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Abstract. Methods for measuring the viscosity coefficients of
the best known type of anisotropic fluid, nematic liquid crystals
(NLCs), are reviewed. The hydrodynamic Leslie — Ericksen—
Parodi theory is described in brief, which predicts five indepen-
dent viscosity coefficients for a NLC. The feature that distin-
guishes NLCs from isotropic liquids is the rotational viscosity,
due to energy dissipation caused by NLC reorientation. The
shear flow method, methods based on ultrasonic wave propaga-
tion and absorption in an anisotropic medium, and the rotating
magnetic field technique are described in detail, as well as
methods that involve analyzing the Freedericksz transition
dynamics (LC reorientation in an electric or magnetic field)
and those using light scattering from the thermal fluctuations
of the NLC director. In each case, the accuracy of the method is
evaluated, its complexity assessed, and the amount of material
needed for measurement estimated.

1. Introduction

Liquid crystals (also called mesogens or anisotropic fluids)
are materials retaining a long-range orientational order of
their molecules. Nematic liquid crystals (NLCs) are mesogens
lacking a long-range translational order. Other liquid-crystal
phases have either a lamellar (smectics) or twisted (choles-
terics) structure.
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The liquid-crystalline state of matter attracts the attention
of researchers and engineers for two reasons. One is related to
its practical implications due to the high optic sensitivity of
liquid crystals (LCs) to electric field variations at an extremely
low driving voltage and their low power consumption. The
light undergoes complete modulation even when the voltage
applied to an LC layer varies from a few hundredths to a few
tenths of a volt. The other reason pertains to an unusually
high diversity of physical effects of LCs dictated by their
structure. Electrooptical effects of LCs have been described
by L M Blinov and V G Chigrinov [1], their structure and
physical effects by S Chandrasekhar [2], and physico-
chemical properties in the books by W H de Jeu [3] and
M F Grebenkin and A V Ivashchenko [4]. The last two
monographs consider a number of NLC properties including
viscosity, the subject matter of the present review. The interest
in viscosity is attributable to the practical importance of this
property, which is employed in fast-acting liquid-crystal
devices, and to the scientific results brought about by the
study of LC flows and reorientation. Unlike [3, 4], the present
review is focused on various methods for the measurement of
the LC viscosity coefficients. It describes state-of-the-art
approaches to the problem. At the same time, I could not
resist the temptation of describing the classic experiments of
Miesowicz and Tsvetkov first reported in the 1930s and
retaining their value till now. Also reviewed are numerous
studies performed in the Soviet Union, CIS, and other
countries. Many of them have been published in editions
that are not readily available at present.

The author sought to make the review both complete and
rigorous, so that it would serve not only for reference but also
for posing and solving problems related to the viscosity of
nematic and other liquid-crystal phases and to the liquid state
at large. A consideration of the relationships between
viscosity, thermodynamic parameters (temperature, pres-
sure) and molecular structure is beyond the scope of this
review.
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2. Anisotropy of viscosity coefficients
of liquid crystals

The orientation of nematic liquid crystals is characterized by
a unit vector n parallel to the distinguished direction
determined by the orderly aligned long axes of NLC
molecules. This vector is called the director. The degree of
LC regularity (or the order parameter) depends on the
deviation of the orientation of the long axes from that of the
director:

3{cos? 0) — 1

S =
b} )

(2.1)
where 0 is the angle formed by the long axis of a molecule and
the director. In the crystalline phase, S = 1; in the isotropic
one, S=0; and in the liquid-crystalline state, (0.3 to
04)<S<1.

The existence of a distinguished direction along which LC
molecules are aligned accounts for the anisotropy of virtually
all LC properties, including viscosity. It is also responsible for
the appearance of viscosity coefficients that have no analo-
gues in isotropic fluids.

The hydrodynamic theory of NLCs has been consistently
developed by Ericksen [5], Leslie [6], and Parodi [7]. For an
incompressible, thermally insulated medium kept at a con-
stant temperature, the equations of motion include four
conservation laws governing mass, energy, momentum, and
angular momentum. Let the fluid enclosed in a volume V
bounded by the surface 4 have the density p. The major
difference of the equations for nematics, given below, from
the corresponding equations for isotropic fluids consists in
the fact that they include orientational movement of the
director n, except the progressive motion of the fluid with a
velocity v; (i, j, k are the spatial coordinates). For this reason,
the equations of nematodynamics include such variables as
the velocity (v;) and director (n;) fields as well as their
gradients v;; and n;; and time derivatives v; and #;.
Equations for the conservation of mass and momentum
(continuity) can be written as follows [2, 6]:
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where f; is the force acting on unit volume and g;; is the stress
tensor. In the energy- conservation law
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p; is the moment of inertia per unit volume, U is the internal
energy, G;is the external torque density acting on the director,
o; = o;;v; is the surface force per unit area (v; is the normal to
the plane), and s; = m;;v; is the torque per unit area. Taking
into account the equation of angular-momentum conserva-
tion
d
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makes it possible to derive the Oseen equation
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where the right-hand side represents the final effect of all
external (G;) and internal (g;) volume and surface (r;) forces
acting on the director. The transformation and simplification
of integrals (2.2)—(2.6) give the following system of differ-
ential equations:

p=0,
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U = 0jAij + miNij — gili
pri; = Gi + gi + Miji (2.7)
where
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1
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The vector N represents the angular velocity of the director
relative to the fluid.

The terms of the system of equations (2.2)—(2.6) or (2.7)
that describe the orientational movement of the director are
of the same order of magnitude as and frequently larger
than the corresponding terms for the translatory fluid
motion. In other words, they can be interpreted as flows
or forces [2]. It will be shown below that their contribution
strongly depends on the director orientation with respect to
real streams.

Information about NLC viscosities is contained in the
antisymmetric viscous-stress tensor ¢;; and vector g; that
corresponds to the internal volume force acting on the
director. As the first step towards the determination of their
form, the following inequality for the free energy can be
obtained based on the increase in the system entropy:

G/,A,/+TC/,N,/—g,N,—F> 0. (213)
Thereafter, the free energy can be expanded in powers of the
director n;, its gradients n; ;, angular velocity N;, and velocity
gradient (or the symmetric tensor 4;;, to be more precise).
Distinguished in tensor ¢;; and vector g; are components
corresponding to isothermal static deformation —

oF oF
0 _ 0 _
jS__péfi_%nk,iéij7 i —Wli—ﬁjni.j—afnl_7
(where p and p are arbitrary constants) — and those

corresponding to the hydrodynamic part of the deformation
(0j; and g/'). The hydrodynamic components o;; and g/ can be
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expanded in powers of n;, N;, and A;;:
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where K and L are the director functions. The coefficients of
expansion of these functions in #; have the dimension of
viscosity. A series of transformations of (2.14) taking into
consideration physical reasons leads to the final expression
for the hydrodynamic component of the viscous stress tensor
with the Leslie viscosity coefficients o; (i = 1—06):

!
0 = oy Agmning + 0oniN; + o3niNj + oaAji

+ oc5njnkAk,- + oc6ninkA/(j (215)

and for the corresponding vector of the internal volume force:

g =NNitymdp, yy=03—m, y=o0s—0.(2.16)

The prototype expressions originally obtained by Leslie in
1966 [6] are as follows:

a/:ocl(n~n:/T)n~n+oc2n-N+oc3N~n

+ oq/? + ognn./f + oc(,j.nn , (2.17)

g =7 N+7p4n. (2.18)
The following notation was used in [6]: (ab) has components
(ab),5 = asbp, ab:A = a.A.b = agbgA,p, (A.ab),, = Aya,bg.
In view of the Parodi relation (see [7]) derived from the
expression for the entropy growth (dissipation) rate and the
Onsager reciprocal relations for irreversible processes,

Oy + 03 = 0 — U5, (219)

five NLC viscosity coefficients are independent.

Let us scrutinize expressions (2.17), (2.18). It follows from
the expression for Gili that the fourth term in the right-hand
side is only determined by the fluid velocity field and contains
no information about the director. Coefficient o4, the
analogue of the isotropic viscosity coefficient, is always
positive. Terms with the director angular velocity N; contain
viscosity coefficients oy and o3. For nematics formed by
elongated rod-like molecules, these coefficients are negative,
in correspondence with increases (rather than decreases) in
the deformation of the director in a fluid flow (see below for

more detail). Both coefficients, o, and a3, appear in the terms
that contain neither velocities nor their gradients; that is, they
are related only to the director reorientation. This primarily
refers to their combination y; = a3 — o, also known as the
coefficient of NLC rotational viscosity or Tsvetkov’s viscos-
ity coefficient. It will be shown below that the rotational
viscosity describes the director rotation in the absence of any
flow. In an NLC, coefficients o5 and o have opposite signs,
with os > 0 and o¢ < 0. The coefficient a; corresponds to
tensile strain. It is negative for nematics composed of
elongated rod-like molecules. Moreover, the following rela-
tions between the Leslie coefficients follow from (2.13)-type
inequalities associated with entropy growth:

200 + 3oq + 2005 + 206 = 0,
2004 + o5+ 06 =0,

4y, (204 + a5 + ot6) = (o2 + 03 — yz)z . (2.20)

Ref. [8] describes the overall hydrodynamic pattern of
systems with a long- or short-range spatial order (crystals,
smectics, nematics, ordinary liquids, and glasses) responsible
for an increase in the number of coefficients characterizing
transport phenomena (thermal conduction and viscosity).
Table 1, borrowed from this work, shows the number of
variables that appear in the hydrodynamic theories of various
systems.

It is worthwhile to mention that a paper by Forster [9]
contains an alternative description of NLC hydrodynamics,
which takes into account acoustic wave propagation. Accord-
ing to [8 — 10], a nematic LC is characterized by the tensor field
of the orientational order parameter

1
0ij=0 (”f”./ —3 51’./) ~

The principal axis of tensor Q;; is the molecular orientational
axis, while Q = S. However, the spectrum of fluctuations in
the variables considered by the hydrodynamic theory con-
tains only low frequencies, which occur only in the director
fluctuation spectrum rather than in the spectrum of order
parameter fluctuations. In the Forster theory, the viscous
stress tensor has the form

o'l.lj =22 A;; + 2(v3 — vo) (Aueng nj + Ajen nye)
+ (va — v2)0i Ak + (vi +va — 2v3)ninjng ny Ay

+ (V5 — V4 + Vz)(éfj neny Agg + n; n; Akk) . (221)

Table 1. Number of selected thermodynamic parameters in different monoatomic (monomolecular) systems.

Phase Number of inde- Number of viscosity Transport Dissipation Number of para-
pendent hydrody- coefficients 7, coefficients coefficients meters describing
namic variables (for NLC { ~y7!) relationships bet-

total in an incompres- thermal con- &/ ween the order
sible system ductivity %, parameter and flow

Simple liquid 5 2 1 1 0 0 0

Nematic 7 5 3 2 0 1 1

Smectic 4 and cholesteric 6 5 3 2 1 1 0

Smectic B (uniaxial) 8 5 3 2 2 2 0

Uniaxial crystalline 8 5 3 2 2 2 0

Smectic C 7 13 9 4 2 2 2

General crystalline 8 21 15 6 9 6 0

Cubic crystalline 8 3 2 1 1 1 0

Glass 8 2 1 1 1 1 0
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Unlike the situation with the Ericksen— Leslie—Parodi
approach, the quantities 4,4 and n, in (2.21) appear as forces
and the quantities o, and N, as flows. In this expression, vy,
va, v3 are coefficients of shear viscosity and v4 — v,, vs are the
coefficients of volume viscosity. For an incompressible
medium, v4 = v, vs = 0.

The Ericksen—Leslie—Parodi theory is discussed at
greater length in the book by Chandrasekhar [2] and the
theory of Forster and his co-workers, in volume 7 of
‘Theoretical Physics’ by Landau and Lifshitz [11]. In Ref.
[12], a system of equations is given which takes into account
volume deformations along with shear and orientation
deformations of LCs under external pressure. We note that
the requirements for the orientational distribution function
posed by the Ericksen—Leslie—Parodi approach are exam-
ined in [13]: it must be uniaxial and have the form of a
function. Equations of the orientational equilibrium for two-
dimensional LCs and LCs composed of biaxial molecules are
presented in [14, 15].

3. Relationship between LC shear flow
and director rotation

It is not the Leslie coefficients o«; which are determined
experimentally, but the coefficients of viscosity for an NLC
flow with a constant velocity gradient (or constant shear rate)
and the coefficient of viscosity describing director rotation.

Let a liquid crystal flow between two parallel plates and
the director orientation be specified by an external (e.g.
magnetic) field. Then, as shown in [3,16], the viscosity is
described by the following expression:

n(0, ¢) = (1, + 1,5 cos> 0) sin” 0 cos® ¢

+ 175 cos? 0 + 513 sin” Osin® ¢ , (3.1)

where 0 is the angle between the stream direction and the
director and ¢ is the angle between the velocity gradient and
the projection of the director onto the plane formed by the
vectors Vv and n x Vv (v is the flow velocity). It is possible to
measure four NLC viscosity coefficients for four different
flow geometries (Fig. 1): #; when the director is parallel to the
velocity gradient; 1, when the director is parallel to the stream
velocity direction; #; when the director is normal to the shear
plane, i.e. the plane in which the vectors of velocity gradient
Vv and velocity v lie; and #7450 = 0.5(n; + 17,) + 0.251,, when
the director is in the shear plane and forms an angle of 45°
with the vectors v and Vv (in this case, the contribution of the
tensile strain is maximum).

The anisotropy of viscosity coefficients in a shear flow was
first reported by Miesowicz [17]. Therefore, coefficients #;
(i=1, 2, 3) are frequently referred to as Miesowicz coeffi-
cients of viscosity. The relationship between these coefficients
and the Leslie coefficients of viscosity can be established by
substituting the director components and velocity gradients
into (2.15) and is described by the expressions

n, =0.5(a +o0s —a), 1, =0.5(03 + 0o + o),

N3y =04, Np=09. (3.2)

All the Miesowicz coefficients except 1, are positive.

The solution of a similar problem for another LC flow
type demonstrates that the stream determines the director
orientation. In the case of a stationary, laminar (Poiseuille)
NLC flow in a cylindrical pipe, induced by a pressure gradient

‘H H ®H
—
- —qn :
= Oh‘ v_> - — O ©n
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Figure 1. Relative disposition of the velocity vector v, velocity gradient Vv,
and director nin the case of measuring the Miesowicz viscosity coefficients

1> M25 M35 N2+

at the pipe ends, we assume that the director forms an angle
with the stream direction constant over the pipe profile. Let
the director n lie in the shear plane and have a steady
orientation (in the absence of turbulence). Then, the director
alignment angle 6, at a high NLC flow velocity is given by the
following expressions [6, 7]:

cos 20y = _n or tan’fy =

72 o2

B_BTh (3.3)
V2= "

The Poiseuille flow becomes unstable if the coefficients o
and «, are opposite in sign. For example, as the NLC
temperature is changed toward the smectic A phase, the
coefficient a3 changes sign and becomes positive. Then, the
laminar flow turns to a turbulent one.

