to revealing the fractal
peculiarities. In terms of wavelet coefficients it implies that
their higher moments behave in a power-like manner with the
scale changing. The wavelet coefficients are less sensitive to
noise because they measure, at different scales, the average
fluctuations of the signal.

Namely, let us consider the sumZq of the q-th moments of
the coefficients of the wavelet transform at various scales j

Zq� j� �
X
k

jdj; kjq ; �13:3�

where the sum is over the maxima of jdj; kj. Then it was shown
[34, 35] that for a fractal signal this sum should behave as

Zq� j� / 2 j �t�q��q=2� ; �13:4�

i.e.,

logZq� j� / j

�
t�q� � q

2

�
: �13:5�

Thus the necessary condition for a signal to possess fractal
properties is the linear dependence of logZq� j� on the level
number j. If this requirement is fulfilled the dependence of t
on q shows whether the signal is monofractal or multifractal.
Monofractal signals are characterized by a single dimension
and, therefore, by a linear dependence of t on q, whereas
multifractal ones are described by a set of such dimensions,
i.e., by non-linear functions t�q�. Monofractal signals are
homogeneous, in the sense that they have the same scaling
properties throughout the entire signal. Multifractal signals,
on the other hand, can be decomposed into many subsets
characterized by different local dimensions, quantified by a
weight function. The wavelet transform, if done with wavelets
possessing the appropriate number of vanishing moments,
removes lowest polynomial trends that could cause the
traditional box-counting techniques to fail in quantifying
the local scaling of the signal. The function t�q� can be
considered as a scale-independent measure of the fractal
signal. It can be further related to the Renyi dimensions, and
Hurst andHoÈ lder (at q � 1 as is clear from the examples in the
previous sections) exponents (for more detail, see Refs. [36,
37]). The range of validity of the multifractal formalism for
functions can be elucidated [38] with the help of the two-
microlocal methods generalized to the higher moments of
wavelet coefficients. Thus, wavelet analysis goes very far
beyond the limits of the traditional analysis which uses the
language of correlation functions (see, e.g., [36]) in approach-
ing much deeper correlation levels.

Let us note that Z2� j� is just the dispersion (variance) of
wavelet coefficients whose average is equal to zero. For
positive values of q, Zq� j� reflects the scaling of the large
fluctuations and strong singularities, whereas for negative q it
reflects the scaling of the small fluctuations and weak
singularities, thus revealing different aspects of underlying
dynamics.

14. Discretization and stability

In signal analysis, real-life applications produce only
sequences of numbers due to the discretization of continuous
time signals. This procedure is called the sampling of analog
signals. Below we consider its implications. At first sight, it
seems that in this case the notions of singularities and HoÈ lder
exponents are meaningless. Nevertheless, one can say that the
behavior of wavelet coefficients across scales provides a good
way of describing the regularity of functions whose samples
coincide with the observations at a given resolution.

First, we treat the doubly infinite sequence

f �d� � f fng �
�
f �nDt�	 �ÿ1 < n <1� ;

obtained by sampling a continuous (analog) signal at the
regularly spaced values tn � nDt. If within each n-th interval
Dt the function f can be replaced by the constant value f �nDt�
then for small enough Dt one gets

fo�
�1
ÿ1

f �t� exp�ÿiot� dt �Dt
X1

n�ÿ1
f �nDt� exp�ÿinoDt� :

�14:1�
The inversion formula reads

fn � 1

2p

�1
ÿ1

fo exp�inoDt� do : �14:2�
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The function fo is periodic with the period 2p=Dt. This means
that one can consider it only within the frequency interval
�ÿp=Dt; p=Dt�. Moreover, for real signals even the interval
�0; p=Dt� is sufficient. For time-limited signals the summation
in Eqn (14.1) is done from nmin � 0 to nmax � Nÿ 1 for N
sampled values of a signal. For fast Fourier transform
algorithms, it requires O�N logN� computations.

To get the relation between Fourier transforms of the
continuous time signal f and of the sequence of samples f �d�

we rewrite formula (14.2)

fn � 1

2p

X1
k�ÿ1

��2k�1�p=Dt
�2kÿ1�p=Dt

fo exp�inoDt� do

� 1

2p

�p=Dt
ÿp=Dt

X1
k�ÿ1

fo�2kp=Dt exp�inoDt� do

� 1

2p

�p=Dt
ÿp=Dt

f �d�o exp�inoDt� do ; �14:3�

from which one gets

f �d�o �
X1

k�ÿ1
fo�2kp=Dt : �14:4�

Thus the Fourier transform of the discrete sample
contains, in general, contributions from the Fourier trans-
form of the continuous signal not only at the same frequency
o but also at the countably infinite set of frequencies
o� 2kp=Dt. These frequencies are called aliases of the
frequency o. For `undersampled' sets, the aliasing phenom-
enon appears, i.e., the admixture of high frequency compo-
nents to lower frequencies. The frequency o�N� � p=Dt is
called the Nyquist frequency. To improve the convergence of
the series, `oversampling' is used, i.e., f is sampled at a rate
exceeding the Nyquist rate.

The band-limited function f can be recovered from its
samples fn's whenever the sampling frequency os / �Dt�ÿ1 is
not smaller than the band-limit frequency of, i.e., whenever
os 5of. This statement is known as the sampling (or
Shannon ±Kotel'nikov) theorem.

In this case, there is no aliasing since only one aliased
frequency is in the band limits �ÿof; of�. If os < of, then the
function f cannot be recovered without additional assump-
tions.

