
Abstract. Experimental data characterizing influence of quan-
tum effects on the equation of state and melting of substances at
high pressure are reviewed. It is shown that quantum isotope
effects tend to increase upon compression of substances with a
predominately Coulomb interaction, whereas compression of
the `van der Waals substances' reveals the opposite trend. The
`cold' melting of `Coulomb substances' at high pressure is dis-
cussed.

1. Introduction

As is well known, many-particle systems may behave either as
classical or quantum depending on the conditions. In
particular, changing the density (pressure) in a system can
significantly affect its properties. But, except for phenomena
like superconductivity and superfluidity, many-particle quan-
tum effects are always fairly difficult to observe. It turns out,
however, that considerable information on the quantum
revelations in the natural word may be gained by studying
the isotope effect or the mass dependence on properties of the
substances. In what follows the experimental data available
on isotope effects at high pressures are analyzed. Since all the
experimental data touched upon in this paper are for
temperatures far below the corresponding Debye tempera-
tures, only the ground state of the substances under study will
be considered.

2. A bit of history

According to quantum theory, the ground-state energy of any
bound or condensed system of particles contains a dynamic

part, often called the `zero-point' energy. The existence of this
energy follows from the Heisenberg uncertainty principle

DxDp5 h ; �1�

which expresses the relation between the coordinate uncer-
taintyDx and themomentum uncertaintyDp. FromEqn (1) it
follows that localizing a particle unavoidably increases its
kinetic energy. Therefore, the zero-point energy necessarily
increases as a material is compressed, however, its influence
on material properties also hinges on other contributions to
the total energy. In the general case, the zero-point energy is a
decreasing function of the mass of the comprising particles,
but its exact functional form depends on how the particles
interact and the phase state of the substance.1

Clearly, the zero-point energy is especially important for
systems made of low-mass weakly interacting particles. 2 It is
for this reason that the helium isotopes 3He and 4HeÐunlike
the heavier noble gases Ð do not crystallize down to the
lowest temperatures at low pressures. The zero-point energy
contributes significantly to the equations of state of helium,
hydrogen, and other light substances and seems to consider-
ably affect processes in the depths of `cold' stars and massive
planets.

One of the most interesting quantum effects is the so-
called `cold' melting of strongly compressed materials Ð a
phenomenon first considered by Kirzhnits [2, 3]. Somewhat
later, this problem was addressed by Abrikosov [4], whose
work was followed by a whole series of papers on the
subject (see works [5, 6] for a bibliography). Note that in the
absence of a theory of melting, works [2, 4] and many
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1 The Heisenberg uncertainty principle (1) suggests for the kinetic energy

the expression Ek � h=2m�Dx�2. Accordingly, for a system of non-

interacting particles Ek � h=2mV 2=3. For a `van der Waals gas', we have

Ek � h=2m�Vÿ b�2=3. The kinetic part of the zero-point energy of a

`Debye crystal' is Ek � �9=16��k=m�1=2 � �9=16�YD. The total zero-point

energy in this case equals Ez � �9=8�YD [1]. Here, m is the mass, V is the

volume, the constant b characterizes the `inaccessible' volume, and YD

denotes the Debye temperature.
2 For a system with the interaction length s and interaction energy e,
quantum effects are conveniently described by the so-called de Boer

parameter L� � h=s
������
me
p

[1].



subsequent papers actually employed the Lindemann criter-
ion [7, 8] in their analyses. Earlier, Pomeranchuk [9] had
applied a similar approach in an attempt to explain the
instability of the helium crystalline phase at atmospheric
pressure. Recall that, according to F Lindemann, a crystal
melts when the ratio of the mean-square amplitude of
atomic vibrations hdr2i1=2 to the interatomic distance r
reaches a certain critical value, viz.

hdr2i1=2
r

� C : �2�

It is easily shown that if particles in the system interact
according to the law F�r� / 1=r n, then for the zero-point
vibrations we have [2 ± 4, 9]

hdr2i1=2
r

/ r� n=2�ÿ1 : �3�

From Eqn (3) it follows that for n > 2 the relative
amplitude of zero-point vibrations increases with increasing
volume.3 On the contrary, in the Coulomb case Ð or more
precisely for a quantum system of point-like charges
immersed in the compensating sea Ð the relative zero-point
vibration amplitude [2]

hdr 2i1=2
rS

/ r
ÿ1=2
S �4�

increases as the volume decreases. Here rS is determined by
the condition V=N � �4=3�pr 3S .