Ref. [8] proposes an analogy between the coefficients y,
and y, and the thermodynamic parameters of a normal liquid.

Since the increase in entropy for a slow-changing
perturbation is

85 = <§—;>p6T+ (S—;)TS/), (3.4)
the use of the energy-conservation equation
Tds—&-ﬁzdp —d° ,
P P
the continuity equation p = —V,v;, and the equation of

thermal conduction 7 = (/pc,)V*T leads to the equation

oP
% Tpss — (—) % V0, = <C—V)V25T,
oT p ¢

where P is the pressure, ¢ is the energy, p is the density, x is the
thermal conductivity, and ¢y and ¢, are the specific heat
capacities at constant volume and pressure, respectively. The
designation

—1 — aP —1 —
© Tp=7p, x T=7y,
14

(3.5)

oT

yields an equation identical in form to the equation for the
director (2.16). This means that 3; ! is the Onsager transport
coefficient, while 7, is not. Thus, the propagation frequency
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of the temperature mode is ;! (¢y/T) ™", 1. the relationship
between the parameters 7! and y;! implies a similar
relationship between ¢y /T and Ki,?‘ (K;; is the Frank elastic
constant) and also between (dP/dT'), and (1 —7,)/7;.

The difference between 7,, 7,, and y;, y, is manifest as
differences between hydrodynamic modes. For example, the
Kubo formula cannot be written for y, and y,, whereas it has
the following form for y;!:

o2
V?l = (IUILI‘(l) ‘1111% (m) Sn,n(q7 (U) ) (3'6)
where w and q are the frequency and the spatial wave vector of
the external perturbation (of the field), respectively. Without
going into detail as regards expression (3.6), let us note that,
throughout this review, the coefficients of viscosity are
assumed to be measured at low temporal and spatial
frequencies. Both the cell sizes and control regimes consid-
ered below are in line with this condition.

The relationship between nonhydrodynamic processes
(coefficient of translational self-diffusion D) and viscosity 5
is described by the Stokes law

kgT
6nna’

(3.7)

where a is the molecular size.

A similar expression can be obtained for the spatial
orientation of a molecule by relating the coefficients of
rotational diffusion D, and viscosity:

kgT
na’

(3.8)

rot ~

The relationship between these quantities has been used in
[18] to derive the temperature dependence of rotational
viscosity.

The equations of motion for different experimental
geometries derived from (2.15) and (3.1) will be given below.
The coefficient of LC rotational viscosity describes only the
rate of director rotation and therefore has no analogue in an
isotropic liquid. It should be noted from the very beginning
that a phenomenon inverse to the director orientation due to
the NLC flow exists — the so-called backflow, or hydro-
dynamic motion of a liquid crystal induced (under certain
conditions) by the reorientation of the director under the
action of an external field [19]. These two phenomena are
directly related to the anisotropic structure of LC molecules,
which is responsible for the difference between the coefficients
oz and o, (Jos| < |a2]) and, therefore, for the torque difference
corresponding to different director orientations [20]. The
backflow accounts for the decrease in the coefficient y; [20,
21] (see Section 7 for a detailed discussion). Splay elastic
deformation is characterized by the quantity ng=y, — o3/n,
and bend deformation by 1, = y, — 3 /1,.

The temperature dependences of the Leslie (o;) and
Miesowicz #; (i =1, 2, 3) coefficients of viscosity and the
rotational viscosity coefficient y; for pentylcyanobiphenyl
(BF-5) have been reported in [22 —25] (see Fig. 2 for ; and y,).
Although the viscosities #; and y; describe dissipative
processes differing in nature (shear flow and director
rotation), they have interrelated values. It has been shown in
[26] that the ratio i/(y, S ~2), where 7 is the dynamic viscosity
measured in a capillary LC flow (see Section 4 for details), is

Inn;,Iny,
-2 n
./
[ / 71
| "/ o
-3 N _/
L/ .
;T
o " 3
./ I..- e
—4 + — oo
;'/
L /
o' 112
-6 .
\ee
| | | |
3.1 3.2 3.3 34

103/, K

Figure 2. Temperature dependences of the Miesowicz viscosity coefticients
N1, M2, 113, M1, and rotational viscosity y; for pentylcyanobiphenyl (BF-5)
[23, 24].

virtually independent of temperature, being determined by
the molecular structure of the substance. Barring a small
interval near the clearing point, this ratio is virtually constant
and determined by the structure of the NLC molecules.

An ample substantiation of the relationship between shear
flow and NLC reorientation is presented in [27] where the
identity

M_ts (3.9)

M Mg
is proved. This identity can be used to characterize an NLC
flow based on the measured coefficients of viscosity related to
director deformation or to predict the reorientation velocity
of the director from the capillary viscosity.

To summarize the foregoing in the context of the
techniques of measuring the NLC viscosity, we note that,
since all nematics are liquid, virtually any method used to deal
with simple fluids (e.g. out of the methods listed in [28]) is
suitable for the purpose. The most widespread (by virtue of
their simplicity) methods are those which involve measuring
the time of NLC passage through a capillary at a given shear
rate. It has been shown that, owing to anisotropy, the
measured viscosity is sensitive to a large number of vari-
ables, which are not always taken into account in routine
viscometry. These are the shear velocity, the orientation of
molecules at the tube wall, and external magnetic and electric
fields, whose variations alter the effective viscosity due to
reorientation of molecules in the flow. The flow may lose
uniformity even at very low shear rates, for certain relations
between the Leslie coefficients. At the same time, the NLC
anisotropic properties make it possible to use alternative
methods for the evaluation of viscosity, e.g. various optical
and capacitance techniques. Viscosity is the complex compo-
nent of the shear modulus; therefore, it can be measured by
ultrasonic methods. The anisotropy of ultrasound propaga-
tion and absorption is responsible for the difference between
the viscosity values obtained by ultrasonic and capillary flow
techniques. Akin to the former is the method of determining
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NLC viscosity coefficients by measuring the spectra of
inelastic light scattering from surface waves.

A specific feature of liquid crystals is the development of
viscous stresses in the absence of any flow, as the result of
director reorientation due to changes in the direction or
amplitude of the magnetic or electric field applied to the
given nematic specimen. The viscoelastic ratio influences the
relaxation time of thermal fluctuations of the director.
Measurement of the Rayleigh light scattering spectrum
intensity yields the set of NLC viscosity coefficients.

In what follows, we provide a detailed description of
experimental conditions for the measurement of NLC
viscosity coefficients, discuss their dependence on selected
variables, and evaluate the accuracy of measuring techniques.

4. Shear flow technique

Since, by definition, the viscosity is the ratio of the applied
shear stress to the shear deformation rate, it can be estimated
by measuring the time of passage of a given LC volume
through a capillary tube for a given pressure difference
conditioned, e.g., by the fluid weight. The measured effective
viscosity values strongly depend on the experimental condi-
tions because of the viscosity anisotropy, the director
orientation by the flow, and the interaction with the capillary
walls.

The anisotropy of NLC viscosity was first observed by
Miesowicz [17, 29] and Tsvetkov and Mikhailov [30]. The
experiment of Miesowicz is described here based on his paper
[31] using notation for #; as in Figs 2 and 3. Miesowicz
measured the damping of oscillations of a thin glass plate,
32 x 22 mm? in size, submerged in a liquid crystal. The plate
was suspended from one arm of an analytical balance by a thin
glass thread, 0.1 mm in diameter (Fig. 3a). The weight and
shape of the plate were chosen so as to minimize the irregular
movements of the plate due to thermal streams in the liquid.
The small amplitude (3 mm) and rather long period (5 s) of
oscillations ensured an extremely low velocity gradient. The
plate was placed in a 6 mm thick rectangular vessel heated by
an oil thermostat. A change in the angle ¢ between the
magnetic field H and the normal to the plate (Fig. 3b) resulted
in a change in the NLC viscosity, according to the law

(@) = n, cos’ @ +nssin’ ¢.
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Figure 3. Apparatus used for the measurement of NLC viscosity coeffi-
cients from the damping of oscillations of a thin glass plate submerged in
container / with NLC (a) and the position of the plate in container /
relative to the velocity vectors, velocity gradient, and magnetic field (b)
[31].

The value of H was chosen so as to exclude variations in the
measured viscosity coefficient 7., with subsequent increases
in the magnetic field intensity. The quantity n, was measured
in the absence of a magnetic field in the NLC capillary flow on
the assumption that the director is completely reoriented by
the flow. However, this was not exactly the case, as will be
shown below.

This method was improved in [32], where the main
difficulty, i.e. measuring the damped oscillation amplitude,
was overcome. A beam of laser light was incident on a
photodetector after passing through two diffraction gratings
with a period of 10 pm. One of them was immovable while the
other was connected to an oscillating plate. The plate
oscillations can be described by the equation

d*z

dz
:i;z +‘2[?:i; +‘(032 = 0,

4.1)
where wy is the free oscillation frequency and f is a parameter
proportional to the NLC viscosity. The solution of (4.1) is the
function

z(t) = Aexp(—pt) cos(wt + ¢) (4.2)
for w} > B> (which is true for low-viscosity samples [in [32]
n < 2P)land

z(t) = Ayexp [— (B—98)t] + Ayexp [— (B+0)1], (4.3)

for wf < B>. In (4.2) and (4.3), ¢ is the oscillation phase,
o= (- a)é)'/z, and o = (03 — [32)]/2. In [32], the ampli-
tude of free oscillations was about 2 mm at a period of 14 s.
Unlike the experiment of Miesowicz, that of Tsvetkov and
Mikhailov [30] was designed to measure viscosity variations
caused by the applied magnetic field is an NLC capillary flow.
This method was further developed in [16, 24, 33, 34]. Kneppe
and Schneider [24] described an experimental setup and
measuring procedure which gave very precise viscosity
values. A schematic sketch of their apparatus is presented in
Fig. 4. A capillary tube K positioned between the poles of a
magnet is connected at each end to a closed vessel filled with
nitrogen. An elevation of the pressure in one vessel induces an
LC flow through the capillary. The pressure difference
between the nitrogen-filled vessels is measured with an
electronic manometer and printed out as a function of time
at constant intervals controlled by a pulse generator.
Approximation formulas are used to calculate the effective
viscosity coefficient of the fluid #.g, which is related through
the experimental conditions to the measured Miesowicz
viscosity coefficient #;. The accuracy of measurements is
improved by virtue of good LC orientation achieved by the
use of a strong magnetic field, low shear rates, and a thick
capillary tube with a wide longitudinal section. The capillary
consists of 20 plates assembled together parallel (for measur-
ing 1,, ;) or normal (for measuring #,) to the magnetic field,
as shown in Fig. 4. The plates are made of a nonmagnetic
metal (brass). The cross section of the -capillary is
0.3 x 16 mm? and the total length amounts to 855 mm.
These dimensions are significantly different from those used
in [16] (0.4 x 50 mm?) and [33, 34] (0.3 x 4 x 50 mm?). In
order to reduce the effect of LC surface tension, the inlet and
outlet of the capillary block are connected to two glass
cylinders C; and C, (15 mm inner diameter) for the storage
of LC. Complete wetting is achieved by coating the inner
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Printer —
generator
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Figure 4. Experimental setup for measuring the coefficients 7, 1,, 73, 11>
[24].

surface of the glass cylinders with a thin film of tin oxide.
Bearing in mind the pressure dependence of the buffer gas
compressibility, a constant nitrogen pressure is chosen for all
measurements. In order to achieve an isothermal expansion
of the buffer gas during the measurement, each buffer volume
(85 cm? of N3) consists of 25 boreholes of 7 mm diameter in
the copper block. The capillary block, the glass cylinders C)
and C,, and part of the brass tubes connecting the cylinders to
the buffer volumes are submerged in an oil bath, where the
measurement temperature 7' can be controlled to within
4+0.01 K. The remaining part of the tubes, the buffer
volumes, and the differential pressure manometer are placed
in an aluminium case the temperature of which is maintained
at the level Ty, = 22°C.

For a laminar flow in a long capillary, the flow rate of a
liquid volume ¥ with the coefficient of viscosity 7 is related to
the pressure difference between the capillary ends through the
expression

A
17

Vv (4.4)
If the buffer gas assumed to be ideal and the diaphragm
displacement in the manometer is proportional to the applied
pressure difference Ap, the flow rate is proportional to the

derivative of the gas pressure difference Ap with respect to
time:

XdAP -~ 7Apc 7
dt n

(4.5)

where X is a factor dependent on the temperatures 7'and T,
gas volumes, and diaphragm displacement. The difference
between Ap and Ap. is the hydrostatic pressure difference

pgA/’l (Ah = /lz — /11)2

Ape = Ap — pgAh = Ap — (Apy — Ap)AXpg . (4.6)
Here, Apy is the initial gas pressure difference (at + = 0 and
Ah = 0) and A4 is a constant dependent on the cross section of
cylinders C; and C,. This allows (4.5) to be written in a form
convenient for integration:

dAp.

< (4.7)

K
= _;TX(I + AXpg)Ap.

where the constant K is determined by calibrating the
viscometer with a standard liquid of a known 5. However,
expression (4.7) gives only the effective viscosity coefficient
Herr» Which is lower than the corresponding Miesowicz
coefficient of viscosity #; because of the pressure gradient in
the capillary. The fluidities (reciprocals of the viscosities) ¢
and ¢; are related by the expression

et = b; + DAPE (gt = ;' + DAP?). (4.8)

This expression, upon substituting it into (4.7) and subse-
quent integration, gives

_ K
In [ApC(HDmApg) 1/2} = ——(1+AXpg)t + C.

1
(4.9)
Although the coefficient D is a function of the experimental
conditions and NLC viscosity coefficients, it is adjusted so as
to obtain the maximum correlation coefficient for the
experimentally found dependence Ap(¢), which is related to
Ap. by expression (4.6).