A rigorous proof of the theorem exists, but it is already
quite clear from intuitive arguments that one cannot restore
the high-frequency content of a signal by sampling it with
lower frequency. Therefore, to get knowledge of high-
frequency components one should sample a signal with a
frequency exceeding all the frequencies important for a given
physical process. Only then is the restoration of a signal
stable. One can reduce the sampling frequency os all the way
down to of without losing any information. This allows one
to subsample the signal by keeping only smaller sets of data,
i.e., to get a shorter sampled signal.

In the case of wavelet analysis, to have a numerically
stable reconstruction algorithm for f from dj; k one should be
sure that cj; k constitute a frame. For better convergence, one
needs frames close to tight frames, i.e., those satisfying the
condition �B=Aÿ 1�5 1. The orthonormal wavelet bases
have good time-frequency localization. In principle, if c
itself is well localized both in time and in frequency, then the
frame generated by c will share that property as well.

Discrete wavelets are quite well suited for the description
of functions by their mean values at equally spaced points.
However in practical real-life applications, apart from this
projection of a function, one has to deal with the finite
interval of its definition and with a finite number of
resolution levels. As was mentioned in Section 5, one usually
rescales the `units' of levels by assuming that the label of the
finest available scale is j � 0, and the coarser scales have
positive labels 14 j4 J. The fine-level coefficients are
defined by the sampled values of f �x� as s0; k � f �k�, i.e.,
instead of the function f �x� one considers its projection P0 f.
The higher-level coefficients are found from the iterative
relations (5.2), (5.3), i.e., with the help of the fast wavelet
transform without direct calculation of integrals�
f �x�cj; k�x� dx and

�
f �x�jj; k�x� dx. Therefore the approx-

imate representation of the function f �x� which corresponds
to the redefined versions of Eqns (2.5) and (3.17) can be
written as

f �x� � P0 f �
XJ
j�1

X
k

dj; k cj; k �
X
k

sJ; k jJ; k ; �14:5�

where the sum over k is limited by the interval in which f �x� is
defined. Moreover, to save computing time, one can use not
the complete set of wavelet coefficients dj; k but only a part of
them omitting small coefficients not exceeding some thresh-
old value E. This standard estimation method is called
estimation by coefficient thresholding. If the sum in (14.5) is
taken only over such coefficients jdj; kj > e and the number of
omitted coefficients is equal to n0, then the function fe which
approximates f �x� in this situation will differ from f �x� by the
norm as

jj f �x� ÿ fe�x�jj < en1=20 : �14:6�

Thus for a function, which is quite smooth in the main
domain of its definition and changes drastically only in very
small regions, the threshold value e can be extremely small.
Then it admits a large number of wavelet coefficients to be
omitted with rather low errors in the final approximations.
Instead of this so-called hard-shrinkage procedure, one can use
a soft-shrinkage thresholding [39] which shifts positive and
negative coefficients to their common origin after the
omission procedure, i.e., replaces non-omitted dj; k in for-
mula (14.5) by

d
�e�
j; k � sign�dj; k��jdj; kj ÿ e� : �14:7�

It has been proven that such an approach leads to optimal
min-max estimators.

One can find the coefficients of expansion (14.5) using the
fast wavelet transform since the coefficients s0; k are fixed as
the discrete values of f �x�. In iterative schemes, the error will
however accumulate and their precision will not be suffi-
ciently high. Much better accuracy can be achieved if
interpolation wavelets are used. In this case, the values of
the function on the homogeneous grid f �k� are treated as s-
coefficients for the interpolation basis, and the initial values
of s0; k are formed by some linear combinations of them with
coefficients which depend on the shapes of the wavelets
considered.

The more elaborate procedure of weighting different
wavelet coefficients before their omission called quantization
is often used instead of this simplified procedure of coefficient
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thresholding (see also Section 15.4). According to expert
estimates, different weights (importance) are ascribed to
different coefficients from the very beginning. These weights
depend on the final goals of compression. Only then is the
thresholding applied. Many orthogonal wavelet bases are
infinitely more robust with respect to this quantization
procedure than the Fourier trigonometric basis. In spite of
this, the lack of symmetry for Daubechies wavelets with
compact support does not always satisfy the experts because
some visible defects appear. This problem can be cured when
one uses symmetric biorthogonal wavelets having compact
support.

15. Some applications

In this section we describe mostly those applications of
wavelets which are closest to our personal interests (a brief
summary is given in Ref. [40]). Even among them we have to
choose those where, in our opinion, the use of wavelets was
crucial for obtaining principally new information unavailable
using other methods (see Web site www.awavelet.com).

15.1 Physics
The physics applications of wavelets are so numerous that it is
impossible to describe even the most important of them here
in detail (see, e.g., [10, 14, 41 ± 43]). They are used both in
purely theoretical studies in functional calculus, renormaliza-
tion in gauge theories, conformal field theories, nonlinear
chaoticity, and in more practical fields like quasicrystals,
meteorology, acoustics, seismology, nonlinear dynamics of
accelerators, fluid dynamics and turbulence, the structure of
surfaces, cosmic ray jets, solar wind, galactic structure,
cosmological density fluctuations, dark matter, gravitational
waves etc. This list can easily be made longer. We discuss here
two problems related to use of wavelets for solving differ-
ential equations with the aim of getting the electronic
structure of an extremely complicated system, and for
pattern recognition in multiparticle production processes in
high energy collisions.

15.1.1 Solid state andmolecules.The exact solution of amany-
body problem is impossible, and one applies various approx-
imate methods for solid state problems, e.g., the density
functional theory [44]. However, the electronic spectra of
complex atomic systems are so complicated that, even within
this approach, it is impossible, in practice, to decipher them
by commonly used methods. For example, it would require
the calculation of about 2100 Fourier coefficients to represent
the effective potential of the uranium atom (and evenmore, in
case of uranium dimers). This is clearly an unrealistic task.
The application of wavelet analysis methodsmakes it possible
to resolve this problem [20, 45]. The potential of the uranium
dimer is extremely singular. It varies by more than 10 orders
of magnitude. Its reconstruction has now become a realistic
problem. Quite high precision has been achieved with the help
of wavelets as seen in Fig. 13.