Thus, according to the picture developed in Refs [2, 4, 9],
quantum effects give rise to two types of global phase diagram
as shown in Fig. 1. We emphasize, however, that the
Lindemann relation (2) does not provide a melting criterion
but is in fact a similarity relation valid only for systems of
classical particles interacting according to a power law [8].

Nevertheless, noting that in both of the above cases the
ratio of the zero-point energy Ez to the static energy Est is
proportional to the relative zero-point vibration amplitude:

Ez

Est
/ hdr

2i1=2
r

; �5�

relationships (3) and (4) imply that as pressure increases, the
importance of the zero-point energy can either increase or

decrease depending on whether the system has a Coulomb or
a short-range power-law interaction.

However, interactions in real materials cannot always be
described by F�r� / 1=r n, and the pressure dependence of
quantum effects remains an open question in the general case.
In this connection, undoubtedly the experimental study of
quantum effects at high pressures is of interest. Unfortu-
nately, no direct methods are available for measuring the
zero-point energy, but, as mentioned earlier, the study of
various types of isotope effects provides some insight into the
dependence of the zero-point energy on compression.

Most of the experimental data available for the investiga-
tion of isotope effects in condensed matter at high pressures
have been obtained by studying the equations of state or
phase diagrams of isotopically differentmaterials. A standard
set of data includes the volume of the material V, pressure P,
and temperature T. Combining these with the results of
thermodynamic measurements, various macroscopic quanti-
ties, including the total energy, can be calculated.

3. Simple estimates

Before discussing experimental data, it will be helpful to
estimate the size of macroscopic effects due to the existence
of the zero-point energy (see also Ref. [10]).

We start by writing the total energy Et and pressure P of
an arbitrary system at T � 0 in the form

Et � Est � Ez ; �6�
P � Pst � Pz : �7�

The `quantum' pressure Pz is of the same order of magnitude
as the zero-point energy density Ez, viz.

Pz / Ez

V
: �8�

If quantum effects are small 4 then, using the trivial relation
Pz � K�DV=V�, we obtain

DV
V
/ Ez

KV
: �9�

In the GruÈ neisen quasi-harmonic approximation, Eqns
(8) and (9) can be put into a quantitative form by transform-
ing them into Eqns (10) and (12). It is also a simple matter to
write a corresponding expression for the bulk modulus, Eqn
(11). Thus we have

Pz

K0
� g

Ez

K0V0
� g

Ez

KV
; �10�

Kz

K0
� g �g� 1� Ez

K0V0
; �11�

3 Since for n < 3 the energy of a system with a potential of the form

F�r� / 1=r n diverges, it is the values n > 3 which are physically mean-

ingful.
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Figure 1. Influence of quantum effects on the melting curve: (a) Coulomb

interaction; (b) short-range repulsion.

4 It is of interest to see which of the macroscopic parameters can serve best

as a measure of quantum effects. The answer, it seems, might be the ratio

Ez=Est. However, unlike the model systems mentioned in the text, the

static energy Est in a real system alternates in sign, making the ratio

meaningless for moderate compressions. On the other hand, the available

macroscopic variables suggest two combinations with the dimensions of

energy: PV andKV (P is the pressure,K the bulk modulus, V the volume).

It is readily seen that the product KV is the only scale factor possible here.

Notice that for stable states, the quantity KV is always positive and is

approximately proportional to the total energy at high pressures.
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DV
V0
� Pz

K0
� g

Ez

K0V0
� g

Ez

KV
: �12�

Here it is assumed that the GruÈ neisen constant g is
independent of the volume. The index `0' is used to indicate
the `classical' value of the physical quantity so labelled. Since
these values are generally unknown, the current values of the
corresponding quantities will be used throughout. This does
not present any problems if quantum effects are small.
Otherwise, the truth of relations (10) ± (12) is itself in doubt.

Attention is drawn to the fact that it is the parameter
Ez=KV which actually determines the relative magnitude of
macroscopic quantum effects in a condensed system.

Relations (10) ± (12) are difficult to apply because quan-
tum contributions to thermodynamic quantities cannot be
measured directly. Differential effects, however, can be
measured and, as mentioned earlier, it is these measurements
which allow one to draw some conclusions about the nature
and evolution of quantum contributions to the macroscopic
properties of the system. We wish to emphasize that a
differential effect here means the difference in the observed
properties of two isotopically different substances.5

From the relations (10) ± (12), the following expressions
are derived for differential quantum effects:

DPmn

K
� g

DEz

KV
; �13�

DKmn

K
� g�g� 1�DEz

V
; �14�

DVmn

V
� g

DEz

KV
: �15�

The indices m and n in Eqns (13) ± (15) denote the mass
numbers. Expressions (13) ± (15) are entirely suitable for
carrying out concrete estimates,6 for which purpose the
approximation DEz � DYD can be employed.