The relationship between 7., and #; can be derived from
the equations of motion and orientation, which appear in the
Leslie — Ericksen theory. We omit here the derivation proce-
dure and present the principal results. The variation of the
director tilt angle over the depth of the LC slab for the
director and the velocity gradient parallel to each other
(measurement of #;, geometry 1 in Fig. 1) is described by the
expression

T

0— dp =

ooy dp _ T )
2 n B dz 2 Hhe

(4.10)

where —a/2 < x < a/2, a is the capillary thickness, y, is the
diamagnetic anisotropy, B is the magnetic induction, and
dp/ dz is the pressure gradient along the capillary tube. The
profile and mean value of the flow velocity v(x) are described
by the formulas

1 dp[, & B[, d
S ) L S 4.11
o) =5 g {V s \" 16/ (411)
a dp B’
_ a (b 4.12
© =1 dz< 0 ) (4.12)
and the effective viscosity #.¢ by
- pia
Matr =117 (1 +—210 : (4.13)

If n, is measured in the presence of a magnetic field
(velocity v is parallel to the director, geometry 2 in Fig. 1),
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the director alignment angle is described by the expression

_ ko dp (4.14)
n2XaBZ dz

It should be recalled that the quantity 6 is determined by (4.7)
in the absence of a field. In this case, the mean flow velocity is

a dp Brd® (m
=—— —|1l—"F—(—-1 4.15
@) 12, dz { 201, <’72 )] 7 ( )
and the effective velocity is
2
—1 1 Baa [y
= ——= | —==1]. 4.16
e =112 201, (’72 ) ( )

When the director is perpendicular to both the velocity and
the velocity gradient, #.; = #5. Therefore, pressure gradients
are responsible for the underestimation of , and #,.

Another source of errors is associated with the boundary
layers at the tube walls, whose width is

) K
<= 354/ 2
YatoH YakoB

and which are not oriented by the magnetic field (Kj; is the
coefficient of elasticity). The Poiseuille flow near the walls and
in the bulk of the cell has different profiles, which accounts for

the dependence of < on the magnetic coherence length ¢:

1

11 : N1/ 1
= [6§ - 12(§) + 8(5) ] (———) , (4.18)

i i a a a Ns N
where ng is the coefficient of viscosity at the inner capillary

surface. Neglecting the terms (¢/a)* and (¢/a)® and taking
into account (4.17) leads to

(4.17)

A1, %i(i,l)
net o La aB\nsg n;

Thus, the Miesowicz coefficient of viscosity #, can be obtained
by the extrapolation of the dependence n4f on B! to
infinitely large values of magnetic induction (Fig. 5). It
follows from Fig. 5 that the measured 7, and 55 values are
close to true real ones in sufficiently intense fields. Never-
theless, even at B = 1.1 T the measurement error is as large as
10%. This fact and the high shear rates seem to explain the
underestimation of the #; values by Gaehwiller [16]. On the
other hand, the viscosity coefficients #, reported by Mieso-
wicz [29, 31] are correct because they were measured in a thick
(6 mm) sample at low shear rates.

Effects of the director orientation at the wall of a capillary
tube were studied in [35]. If the orientation is controlled only
by the magnetic field, the effective coefficient #, is propor-
tional to B~! and its true value can be obtained by
extrapolation for B~! — 0. If a nematic contains an admix-
ture of 0.1% cetyltrimethylammonium bromide (CTAB),
which facilitates its homeotropic orientation in a plane
capillary, then n$"™ = », for a magnetic field B < 1.1 T and a
pressure difference of 100 Pa between the capillary ends (see
Fig. 5). The flow profile also depends on the size of the
aperture. If it is much smaller than the capillary width, the
inflowing LC moves more slowly near the wall than in the
bulk of the capillary. As a result, the tangent to the front edge

(4.19)

i
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Figure 5. The quantity n" (7;/n " ratio) as a function of the magnetic field
Bin the measurements of i, (1), 11, (2), 113 (3), 11, (4) for MBBA [24] and 1,
(3, 6) for dibutylazoxybenzene (DIBAB) [35]. (1, 5) n,/n¢™ values obtained
without previous treatment of the capillary surface; (6) DIBAB with 0.1%
cetyltrimethylammonium bromide added to maintain homeotropic orien-

tation.

of the inflowing LC makes different angles (+-« and —a) with
the long capillary axis. In the front region, the LC turns in
different directions with respect to the flow alignment. In a
twisted nematic cell, this results in the appearance of domains
subject to differently directed torques [36].

Effects of boundary conditions on the Couette flow of a
molecular liquid are studied theoretically in [37]. Let a liquid
crystal be sandwiched between two plates moving in the y-
direction at velocities v and —vs and situated at distances L
and —L from the center of the layer. The no-slip boundary
conditions for the derivative of the orientational part of the
free energy kT with respect to the orientation tensor a,, can
be written as

_ o = kpT) ™' K, 4 C,Cy'nsb,

Zﬂv*@*Aauv*Cam(n B ) m ny, + Cq o MO -

(4.20)

Here, Cy = (kgT/m)"/? is the thermal velocity of a molecule
of mass m, n, is the component of the unit vector normal to
the liquid surface, k, = n\,PM, P,, is the component of the
friction pressure tensor, b, = D,V,a,, and D, is the
coefficient of rotational diffusion. The overbar denotes the
symmetric traceless part of the tensor, e.g.

| 1
aub, = 3 (ayby + a,b,) — 3

The index ‘tan’ stands for the tangential vector component,
e.g. k:f“l =k, — nyn,k,. The surface is characterized by the
dimensionless coefficient C, > 0 that describes the orienta-
tion. The effective viscosity coefficient #,; can be found from
the condition

Neoff U
po(L) = =%

aibiéw.

(4.21)
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However, the true velocity gradient y, differs from the
measured one, y = vs/L, and can be written using functions
related to the surface orientation:

i L !
_ _l: — — C —
¢ {1+QLtanhl{l+ﬁtdnhl] },

(4.22)

where the quantity Q is related to the ratio of viscosity
coefficients at low and high shear rates (n and 5., respec-
tively), being a combination of relaxation times that describe
translational (n = nkgTt,) and rotational (y, = 3nkgTS?t,)
motions of the director and its torsion (y, =2 x 3!/
nkgTSTap; Tap = Tpa, according to the Onsager relation):

0 M _TapTpa (1 Tapfpa>l.

= (4.23)
Neo TaTp TaTp

[ is related to the characteristic length /, (the scale of

variations in a spatially nonuniform orientation; /> = D,t,)

by the expression

2= (1 fM)zf.
TaTp

It can easily be seen that TupTpa/TaTp = 7,17/4y3. Then,
1~0961/, O~ 0.11f |p,| = y; = 3n. The maximum possible
Q value for typical NLCs obtained from the relaxation time
ratios (or corresponding viscosity ratios) is 0.33 at
[72] = y1 =0, 1e. (1/Mog)max = 1.33. Generally speaking, this
value is somewhat smaller than the actual variation of the
effective n value in a flow (n,/n, = 3).

Only the parameter f in (4.22) is directly related to the
surface orientation:

(4.24)

B = CaDo(Col)™". (4.25)

The parameter R differs from unity because the velocity
profile of the Couette flow at a small f differs substantially
from a linear one and is described by the expression

I -1
— sinh 4
L

; (4.26)

) / L .
vy = Rug %4— QZ cosh7+ﬁsmh

Atlow ff or L//and near the plates, the director undergoes
an incomplete orientation by the flow. This increases the
measured viscosity, described by (4.21). The following
relation, obtained from (4.22), is satisfied if the distance
between the plates is sufficiently large (L > 4/):

T i~ +p)

(4.27)
Hetr

It was shown in [38] that not only the inclination of the
director, described by (3.3), but also its torsion is possible for
certain boundary conditions and shear stresses. Under planar
or homeotropic boundary conditions, the reorientation of the
director usually takes place in the x,y plane formed by the
director and flow velocity vectors. However, if the orientation
is tilted against the flow, the LC layer can experience a
torsional strain under a shear stress exceeding the threshold
value.

Let us denote the viscosity coefficient measured in a
capillary NLC flow at high shear rates by .. In early

experiments [16, 24, 29, 33], 5, was considered equal to #,. If
we assume that, in a capillary flow, the director alignment
angle relative to the velocity vector tends to a saturation value
(zero), we shall have for 7, [39]

2
0 = 0.250{2( - z—;> +0.5(0 + o + 05) (4.28)
2
The difference between n, and #, [see (3.1)] is
oo
Anc =MNe — Ny = —a3 (l +;_22> ) (429)
2

very small for most NLCs.

The measured 7, strongly depends on the capillary radius
and shear rate. Figure 6 shows the temperature dependences
of the apparent (i.e. effective, experimentally measured)
viscosity 5.y in capillary tubes of three different inner radii
(175, 335, and 452 pm) [40]. At the same shear rate, the
apparent viscosity for the smaller tube is 10% higher than
that for the larger tube.

Hefr» P2 s
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13 -
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Figure 6. Temperature dependence of the viscosity coefficient for hexylox-
ybenzylidene aminobenzonitrile (HBAB) measured in capillary tubes of
inner radius 175 pm (7), 335 pm (2), and 452 pm (3) and by the falling ball
technique (4) at a mean gap of 1400 pum between the ball and the tube walls
[40].

A similar effect is observed if the shear velocity is varied
without changes in the capillary size. Ref. [41] describes a
method for measuring the viscosity of an NLC in the gap
between concentric circular cylinders rotating with different
angular velocities. The dependence 7. (y) for a wide range of
y values can be described by the relation

Hegr = 2 + blﬂ’l =, +bG, (4.30)

where G = |y\71. This dependence reaches a saturation at
shear rates above 2000 s~! (para-azoxyanisole, t = 120°C).
For a homeotropic orientation of the LC at the surfaces of the
cylinders and low shear rates, . — #; [41]. Itis also shown in
[41] that heat fluxes in the flow do not appreciably affect the
director orientation.

The capillary-radius and shear-velocity dependences arise
from the influence of these parameters on the pressure
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gradient along the capillary, ¢ = dp/ dz. In the general case,
the viscosity 7, is described by the relation
1'ch4

n="gp (4.31)
where Q =21 fOR v(r)rdr is the LC volumetric flow rate. By
constructing dependences of #, on the Atkin number 4Q/nR
(which is a single-valued function of the product ¢R> in the
absence of an electric or magnetic field [42, 43]), it is possible
to find such values of the capillary radius and shear velocity at
which these parameters cease to influence the apparent
viscosity. It follows from Fig. 7a that the effective viscosity
is virtually independent of the capillary radius if R > 300 pum.
This corresponds to the Atkin number 4Q/nR =0.1-
0.2cm?s~! and agrees with the data for para-azoxyanisole.
The experimental findings of Fisher and Frederickson [44] for
different capillary radii and shear rates are in good agreement
with numerical solutions to the equations for the director
continuity and variation in an NLC flow through a cylindrical
capillary tube with homeotropic boundary conditions at its
walls [45]. In the case of a well-established flow in the absence
of a magnetic field, these equations have the form

d%o df( d0>2

2f do K11 sin 20

Zf(e)ﬁ'*‘@

dr rodr 2
dv
v 4 w02V —
+ (y, + y,cos20) i 0,

%:ﬁ<_%+é), (4.32)
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Figure 7. (a) Effective viscosity against the Atkin number (the ratio of the
flow rate to the radius) 4Q/nR for different capillary radii [40] and
(b) 7, H? [46]: (a) HBAB (dotted lines denote isotherms), (b) PAA.

where

£(0) = K1 cos® 0 + Ky sin® 6
g(0) = o sin® 0 cos? 0 + (005 — 02) sin’ 0

dp

+ (a6 + o3) cos® 0 + g , q=-q

(4.33)

At 4Q/mR > 0.1 cm? s~!, both the theory and experiment
confirm the existence of a well-established director orienta-
tion in a capillary NLC flow. However, there is no established
orientation in highly viscous fluids (especially those contain-
ing smectic clusters) even at large Atkin numbers. If a
magnetic field is imposed, the Atkin number at which the
effective viscosity becomes saturated decreases. Figure 7b
shows the results of a numerical calculation of 1,(4Q/nR) for
various y, H? values [46].

In a capillary NLC flow with homeotropic boundary
conditions at the walls, the influence of the boundaries is
significant within a region of thickness J.This quantity is
determined by the expression

R—(S:Rcy1_77cy1(7’lerf_’7w>l/4

(4.34)
R R Ny Negr — ncyl

where Ry is the radius of the core region of the capillary in
which the NLC undergoes realignment, 7, is the viscosity
coefficient in this zone, and 7, is the viscosity coefficient in
the boundary layers [44]. With 5., =1, n, =1, and
experimentally found viscosities, we obtain
Reyi/R = 0.93—0.94 for capillaries of different diameter, in
agreement with microscopic observations of NLC flows [34].

According to [47], the viscosity increases with increasing
mechanical stress, which is evidence for a highly regular
structure of LC.

Various aspects of viscosity measurement in an NLC flow
are also considered in [48]. If an NLC flows in a capillary tube
under the gravity force alone (as in the Ostwald viscometer),
the pressure difference between the tube ends is Ap = pgh,
where £ is the average height of the liquid and p is its density.
The kinematic viscosity of a Newtonian fluid is described by
the Poiseuille equation which establishes proportionality of
viscosity to the passage time taking into account corrections
for the kinetic energy effects [49]:

B nRgh
=Ct+—, C=
=t 8LV

(4.35)

where L is the tube length and V' is the volume of the flowing
fluid. As a rule, the second term in (4.35) is neglected at
t >200 s, and the constant Cis determined measuring the flow
time of a fluid of known viscosity (with unknown / and 7).

In the Ubbelohde viscometer, the gravity effect is
compensated by the presence of the second arm of the
capillary tube and the thorough adjustment of air pressure.
Therefore, the capillary flow time is independent of the LC
density and proportional to the dynamic viscosity #.

Ref. [50] describes a viscometer that makes it possible to
measure the kinematic viscosity in a small NLC volume
(0.4—0.6 ml). Even less LC is needed to measure the
viscosity in the microviscometer developed in [51] on the
basis of the microcapillary device described in [52]. This
instrument consists of a 50 cm long, precision tube (of inner



March, 2001

Physical methods for measuring the viscosity coefficients of nematic liquid crystals 265

diameter 0.2—0.4 mm) in which the temperature is main-
tained constant by a thermostat to within £0.02 K. The
fluid travels under the action of its own weight in the
upright capillary tube. The displacement f the fluid level is
recorded by a cathetomer. The amount of fluid needed to
measure the viscosity (to an accuracy of 1%) may be as
small as 50—100 mg because the capillary has no dilated
cavity through which the fluid is introduced, in contrast to
the capillary described in [50].

