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Model for the formation of hummocks
in a drifting ice cover

A V Marchenko

1. Introduction

Hummocks constitute a characteristic feature of the sea ice
cover. They are produced by the deformations caused by the
compression and shearing of the ice cover generated by wind
and sea currents. The hummocks are formed in the open
ocean and in the vicinity of the shores and greatly affect
navigation in the ice-covered sea of the Arctic regions. The
hummocks produced in the sea-shelf regions near the
hydrotechnical structures greatly affect the distribution of
the loads exerted by the ice on these structures.

The hummocks are pieces of ice pushed out under and
over the surface of the surrounding flat ice cover. The above-
water part of a hummock, the sail, may be several meters high
while the height of the underwater part, the keel, may be tens
of meters. Hummocks are fairly often extended horizontally
[1]. Hummocks have a significant influence on the rheological
properties of the ice cover and make it spatially inhomoge-
neous and anisotropic.

Theoretical modeling of hummock formation (the ridging
process) may be classified into two types of analyses. In the
studies of the first type (see, for instance, [2]) the ridging
processes are taken into account in the large-scale simulation
of the ice cover dynamics. Ridging is treated as the main
mechanism for evolution of the ice cover thickness profile.
The simulation yields the evolution of the thickness distribu-
tion for the ice cover under plastic strain. The structure and
evolution of an individual hummock are ignored in the
simulation process.

The first model of hummock formation was developed by
Parmeter andCoon [3] in 1973. Parmerter and Coon analyzed
theobservational data andput forward ahypothesis that there
was a maximum hummock height depending on the thickness
of the ice sheets making up the hummock. According to the
hypothesis, a hummock grows in height and width if its
vertical dimension is smaller than the maximum size and
after its height has reached the maximum size only the
hummock width grows. The maximum hummock height is
determined by the bending load breaking down the edge of the
floe pushing against the hummock owing to the lack of
balance between gravity and the lifting force acting on the
hummock edge in water. Parmeter and Coon estimated the
compression stress required for the hummock formation from
the equations for conservation of mass and energy.

Hopkins and co-workers [4, 5] used a different approach
tomodeling the ridging process. They treated a hummock as a
pile of ice blocks of a given shape with viscous elastic forces
acting between them. The motion of each ice block is
described by a separate equation. New ice blocks are
produced in the model when the floe edge pushes against the

hummock. High-capacity computer simulations involved
calculations of the motion for the large number of ice blocks
making up the hummock yielding a realistic representation of
the ridging process and confirming the hypothesis of the
maximum hummock height.

It was only in 1998 that a hummock was produced under
laboratory conditions [6] in the ice basin of the Technological
University in Helsinki. The thickness of the artificially frozen
ice was not more than 10 cm. The experimental results
demonstrated that the growth of the hummocks under
compression was accompanied by floes being pushed under
hummocks so that these two processes cannot be monitored
separately in practice. The results of the laboratory experi-
ments are corroborated by the data of observations con-
ducted in northern Baltic Sea which demonstrated that ice
hummocks were largely composed of flat floes piled up on
each other.

The objective of the present study was to develop a model
of the ridging process that would make it possible to analyze
the formation of hummocks in the ice cover consisting of an
arbitrary number of floes. It is assumed that the hummocks
are formed at the lines of contact between floes driven by
winds. The suggested mechanism is valid for the sea ice cover
in which the regions of flat and ridged ice can always be
identified. A flat ice cover region is broken down under
compression so that hummocks are produced while the flat
ice regions are displaced with respect to each other. It will be
demonstrated that the displacements are periodic owing to
the self-sustained oscillations accompanying shifting of the
drifting ice [7].

2. Basic equations

Let us consider the conservation of mass, momentum, and
energy for an ice layer floating on a liquid surface. The
appropriate differential equations for the one-dimensional
case are

qm
qt
� qmv

qx
� 0 ;

qmv
qt
� qmv2

qx
� qs

qx
� f ;

qE
qt
� qEv

qx
� qsv

qx
� f v : �2:1�

Here m is the mass of the ice floating on the unit surface area
of the ocean, v is the ice drift velocity, s are the internal
stresses in the ice,E is the surface energy density of the ice, f is
the friction force of the atmosphere and the ocean acting on
the ice, x is the horizontal coordinate, and t is the time.