The solution of the density functional theory equations by
wavelet methods has been obtained by several groups [46 ±
50]. The method described in Refs [49, 50] has been applied to
a large variety of different materials. It possesses good
convergence properties as is shown in Figs 14 and 15. They
demonstrate how fast is the decrease of energy (or wave
function) recipies with respect to the number of iterations
(Fig. 14) or of the absolute values of the wavelet coefficients

(Fig. 15) with respect to their index (when the coefficients are
ordered according to their magnitude). Such a fast decrease
allows us to consider much more complicated systems than it
was possible before. This method has been successfully tested
for solid hydrogen crystals at high pressure, manganate and
hydrogen clusters [49, 50], 3d-metals and their clusters etc.
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The density matrix can be effectively represented with the
help of Daubechies wavelets [51].

15.1.2 Multiparticle production processes. The first attempts
to use wavelet analysis in multiparticle production go back to
P Carruthers [52 ± 54] who used wavelets for diagonalisation
of covariance matrices of some simplified cascade models.
The proposals for correlation studies in high multiplicity
events with the help of wavelets were promoted [55, 56], and
also, in particular, for special correlations typical for
disoriented chiral condensate [57, 58]. It was recognized [59]
that wavelet analysis can be used for pattern recognition in
individual high multiplicity events observed in experiment.

High energy collisions of elementary particles result in the
production of many new particles in a single event. Each
newly created particle is depicted kinematically by its
momentum vector, i.e., by a dot in the three-dimensional
phase space. Different patterns formed by these dots in the
phase space correspond to different dynamics. Understand-
ing the dynamics is the main goal of all studies done at
accelerators and in cosmic rays. Especially intriguing is the
problem of quark-gluon plasma, the state of matter with
deconfined quarks and gluons which could exist for extremely
short time intervals. One hopes to create it in collisions of high
energy nuclei. Nowadays, data about Pb ±Pb collisions are
available where, in a single event, more than 1000 charged
particles are produced. We are waiting for the RHIC

accelerator in Brookhaven and LHC in CERN to provide
events with up to 20000 new particles created. However we do
not know yet which patterns will be drawn by nature in
individual events. Therefore the problem of phase space
pattern recognition in an event-by-event analysis becomes
meaningful.

It is believed that the detailed characterization of each
collision event could reveal rare new phenomena, and it will
be statistically reliable due to the large number of particles
produced in a single event.

When individual events are imaged visually, the human
eye has a tendency to observe different kinds of intricate
patterns with dense clusters and rarefied voids. Combined
with the search for maxima (spikes) in pseudorapidity 16

(polar angle) distributions, this has lead to indications of the
so-called ring-like events in cosmic ray studies [60 ± 64] and at
accelerators [65, 66]. However, the observed effects are often
dominated by statistical fluctuations. Themethod of factorial
moments was proposed [67] to remove the statistical back-
ground but it is hard to apply in an event-by-event approach.
Wavelet analysis avoids smooth polynomial trends and
underlines the fluctuation patterns. By choosing the stron-
gest fluctuations, one hopes to get those which exceed the
statistical component. The wavelet transform of the pseudor-
apidity spectra of cosmic ray high multiplicity events of the
JACEE collaboration was done in Ref. [60].

In Ref. [59] wavelets were first applied to analyze patterns
formed in the phase space of the accelerator data on
individual high multiplicity events of Pb-Pb interaction at an
energy of 158 GeV per nucleon. With the emulsion technique
used in the experiment only the angles of emission of particles
are measured, and therefore the two-dimensional
(polar+azimuthal angles) phase space is considered. The
experimental statistics are rather low but acceptance is high
and homogeneous which is important for the proper pattern
recognition. To simplify the analysis, the two-dimensional
target diagram representing the polar and azimuthal angles of
created charged particles was split into 24 azimuthal angle
sectors of p=12 and in each of them particles were projected
onto the polar angle y axis. Thus one-dimensional functions
of the polar angle (pseudorapidity) distribution of these
particles in 24 sectors were obtained. Then the wavelet
coefficients were calculated in all of these sectors and
connected together afterwards (the continuous MHAT
wavelet was used). The resulting pattern showed that many
particles are concentrated close to some value of the polar
angle, i.e., reveal the ring-like structure in the target diagram.
The interest in such patterns is related to the fact that they can
result from so-called gluon Cherenkov radiation [68, 69] or,
more generally, from gluon bremsstrahlung for a finite free
path within quark-gluon medium (plasma, in particular).

More elaborate two-dimensional analysis with Daube-
chies (D8) wavelets was done recently [70] and confirmed
these conclusions with jet regions tending to lie on some ring-
like formations. This is seen, e.g. in Fig. 16 where dark regions
correspond to large wavelet coefficients of the large-scale
particle fluctuations in two of the events analyzed. Only the
resolution levels 64 j4 10 were left after the event analysis
was done to store the long-range correlations in the events
and get rid of short-range ones and background noise. Then
the inverse restoration was done to get the event images only
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16 Pseudorapidity is defined as Z � ÿ log tan�y=2�, where y is the polar

angle of particle emission.
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with these dynamic correlations left, and this is what is seen in
Fig. 16. It directly demonstrates that the large-scale correla-
tions chosen have a ring-like (ridge) pattern. With larger
statistics, one will be able to say if they correspond to
theoretical expectations. However preliminary results favor
positive conclusions [70]. This is due to the two-dimensional
wavelet analysis that for the first time the fluctuation
structure of an event is shown in a way similar to the target
diagram representation of events on the two-dimensional
plot.