It has been mentioned above that in an NLC flowing
through a capillary tube with homeotropic boundary
conditions at a low shear rate, the director deviates from its
initial orientation by an angle 6, determined by the ratio
az/op [or /., see (3.3)]. If the sign of o3 changes from
negative to positive, optical detection reveals a decrease of 6
to zero, the breakdown of the steady laminar flow into
irregular domains, and the appearance of disclination lines
parallel to the flow direction [5]. However, capacitance
measurements reveal no peculiarities in the temperature
dependence of angle 60 [53]. The last two studies investi-
gated flows of hexyloxybenzylidene aminobenzonitrile
(CsH130-CcHs—CH=N-CcH4—CN, nematic range 56—
101°C, (a3 =0) =91°C). A detailed description of the
experimental technique employed in [53] may be useful to
understand this paradox. A brass cylinder is rotated with an
angular velocity o (1 min™' < w/2n < 1 s7') inside a glass
cylinder. Shielding electrodes are sealed in opposite walls of
the glass cylinder together with measuring electrodes parallel
to the cylinder axis. The capacitance of the LC volume
placed between the short-circuited electrodes and the brass
cylinder (second measuring electrode) is measured using a
bridge. Evidently, the capacitance of the LC is a function of
the director alignment angle. This system is subject to a
magnetic field oriented so as to preserve the capacitance
balance after the magnetic field is removed. The measure-
ments are also made with the opposite direction of the
cylinder rotation. The angle between the H directions thus
found, corrected for the cylindrical configuration of the
electrodes, is 26,. Although a change in the sign of a3 results
in flow instability and the formation of inversion walls with a
director alignment angle of 180° — 26, the measured
capacitance remains unchanged. A hypothetical structure
for the director orientation in an unstable flow is suggested
in [40].

A nonuniform distribution of director orientations in a
flowing LC layer can arise under the conditions described in
[54]. If the director at the substrate plates is rigidly oriented at
an angle 0;, a constant shear stress t; applied to one of the
plates deforms the director in the bulk of the layer. A type-/
or -2 deformation may occur, depending on the relation
0,2 0y = arctan(az /o) [see (3.3)] (Fig. 8a). The director
behavior in an LC layer at different shear stresses is in fact a
solution to the Euler — Lagrange equation

ﬂ_f o3 c082 0 — 0 sin” 0
dz? 0.5(ot3 + og + o) — (o3 + ot2) sin?0”’

(4.36)

where K = (K| + K2 + K33)/3 is the mean elasticity coeffi-
cient. If 0; > —0p, the function Opnay(7) tends to 0 as 1 — oo;
if 0) < —0p, Omax(t) = 0 — 1 as 17— oco. If ) = —0,, a
deformation threshold exists, and metastable states are
possible. For a 10 pm thick MBBA layer, the threshold is
about 0.1 Nm~2. A nonuniform distribution of director
orientations may be responsible for distortions of the
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Figure 8. Feasible deformations in a shear flow [48] for different boundary
conditions (a) and the dependence of effective viscosity .y on shear stress
7 (b) and temperature (c) [48]: (b) 1, 0, = 0y; 2, 0, = =/2; 3, 0; = —0.1;
a3 /oy = 0.01, 1, /0y = —0.2; (c) ; = 0.18, t = 3n°K/L>.

measured viscosity. The effective viscosity coefficient for the
LC layer shown in Fig. 8a is described by the relation

e = L{ J+L/2[n2 (o — o) sin 0]~ dz}] L @)

—L)2

A nonmonotonic dependence 0(z) at ; < —0 can lead to a
similar dependence of 7. on the shear stress and to a bistable
temperature dependence (Fig. 8b, ¢).

Under nonsymmetric boundary conditions (e.g. planar on
one substrate plate and homeotropic on the other), the
calculation of the time dependence of the LC reorientation
must take into account the so-called surface viscosity [55].
The reader is referred to Refs [56—58] for a more detailed
discussion of this problem. The surface viscosity dimension is
that of the product of viscosity by the characteristic length
(cell or boundary layer thickness). In [55], the surface
viscosity is estimated to be 2.7 x 1077 Necm~'. If this
viscosity is ignored, a 20-fold discrepancy arises between the
surface energy values obtained in static and dynamic studies
of the Freedericksz transition.

If static disclinations are present in a moving nematic,
they may either attract or repulse the flow, depending on their
strength [59] (Fig. 9). Certainly, this also leads to uncertainties
in the measured viscosity. A case of disclination motion is
considered below.

In the foregoing, we discussed the situations where the
NLC viscosity was determined from the characteristic time



266 V V Belyaev

Physics— Uspekhi 44 (3)

Figure 9. Distribution of NLC flow lines near linear disclinations of
different strength: S = +1 (a), S= —1(b), S = -2 (c) [59].

taken by a fluid volume to pass through a capillary tube. We
also repeatedly noted that the flow influences the nematic
orientation [relation (3.3)]. Since a nematic deformation
entails significant changes in the optical characteristics of
the nematic, optical methods of measuring the angle 6, are
preferable.

In [16, 35], the director alignment angle 0, in a capillary
NLC flow was obtained by an optical method from the
optical path difference AI' between the ordinary and extra-
ordinary components of polarized light. At a certain (not very
high) shear rate, 6(x) in the LC layer (with the exception of
the transition layer) became a constant equal to 0y at x > 0
and —0y at x < 0. For small 0, values (almost invariably
typical of experiment),

L)2
P ) I —
12 L (n2 cos? 0 + n2 sin® 0)"/
1 e
:7§I1eLn°nznO sin? 0.

o

—n, | dx

(4.38)

In [35], two branch pipes for inflowing and outflowing LC
were cemented at the two ends of a plane capillary section. In
[60], the measuring cell had a similar shape and was also used
to study electrical conductivity and dielectric permittivity.
An original method of determining the director alignment
angle (and hence, the 7, /y, ratio) from a single measurement
over a wide range of shear velocities is described in [61]. The
measuring cell consists of two circular glass plates, with a
homeotropic orientation of the NLC at their surfaces. One
plate is rotated at a constant angular velocity w. A point at a
distance r from the axis of rotation had the linear speed
v = wr. Thus, a broad range of shear rates is covered (the
angular velocity is varied from 4.19x107° to
4.19 x 10=2 s~1). Since the flow alignment angle in the bulk

of the sample increases with increasing v, the birefringence of
the LC layer also varies, thus leading to the appearance of a
system of light and dark concentric rings when the cell is
illuminated by monochromatic light (in [61], A = 546 nm).
The ring number is related to the average birefringence at the
distance r from the rotation axis via the expression

mi.

7= (ne(r) = no), (4.39)

where L is the thickness of the nematic layer which ranges
between 40 and 500 pm and departs from the mean value by
less than 2 pm. The radius * (or number m2) at which the ring
density is maximum (while the distance between rings is
minimum) is determined to find the viscosity ratio. The ratio
r*/mL is a function of the NLC physical characteristics and
temperature. The dependence of m/L on (vL)™'/? fit a
straight line from the slope of which the y, /7, ratio is deduced:
2(1 —w™?) m A

71 L
—=l-—, w=— —+1. 4.40
P Ty R A (440)

To obtain the absolute values of the viscosity coefficients
using this approach, the LC-should be placed in a magnetic
[62] or electric [63, 64] field. In [64], the viscosity is determined
from the optical characteristics of an LC layer confined
between two rotating circular glass plates. It is shown that
this method is applicable to NLCs with a positive as well as
negative dielectric anisotropy. Unlike (4.40), the ratio of the
ring number to the LC field thickness is a function of both the
LC characteristics and the applied voltage. Therefore, the
viscosity is determined from the coefficients by means of the
approximation

=@+ ael)’, 4.41
L(vL)* t +ax(ol) (4.41)
a = (1 _é (7 —72)2 . +£aU2(V1 — ) )

'~ 9601 n2 K323 8 K3
17 &U? ( Y1~ Vz)]
“|' 1 4- , 4.42
{ 14 8K331, 1 (4.42)

a

4
! {1 +8aU2(V1 —“/z)}

_ e (1 _n_§> (=)
630 I’lg K33 8K33

{36 e U? <47y1—y2) ~ 17(K33 — Ki) 4}
b

11 K31, Ky 3

(4.43)

Expressions (4.41) — (4.43) were obtained for the conditions of
a small director deformation in an NLC flow. In the case of
zero field, U = 0, the ratios (y; — 7,)/K33 and K33/Kj) can be
derived. The values of K33, Ki1, (y; — 7,), and , can be found
from approximations. At high shear rates, the ratio y, /7, can
be obtained using (4.40). This means that the method under
consideration allows the absolute values of y,, y,, and #, to be
determined. Ref. [64] puts a limit on the effective voltage
applied to the LC layer. Ate, < 0, the applied voltage must be
smaller than [48K331, /|a|(y1 — yz)]l/z. For MBBA, the limit-
ing U value is 17 V and lies below the EGD-instability
threshold at a sufficiently high frequency. A stricter limita-
tion for NLCs with any sign of ¢, follows from the smallness
of the displacement angle 0. If 0 = Opa[1 + (¢ — 1)42%/L?],
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where O, i1s the maximum displacement angle and ¢ is a
small parameter, U must not exceed

_ 8K33£ 12
leal (4 — (31 — p2)m3")

For pentyl cyanobiphenyl, U; ~ ¢'/2 and equals 0.4 V at
& ~ 1. It is argued in [55] that the experiment may be carried
out at a higher voltage. To verify this inference, it is necessary
to obtain a numerical solution to the nonlinear equations that
describe the NLC dynamics. This method is not widely used
for measuring the NLC viscosity, but it has been successfully
employed to measure the coefficients o and a3 of polymeric
liquid crystals [65].

Although the above-described method allows one to
determine a set of NLC viscosity coefficients, standard
rotational viscometers, which consist of a flat plate and a
rotating cone with the base radius R and cone angle 180 — 2o,
are used much more widely [49, 66]. Such an instrument
measures the moment acting on the plate. This technique is
advantageous in that neither the voltage nor the shear
velocity depends on R at small a.

The falling-ball technique is one more method used in
viscometry. The coefficient of viscosity #pp obtained by this
method is smaller than that measured in a capillary NLC
flow (see Fig. 6) and it is very close to the Miesowicz
coefficient of viscosity #, [40]. The quantity #gg does not
depend on the width of the gap between the ball and the
cylinder walls. It slightly increases in the temperature range
where the coefficient o3 changes its sign, probably due to the
onset of turbulence [40]. The falling-ball technique is
especially convenient in those experiments where a shear
flow cannot be realized, e.g. in samples subject to high
pressures [67, 68].

U,

5. Ultrasonic methods
for measuring the NLC viscosity

Coefficients of viscosity close to those in an NLC shear flow
through a capillary tube can also be obtained by measuring
ultrasonic shear waves propagating across a nematic layer
[69, 70]. Depending on the mutual orientation of the director
n, ultrasonic displacement u, and ultrasound wave vector k
(Fig. 10), one of the three coefficients of viscosity can be
determined:

oy 1 o3y
’/IA:77 ’1B:§(°‘4+0‘6— 2)7

71
1 00V,
ncfi(océﬁ-ocg—T .

Figure 10. Relative positions of the ultrasonic displacement vector u, wave
vector k, and director n in the measurement of viscosity coefficients 7, 7,
nc by ultrasonic methods.

It is easy to show that 3 = n (the Rapini equality). The
quantity np differs from #, by

1 12
A’7B2:'13—712:—§0<3(1+—2>~ (5.2)
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Since |o3] is small and 7, /7, &~ —1, the difference between
ng and n, turns out to be insignificant. It is worthwhile to
mention that the coefficient #z has a different set of Leslie
coefficients and a different meaning compared to the bend
viscosity coefficient, denoted by the same subscript (see
Sections 7 and 8).

The ultrasonic methods used to measure the coefficients
of viscosity #,, g, and 7 are described at length in [70]. The
pulse-phase method proposed in [69] for determining the
NLC viscosity is based on the measurement of the amplitude
and phase of the signal reflected from the surface of a
measuring element on which the nematic layer is placed and
oriented in a certain manner. The measuring element is a
trapeziform plate of fused quartz to one end of which an
ultrasound vibrator, also working as a receiver, is glued. An
advantage of the pulse-phase method described in [69, 70] lies
in the possibility of measuring the viscosity of a relatively
small amount of LC (0.5—1 g) over a very wide range of
values (1073 —10'% Pa s). The drawbacks stem from the fact
that the mechanical characteristics of the measuring element
and gluing quality are strongly time- and temperature-
dependent. Moreover, high reflection orders should be used
to measure the reflection coefficients and phase shifts for low-
viscosity liquids (1 < 0.1 Pa s), which reduces the signal-to-
noise ratio. The accuracy of the method is 5—10% (20% for
low-viscosity liquids), and this method is unsuitable for
express analysis.

The viscosity coefficients in the range 0.005-5 Pa s,
typical of nematics, can be obtained using the low-frequency
(24-270 kHz) resonant torsional-oscillation technique [70,
71]. The high accuracy of this method (1-2%) is due to the
relative simplicity of the measurement of changes in the
resonant frequency Af and in the half-width Jf of the
resonance curve of the quartz element as it is immersed in a
test medium. The measured resonator characteristics are
related in a simple manner to the impedance of the medium:

Z=R+iX=K"(0f+iAf), (5.3)
where K is the quartz generator constant. The components of
the complex shear modulus G = G’ + iwn are linked to the

impedance components by the relations
2 2
G’:u, n:ﬂ_ (5.4)

p Tfp

Refs [70, 71] describe a measuring element that eliminates
the damping effect of fastening on the resonator finesse and
the shunting of the resonator electrodes by a conducting
liquid and its vapors (Fig. 11). Four cross-linked electrodes
deposited on the cylindrical quartz surface induce torsional
oscillations of the resonator. When the electrode-free part of
the resonator is submerged in the test medium, the liquid
adheres to its end and lateral surfaces, increasing the moment
of inertia of the resonator and changing the resonant
frequency by a quantity Af. The range of the measured
viscosity coefficients can be extended using a regime of freely
dying oscillations of the resonator loaded with the liquid
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Figure 11. Schematic representation of a measuring element for experi-
ments with the use of the low-frequency resonant torsion oscillation
technique [70, 71]: I, glass container; 2, test medium; 3, glue; 4, fused
quartz cylindrical surface; 5, quartz crystal; 6, electrodes.

under study (at 7 values of up to 2 x 10> Pa s[70, 72]) or with a
resonator having an internal cylindrical cavity. It is demon-
strated in [70] that a 60 mm high sensor (20 and 10 mm outer
and inner diameter, respectively), with a 30 mm deep inner
cavity, can be used to measure the viscosity of a liquid until it
undergoes vitrification.