The ice concentration on the ocean surface is assumed to
be unity and we can writem � rih�x; t�where h�x; t� is the ice
thickness and ri � 930 kg mÿ3 is the sea ice density. The
surface energy density of the ice cover is given by the equation

E � K� P�W ; �2:2�
whereK � rihv

2=2 is the surface density of the kinetic energy,
and P and W are the surface densities of the potential and
internal energies.

The surface density of the potential energy of the floating
ice is given by the equation

P � rig
�z�
zÿ

z dzÿ rwg
� 0

zÿ
z dz �2:3�
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It equals the difference between the potential energy of the
ice taken from the level z � 0 of the unperturbed liquid
surface and the potential energy of the liquid displaced by
the ice. Here rw � 1020 kg mÿ3 is the seawater density. The
upper and lower surfaces of the ice cover are determined by
the equations z � zÿ�x; t� and z � z��x; t�. The thickness of
the ice cover is h � z� ÿ zÿ.

A further simulation step included the processes of
irreversible ice cover compression accompanied with varia-
tion of its thickness and dissipation of the mechanical energy.
The variation of the internal energy is determined by the
energy dissipation

dW � dD5 0 : �2:4�
The variation of the ice thickness under compression is
determined by ridging and rafting processes. Ridging gives
rise to hummocks produced by ice rubble. Rafting is the piling
up of flat ice sheets. Sometimes compression is determined by
a combination of ridging and rafting.

As the ice thickness grows the potential energy of the ice
increases irreversibly,

dP5 0 : �2:5�
Let us assume that a flat ice cover includes a ridged ice region
with the boundaries x � xÿ�t� and x � x��t�. For x < xÿ and
x > x� the ice thickness is constant and equals x � xÿ and
x � x�, respectively.

dUr

dt
� �hQ� ; �2:6�

dIr
dt
� �s� � ri�hvQ� � Fr ; �2:7�

dEr

dt
� �sv� � �EQ� � Ar ; �2:8�

where Ur, Ir and Er are the linear density of volume, impulse
and energy of the ice in the region x 2 �xÿ; x��, and
�l� � l� ÿ lÿ for any symbol l or combination of symbols

The flows Q�5 0 and Qÿ4 0 are defined by the
formulae

Q� � dx�
dt
ÿ v� ; �2:9�

where v� and vÿ are the ice drift velocities in the regions
x > x� and x < xÿ.

The values s� and sÿ are equal to the stress in the flat ice
covers for x � x� and x � xÿ; E� and Eÿ are the ice surface
energy densities in the region x > x� and x < xÿ, Fr is the
external drag force, acting on the ridge by x 2 �xÿ; x��, and
Ar is the power of this force.

The system of equations (2.6) ± (2.8) is a generalization of
the relationships at a discontinuity [8] for the case when
material is built up at the fracture. Similar relationships
have been considered in the theory of gas diffusion with an
admixture of dispersive particles [9], where the necessity of
their inclusion was connected with the overturning of
compression waves. Such a surface has been called `sheet'.
Physically, the sheeting corresponds to those regions where
one may not neglect the collisions between particles of the
admixture. Sheet fractures have been used to describe the
formation and drift of bands of unbroken ice in a dispersive
ice cover [10, 11]. In this case, the properties of the material
also change on the surface of the fracture since the ice cover
inside the hummock is made up of lumps of ice.

3. Evaluation of the characteristic scale
of the problem

The friction force acting between the ice cover and the water
determines a rather low velocity of ice drift under natural
conditions. Therefore, we can take V � 0:1 m sÿ1 as a
characteristic scale of the ice drift velocity [12].

In the conditions under consideration the characteristic
time scale for the ice drift is determined by the self-sustained
oscillations of the ice cover. The observational data demon-
strate that for a constant wind acting on the ice, the ice
deformation proceeds in the form of quasi-periodic shifts
produced by the relative displacements of the floes [7]. The
period of such shifts can be as long as several minutes [13].
This is whyT � 1min is selected as a characteristic time scale.