Previously, some attempts [60, 71, 72] to consider such
events with different methods of treating the traditional
projection and correlation measures just revealed that such
substructures lead to spikes in the polar angle (pseudorapid-
ity) distribution and are somewhat jetty. Various Monte
Carlo simulations of the process were compared to the data
and failed to describe this jettiness in its full strength. More
careful analysis [73, 74] of large statistics data on hadron-
hadron interactions (unfortunately, however, for rather low
multiplicity) with dense groups of particles separated showed
some `anomaly' in the angular distribution of these groups
awaited from the theoretical side. Further analysis using the
results of the wavelet transform is needed when many high
multiplicity events become available. A more detailed review
of this topic is given in Ref. [75].

15.2 Aviation (engines)
Multiresolution wavelet analysis has proved to be an
extremely useful mathematical method for analyzing compli-
cated physical signals at various scales and definite locations.
It is tempting to begin with an analysis of signals depending
on a single variable 17. The time variation of the pressure in an
aircraft compressor is one such signals. The aim of the
analysis of this signal is motivated by the desire to find the
precursors of a very dangerous effect (stall+surge) in engines
leading to their destruction.

An axial multistage compressor is susceptible to the
formation of a rotating stall which may be precipitated by a

distorted inlet flow induced by abrupt manoeuvres of an
aircraft (helicopter) or flight turbulence. The aerodynamic
instability behind the rotating blades is at the origin of this
effect. The instability regions called stall cells separate from
the blades and rotate with a speed of about 60% of the rotor
speed. Thus they are crossed by the blades approximately
once every 1.6 rotor revolutions. This abruptly limits the flow
and thus the pressure delivery to the downstream plenum (the
combustion chamber) where the fuel is burnt and the gas jet is
formed. The high prestall pressure build-up existing in the
combustion chamber tends to push the flow backwards
through the compressor. If the flow is reversed one calls it a
`deep surge'. In many cases this is attested by flames emerging
from the engine inlet. It can have serious consequences for the
engine life and operation, not to mention the aircraft and its
passengers if it happens during flight. That is why the search
for precursors of these dangerous phenomena is very
important. Attempts to predict the development of a rotating
stall and a subsequent surge with a velocity measuring probe
such as a hot wire anemometer [76] provide a precursor or
warning of only about 10 ms which is not enough for
performing any operations which would preclude the surge
development.

Multiresolution wavelet analysis of pressure variations
in a gas turbine compressor reveals much earlier precursors
of stall and surge processes [77]. Signals from 8 pressure
sensors positioned at various places within the compressor
were recorded and digitized for 3 different modes of
operation (76, 81, 100% of nominal rotation speed) in
stationary conditions with an interval of 1 ms for 5 ± 6 s
before the stall and the surge developed. An instability was
induced by a slow injection of extra air into the compressor
inlet. After a few minutes, this led to a fully blown
instability in the compressor. The last 5 ± 6 s interval was
wavelet-analyzed. Since the signal fluctuates in time, so too
does the sequence of wavelet coefficients at any given scale.
A natural measure for this variability is the standard
deviation (dispersion) of wavelet coefficients as a function
of scale. A scale of j � 5 showed a remarkable drop of
about 40% of the dispersion (variance) of the wavelet
coefficients for more than 1 s prior to the malfunction's
development. The dispersion is calculated according to the
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Figure 16.Restored images of long-range correlations in experimental target diagrams. They show the typical ring-like structure in some events of central

Pb ±Pb interactions.

17 The trick of reducing the two-dimensional function to a set of one-

dimensional ones was described in the previous subsection devoted to

particle production.
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standard expression

s� j;M� �
������������������������������������������������������

1

Mÿ 1

XMÿ1
k�0

�
dj; k ÿ hdj; ki

�2vuut ; �15:1�

where M is the number of wavelet coefficients at the scale j
within some time interval which was chosen to be 1 s.

In Figure 17 the time variation of the pressure in the
compressor in one of the modes of engine operation indicated
above is shown by a very irregular line. The large fluctuations
of the pressure on the right-hand side denote the surge onset.
It is hard to see any warning of this drastic instability from the
shape of this curve. The wavelet coefficients of this function
were calculated with Daubechies 8-tap (D8) wavelets. The
dashed curve in the same figure shows the behavior of the
dispersion of wavelet coefficients as a function of time at the
scale level j � 5 which happens to be most sensitive to the
surge onset 18. Its precursor is seen as the maximum and the

subsequent drop of the standard deviation by about 40%
which appears about 1 ± 2 s prior to the malfunction denoted
by the large increase of both the pressure and dispersion on
the right-hand side. The initial part of the dispersion plot is
empty because the prescribed interval for the compilation of
the representative initial distribution of wavelet coefficients is
chosen to be 1 s. Namely, the time evolution of this
distribution has been studied.

The randomly reordered (shuffled) sample of the same
values of the pressure within the pre-surge time interval does
not show such a drop of the dispersion as demonstrated by the
dot-dashed line in the figure. This proves the dynamic origin
of the effect. Further analyzed characteristics of this process
(fractality, high-moments behavior) are discussed in [77]. No
fractal properties of the signal have been found. The scale
j � 5 violates the linearity of the in the sumZq�j� function of j
necessary for fractal behavior. Let us note that the multi-
fractality of the signal may fail because of accumulation of
points where chirp-like behavior happens. If it is the origin of
this effect, it should provide a guide to the description of the
dynamics of the analyzed processes. The time intervals before
and after the appearance of the precursor were analyzed
separately. Higher moments of wavelet coefficients as
functions of their rank q behave in a different way at pre-
and post-precursor time. This indicates the different
dynamics in these two regions.