The liquid volume may be as small as 0.1 —0.5 cm?, and the
size of the resonator unit can substantially reduced if a thin
quartz plate is used as the resonator of shear oscillations
(Fig. 12)[70, 73]. Gold electrodes, 6 mm in diameter (D2), are
placed in the center of a polished quartz plate of thickness
L = 0.34 mm and diameter D; = 2.5 mm. In such a construc-
tion, the electrodes are located far from the plate edges, so as
to confine the oscillation energy beneath the electrodes and
avoid the effect of fastening on the resonator finesse. The

/3

[/

[ 4

Figure 12. Schematic of the measuring element used in the high-frequency
resonance method: /, container; 2, test liquid; 3, quartz resonator;
4, electrodes [70].

lower edge of the resonator is insulated from the outer air.
The choice of harmonics from the first to the seventh allows
the frequency range from 4.9 to 33.9 MHz to be covered. A
planar orientation of the NLC at the resonator surface is
achieved if a coating of phenyltrichlorosilane is rubbed
parallel and perpendicular to the direction of oscillations
after the plate is immersed in a 5% solution in toluene and
then dried. The homeotropic orientation is secured by
treating the surface of the resonator with a 5% dimethyldi-
chlorosilane solution in toluene and subsequently drying. It is
shown in [74] that the form of temperature dependences of the
active R and reactive X components of the shear acoustic
impedance for various NLC orientations relative to the
direction of oscillations corresponds to the form of analo-
gous dependences for the three principal NLC viscosities (see
Fig. 2). Moreover, the coefficients of viscosity for the three
different geometries are virtually frequency-independent. In
this case, ng # #¢c. In other words, the Rapini relation is not
fulfilled, probably because the relaxation times of orienta-
tional and translational molecular motions are different [see,
for instance, (4.23)]. The failure of the Rapini equality does
not mean that the Parodi relation is violated.

The viscosity coefficients #, and g can be obtained by
measuring the spectra of inelastic light scattering by capillary
waves generated on the free nematic surface [75]. An LC
sample of large thickness and diameter (5 and 25 mm,
respectively) is placed in a horizontal magnetic field
H ~?2 kOe. A laser beam is reflected from the LC free
surface and partly scattered at angles controlled the length
of thermally induced capillary waves. Wave motion leads to a
Doppler shift in the incident light frequency. Both the
frequency and damping coefficient depend on the NLC
surface tension ¢ and viscosity # and can be measured
spectroscopically. Exact expressions for the spectral energy
density of the scattered light are presented in [76, 77]. At low
viscosities, the spectrum is Lorentzian, centered at the
frequency

v = (2m) " (og")'", (5.5)
with the half width
Av, :M for ¢ L H,
Tp
Avj = w for g||H, (5.6)

where ¢ is the surface tension; p is the NLC density; ¢ is the
wave vector showing the direction in which capillary waves
propagate, either normal or parallel to the magnetic field; and
N = o1 +73/7:. A mathematical processing of the spectrum
shape for ¢||H can yield 5y and 7y, separately.

6. Rotating magnetic field method

V N Tsvetkov was the first to report, in 1939 , an experiment
in which a liquid crystal was placed in a rotating magnetic
field [78, 79]. After the researchers’ interest in LCs quickened
in the late 1960s and early 1970s, this experiment was applied,
almost unmodified, to measuring the rotational viscosity 7,
[80—83]. Some investigators chose to rotate the sample
suspended between the magnet’s poles rather than the
magnet itself [84]. The geometrical arrangement of this
experiment is schematically shown in Fig. 13. If the presence
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Figure 13. Experimental geometry featuring the relative orientation of the
magnetic field vector H (phase wt?) and director n (phase ¢) in the
measurement of the rotational viscosity coefficient y; by the rotating
field method. The angle ¢ characterizes the lag of the director behind the
magnetic field in a synchronous regime.

of a constant magnetic field H, the absence of streams, and
uniform orientation are taken into account, the equation of
director motion (2.18) has the form

b =719 +0.5px H*sin2(p — ¢py) =0, (6.1)

where ¢ and ¢y are the angles of rotation of the director and
magnetic field, respectively.

Let us consider the establishment and relaxation of the
director orientation at the beginning and end of magnetic
field rotation, and also in the case of small oscillations in the
field direction [85]. Under the assumption that the difference
@ — @ is small, upon reducing Eqn (6.1) to a linear form, its
solution can be written as

t

® = Qg + wol + J;)f(t/)lpn(t -

t")dt’, (6.2)

where ¢, = @(t=0) and wy = ¢(t =0) are the initial
conditions, n = —1, 0 and +1, and f(¢) and () are given
by the expressions
20y, H?
71

V(1) = 7sinhi:ct/r) + ncoshcﬂ exp ( - %) .

f() =

[@u(t) — @y — wt] —2ay,

(6.3)

Here, I is the moment of inertia of unit volume, o is the
dimensionless constant related to the critical field stren%th
He = —y,/(4Ipy,)"* via the expression o = (1 — H2/HZ)"/?,
and t = —21/y, is the damping time. The measurement of the
rotational viscosity coefficient by the rotating magnetic field
method usually gives the torque density I" exerted on the wire
from a sample unit volume. The quantity I is related to the
rotational velocity by the simple equation

The insertion of (6.2) into (6.4) with (6.3) taken into account
leads to

L OB R VAL

+ prwop (1) . (6.5)

If a magnetic field with a constant rotation rate w is applied at
the initial time, when ¢, = 0 and wy = 0, then ¢ = wf and
the wire is subject to the torque

I'=—ypo[l—y (). (6.6)
Uniform director rotation sets in within a sufficiently long
time.

The inertial terms in (6.1) influence only the time needed
for the uniform director orientation to be established. There-
fore, at angular velocities below the critical velocity o,

L’
= 6.7
O X Wer 2 s ( )
expression (6.2) has a very simple form
p=ot—¢, sin 2 = . (6.8)

cr

For o < w, the director lags behind the field by a
constant angle, and the measurement of y, reduces to finding
e. For > o, Eqn (6.1) admits a solution of the form [84]

B 12
tan (s —%) = (w w“) tan [(0® — o2)"*1 - 1] ,

W + W¢r
(6.9)
where
o — o\ V2
to = arctan ( Cr) (6.10)
+ Wer
Therefore, the director rotates with the angular velocity
Q= (?— ). (6.11)

If an LC sample of volume V is suspended by an elastic wire,
the elastic torque exerted on the sample is

M=TIV=y 0V for <o, (6.12)

M=05Vy,H for o= 0w, (6.13)
Vlegr

M= for @ > we . (6.14)

o+ (wZ - wgr)l/2

Figure 14 shows the torque acting on a para-azoxyanisole
(PAA) sample at different temperatures plotted against the
angular rotation rate of the magnetic field [78]. This
dependence was found by V N Tsvetkov in 1939 and
confirms the validity of relations (6.12)—(6.14). The left
branches of the curves (w < w.) are in quantitative agree-
ment with the theoretical predictions [formula (6.12)]. For the
right branches, the observed M values are slightly higher than
the theoretical ones. The best fit of the theory to experimental
data for the right branch of the dependence M(w) was
achieved in [82] where the torque was measured using a hard
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Figure 14. Torque M acting on a PAA sample versus the angular rotation
rate of the magnetic field w at temperatures 12° (1), 116° (2), and 120° (3)
[78].

teflon cylinder (used instead of a metal wire) submerged in the
liquid sample.

It was shown in [86] that an increase in the magnetic field
rotation rate leads to a change in the sample structure. The
initial fall of the intensity of satellite lines in the NMR
spectrum ends in their complete disappearance for o > wy;.

The inertial terms can be found from the relaxation time
of torque I' measured after the magnetic field stops rotating
or in an oscillating magnetic field [85]. In the former case,
oy =0, o =7,0/py, H?, and expression (6.5) assumes the
form

I'=—p 0y, (1). (6.15)
The torque I' decreases monotonically for H < H,, and in the
process of damped oscillations for H > H,.

Now, we describe in brief the experimental setup and
discuss potential measuring errors intrinsic in the rotating
magnetic field method. Figure 15 is a diagrammatic repre-
sentation of the apparatus used in [84]. The sample tube 9
(5 or 30 mm in diameter) is filled with the liquid crystal 7/ to a
height of about 80 mm (such a height is needed to avoid
bottom effects) and is suspended on the glass bar § and the
torsion wire 2 (iron wire, 1 m in length and 30 or 100 pm in
diameter). The tube and the liquid can be rotated by the
stepping motor / (500 steps per revolution). The sample is
placed between the poles /0 of an electromagnet (200 mm core
diameter, 50 mm pole gap, B = 0to 1.3 T) and surrounded by
a double-walled glass tube 7 which is kept at constant
temperature by a water thermostat. The rotational viscosity
coefficient can be determined from the torsion angle of the
wire as

Do

oV’
where D is the torsion constant of the wire and 0 is the angular
velocity of the stepping motor. The torsion angle o can be

Vi (6.16)

] |7
8
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N
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Figure 15. Experimental setup for measuring the viscosity coefficient y; by
the rotating magnetic field method [84].

found from the phase lag between the stepping motor and the
sample tube that arises after switching-on the magnetic field.
The laser 3, cylindrical lens 4, mirror 5, and six photodiodes 6
mounted 60° apart in a horizontal plane, form the detection
system for the phase lag. The differences between the phase
lags with and without the magnetic field are averaged by a
computer over several revolutions. Deviations from the
Hooke law at large torsion angles of the wire are taken into
account as well as the residual torsion (which persists as long
as the magnetic field is applied due to the viscosity of the air
between the sample and the thermostated tube) and errors
arising from the noncoaxial position of the sample.

These uncertainties are small compared to the serious
errors that can result from wall effects, such as the backflow,
inversion walls, and elastic torques attributable to incomplete
orientation of the LC by the magnetic field. Indeed, an LC
flow opposite in sign to that of the magnetic field rotation is
known to occur near the tube wall. However, this flow should
not be identified with the normal backflow [19, 20] created by
differently directed streams. Most likely, it is produced by the
backflow between the cylinder wall and the free surface in the
upper part of the sample. The velocity of this flow is higher
than that of the direct one. The theory of a similar effect was
proposed in [21]. Under the boundary condition v = 0 at the
cylinder wall, elastic forces preclude the complete orientation
of the sample by the magnetic field at distances of the order of
the magnetic coherence length [87]

Ko\ 12
14 :anl(—”) .
Xa

This accounts for the smaller effective radius of the rotating
LC sample and, accordingly, the smaller torque of the wire.

(6.17)
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The effective value of the measured rotational viscosity
coefficient is [84]

28
eff

=y (1=-=2).
7 Vl( R)

An even greater influence on 7, is exerted by the inversion
walls (resembling the well-known Bloch walls in ferromag-
netic materials), which separate the LC sample into domains
with different director orientations [88, 89]. Both the stability
and topology of such walls are considered in [84, 89]. Their
relaxation time can be obtained from the balance of the
viscous, magnetic, and elastic energies as

(6.18)

~ V1
N

(6.19)

which gives about 0.1 s for methoxybenzylidene butylaniline
(MBBA) at room temperatures and B=1 T. Since this
relaxation time is comparable with the revolution time of
the sample in the magnetic field, this mechanism should
substantially affect the quantity ¢,

The part of the sample occupied by the inversion walls,
does not appreciably contribute to the torque M and can be
taken into account, to a first approximation, by replacing &
with the larger quantity &* = ¢& in expression (6.18). Calcula-
tions show that to &* = 9¢ for two inversion walls. The effect
of the walls or, in their absence, the influence of the elastic
forces on the measurements can be reduced by using stronger
magnetic fields and/or sample tubes of larger diameters. With
the rotating magnetic field method, the authors of [84]
managed to measure y; to an accuracy of 0.3% or so.
However, this requires a large amount of substance (~ 70 g).
was needed to achieve such a high accuracy. For this reason,
many investigators who use smaller samples to measure 7y,
[82, 83], report lower values than those obtained with the
same method or other methods described in Sections 7 and 8.

The phase lag between the directions of the magnetic field
and director (and hence, the y, value) can be found by
examining the EPR spectrum of a paramagnetic label
dissolved in the NLC rotating in a magnetic field [86] and
also by acoustic methods measuring the anisotropy of the
ultrasound velocity [90—91] or the anisotropy of the ultra-
sound absorption coefficient [92, 93]. In the last two cases, it is
possible to measure the anisotropy of diamagnetic suscept-
ibility at a known rotational viscosity.

Ultrasonic methods are convenient when the torque or the
optical parameters of the NLC cannot be directly measured,
e.g. in experiments with samples under high pressure [94].

Since the intermolecular distance decreases with increas-
ing pressure, measurements of the nematic viscosity under
varying external pressure make it possible to establish the
relationship between viscosity, on the one hand, and
molecular packaging and free volume, on the other hand.
For this reason, the measurement of the NLC viscosity as a
function of pressure is important in itself. The dynamic
viscosity was measured in [67] by a falling ball technique and
the rotational viscosity, in [94] by a rotating magnetic field
method. In general, the construction of the cell for measuring
the rotational viscosity under high pressure and the signal
recording technique described in [94] are similar to those
reported in [84] (see Fig.15). In the experiment, the wire is
initially rotated in such a way that the plane of the mirror be
perpendicular to the light beam. The magnet is rotated so as
to make the director rotation angle equal to 180°. Thereafter,

these operations are repeated in an inverse order. In view of
(6.12) and (6.16),

rig — D 2nD
y = (¢ 4g Pref) _ : 2 7 (6.20)
(wng - wlef) V (wrlg - wlef) V

where wyi; and wyer are the right and left rotation rates of the
magnet, respectively.

It is difficult to measure the torque to a high accuracy;
however, the quantity y, can be determined by measuring the
ultrasound absorption anisotropy ¢ = Aa/f2 in a pulsed or
rotating magnetic field [95—99], and also in a static magnetic
field (w =0) [100—103]. In the former case, the time-
dependent response of Aa/f? is described by the expression
(93]

1

Aa(t) = ay(t) — a(0) = c{(cos2 0(1)) — 3}

+ b{(cos“@(z)) _ ﬂ , (6.21)
where the relationship between the director displacement
angle 0(¢) and the magnetic field growth time in an
electromagnet, ty, a function of the inductivity of the
magnet (H(1)=Huax[l —exp(—t/tx)]), is described by the
following functional relations:

=4/ - A)}l/2 arccos A4'/2

{cos 0(1)) T ’
(cos* 0(1)) = 1+4/2-(3/2) [S/EIA—);I)] "2 arccos A'/2 ’

"

t
{2! — 3ty +4tgexp (— —)
"1 TH

(2]}

where ¢ and b are coefficients characterizing the dependence
of ultrasound absorption anisotropy on the angle f§ between
the wave vector and the director:

a(B) = o + ccos® f + bcos* p

N HZ
A:exp{—)ca—

(6.22)

or, if we neglect the small contributions of thermal con-
ductivity and capacity [10],

w?

a(B) = 25Co [(v2 + v4) + 2(—v2 + 2v3 — v4 + vs) cos

+2(v +v2 — 2v3)cos* ], (6.23)

where v; is the Forster coefficient of viscosity, p is the NLC
density, and Cj is the ultrasound speed. It follows from the
medium incompressibility condition that v; = vy, vs = 0. In
routine acoustic measurements (f'= 620 MHz, as in [104,
105]), a nematic can be regarded as a quasi-incompressible
medium. Then, the coefficients v, v», and v3 can be obtained
directly from high-frequency measurements of the ultrasound
absorption coefficients [105]

(). ()58
1) 620 4m2 1) 60 417

A pC§

2V3 =V +W :ﬁ W . (624)
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The characteristic time of disorientation after switching-
of the magnetic field can be estimated from the intensity of the
saturation field Hgy:

=1 (6.25)

In a rotating magnetic field, the phase shift of the director
rotation in a synchronous regime (wy < w¢) under the
condition ¢(¢ = 0) = 0, measured by ultrasonic methods, is
described by the expression [96]

1 —exp [— 2wpyt(e* — 1)'/2]
[e + (&2 71)1/2] —[e—(e2— 1)1/2] exp [— 2op1(e2 — 1)1/2]

@ = arctan

)

(6.26)

where ¢ = y, H?/2y,wy. Expressions for ultrasound absorp-
tion anisotropy in an asynchronous regime (@ > ) are
given in [96]. It follows from (6.21) and (6.26) that ultrasonic
methods for recording the director rotation measure the ratio
71/ %a- Therefore, to determine y,, it is necessary to know the
diamagnetic anisotropy ,, which is more difficult to measure
than the NLC density. The volume of the working chamber is
5.3 cm?, which, for a given ultrasound frequency (2.8 MHz)
and pulse duration, makes it possible to reduce the errors
related to the pulse spectrum length and the broadening and
interference of the incident and reflected beams.