The measurements made under natural conditions for the
ice cover [14] yielded the highest stresses of the order of
105 N mÿ1. Stresses of the order of 104 N mÿ1 correspond to
the initial stages of the ridging process. This is why we have
selected S � 104 N mÿ1 as a characteristic stress.

Let us make an order-of-magnitude estimate of the terms
in equations (2.6) ± (2.8). The friction force with which the
water is acting on the hummock keel is estimated as

Fr � rwCwhkdv2 ;

where Cw � 1 is the resistance coefficient for non-stream-
lined bodies, dv is the difference between the velocities of the
water and the ice, and hk is the distance from the point of
the hummock which is the deepest in the water to the lower
ice surface. For the sake of assessments we shall take
hk � 10 m and dv � 0:1 m sÿ1. Then the assessment yields
Fr � 100 N mÿ1.

Let us evaluate the inertial term in equation (2.7)
assuming that the hummock has a triangular sail shape with
side edge angles of the sail and keel being 30� (see Fig. 1) [1].
Under such conditions the hummock volume per unit length
is Ur � 2h2k � 200m2. The inertial term is of the order of
riUrVT

ÿ1 � 300 N mÿ1.
Let the characteristic ice thickness be h � 1 m. The

penultimate term on the right-hand side of equation (2.7) is
of the order of rihV

2 � 10 N mÿ1. Hence we obtain the
estimate �s�5S. In other words, the difference between
stresses on two sides of a triangular hummock is much
smaller than the stresses themselves. Therefore, we can take

�s� � 0 : �3:1�
in the stress calculations. Note that this equation is inapplic-
able to hummocks of trapezoid shape with a fairly large

jxÿ x�
x

z

hs � dh

dh

ÿ�1ÿ d�h

ÿhk ÿ �1ÿ d�h

Figure 1.
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volume Ur. Let us estimate the width of a trapezoid-shaped
hummock for which the inertial term is of the order of
105N mÿ1 (the extreme stresses generated with the formation
of large hummocks). Let us take Ur � �hk � hs�Lr where hs is
the sail height and hk � hs � 20 m. The condition
riUrVT

ÿ1 � 104 N mÿ1 yields Lr � 300 m.
Using similar estimates we can demonstrate that in

equation (2.8) for the energy the characteristic values of
both the kinetic energy of the hummock and the work Ar are
much smaller than other terms of the equation. Therefore, we
shall assume below that

dEr � dPr � dDr : �3:2�

Let us estimate the characteristic values of the densities of
the potential Pf and kinetic Kf energies of a flat ice cover.
These densities are given by

2Pf � drigh
2 ; 2Kf � rihv

2 ; �3:3�

where v is the drift velocity and h is the ice thickness.
Assuming v � V and h � 1 m we obtain Kf 5Pf. Using this
estimate we assume below that

Ef � Pf : �3:4�

4. Hypotheses on the self-similarity
of the hummock shape and energy dissipation

The hypothesis that the hummock shape is self-similar
consists in the assumption that the variation of the shapes of
the underwater and above-water parts of the hummock (the
sail and the keel) is determined by the variation of the
hummock volume during the ridging process. The sail and
the keel of the hummock are at hydrostatic equilibrium in the
course of the process. Hence we obtain the equations

dPr � dPr

dUr
dUr ; dLr � dLr

dUr
dUr ; �4:1�

where Lr � x� ÿ xÿ is the hummock width.
The observational data indicate that the shape of the

hummock sail and keel are often close to a triangular or
trapezoid shape [1]. For a hummock of triangular shape with
the same angle j of the side edges of the sail and the keel
produced in a flat ice cover of the height h (see Fig. 1) the self-
similarity hypothesis yields the following equations

Ur � hLr � AL2
r ;

2Pr � rigLr

�
dh2 � 2Lr�dAh� BLr�

�
;