This method of wavelet analysis can be applied to any
engines, motors, turbines, pumps, compressors etc. It
provides a significant improvement in the diagnostics of the
operating regimes of existing engines, which is important for
preventing their failure and, consequently, for lowering
associated economic losses. In particular, the effectiveness of
stationary energetic installations is strongly lowered due to
the necessity of limiting the range of their parameters because
of combustion problems. The use of wavelet analysis can help
in diagnosis and the prevention of undesirable effects. Two
patents for diagnostics and automatic regulation of engines
dated 19.03.1999 have been obtained by the authors of
Ref. [77].

There are other problems in aviation which could be
approached with wavelet analysis , e.g., combustion instabil-
ities, analysis of ions in the jet from a combustion chamber or
the more general problem of metal aging and cracks etc.

15.3 Medicine and biology
Applications of wavelet analysis tomedicine and biology (see,
e.g., [17, 78, 79]) also follow the same procedures as discussed
above. They are either deciphering information hidden in
one-dimensional functions (analysis of heartbeat intervals,
ECG, EEG, DNA sequences etc) or pattern recognition
(shapes of biological objects, blood cell classification etc).

15.3.1 Hearts. Intriguing results were obtained [80] when
multiresolution wavelet analysis was applied to the sequence
of time intervals between human heartbeats. It has been
claimed that a clinically significant measure of the presence
of heart failure can be found just from analysis of heartbeat
intervals alone without knowledge of the full electrocardio-
gram plot while the previous approaches provided statisti-
cally significant measures only. Series of about 70000 inter-
beat intervals were collected for each of 27 patients treated.
They were plotted versus interval number. Signal fluctuations
were wavelet transformed and the dispersions of wavelet
coefficients at different scales were calculated as in the case

18 This shows that the correlations among successive values of the sampled

signal are likely to occur at intervals of the order of 30 ms. Let us note that
similar correlation lengths are typical for a sampled speech signal as well.
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Figure 17. Signal of the pressure sensor (the solid line) and the dispersion of

its wavelet coefficients (the dashed line). The time variation of the pressure

in the engine compressor (the irregular solid line) has been wavelet
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of aviation engines considered above but with averaging over
the whole time interval because it is not now necessary to
study the evolution during this time interval. Thus each
patient was characterized by a single number (dispersion) at
a given scale. It happened that the sets of numbers for healthy
and heart failure patients did not overlap at the scale 19 j � 4
as seen in Fig. 18. This is considered as a clinically significant
measure in distinction to the statistically significant measure
when these sets overlap partly. The dispersions for healthy
patients are larger probably corresponding to the higher
flexibility of healthy hearts. The fluctuations are less anti-
correlated for heart failure than for healthy dynamics.

This analysis was questioned by another group [81, 82]
stating that the above results on the scale-dependent separa-
tion between healthy and pathologic behavior depend on the
database analyzed and on the analyzing wavelet. They
propose new scale-independent measures Ð the exponents
characterizing the scaling of the partition function of the
wavelet coefficients of the heartbeat records. These exponents
reveal the multifractal behavior for a healthy human heart-
beat and the loss of multifractality for a life-threatening
condition, congestive heart failure. This distinction is
ascribed to nonlinear features of the healthy heartbeat
dynamics. The authors claim that the multifractal approach
to wavelet analysis robustly discriminates healthy subjects
from heart-failure subjects. In our opinion, further studies are
needed.

Earlier, Fourier analysis of the heart rate variability
disclosed the frequency spectrum of the process. Three
frequency regions play the main role. The high frequency
peak is located at about 0.2 Hz, and the low frequency peak is
about 0.1 Hz. The superlow frequency component is
reminiscent of 1=f-noise with its amplitude strongly increas-
ing at low frequencies. There have been some attempts [83] to
develop theoretical models of such a process with the help of
the wavelet transform.

The wavelet analysis of one-dimensional signals is also
useful for deciphering the information contained in ECGs
and EEGs. The functions to be analyzed there are more
complicated than those in the above studies. Some very
promising results have been obtained already. In particular,

it was shown that anomalous effects in ECGs appear mostly
at rather large scales (low frequencies) whereas the normal
structures are inclined to comparatively small scales (high
frequencies). This corresponds to the above results on
heartbeat intervals. Such an analysis of ECGs was reported,
e.g., in Ref. [84].We shall not describe it in detail here because
these studies are still only in their initial stages. The time-
frequency analysis of EEGs can be found, e.g., in Ref. [85]. It
can locate the source of epileptic activity and its propagation
in the brain. For a general description of EEGmethodics see,
e.g., Refs [86, 87].

Wavelet analysis has been used also for diagnostics of the
embryonic state during pregnancy [79]. A special pursuit
method was developed to fit the properties of the signal as
well as possible.

15.3.2 DNA sequences. The wavelet transform with contin-
uous wavelets has been used for fractal analysis of DNA
sequences [88, 89] in an attempt to reveal the nature and the
origin of long range correlations in these sequences. It is still
debated whether such correlations are different for protein-
coding (exonic) and noncoding (intronic, intergenic) nucleo-
tide sequences. To graphically portray these sequences in the
form of one-dimensional functions, the so-called `DNAwalk'
analysis was applied with the conversion of the 4-letter text of
DNA into a binary set [90]. Applying thewavelet transform to
121 DNA sequences (with 47 coding and 74 noncoding
regions) selected in the human genome, the authors of Refs
[88, 89] have been able to show that there really exists a
difference between the two subsequences. This was demon-
strated by the presence of long range correlations in
noncoding sequences while the coding sequences look like
uncorrelated random walks. To show this, the averaged
partition (generating) functions of wavelet coefficients [see
Eqn (13.3)] over these two statistical samples were calculated.
Both of them scaled with the exponent predicted for
homogeneous Brownian motion, i.e., t�q� � qHÿ 1. The
main difference between the noncoding and coding
sequences is the value of H, namely, Hnc � 0:59� 0:02 and
Hc � 0:51� 0:02 which distinguish uncorrelated and corre-
lated subsamples. Moreover, it has been shown that t�q�
spectra extracted from both sets are surprisingly in remark-
able agreement with the theoretical prediction for Gaussian
processes if the probability density of wavelet coefficients at
fixed scales are plotted versus these coefficients scaled with
their r.m.s. value at the same scale. The results of wavelet
analysis clearly show that the purine (A;G) versus pyrimidine
(C;T) content 20 of DNA is likely to be relevant to the long
range correlation properties observed in DNA sequences.