NMR spectroscopy is frequently used to measure some
parameters at weak magnetic field oscillations about a certain
average direction. In this case, ¢y = o exp(ixt), where ¢ < 1.
The substitution of this ¢ into (6.5) with taking into account
the initial conditions ¢, = 0, wy = 0 for the torque gives

I'=py,Ho { — gr exp(iex)y_ (x) dx| . (6.27)

70 Jo

Within a sufficiently long time, oscillations establish in the
torque I'. They lag behind the magnetic field direction by the
angle 0 + m:

I' = py H*acosOexp [i(xt — 0)] . (6.28)
The angle 0 is determined as
. H2 2
tanez%{l— (£> } (6.29)
AL Ker

Evidently, at k = k¢, = (p;{aHZ/I)l/2 = H/Hgyt, the torque
I’ changes in synchrony with the direction of the magnetic
field H. For this reason, i, is termed the angular velocity of
synchronization. Knowing the torque amplitude and phase
lag, makes it possible to determine the density of the moment
of inertia I.

Gerber [106] described a capacitance method for record-
ing the dynamics of the director reorientation due to small
changes in the direction of the magnetic field. A measuring
capacitor filled with the LC is placed between the pole caps of
a magnet generating fields H of up to 8 kOe. A pair of coils
mounted in the pole gap generate a weak reorienting magnetic
field H; of about 10 Oe. The normal to the capacitor plates
makes angles of 45° with respect to the mutually perpendi-
cular directions of H and H;. The strength H and the
capacitor gap thickness are chosen so as do minimize the
magnetic coherence length (6.17). The field H; of the coils,

controlled through a squared-pulse wave generator, is
suddenly reversed, thus rotating the total field H+ H; by
several milliradians. The resulting change in the director
orientation leads to a change in the sample capacitance C:

1 dC  2(e—¢y)

C d0 e+e, (6.30)

The relaxation time of the measured capacitance change is

71
T= HE (6.31)

The error of measuring y; by this method is of the order of
6%, depending on the accuracy of the recording procedure
and the determination of y, from the variation in the
threshold voltage Up for the Freedericksz transition in the
magnetic field [107], and on the approximation of the
temperature dependence y, by the temperature dependence
of birefringence An.

7. Methods based on studying L.C reorientation
in magnetic and electric fields

If an LC layer between two substrate plates is subject to an
external magnetic or electric field, it undergoes deformation
characterized by director reorientation. This effect depends on
the boundary conditions at the substrates and on the
magnitude and sign of the diamagnetic or dielectric permittiv-
ity. It is named for V K Freedericksz, who was the first to
observe it [108]. A detailed description of the Freedericksz
transition can be found in [1, 109]. Three particular cases
differing in director and external field orientations with
respect to the substrate plates are of practical importance
and can easily be observed in experiments (Fig. 16). Deforma-
tions induced by a magnetic or electric field whose strengths
exceeds a certain critical (threshold) value Hg or Ep = Ug/L
(L is the layer thickness), respectively, are referred to as splay,
twist, and bend elastic deformations or, following the notation
adopted in [1], S-, 7-, and B-effects. The threshold values Hg
and U are given by the relations

Ko\ 12 K\ 2
3 (8)” ()
Xa éa

where y, and ¢, stand for the anisotropies of diamagnetic and
dielectric permittivity, respectively, and Kj; for the Frank
elastic moduli: K;; = Kj; for the S-effect, K;; = K>, for the T-
effect, and K;; = K33 for the B-effect. In dynamic studies of
the Freedericksz transition, it is possible to measure the
coefficient of rotational viscosity y,. In this case, the
viscoelastic relation is usually determined for the NLC. In
addition, the corresponding coefficient of elasticity is needed

(7.1)

= =
= Zm

Figure 16. Director and field orientations for the S-, 7-, and B-effects
induced by an electric or magnetic field.
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and can be measured using the same sample. The main
equations of director reorientation in an NLC layer for the
above three deformations are presented in [110].

The progressive motion of molecular centers of gravity is
absent only in the case of torsional strain, where the equation
of motion has the simplest form [35]:

2

0
K» P

e (7.2)

. 0
+xastm2<pcos<p :yla—?,

where ¢ is the director torsion angle. For a field slightly
stronger than the threshold one, Hg, ¢ is small and the

solution  satisfying the  boundary  conditions
¢(z = £L/2) = 0 has the form
® = QPmax COS% . (73)

Expression (7.3) holds for values below ¢, ~ 40° [111].
After the field H is switched off, the deformation relaxes
according to the exponential law

t
o) = oz 0 exp (- 1), (1.4
where the relaxation time 7y is given by the expression
nL
= 7.5
70 7T2K22 ) ( )

and ¢(z,0) by expression (7.3).

The variation of ¢(z,?) is traced by the rotation of the
conoscopic figure observable with a polarizing microscope in
a planar oriented LC layer subject to a magnetic field H
parallel to the layer plane and perpendicular to the director n
(Fig. 16b) [111, 112]. In the case of torsional strain, the
conoscopic figure turns through an angle 6 given by the
following expression [112]:

(sin2¢(z))
(cos2¢(z))
2sin ¢

T RE(1/2m, sin @) — F(1/27, sin )] (7.6)

tan 20 =

where F and F are the complete elliptical integrals of the first
and the second kind, respectively. However, at H L n, the
conoscopic figure can rotate both clockwise and counter-
clockwise. This situation takes place in experiment and
precludes accurate measurements [113]. The problem can be
resolved by aligning H at an angle of 90 — ¢, with respect to n.
This results in a more complicated form for expression (7.6)
[91]:

tan 20

2(Sin2 Pmax 7Sin2 (/)0)1/2 cos 2(:00 — H(‘pm q)max) sin 2(P0
2(Si1’12 Prmax — Sil’l2 @0) 2 sin 2@0 _H([//07 Qomax) cos 2@0 7

sin iy = sin @ Sin @,y (7.7)

n/2
H(lro, @) = 2] Ay (1 — sin® gy, sin® )12
lp()

/2
X J dy (1 — sin® @ sin® ) .
0

The angle 6 shows a linear dependence on ¢, until
Qmax ~ 40° [111]. A typical dependence of 6 on time ¢ is shown
in Fig. 17a. It can be used to calculate y, if the elastic constant
K>, is known.
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Figure 17. Relaxation of the rotation angle of the conoscopic figure for (a)
T-deformation [111], (b) reduced capacitance AC/C, [106], and (c) phase
lag S-deformation [115] and light transmission by crossed polaroids.

For S- and B-effects, the situation is somewhat more
complicated because of the backflow due to director
reorientation [19]; in this case, instead of measuring the
coefficient of rotational viscosity 7, its effective value y¢T is
actually obtained. The associated corrections for ST are
different for the initially planar and homeotropic orienta-
tions because of the difference in the torque exerted on an
elementary NLC volume [20]. For the S-effect,

2

o
W =ns=n —n—3m1. (7.8)
1
For the B-effect,
2
o
V?ff =Np="— =, (7.9)

k)

A comparison of these expressions shows that the
measurement of the rotational viscosity coefficient in the
case of splay deformation (Fig. 16a) entails a small error (of
less then 1%), since a3 < 7y, ng[16, 24]. As a rule, this error is
smaller than that introduced by laboratory instruments or
data processing procedures. In the case of bend deformation
(Fig. 16c), the correction not only substantially reduces the
measured y;, but also strongly affects its temperature
dependence. For this reason, when y, is determined from the
relaxation of SB-deformation, an originally planar orienta-
tion is usually chosen and the director tilt angle is found from
the change of the phase lag A®[114] or capacitance [115] of the
NLC layer. In either case, the deformation of the LC layer is
induced by an external electric field. The equation of director
relaxation after the field is removed acquires the form [114]

%0

o0

eff 2 -2
— = (Kjjcos 0+ K n°0)—
Y ( 11 COS 33 81 )622

L ar

. A%
+ (K33 — Kjp) sinfcos 6 %) (7.10)
z
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For small deformations, 0 < 1; therefore, in view of (7.8),
expression (7.10) can be written in the simpler form

a0 0%0
—=K —. 7.11
s 30 = "1 a2 (7.11)
It admits an exponential solution for 6, similar to (7.4),
with the time constant
Lo

T =— ——

= : 12
2 K (7.12)

In an optical study of splay (or bend) elastic deformation,
a change in the director tilt angle 6 leads to a change in the
effective birefringence of the NLC layer and, therefore, to a
change in the phase lag A®, which manifests itself in an
oscillatory transmittance of the cell placed between crossed
polaroids, depending on the voltage applied or on time, if the
voltage is switched off. A change in transmittance from
minimum to maximum or vice versa corresponds to a change
in A® by rt radians. If the phase lag changes by d, radians after
a voltage U > Uf is switched on, then recording the time
points of transmittance extrema after the voltage is removed
gives the time dependence of the phase lag change
0 = Ady,x — AP with respect to the lag for the undistorted
layer (Fig. 17¢). The phase lag relaxation curve is described by
the equation

1 50 _ 27122 K]l {

" ( o ) T
i.e. the relaxation time of the director tilt angle is twice as long
as that of the phase lag . The approximations described by
Eqns (7.11), (7.13) do not work for increased NLC deforma-
tions.

This method for the measurement of the relaxation time
allows the change in the viscoelastic ratio nz/Ks; to be
estimated as a function of the pressure p [116, 117], using a
specially designed cell. The elevation of pressure from 10° to
5 x 107 Paleads to a 1.7-fold increase in the viscoelastic ratio
(from 2.3 to 3.9 Pa s H™!) due to the decrease of the free
volume and the increase of the order parameter. The 75/ K33
ratio for MBBA at 35°C agrees with the values obtained in
[117].

An expression analogous to (7.13) can also be derived for
the relative change in the capacitance of a planar oriented

(7.13)

NLC layer [115]:
AC(t) & 2t
~ — Omax -—— 1, .14
CL ZSL xp ( T0 ) (7 )

where ¢, is the dielectric anisotropy, ¢, and C, are the
dielectric constant and capacitance for the direction perpen-
dicular to the director, Oy, is the director tilt angle in the
middle of the layer, and AC = C(¢) — C, is the change in the
layer capacitance following the removal of the voltage. The
time dependence of capacitance is shown in Fig. 17b.
Expression (7.14) also describes the change in the nematic
twist-cell capacitance in the case of orthogonal director
orientations at the opposite substrate plates for U > Up,
which implies negligible changes in the azimuthal angle [118].
The viscoelastic ratio ng/Kj; ~ y,/K11 can be obtained
directly from the relaxation time for the electrooptic twist-
effect response, Topr. For this purpose, the time is measured in
which the intensity of the light transmitted by the nematic
twist cell sandwiched parallel between two polaroids changes
from the maximum (at the time of switching off the applied

voltage) to a level of 0.1. Figure 18 plots #4/Ki1 =~ 7, K
values obtained from the phase lag relaxation time in a planar
oriented layer (horizontal axis) versus the switch-off time of
electrooptic twist-effect response (vertical axis) for a number
of liquid-crystal materials manufactured in Russian and other
countries [119, 120]. All points fall, to a high accuracy, on the
straight line described by the formula

Tiofr = 0.05L2 IZ—S , (7.15)

11

which coincides with the formula describing the relationship
between the phase lag relaxation time and the viscoelastic
ratio, because (212) ' ~ 0.05 [see (7.12)].
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Figure 18. Switch-off times (T,) for the twist-cell optical response as a
function of the viscoelastic ratio y,/Kj; for various liquid-crystalline
materials. \

The relaxation time of director orientation can be found
not only by measuring the capacitance of the LC layer but
also by measuring its resistance [121]. To eliminate the effects
of near-clectrode layers, thick (1 mm) para-azoxyanisole
samples were used. The director was planar oriented at the
surface of stainless steel gold-plated electrodes. The realign-
ment of the LC layer was accompanied by changes in its
resistance from R, (for the director perpendicular to the field)
to R, (for the director parallel to the field). At an arbitrary
voltage, the resistance R was related to the displacement angle
¢ measured from the normal to the conducting substrate
surfaces (z-axis), by the equation

I
R:R,J (140'cos® )" deé,
0

(7.16)

where ¢’ is a constant depending on the NLC elasticity
coefficients and & = 2z/L is the coordinate normalized to the
thickness L (the boundary conditions are ¢ = 90° at £ = +1
and dp/d¢é = 0at & =0, i.e. in the center of the cell). At the
initial time ¢ = t = 0 [t = (L*y,/2K33)1], the resistance Ry is
described by the average displacement angle ¢:

R, — Ry R,

—2 =cos’ @

S 7.17
R, — Ry Ry ( )

Then, the resistance relaxation upon switching off the electric
field is described by the equation

_ R—Ry _
= RtfRO =

(14 ¢’cos? q)o)jol(l +0'cos?p) M dé—1
o’ cos? @, '

Bo
(7.18)



March, 2001

Physical methods for measuring the viscosity coefficients of nematic liquid crystals 275

The relaxation law for the displacement angle ¢(¢&, ) can be
obtained by means of numerical solution of Eqn (7.10).
Upon substituting ¢(&, ) into (7.18), specifying ¢,, and
using the reference Kj/K33 values, 5, can be calculated and
compared with experimental values. The coincidence of
these dependences and 7y, values for para-azoxyanisole
[y;(121.9°C) = 0.072 Pa] with the results of other studies
confirms the applicability of this approach to the measure-
ment of the coefficients determining the director reorientation
rate in NLCs.