2hk � Lr tgj ; hs � ghk ; �4:2�
where the coefficients A, B, and g are given by the equations

4A � �1� 2g2� tgj ;

24B � �1� 2g��g tgj�2 ;

g �
�����������
d

1ÿ d

r
; d � rw ÿ ri

rw
:

The self-similarity hypothesis is satisfied in the process of
rafting of two floes (see Fig. 2). Under these conditions the

following equations are satisfied:

Ur � Lr�h� � hÿ� ; 2Pr � ridgLr�h� � hÿ�2 : �4:3�

To determine the dissipative function we shall take

dDr � �s�dQ� ÿ sÿdQÿ� dt5 0 ; �4:4�

in accordance with the general principles of thermodynamics.
Here s�d are the generalized thermodynamic forces which are
determined by the scenario of the ridging process.

The following scenario of the ridging process is quite well-
known [1]. The ice cover from the region with x > x� pushes
against the right-hand edge side of the hummock sail. In the
process the flat ice sheet is broken into pieces of rubble which
fall on both sides of the sail. The edge of the ice sheet pushing
into the hummock from the region with x < xÿ is broken
under the weight of the hummock sail. The hummock keel is
formed of the ice rubble pushed down into the water by the
weight of the hummock sail.

The energy dissipation is determined primarily by the
friction of the ice sheet slipping over the hummock sail on the
right-hand side of the hummock sail. It is assumed, therefore,
that sÿd � 0 while s�d is given by the law of dry friction
according to the equation

s�d � mrighhs ctgj ; �4:5�

where m is the friction coefficient. According to equations
(4.2), the generalized force s�d is a function of the hummock
volume.

In the process of rafting the mechanical energy is
dissipated by means of friction between the ice floes. Assume
that the ice sheet from the region with x > x� is under the ice
sheet from the region with x > xÿ (see Fig. 2). Assuming that
the interaction between the ice sheets is described by the law
of dry friction we obtain the equation

dDr � mrighÿ Lr dLr ; �4:6�
where m is the friction coefficient.

Equations (4.4) and (4.6) yield

s�d � mrigh
ÿx� : �4:7�

Equations (4.4) imply that dDr is a function of the volume
variation dUr.

5. Ridging stress

Let us analyze several simple mathematical models of ridging
in which the stresses required for the ice ridging process are
found from the system of equations (2.6) ± (2.8) as functions
of the hummock volume and the thickness of the ice making
up the hummock.

xÿhÿ h�x�

z

x

Figure 2.
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5.1 Rafting
It can be readily seen that the following equations are satisfied
in the rafting process:

dx�
dt
� v� ; Q� � ÿQÿ � ÿ�v� : �5:1�

The volume and the potential energy of the ice in the rafting
region are given by equations (4.3). Equation (4.6) determines
the dissipation of the mechanical energy. Using equations
(3.1), (3.2), (3.4), and (5.1) we can rewrite equations (2.6) and
(2.8) as

dUr

dt
� ÿ�h� � hÿ��v� ; �5:2�

dPr

dt
� dDr

dt
� sr�v� ÿ �P�f � Pÿf ��v� :

Hence we obtain the following expression for the stress
sr � s� � ÿsÿ:

sr � ÿ�h� � hÿ�
�

dPr

dUr
� dDr

dUr

�
� P�f � Pÿf : �5:3�

5.2 Ice ridging at a stationary wall
Assume that the ridge is at x � 0. The left-hand side of the
hummock coincides with the wall while the right-hand side
is at x � x�. As the hummock shape is self-similar we
obtain

dx� � dx�
dUr

dUr : �5:4�

As Qÿ � 0 we can rewrite equations (2.6) and (2.8) in the
following form:

dUr

dt
� h

�
dx�
dt
ÿ v�

�
; �5:5�

dPr

dUr

dUr

dt
� �s�d ÿ P�f �

�
dx�
dt
ÿ v�

�
� s�v� :

Equations (5.4) and (5.5) yield the stress sr required for ice
ridging at the wall:

s� � ÿ
�
h
dPr

dUr
� s�d ÿ P�f

��
1ÿ h

dx�
dUr

�ÿ1
: �5:6�

The friction stress s�d is a function of the hummock volume
with the thickness h equal to the flat ice sheet thickness and
depends on the scenario of hummock development. If a
hummock is triangular in shape then the stress s�d is given
by equation (4.5).