15.3.3 Blood cells.Another problem which can be solved with
the help of wavelet analysis is the recognition of different
shapes of biological objects. By itself, this has very wide range
of applicability. Here, we consider the blood cell classification
scheme according to the automatic wavelet analysis devel-
oped by us, and a particular illustration is given for
erythrocyte classification. An automatic search, stability in
determining the cells shapes and high speed of processing can
be achieved with computer wavelet analysis. The main idea of
the method relies on the fact that at a definite resolution scale
wavelet analysis clearly reveals the contours of the blood cells

19 By coincidence this is the same as for aviation engines.
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Figure 18. Sets of the values of the dispersions of wavelet coefficients for

the heartbeat intervals of healthy (white circles) and heart failure (black

circles) patients. They do not overlap at j � 4.

20 A, C, G, T denote the usual four letter alphabet of any DNA text:

Adenine, Cytosine, Guanine, Thymine.
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which allows them to be classified. In Figure 19 we
demonstrate how it became possible to improve the image
resolution by such a method. The low quality image of blood
cells has been transformed into its wavelet image with clearly
seen cells contours.

The shapes of erythrocytes differ for various types.
Depending on their shape, they can play either a positive or
negative role for a human being. Therefore their differentia-
tion is very important. After microscope analysis of a dry
blood smear and registration of blood cells in a computer, the
wavelet analysis of the set of registered blood cells was done.

However the extreme random irregularities at some points
of a cell contour can prevent one from performing the
analysis. Therefore a special smearing procedure was
invented to avoid such points without loss of crucial
peculiarities typical for a definite type of cell. After that, the
set of blood cells with somewhat smeared contours is ready
for wavelet analysis. It consists in wavelet correlation analysis
which shows the different behavior of the correlation
measures depending on the particular cell shapes. Using an
expert classification of cells into a definite sample, the wavelet
characteristics of correlations typical for a particular class
were found and the then inserted in the computer program.
This software was used for classification of blood cells
obtained from other patients, and results were cross-checked
by experts. Their positive conclusions are encouraging. The
whole procedure is now done fast and automatically without
human intervention. In Figure 20 blood cells of various kinds
are shown.

15.4 Data compression
Data compression is needed if one wants, e.g., to store data
spending as little memory capacity as possible or to transfer it
at a low cost using smaller packages. The example of the FBI
using wavelet analysis for pattern recognition and saving in
that way a lot of money on computer storage of fingerprints is
well known. This is done by omitting small wavelet coeffi-
cients after the direct wavelet transform was applied. Surely,
to restore the information one should be confident in the
stability and good quality of the inverse transformation.
Therefore, both analysis and synthesis procedures are
necessary for data compression and its subsequent recon-
struction. Above, we have shown how successful wavelet
analysis has been in solving many problems. Due to the
completeness of the wavelet system it is well suited for the
proper inverse transform (synthesis) as well (see, e.g., Ref.
[91]).

The approach to the solution of the problem strongly
depends on the actual requirements imposed on the final
outcome. There are at least three of them. If onewants to keep

the quality of the restored image (film) practically as good as
the initial one, the compression should not be very strong.
This is required, e.g., if experts should not be able to
distinguish the compressed and uncompressed copies of a
movie when they are shown on two screens in parallel.
Another requirement would be important if one wants to
compress an image as strongly as possible leaving it still
recognizable. This is required, e.g., if one needs to transfer the
information in a line with limited capacity. Finally, one can
require the whole procedure of analysis and synthesis to be
done as fast as possible. This is necessary, e.g., if the
information must be obtained immediately but at lower
cost. These three situations require a different choice of
wavelets to optimize analysis and synthesis. In all cases
wavelet analysis has an advantage over the coding methods
which use the windowed Fourier transform but the quantita-
tive estimate of this advantage varies with the problem solved.

Let us recall that any image in a computer must be
digitized and saved as a bitmap or, in other words, as a
matrix, each element of which describes the color of the point
in the original image. The number of elements of the matrix
(image points) depends on the resolution chosen in the digital
procedure. It is a bitmap that is used for the subsequent
reproduction of the image on a screen, a printer etc. However,
it is not desirable to store it in such a form because it would
require a huge computer capacity. That is why, at present,
numerous coding algorithms (compression) for a bitmap have
been developed, whose effectiveness depends on the image
characteristics 21. All these algorithms belong to two cate-
gories Ð they either code with a loss of information or
without any loss of it (in that case the original bitmap can be
completely recovered by the decoding procedure). In more
general applications, the latter algorithm is often called as the
data archival.

Figure 19. (a) The photo of blood cell, obtained from the microscope. (b)

The same photo after the wavelet analysis done. The blurred image of a

blood cell (left) becomes clearly visible one (right) after the wavelet

transform.

Figure 20. Classification of erythrocyte cells.