It was shown in [122] that, by measuring the current across
the cell, it is possible to determine not only the rotational
viscosity of an NLC but also the tilt angle of the director at the
substrates.

Ref. [19] presents a solution to a (7.12)-type equation that
describes the increase and decrease in the deformation of an
LC layer at magnetic fields H stronger or weaker than the
threshold field H,, (assuming H/H . — 1 < 1). If the displace-
ment angle 6(z) is small (z is the a coordinate measured
perpendicular to the cell plane), it is safe to state that, to a
good accuracy,

0(z, 1) = Opmax (1) cOS =,

7 (7.19)

where 0.y is the displacement angle of the LC layer. Then,
Eqn (7.10) describing the reorientation of the layer reduces to

i don [, (Ha\],
XaHZ d[ H max -

Its solution is

(7.20)

Opna (1)
0*(0)

"1+ [02(00) /2 — 1] exp|— (20, H2 /1) (H? /HE — 1)i]
(7.21)

where 0(00) = Omax(t — 00), and &% = (02, (t = 0)) reflects
the level of orientation fluctuations in the unperturbed state

related to the strength of the magnetic field as

2 2
o= tol (| H/He — 1)
2nLK | — H?/H}

(7.22)

In (7.22), H;is a certain critical field, which takes into account
the finite size of the sample. The fluctuations determine a rise
in 0 at the beginning of the reorientation:

2t
O (1) = €7 exp =, (7.23)

T

where 7 is the time constant:
2 2
-1 Xchr H

H)y=2"¢<(_"___1 7.24
f ( ) 71 (chr > 7 ( )

either a positive or negative at different H/H (obviously,
O(o0) = 0at H < Hy).

If monochromatic polarized light propagates in an LC
layer along the z-axis, the phase difference between the
ordinary and the extraordinary beam, depending on the
displacement angle O,x(¢), results in an oscillatory time
dependence of the light intensity after the passage of the
analyzer. The number N(¢) of oscillations is proportional to

2 2 . . .
Orax (1) = Glnax(Q) exp(t./r) (Fig. 17c). The time interval
between two neighboring extrema with numbers N + 1 and
N (in the case of a planar orientation of the LC layer, the
lower number corresponds to a smaller deformation, i.e. a

greater phase lag) is

N+1

Ty =71ln at H> H,, (7.25)

N = rlnN at H< H, . (7.26)

In view of (7.25), expressions (7.25) and (7.26) indicate that
the quantity 7§/, or y¢/K;; can be determined from the
time interval ty. However, the accuracy of the calculation
increases if the complete director relaxation process is
considered.

Certain tasks require the knowledge of the effective
viscosity coefficient for an arbitrary displacement angle of
the LC layer. Specifically, such knowledge is necessary when
considering a partial NLC reorientation regime realized in
matrix-addressed liquid crystal displays or spatio-temporal
light modulators. In this case, the reorientation of the NLC
does not start from zero angle 6 =0, nor does it end at
0 = 90°. Instead, it is determined by the angle given by the
applied initial and final bias voltages U and described by an
expression derived on the assumption that Kj; = K33 = K
and ¢, < ¢, [21]

o eff o0 . 629 SaEz
LRy _K822+ 4n

sinfcosf — R(t) —, (7.27)
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where
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The effective rotational viscosity y;" is related to the
functions that describe the director rotation (¢) and the
NLC flow (), i.e. the backflow, by the expressions

2
n =y =y, 7%7 @ =03c08° 0 — aysin’ 0,

(7.28)
W = oy cos? Osin® 0 + 0.5(or3 + ) cos’ 0

+0.5(0ts — o) sin® 0 + 0.5 .

The expression for iy coincides with (3.1) if the azimuthal angle
is zero. A study of the partial realignment of planarly and
homeotropically oriented NLC layers, which corresponds to a
17 change in the phase delay of the transmitted light [21], has
shown that Eqn (7.27) describes experimental findings fairly
well. This means that the angular dependence of the effective
viscosity can be described by expressions (7.28). It is easy to
demonstrate that at 0 = 0° y{ = 5 and at 0 = 90° y&T = y,,.
Figure 19 illustrates the dependence #°'(0) constructed using
the Leslie coefficients «; reported in [16].

In the foregoing, we have considered spatially uniform
director reorientation depending only on the distance from
the substrate plates (z-coordinate). Ref. [123] deals with the
relaxation of an NLC in which a spatially nonuniform
orientation of characteristic size L, is set in one way or
another. The correlation length of the order parameter is &,
the characteristic length of variations in the spatially nonuni-
form orientation is [, = (Data)l/2 (where D, is the diffusion
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Figure 19. Dependence of the effective NLC rotational viscosity 7T on the

director alignment angle 6 in a planar oriented NLC layer [21]. The upper
axis represents the threshold-reduced bias voltage U/ Uy, corresponding
to the director reorientation angle 0 in the middle of the NLC layer.

coefficient), and 7, is the orientation relaxation time. For
typical nematics, D, ~ 4 x 1072 cm? s~! and 7, ~ 1077 ¢, so
lo ~0.6 um. The relaxation of director fluctuations is
described by the equation

L2 a1
Teff = ra_g [1 + lazLa 2} .
0

(7.29)

Since the length ¢ is related to the coefficient of elasticity K
and the time 7, to the rotational viscosity coefficient y, [123,
124] as

kg T

k=T oo (7.30)
m
kgT

=l g (7.31)
m

expression (7.29) can be reduced to
L2 -
tar = A 14202 (7.32)

K

Apart from the coefficient 12, expression (7.32) differs from
the expression for the uniform orientation relaxation time
(7.12) by the factor

Al +£r |
2L

On condition that L = L, =/, = 10 pm, the relaxation time
for nonuniform orientation is two times shorter than that for
uniform orientation (the effect of nonuniformity at
ly = 0.6 um is of order 0.5%).

The influence of boundary conditions on the measured
viscosity was also examined in [125]. At a finite adhesion
energy W characterized by the dimensionless parameter
g = WL/2K», Eqn (7.2) for NLC reorientation should be

supplemented by the equation for the tilt angle 0, which takes
into account the LC orientation at the substrates (the

alignment angle and surface energy at coordinates
z==2L/2):
2
L L
Kzzﬂ + Wsin0| £—= |cosO| +—=
0z2 |, 1 2 2
00(+L/2

It turned out that a decrease in the parameter g~
increases both the switching-on and the switching-off time.
A decrease in g from 10000 to 5 results in a 1.4-fold increase in
the effective values of both times. A further decrease in g to 2
caused a 2-fold increase in these effective values [125].

An interesting method allowing one to obtain five
coefficients of viscosity «j,...,as was proposed in [126,
127]. The interference of two intense light beams in an LC
volume created a spatially periodic structure due to the
excitation of acoustic waves and heating. Because of result-
ing modulation of the NLC refractive index, the diffractional
efficiency of the obtained phase grating can be varied using a
low-intensity light beam. The relaxation time of the diffrac-
tional efficiency is determined by the NLC viscosity and
elasticity coefficients. Five combinations of viscosity coeffi-
cients can be obtained depending on the director orientation
with respect to the polarization of the exciting radiation and
probing beam. Ref. [127] describes the limitations on the
times of physical processes in LCs, along with the equations
of NLC hydrodynamics for the case under consideration.
Accurate values of the viscosity coefficients can be obtained if
the light pulse duration iy is small compared with the heat
transfer times determined by the speed of sound 75 ~ vy and
the thermal conduction 77 ~ %~ !. The influence of thermal
conductivity on sound generation should be neglected
(ts < 7). The time of sound attenuation due to viscosity
should be comparable to the time necessary for a constant
temperature to be established (7, ~ 77). All these processes
should not affect the relaxation of NLC orientation to an
equilibrium state under the action of the Frank elastic forces
(tg = quz/Ku > 17). Thus, the relaxation times for the NLC
orientation can be obtained if the laser pulse length tiy,, is
chosen to be 50 ns or so. At Tjmp ~ 7, ~ 1 ms, acoustic waves
are also excited in the NLC volume, and their attenuation
depends on a different combination of viscosity coefficients.
The direct effect of the light-wave electric field can be
eliminated by a proper choice of the polarization direction
relative to the director. If the polarization of the exciting wave
is parallel to the director (e—e), the extraordinary sounding
wave transforms into the extraordinary wave by scattering
(e — e), and the director is parallel to the wave vector of the
resultant thermal lattice q (angle Z(n,q) = 0), then n, and
o3 /y, are measured. For the same polarization directions of
the exciting and sounding waves, but with L (n,q) = 45°, the
coefficients y, and (22/2 + y, — 1) are measured. The value
of 1, + 15 can be obtained if L (n,q) = 45°, the director and
the exciting wave polarization are mutually perpendicular
(e—o0), and the ordinary sounding wave converts by scattering
into the extraordinary wave (o — ¢). Thus, all the Leslie
viscosity coefficients can be found using this method.

An LC reorientation can be induced by a light wave alone.
If a polarized beam of light propagates in an LC cell parallel
to the director, this results in a nonlinear phase difference at



March, 2001

Physical methods for measuring the viscosity coefficients of nematic liquid crystals 277

the cell outlet, provided the light intensity / exceeds the
threshold value 7r for the Freedericksz optical transition.
The dynamics of the phase lag ®(¢) at I > Ir was considered
in [128]. Ref. [129] describes a method for the measurement of
the viscoelastic ratio K33 /15 with the use of the Freedericksz
optical transition. The time dependence of @(¢) is described
by the expression

b
1+ (®p — @) exp(=2I'71)/D(1)’

B(1) = (7.34)

where I'r = (K33 /1) (n/L)*(I/Iy — 1), and @ and &, stand
for the phase lag at a light intensity slightly above the
threshold and for the so-called linear phase lag, respectively.
Ref. [129] gives the following expressions for these lags:

PR el (i_ 1)
: 2ce!/? 1= 9ea/4e) — (K33 — Kn1) /K3 \ Ir ’
(7.35)
Le,
@y = Lf/z 02, (7.36)
4ee )

where w and ¢ are the frequency and velocity of light,
respectively, ¢ and ¢, are the components of the dielectric
permittivity at optical frequencies, L is the LC cell thickness,
K11 and Kj3 are the coefficients of elasticity, and 0, is the
fluctuation angle of optical axis deviation at which a type-2
phase transition is initiated. By recording transmittance
extrema in the case of excitation and relaxation of an
homeotropically oriented cell, it is possible to find the
viscoelastic ratio Kz3/n from the slope of the dependence
In &(¢) [129].

Until now we have considered the reorientation of a
homogeneous LC sample subject to a field strictly perpendi-
cular or parallel to the substrate plane. However, since the
director alignments n and —n are equivalent, there are two
equivalent reorientation directions with tilt angles 6 and
n — 0. Regions with different tilt angles are separated by so-
called inversion walls. Even a small tilt of the magnetic field
relative to the perpendicular to the substrate plane (angle ¢)
results in different reorientation angles on the two sides of the
wall and leads to its migration (displacement). Leger [130]
demonstrated that the wall migration time is directly
proportional to the rotational viscosity coefficient y, and
inversely proportional to the magnetic field. From the wall
migration rate, she obtained 7, values for MBBA
(0.86 0.2 Pa) and PAA (0.08 +0.02 Pa), which are con-
sistent with those previously reported. Ref. [131] examines
inversion wall movements at greater length. Their migration
rate v is described by the relation

_ 3V3ngK{llq
SySL(H/He — 1)

(7.37)

where ¢, K¢ are the effective coefficients of viscosity and
elasticity, respectively, and ¢ is the tilt angle of the magnetic
field (near the Freedericksz transition threshold at
H/H,=1.1,¢p <3.9°and ¢ = 3¢sin ()max/40max, max 18 the
tilt angle of the director in the middle of the LC layer). For a
MBBA-containing sample (yff=0.85y,, y, =0.76 Pa,
K11 = 6 x 1077 dyn) of thickness L = 100 um, at ¢ ~ 5°, the
velocity v calculated by X Wang at different H/H,, values
using formula (7.37) is in good agreement with the experi-

mental findings of L Leger. Migrations of the inversion walls
in nematics is a good model for signal propagation in a nerve,
whose myelin sheath has a liquid-crystal structure. In both
cases, the velocity of motion is described by similar equations

v 0
a—z; :a—;;+f(v) (7.38)
[cf. (7.10)].

Another example of the coexistence of two types of
orientations under identical boundary conditions is provided
by nematic twist cells. In the case of mutually orthogonal
director orientations at opposite substrate plates in the
absence of chiral additives, both right- and left-hand-twisted
states of the director are possible. This in turn gives rise to
domains twisted by +90° and separated by disclinations. The
velocities of their motion depend on the local radius of
curvature and are described by an expression analogous to
(7.37)[132, 133]:

r
v=Cc=21
R?

7.39
R (7.39)

where I' is the kinetic coefficient, which can be found from the
time dependence of the radii of curvature of disclination loops
[134]. In experiment, the loops are observed with a micro-
scope to directly obtain R values or to find the correlation
function describing the relaxation of the regions of right- and
left-hand-twisted states (with respect to the initial pattern that
appears in a twist cell upon an isotropic—nematic phase
transition). In either case, the measured parameter is
proportional to (I’ t)l/ ? because of the time dependence of
the disclination length. This regularity can be found by
applying the u-field theory [135] which describes an ‘order —
disorder’ transition in a system of random interfaces between
two stable phases.

Ref. [136] reports an experiment whose geometry corre-
sponds to the T-effect [111]. A 25 to 250 um thick planar
oriented cell is placed between the poles of a magnet so that
the field is oriented parallel to the director. Thereafter, the cell
is rapidly (within a time less than the orientation relaxation
time) turned through a right angle. Also, a transverse
magnetic field may be switched on. As a result, a periodic
pattern (so-called twist-bend walls) arises in the bulk of the
LC. According to [137], the wall period is related to the
magnetic field intensity B, which should be slightly higher
than the threshold Freedericksz transition Bg, and also to the
viscosity and elasticity coefficients of the NLC, by the
following expression:

B\ [1-

(&) - (5
where Q is the cell-to-wall wave vector ratio,
0 =gq./(n/L)=2L/2, A is the average wall period,
a=03/71n, n=n1/n3 and k = K33/K». Ref. [136] also
reports the viscosity coefficient ratios oo = 0.86 and 1 = 0.23
obtained by the best fit method for a Mi-5 mixture available
from Merck.