5.3 Development of a triangular hummock
in the uniform ice cover
Assume that the ice cover has the same properties on both
sides of the hummock and that h� � hÿ � h. Under these
circumstances we can assume that the flows of ice into the
hummock are identical at both sides:

Q� � ÿQÿ � Q : �5:7�

According to equation (5.7), the midpoint of the hummock
moves at the mean velocity of the ice floes making up the

hummock and we have

2Q � dLr

dt
ÿ �v� : �5:8�

Using equation (5.7) we can rewrite equations (2.6) and (2.8)
as

dUr

dt
� 2hQ ; �5:9�

dPr

dUr

dUr

dt
� �s�d � sÿd ÿ 2Pf�Q � sr�v� :

Using equation (5.8) we can find the ridging stress

sr �ÿ
�
h
dPr

dUr
� s�d � sÿd

2
ÿ Pf

��
1ÿ h

dLr

dUr

�ÿ1
: �5:10�

If the ridging process proceeds via the scenario described in
Section 4 then the stress sÿd � 0 and s�d is given by equation
(4.5).

6. Self-sustained oscillations of the ice cover
caused by ridging

Let us consider the development of triangular hummocks at
the boundaries between three ice floes under the effect of
wind-generated stresses. The wind velocity is directed
towards the sea shore. The hummocks and ice floes are
numbered as shown in Fig. 3. floe 3 is stopped by the shore
and, therefore, is stationary. The drift velocities for floes 1
and 2 are v1 and v2. At the initial moment small hummocks
are assumed to exist between the ice floes.

The complete system of equations describing the process
under consideration is

dL1

dt
� ÿQ1 ;

dL2

dt
� ÿQ1 ÿQ2 ; �6:1�

ri hL1
dv1
dt
� f1 � sr;1�Ur;1� ; �6:2�

ri hL2
dv2
dt
� f2 ÿ sr;1�Ur;1� � sr; 2�Ur; 2� ; �6:3�

dUr;1

dt
� 2hQ1 ;

dUr; 2

dt
� 2hQ2 : �6:4�

Equations (6.1) describe the variation of the ice flow size with
the consumption of ice for building up the hummocks.
According to the definitions (5.8), the flows Q1 and Q2 are
given by

2Q1 � dLr;1

dUr;1

dUr;1

dt
ÿ v2 � v1 ;

2Q2 � dLr; 2

dUr; 2

dUr; 2

dt
� v2 : �6:5�

Va

L1 L2

hk;1 hk;2

1 2

Figure 3.
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Equations (6.2) and (6.3) describe the momentum balance for
the ice floes 1 and 2. Equation (5.10) determines the ridging
stresses sr;1�Ur;1� and sr; 2�Ur; 2� as functions of the hummock
volumesUr;1 andUr;2. The stresses generated by the friction of
wind and water at the surfaces of floes 1 and 2 are denoted as
f1 and f2 and given by

f1; 2 � �raCaV
2
a ÿ rwCwv

2
1; 2�L1; 2 ; �6:6�

where ra is the air density, Ca and Cw are the respective
friction coefficients, and Va is the wind velocity.

Equations (5.9) for the ice mass balance yield equations
(6.4). The system of six equations (6.1) ± (6.4) includes six
unknown functions of time L1, L2,Ur;1,Ur; 2, v1, and v2 and is
closed. Equations (4.2) relate the hummock volumesUr;1 and
Ur;2 to the sail heights hs;1 and hs; 2 and the keel drafts hk;1 and
hk; 2.