21 It is evident that to store a `black square', one does not have to deal with

a matrix of all black dots but just store the three numbers showing the

width, the height and the color. This is the simplest example of image

compression.
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As an example, we consider a compression algorithm with
the loss of information. The `loss of information' means in
this case that the restored image is not completely identical to
the original one but this difference is practically indistinguish-
able by the human eye 22.

At present, most computer stored images (in particular,
those used in Internet) with continuous tone 23 are coded with
the help of the algorithm JPEG (for a detailed description, see
[92]). The main stages of this algorithm are as follows. One
splits the image into matrices with 8 by 8 dots. For each
matrix, a discrete cosine-transform is performed. The
obtained frequency matrices are subjected to a so-called
quantization procedure when the most crucial elements for
the visual recognition are chosen according to a special
`weight' table compiled beforehand by specialists after their
collective decision was achieved. This is the only stage where
the `loss' of information occurs. Then the transformed matrix
with the chosen frequencies (scales) is compacted and coded
by the so-called entropy method (also called arithmetic or
Huffmann method).

The algorithm applied above differs from that described
by use of the wavelets instead of the windowed cosine-
transform and by the transform of the whole image instead
of an 8 by 8 matrix only. Figure 21 demonstrates the original
image and the two final images restored after similar
compression according to JPEG and wavelet algorithms. It
is easily seen that the quality of the wavelet image is
noticeably higher than for JPEG for practically the same
size of the coded files. The requirement of the same quality for
both algorithms leads to file sizes 1.5 ± 2 times smaller for the
wavelet algorithm that could be crucial for the transmission

of the image, especially if the transmission line capacity is
limited.

15.5 Microscope focusing
Surely, the problem of microscope focusing is tightly related
to pattern recognition. One should resolve a well focused
image from that with diffused contours. It is a comparatively
easy task for wavelets because in the former case the image
gradients at the contour are quite high while in the latter they
become rather vague. Therefore the wavelet coefficients are
larger when the microscope is well focused on the object and
drastically decrease with defocusing. At a definite resolution
level corresponding to the contour scale the defocusing effect
is strongest. This is demonstrated in Fig. 22. The peak of the
wavelet coefficients shows the most focused image. After
doing the wavelet analysis of an image, the computer sends a
command to shift the microscope so that larger values of the
wavelet coefficients and thus better focusing are attained. At
other levels it is somewhat less pronounced and, moreover, it
is asymmetric depending on whether the microscope is
positioned above the focus location or below it. This
asymmetry has been used for automatic microscope focusing
with a well defined direction of movement toward the focus
location.

16. Conclusions

The beauty of the mathematical construction of the wavelet
transformation and its utility in practical applications attract
researchers from both pure and applied science. Moreover,
the commercial outcome of this research has become quite
important. We have outlined a minor part of the activity in
this field. However we hope that the general trends in the
development of this subject become comprehended and
appreciated.

The unique mathematical properties of wavelets make
them a very powerful tool in analysis and subsequent
synthesis of any signal. The orthogonality property allows
one to get independent information from different scales.

Figure 21. (a) Original photo (the file size is 461760 bytes). (b) Photo reconstructed after compression according to the JPEG-algorithm. (the file size is

3511 bytes). (c) Photo reconstructed after compression according to the wavelet algorithm (the file size is 3519 bytes). The better quality of the wavelet

transform is clearly seen when comparing the original image (left) and the two images restored after similar compression by the windowed Fourier

transform (middle) and the wavelet transform (right).

22 The `compression quality' is usually characterized by a parameter which

varies from 0 to 100. Here 100 implies minimal compression (the best

quality), and the restored image is practically indistinguishable from the

initial one, while 0means themaximum compressionwhich still allows one

to distinguish some details of the original image in the recovered one.
23 That is the images contain many slightly different colors. Ordinarily to

store such images in a computer, 16 million colors per pixel are used.
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Normalization assures that at different steps of this transfor-
mation the value of information is not changed andmixed up.
The property of localization helps get knowledge about those
regions in which definite scales (frequencies) play the most
important role. Finally, the completeness of the wavelet basis
formed by dilations and translations results in the validity of
the inverse transformation.

Multiresolution analysis leads to the fast wavelet trans-
form and together with the procedure of nonstandard matrix
multiplication to rather effective computing. Analytic proper-
ties of functions, local and global HoÈ lder indices, multifractal
dimensions etc. are subject to wavelet analysis. The natural
accommodation of differential operators in this environment
opens the way to an effective solution of differential
equations.

All these properties enable us to analyze complex signals
at different scales and locations through the wavelet trans-
form, and to solve equations describing extremely compli-
cated nonlinear systems involving interactions atmany scales,
to study strongly singular functions etc. The wavelet trans-
form is easily generalized to sets of any dimension, and
multidimensional objects can be analyzed as well. Therefore,
wavelets are indispensable for pattern recognition.

Thus the wavelet applications in various fields are
numerous and nowadays give a very fruitful outcome. In
this review paper we managed to describe only some of these
applications leaving aside the main bulk of them. The
potentialities of wavelets are still not used at their full
strength.

However one should not cherish vain hopes that this
machinery works automatically in all situations using its
internal logic and does not require any intuition. According
to Meyer [4], ``no `universal algorithm' is appropriate for the
extreme diversity of the situations encountered''. Actually it
needs a lot of experience in choosing the proper wavelets, in a
suitable formulation of the problem under investigation, in
considering the most important scales and characteristics
describing the analyzed signal, in the proper choice of the
algorithms (i.e., the methodology) used, in studying the
intervening singularities, in avoiding possible instabilities
etc. By this remark we would not like to discourage new-
comers from entering the field but, quite to the contrary, to
attract those who are not afraid of hard but exciting research
and experience.