The relations above suggest several equivalent ways of
presenting experimental data when analyzing isotope effects.
The quantity DVmn=V may prove preferable for study
because calculating it from P ±V data is a simple procedure
introducing virtually no additional errors into the analysis.

We proceed now to discuss the available experimental
data. To understand the general situation, it is worthwhile to
first discern Fig. 2, in which the pressure dependence of
contributions to the total energy is shown for the case of
4He. It can be seen that in the present case the zero-point
energyEz increases somewhatmore slowly with pressure than
does the total energy Et.

4. Review of experimental data

4.1 Equations of state
Helium. From Fig. 2 it can be seen that quantum effects are
very strong in condensed helium at moderate pressures. The
equilibrium volume of 4He is approximately twice its classical
value. Therefore, the relations obtained under conditions of
small quantum effects are generally invalid. It is clear,
however, that even in this case dimensionless quantities of
the form DV=V and DP=K are adequate in describing
quantum effects.

Figure 3 shows the results of P ±Vmeasurements for 3He
and 4He [16]. Also shown in the figure are the calculated

5 Note that H London's [11] differential equation for the bulk isotope

effect,

m

V

dV

dm
� ÿ 9

16
g
YD

KV
�m is the mass number� ;

is obtained simply by differentiating Eqn (12).
6 As an example, let us try to estimate the bulk isotope effect for lithium

isotopes [12]. Taking into account that natural lithium principally consists

of the isotope 7Li and assuming thatY
7Li
D � 344 K, we haveY

6Li
D � 372 K.

Taking now V � 12:7 cm3 molÿ1 and K � 12 GPa, Eqn (15) gives

DV
V
� V

6Li ÿ V
7Li

V
7Li

� 1:5� 10ÿ3 :

Curiously, much more sophisticated estimates based on phonon spectrum

calculations for Li [13] yield DV=V � 1:8� 10ÿ3, to be compared with the

experimental value of about 1:2� 10ÿ3 at room temperature [14].
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Figure 2. Energy relations for solid 4He: Et � Est � Ez is the total energy

calculated as Et � E 0
t �

�V
V0

pdV (E 0
t � ÿ1:35 K,V0 � 17 cm3 molÿ1 [15],

from the P ±V data of Ref. [16]); the static energy Est was estimated from

the expressionEst�2e�12:13229�s=r�12 ÿ14:45489�s=r�6�, where e �10:22
K, s � 2:556 A

�
.
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Figure 3. (a) Compression isotherms for 3He and 4He [16] at 4 K. (b)

Pressure variation of the relative volume difference of 3He and 4He,

DV=V � �V � 3He� ÿ V � 4He��=V � 4He�; the data are from Ref. [16].
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values of the quantity

DV
V
� V� 3He� ÿ V � 4He�

V � 4He� :

What is surprising here is that the quantity DV=V is relatively
constant in the pressure range 5 ± 20 kbar. One should not,
however, jump to conclusions about the behavior of DV=V
with pressure, because the values of DV=V in this case are
comparable to the experimental errors in the volumemeasure-
ments made in Ref. [16].

Hydrogen and deuterium. Figures 4a and 4b show the
compression curves and DV=V values for hydrogen isotopes,
based on data obtained in two independent series of
experiments [17, 18]. There is a lack of consistency among
the experimental data. We note in this connection that the
data of Ref. 18] appear to be more trustworthy. Another
point to make is that according to Ref. [19], the relative
difference in the volumeDV=V for hydrogen and deuterium is
� 6� 10ÿ4 at a pressure of about 100 GPa.

Lithium. A small but measurable difference in the lattice
constants of 6Li and 7Li has been found in Ref. [14]. In Ref.
[12], the equations of state of 6Li and 7Li were studied using an
ultrasonic technique. Some of the results are shown in Fig. 5.
It can be seen that the quantity

DV
V
� V � 6Li� ÿ V � 7Li�

V � 7Li�

increases with pressure.

Carbon (diamond). Recently, the lattice parameters of iso-
topically pure diamonds 12C and 13C were measured at
various pressures [20]. We made use of the analytical
representation of the results of Ref. [20] to calculate the
quantities of interest here (Fig. 6). Again as in the case of
lithium we observe a marked increase in the quantity

DP
K
� DV

V
� V �12C� ÿ V �13C�

V �13C�

with pressure. The previous conclusion about the increased
role of quantum effects in diamond at high pressures was
based on the study of Raman scattering from diamonds of
12 C and 13C [21].