In numerical simulations we assumed that h � 1 m,
Va � 15 m sÿ1, Ca � 0:003 (see [15]), Cw � 0:005 (see [16]),
and m � 0:3 (see [17]). At the initial moment t � 0 we took
L1�0� � 20 km, hk;1�0� � 0:5 m, hk; 2�0� � 0:1 m, v1�0� �
0:3m sÿ1, v2�0� � 0. Figure 4 presents the numerical simula-
tion results for L2�0� � 500 m (a, b), L2�0� � 1 km (c, d), and
L2�0� � 3 km (e, f).

The initial conditions indicate that the hummock size is
small at the initial moment. The small hummocks can
withstand low compression stresses. This is why in the

model under consideration they are regarded simply as the
zones where the ice cover is weakened and where ridging
occurs.

It can be seen that the ridging process goes on for
approximately 1.3 hours. In this period the hummock keels
grow to approximately 13m.The hummock sail size is close to
4 m. The final dimensions of the hummock produced on the
right-hand side of ice floe 2 are somewhat larger than the
dimensions of the left-hand hummock. The motion of the
large floe 1 is practically monotonic. The motion of floe 2
exhibits oscillations whose period depends on the floe size.
The oscillation periods are approximately 5, 10, and 20 min
for L2�0� � 500 m, L2�0� � 1 km, and L2�0� � 3 km,
respectively. These oscillations can be regarded as self-
sustained oscillations as they are generated only under a
steady-state wind load and are determined only by the
internal structure of the ice cover which depends on the
dimensions of the floes and hummocks. The period of the
self-sustained oscillations decreases as the floe size diminishes.

The self-sustained oscillations are generated owing to the
non-uniform dissipation of the mechanical energy at the floe
edges which is caused by the process of ridging. If at the initial
moment both hummocks have identical dimensions, the
motion of ice floe 2 does not exhibit oscillations. At the
moment when the ridging process is discontinued the
hummocks have similar dimensions irrespective of their
original sizes.
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7. Conclusion

The paper presents a new approach to the modeling of the
ridging process in a drifting ice cover based on the representa-
tion of a hummock by a discontinuity line in the equations of
the ice cover dynamics. The conservation of mass, momen-
tum, and energy yield the relations at the discontinuity line.
The stresses required for hummock formation can be
calculated from the relations at the discontinuity line as
functions of the hummock volume if the hypotheses on the
self-similarity of the hummock shape and the energy dissipa-
tion are satisfied.

The modeling approach was implemented for the case of
flat ice cover when the discontinuity line was straight and the
velocities of the floes making up the hummock were
perpendicular to the discontinuity line. Equations have been
derived for the stresses generated in the process of rafting, in
the case of hummock formation at a solid wall, and in the case
of compression of a uniform ice cover.

Numerical simulations were conducted for the case of two
hummocks formed at the line of contact of three floes of
identical thickness and different lengths. The left-hand side of
the left-hand floe was assumed to be free, the right-hand floe
was stationary and the length of the middle floe was smaller
than the length of the left-hand floe. The wind acting on the
ice surface causes compression of the ice cover. The computer
simulation results demonstrate that after the termination of
the ridging process both hummocks have approximately
identical dimensions. During the ridging process the velocity
of the middle floe exhibits oscillations determined by non-
uniform dissipation of the mechanical energy in the hum-
mocks. The oscillation period decreases with a decrease in the
length of the middle floe. The calculated period varied from
5 min to 20 min. Observations of drifting ice cover under
natural conditions exhibited self-sustained oscillations with
such periods [7].

The equations derived for the ridging stresses can be used
for developing large-scale rheological ice cover models for
appropriate climatic conditions in which the ice cover is
treated as a continuous medium with plastic properties. The
ridging stresses determine the limiting compression stresses
describing the plastic properties of the ice cover.

It is important to calculate the frequencies of the
oscillatory motion of the ice cover accompanying ridging
near the hydrotechnical structures as they should be known
for assessing the effects of ice dynamics on these structures. In
particular, it would be useful to analyze a possible resonance
between the ice oscillations and the natural frequencies of the
structures. Any resonance will enhance the danger of a
catastrophic failure of the structure.

The study was supported by the Russian Fund for
Fundamental Research (projects 99-01-01150 and 99-02-
17005) and by the Norwegian Science Consulate (project
128087/730).
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