17. Appendix

17.1 Multiresolution analysis
The general approach which respects all properties required
fromwavelets is known as themultiresolution approximation
and is defined mathematically in the following way [4]:

A multiresolution approximation of L2�Rn� is, by defini-
tion, an increasing sequence Vj, j 2 Z, of closed linear
subspaces of L2�Rn� with the following properties:

(1)
T1
ÿ1 Vj � f0g,

S1
ÿ1 Vj is dense in L2�Rn�;

(2) for all f 2 L2�Rn� and all j 2 Zn

f �x� 2 Vj $ f �2x� 2 Vj�1 ;

(3) for all f 2 L2�Rn� and all k 2 Zn

f �x� 2 V0 $ f �xÿ k� 2 V0 ;

(4) there exists a function, g�x� 2 V0, such that the
sequence g�xÿ k�; k 2 Zn, is an orthonormal (or Riesz)
basis of the space V0. It is clear, that scaling versions of the
function g�x� form bases for all Vj.

Thus themultiresolution analysis consists of a sequence of
successive approximation spaces Vj which are scaled and
invariant under integer translation versions of the central
space V0. There exists an orthonormal or, more generally,
Riesz basis in this space. The Haar multiresolution analysis
can be written in these terms as

Vj �
�
f 2 L2�R� ;

for all k 2 Z f
��
�k2ÿj; �k�1�2ÿj� � const

	
: �17:1�

In Figure 3 we showed what the projections of some f on
the Haar spaces V0, V1 might look like. The general
distributions are decomposed into a series of correctly
localized fluctuations of a characteristic form defined by the
wavelet chosen.

The functions jj; k form an orthonormal basis of Vj. The
orthogonal complement of Vj in Vj�1 is called Wj. The
subspaces Wj form a mutually orthogonal set. The sequence
ofcj; k constitutes an orthonormal basis forWj at any definite
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Figure 22. Focusing line. The values of the wavelet coefficients

calculated for different positions of the microscope are shown on the

vertical axis. The corresponding positions are numbered on the hor-

izontal axis. The best focusing is obtained at the maximum of the curve

(positions 6 ± 10). Large wavelet coefficients correspond to a better

focused image. The microscope moves to the focus position being

driven by computer commands to increase of the wavelet coefficients

of the analyzed objects.
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j. The whole collection of cj; k and jj; k for all j is an
orthonormal basis for L2�R�. This ensures us that we have
constructed a multiresolution analysis approach, and the
functions cj;k and jj;k constitute the small and large scale
filters, correspondingly. The whole procedure of multiresolu-
tion analysis has been demonstrated in the graphs of Fig. 4.

In accordance with the above formulated goal, one can
define the notion of wavelets in the following way [4]:

A functionc�x� of a real variable is called a (basic)wavelet
of class m if the following four properties hold:

(1) if m � 0, c�x� and j�x� belong to L1�R�; if m5 1,
c�x�, j�x� and all their derivatives up to order m belong to
L1�R�;

(2) c�x�, j�x� and all their derivatives up to order m
decrease rapidly as x! �1;

(3)
�1
ÿ1 xnc�x� dx � 0 for 04 n4m, and�1

ÿ1 j�x� dx � 1;
(4) the collection of functions 2 j=2c�2 jxÿ k�,

2 j=2j�2 jxÿ k�, j, k 2 Z, is an orthonormal basis of L2�R�.
Then equation (3.17) is valid. If c and j both have

compact support, then it gives a decomposition of any
distribution of order less than m. Moreover, the order of the
distribution f (the nature of its singularities) can be
calculated exactly and directly from the size of its wavelet
coefficients as has been shown in Sections 11, 12. The
functions 2 j=2c�2 jxÿ k� are the wavelets (generated by the
`mother' c), and the conditions 1), 2), 3) express, respectively,
the regularity, the localization and the oscillatory character.
One sees that property 3) is satisfied for the Haar wavelets for
m � 0 only, i.e., its regularity is r � 0. In general, for each
integer r5 1, there exists a multiresolution approximation Vj

of L2�R� which is r-regular and such that the associated real-
valued functions j and c have compact support. As the
regularity increases, so do the supports of j and c. The
wavelet 2 j=2c�2 jxÿ k� is `essentially concentrated' on the
dyadic interval I � �k2ÿj; �k� 1�2ÿj � for j , k 2 Z. Its Fourier
transform is supported by 2 j�2p=3�4 joj4 2 j�8p=3�. In fact,
it has a one octave frequency range.

17.2. Calderon ±Zygmund operators
In the wavelet analysis of operator expressions the integral
Calderon ±Zygmund operators are often used. There are
several definitions of them (see, e.g., the monograph [3]). We
give here the definition used by Daubechies [2].

A Calderon ±Zygmund operator T on R is an integral
operator

T f �x� �
�
K�x; y� f �y� dy ; �17:2�

for which the integral kernel satisfies

jK�x; y�j4 C

jxÿ yj ; �17:3����� qqx K�x; y�
����� ���� qqy K�x; y�

����4 C

jxÿ yj2 �17:4�

and which defines a bounded operator on L2�R�.
With such a definition, special care should be taken at

x � y.

17.3. Relation to the Littlewood ±Paley decomposition
In the literature devoted to signal processing, the so-called
Littlewood-Paley decomposition is often used. It is closely
related to the wavelet transform. Therefore we give here the

dictionary which relates the Littlewood ±Paley coefficients
denoted as Dj� f ��x� to both discrete �dj; k� and continuous
�W�a; b�� wavelet coefficients.

Dj� f ��x� � 2 nj=2dj; 2 j
x �W�2ÿj; x� ; �17:5�

dj; k � 2ÿnj=2W�2ÿj; 2ÿjk� � 2ÿnj=2Dj� f ��2ÿjk� : �17:6�
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