Hydride and deuteride of lithium. Figure 7 presents compres-
sion isotherms for LiH and LiD and the quantity

DP
K
� DV

V
� V �LiH� ÿ V �LiD�

V �LiD�
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Figure 4. (a) Compression isotherms for H2 and D2 at 4 K [17, 18]. (b)

Relative volume difference of H2 and D2 as a function of pressure:
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as a function of volume and resulting from calculations we
performed based on the data ofRef. [22]. Note the high degree
of compression achieved in this case. The dependence of
DP=K on V has a nontrivial form, which fact, however Ð
considering the measurement errors and those introduced by
approximation procedures Ð most likely indicates the
relative constancy of the quantity DP=K � DV=V.

4.2 Melting
Let us consider again the influence of quantum effects on the
melting curve. We write the melting curve of a substance in
the form Tm / r n=3 or Tm / Vÿn=3, where Tm is the melting
temperature, r the density, and n the exponent describing the
particle power-law interaction [8]. Clearly, the role of
quantum effects will change along the melting curve in
accordance with the relation

lT
r
/ T �2ÿn�=2n ; �16�

where lT � �h=�mkT�1=2 is the thermal de Broglie wavelength,
and r is the interparticle distance.

From Eqn (13) it follows that as helium, hydrogen or a
similar system with short-range repulsion melts, quantum
effects disappear in the high-temperature limit, which is not
inconsistent with the experimental data of Refs. [23, 24]
(Figs 8 and 9).7 On the other hand, one cannot fail to see
that the difference in melting temperature DT between helium
isotopes changes unexpectedly little with pressure (Fig. 8).

At the same time, for a Coulomb system quantum effects
occurring on melting must heighten with increasing pressure.
This can be illustrated with numerical experiments on the
melting of one-component plasma [6] (Fig. 10).8 As seen in
Fig. 10, quantum effects lead to a maximum in the melting
curve and ultimately exclude the crystalline phase for all
temperatures. It is interesting to note that, according to Ref.
[6], at the point where the melting curve of a crystalline
plasma reaches a maximum (see Fig. 10) the thermal de
Broglie wavelength is practically equal to the average
interparticle distance, i.e. the relation lT=r � 1 holds.

5. Conclusions

The entire, if very limited, body of experimental and other
material presented above generally agrees with the conclu-
sions of Refs [2 ± 4, 9] about the influence of pressure on
quantum effects in systems with various types of interaction.
We see, indeed, that quantum effects become stronger when
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metals and covalent crystals, i.e. systems with an essentially
Coulomb interaction, are compressed.

On the other hand, quantum effects clearly decrease when
van der Waals materials are compressed. The situation with
`ionic' LiH is unclear. One would expect, from the above, that
a Coulomb substance will evenmelt at absolute zero provided
high enough pressures are achieved. However, for those who
reject the approaches dating back to Lindemann and do not
content themselves with generalities, a clear picture of why
this may happen is needed.

At first sight, the situation is quite clear. A naive view is
that particles in a liquid move freely over the entire volume
and hence Ð in accord with principle (1) Ð their kinetic
energy is always less than that of particles in a crystal. But
then the `zero-point' energy of a liquid is always less than the
`zero-point' energy of a corresponding solid, and therefore an
increase in the static energy on melting should be compen-
sated for a corresponding decrease in the `zero-point' energy.
This is in fact not Ð or not precisely Ð so.

The results of direct kinetic energy measurements on
liquid and solid 4He using deep inelastic neutron scattering
are shown in Fig. 11 [27]. It is amazing but Fig. 11
demonstrates that the liquid helium kinetic energy is always
higher than that of solid helium at one and the same density.
This fact was first pointed out in Ref. [28].

Without discussing here what might cause this phenom-
enon (see Ref. [27] for more on that), we note in this
connection that only a considerable amount of anharmon-
ism in a liquid could reduce its zero-point energy compared
with a crystal. One cannot rule out that the situation
described in Refs [27, 28] is not universal and that the
behavior of systems with a `soft interaction' will correspond
more closely to our intuition. One further point to be made is
that, according to F London [29], in the `cold' melting of
helium the role of the zero-point energy is simply reduced to
the expansion of the system to a larger volume, the liquid
configuration of the particles becoming most favorable
energetically (see Ref. [30] in this connection). Clearly, such
a situation cannot be realized at pressures corresponding to
the melting of a `Coulomb' substance and, hence, the zero-
point energy should play a more active role in that case.
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