A comparison of the methods described in this section
demonstrates that they all require much less LC than the
rotating magnetic field method. This is an important
advantage in the context of evaluation of new LC sub-
stances. Moreover, the work can be done using simpler

l—i—kn

)Q +— Q +— (7.40)
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instruments without a substantial loss in accuracy. Optical
methods should be preferred to avoid serious errors that may
result from field and thickness inhomogeneities in capaci-
tance measurements. Moreover, an electric field should be
applied wherever possible because it is very difficult to
directly measure the anisotropy of diamagnetic susceptibility

Xa [3]-

8. Light scattering techniques

Local fluctuations dn of the director n result in intense light
scattering and turbidity of the LC sample. The theory the
statics and dynamics of director fluctuations in NLCs is
developed in [138, 139]. It is also comprehensively dealt with
in a few books [2, 3, 87]. We therefore confine ourselves to the
description of certain practically important experiments
[140—146].

For the purpose of the analysis of fluctuations dn of the
director dn, it is convenient to decompose onm into two
mutually perpendicular components (modes). One of them,
dn;, represents the superposition of bend and splay elastic
deformations, while the other, dn,, is a combination of bend
and twist deformations. We write down expressions for the
intensity and half-width of the scattered light spectra for each
mode, using [139]. The light scattering intensity is determined
by the expression for the scattering cross section

(info + iof3)?

"= 2 Kot + Kl
a=1,2 33qH + 2247

(8.1)

where i,, f, are the projections of the polarization vectors of
incident (i) and scattered (f) light onto orts e, chosen in the
following way: e; L n, and e lies in the plane of the director n
and the scattering wave vector q = k; — k; (kj, kg are the wave
vectors of incident and scattered light, respectively); e; L e;,
and e, is perpendicular to the plane of vectors n,q; iy = (in),
fo = (fn); Kj; are the Frank elastic constants; g and ¢, are the
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Figure 20. The construction of the basis orthogonal unit vectors e;, e, e3
(using the wave vector and director n) in which two noncorrelated
fluctuation modes 6n; and dn; are expanded, and the director orientation
in these modes.

components of the scattering wave vector with respect to the
direction of n (Fig. 20). The expression for the intensity of the
light scattering spectrum has the form [146]

G4(0)2u,
Saa(e) = ”2{ > Bt

a=12 "o

G2G2(0)(uy + w) } 82)

K K>(q) [ + (1 + uz)z]

where u, is the scattering spectrum half-width and f is a
function of the dielectric anisotropy at optical frequencies
(refractive indices), scattering volume, distance to the
observation point, and absolute temperature 7. The transfer
equations for different director fluctuation modes
(6n,(q) < 1) in the above coordinate system have the form

0 1
3 Sna(q)—l—a dn,(q) =0, a=1,2. (8.3)
Here, 7, denotes relaxation times
eff
n(q)
1,(q) = . 8.4
(@) K.(q) ®4)

For the effective viscosity coefficient, the angular depen-
dences are described by the relations

(41 — °<2f1ﬁ)2

fr
(@) =7 — » (8.5)
1 Yomat + i+ m )@ @t +mdf
2
g
ff I
m@=n-—5——=; (8.6)
: bomat +mgd
for the elasticity coefficient, by the relation
Ky(q) = sz Cli + K33 qﬁ . (87)

Formulas (8.5), (8.6) can be substantially simplified
assuming that g > ¢, or g1 > ¢
In the former case,

K33(1ﬁ 0 oc%
— ==y, -2

. 8.8
- o (83)

for both decaying modes. If ¢, > ¢, we have for mode 1

Kig’ o3
L—po=9y, -2, 8.9
" Ns =M1 ’12 (8.9)
and for mode 2
K»q’
Ly, (8.10)
[25]

Here, u; are the half-widths of the scattering spectra (rad s~!)
related to the characteristic time of the scattered light
correlation function by the equation 2u; = 7;!, while g and
np have the same meaning and form as in expressions (7.8)
and (7.9). As a rule, u; values range from 10 to 1000 rad s~!,
and light beating spectroscopy should be used for their
accurate determination [147].



March, 2001

Physical methods for measuring the viscosity coefficients of nematic liquid crystals 279

The noise excess over the background, due to light
scattering by director thermal fluctuations, is for the hetero-
dyne spectrum (measured by mixing the scattered light with a
local oscillator — originally split laser beam) twice as high as
that for the homodyne spectrum. Due to the Gaussian
character of fluctuations, the half-width of the heterodyne
spectrum is one half as large as that of the homodyne
spectrum [142].

It follows from formula (8.2) that the scattering spectrum
consists of three Lorentzian lines with slightly different half-
widths. The spectral half-width can be measured more
accurately if we determine the frequency at which wSa;(w) is
maximum [146]. For a purely Lorentzian spectrum, mmax
coincides with the half-width m,/,. The dependence w, /Q(qi)
is shown in Fig. 21. The relative error of measuring the
viscoelastic ratio in this way amounts to 2%, and the
Ki1/Ky, ratio does not significantly influence the fitting
procedure.

1), 57!
10* |-
]03 1 T N A | 1 T N R |
102 10 10"
gt.m>?

Figure 21. Half-width ) ; of the scattering spectrum versus squared wave
vector g3 for CH3—C¢Hs—CH=N-CeHs—OCO-CHj3 (z = 0.9988).
The solid line represents the results of data treatment in compliance with
the condition (dS/ dw) = 0[146].

=0,

An electric field applied to the cell does not change the
shape of the scattering spectrum for mode 2 (twist-bend
mode), and the line width increases in proportion to the
applied voltage squared. The value of Sx;(w) for mode 1 lies
slightly below the level determined by the Lorentzian shape,
probably due to the effect of electrical conduction [148].

A schematic diagram of the experimental arrangement for
measurements of the scattering spectrum is shown in Fig. 22.
A polarized laser beam scattered from an LC sample at an
angle 0 is sent to a photodetector and thereafter enters a
pulsed analog correlator that determines the correlation
function of photon fluctuations. In the case of light scatter-
ing by a single fluctuation mode, the correlation function has
the form p(#) ~ exp(—t/t). Figure 23 depicts optical geome-
tries for the observation of light scattering by decaying S- and
B-modes. The laboratory scattering angles 6, are calculated
based on the known refractive indices of the given NLC so
that one of the components of vector q vanish. For the
geometry shown in Fig. 23a, ki = 2nn, /2, ks = 2nne /A (no
and 7. are the refractive indices of ordinary and extraordinary
beams, respectively), ¢ =0, and the laboratory angle for
MBBA is 0, = 56° [143]. It follows from the comparison of
Figs 23b and 23c that the transition from the geometry in
which light is scattered by the B-mode to the scattering

10
1 5 6 789 11

N lnl .
LR

N

Figure 22. Schematic of the experimental arrangement for measuring the
viscoelastic characteristics of NLCs with the use of photon correlation
spectroscopy: 1, laser; 2, beam splitter; 3, 17, photodetectors; 4, 9, 14, 16,
diaphragms; 5, 8, 12, polarizers; 6, quarter-wave plate; 7, lens improving
the spatial coherence of the beam; /0, LC cell; /1, oven; 13, 15, collimator
lenses; 18, correlometer.

geometry involving the S-mode is achieved by a 90° rotation
of the NLC sample.

Let us scrutinize the experimental geometry presented in
Fig. 23b in which the vector i is parallel to the director n and
perpendicular to the scattering plane determined by the wave

q a b
k;
ks
| |
0 f 0
| | f
| |
1 |
®© RRRRIFIIRIN ® e S te e oo e e e e |
n n
1 ®i
q c q d
ki|[ks
k; K,

Figure 23. Optical geometries for the observation of light scattering by (a,
b) a damped S-mode and (c, d) damped B-modes [143].
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vectors k; and kg. In this case, k; = 2mne /4, ks = 2nn, /2,
q) = kssin0, g1 == ki — ks cos 0; for small scattering angles,
as 0 — 0 (and g — 0), light is scattered by mode 2, whose
dynamics is described by expression (8.10). However, the
accuracy of measuring y; for such a geometry is low because
of the strong parasitic scattering from defects of sample
ordering (especially in the ‘forward’ direction). Nevertheless,
using light beating spectroscopy and measurements at
different scattering angles 60, the viscoelastic ratios y,/Ka
and 174/ Kj, can be obtained with a fairly good accuracy [145].
For an arbitrary angle 0, the scattered light spectrum is a
superposition of two Lorentzian lines, and the scattered light
correlation function is a superposition of two exponents. The
normalized correlation function can be written in the
following way:

o) = ayexp(—t/t1) + ayexp(—1t/72)

)

a, + a
2
ay = Gy , a=1,2, (8.11)
K.(q)

where G, = iy f, + i, fo 1S the scattering geometry factor for
modes 1 and 2, and K,(q) = K,sq7 + K33q2|. It is convenient
to determine the slope of the asymptote of {n p(2):

<a1 az) 1
— 4= .
—o\Tl T2/ a+a

For the geometry of the arrangement under consideration,
Eqn (8.12) reduces to

o2 Gi/ns + G3/7, '
G K + G} Kn

—Inp(1)) (8.12)

(8.13)

Taking into account that ng 27y, and G +G3 =1, Eqn
(8.13) can be transformed into

> _ N K» 2
‘Cefqu_fK22 |:<K11 I)Gl +1:| .
Expression (8.14) describes well the measured depen-
dences of the relaxation time 7o on Gy, which is a function
of the scattering angle for two NLCs. The relation g =2y, is
satisfied fairly well. For these substances, y,/K» and y, /K,
values can be obtained at G; = 0 and G| = 1, respectively.

For the experimental geometry shown in Fig. 23c (where
both the incident light polarization and the director are
parallel to the scattering plane), it is possible to determine
/K33, 71/K33, and the Miesowicz coefficient ratio n,/n;
[146]. The measured spectrum half-width Aw;, is linked to
the measurement angles via the following expression, which
takes into account (8.4) and (8.8):

2(q} + Kx2q? /K33)

(8.14)

B(q) = Aons
= L v+ L o -z (8.15)
7[(332))1 Np 27’1 Mg q)|, .
where
-1
z<q>z<ﬁqi—qﬁ)(”—3qi+qﬁ> . (8.16)
m M

At Z=1 (qH =0) BI’yl/K33, and at Z=—-1 (¢, =0)
B =15/ Ks;. The ratio 1, /15 can be found either by adjusting

the dependence B(Z,us, K»;/K33) or from the slope of the
dependence

Blg) =Bz __mqi
B(q) — Bz-1 maj

Clg) =

It should be recalled that i, /n; = ng/np [see (3.9)].

If there is a spatial nonuniformity of the director of
characteristic length /,, the line width of the scattering
spectrum increases in proportion to 1+ /2¢* [123]. The
analogous expression for the deformation induced by an
external field is (7.32).

The foregoing discussion in of this section concerned the
normal light incidence on the cell. In Refs [149, 150], the
characteristic relaxation times were calculated and measured
for different incidence and scattering angles. This approach
significantly broadens the range of angles for which
q1/q) <1orq/q. <1 and allows the number of measured
viscosity coefficients to be increased by fitting experimental
data to relevant approximations. Figure 24 illustrates the
measurement of incidence and scattering angles in a liquid-
crystal medium (¢, ) and in air (¢’, §') for homeotropic and
planar orientations. In both cases, the director is in the
scattering plane.

Figure 24. Light incidence angles relative to the director in a liquid crystal
and in air (¢ and ¢’ respectively) and scattering angles in a liquid crystal
and in air (0, 0') for (a) planar and (b) homeotropic director orientations at
the substrate plates [149].

The dependences of the width 7! of the scattering
spectrum calculated for the homeotropic orientation of the
NLC over the ranges —90° < ¢ < 90°and 0 < 0 < 180° have
a center of symmetry at the point with coordinates ¢ = 0,
6 = 0 and an angular period of 180° [150]. For || < 30° and
0 ~ 20—40°, which is normally the case in experiment, the
quantity ;! is of the order of 10 kHz. At a constant scattering
angle 0, the dependence 7(¢) has a nonmonotonic form. This
finding is confirmed by the results of measuring the inverse of
the relaxation time as a function of the incidence angle at
different scattering angles in air for homeotropic and planar
orientations. The line width for geometries e—o0 and o—e¢ is
smaller than for polarized scattering (e —e); that is, both the
corresponding relaxation times and the recorded light
scattering intensities are smaller. This means that the
incident light intensity should be increased to improve the
accuracy of line width measurements in the case of scattering
depolarization.

The choice of the geometrical arrangement for measuring
the viscosity coefficients is illustrated by Fig. 25 [150]. The
dashed lines correspond to zero Rayleigh scattering intensity
I* and are not suitable for the solution of the problem in
question. They are described by the following equations:
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Figure 25. Incidence (¢') and scattering (0') angles for different modes in which the director fluctuations are determined by S-, B-, and T-deformations:
dashed lines, I* = 0; -5, scattering geometries recommended for measuring combinations of the Leslie viscosity coefficients [150].

(homeotropic orientation),

/

¢ = +90° (planar orientation),

¢’ =0 (homeotropic orientation),

¢’ =0’ (homeotropic orientation).

For measuring 5y and y;, ¢ = —8°, 5° <0’ < 10° and
homeotropic orientation are recommended (polarized light
scattering (e —e) in the former and depolarized scattering (o —
e) in the latter cases; see lines / and 2 in Fig. 25). The quantity
1 can be measured at ¢’ = 73°, 0’ = 34° in a planar oriented
cell if the incident light polarization is perpendicular to the
director (o—e; point 3 in Fig. 25). The line width of the
scattering spectrum significantly increases with small changes
in the scattering angle. By properly choosing the scattering
geometries and mathematically treating the results, it is
possible to obtain viscoelastic ratios for almost all Leslie
viscosity coefficients. The measurements of the relaxation
time using lines 4 (¢’ =90°, 0 < 0’ < 28°) and 5 (¢’ = 65°,
2° < 0’ < 19.7°) in Fig. 25 yielded estimates for the quantity
a4/203 and the coefficient o respectively.

It was demonstrated in [151] that a Lorentzian-shaped
spectrum can be obtained even for very small scattering
angles (0.015 rad~ 1°) using a homeotropically aligned
NLC and oblique incidence, because of the reduction of the
multiple scattering intensity. This spectrum can be distin-
guished quite reliably against the background of static
scattering using the homodyne method. As a result, the ratio
Y1/ %a O Hs/xa and 15/x, can be determined instead of the
viscoelastic ratio because in this case, since the wave vector is
small, the denominator of (8.4) contains the term
K(q) + y,H?, which describes the magnetic field and prevails
due to the smallness of the wave vector g.

Using Raman light scattering in an NLC sample subject to
an electric field makes it possible to find the relaxation times
separately for the rigid backbone of the original molecules
and for their more flexible alkyl substitutes. This approach is
described in [152].

Although the measurement of the viscoelastic ratios by
light scattering techniques requires sophisticated instrumen-
tation and specially equipped laboratories, it provides highly
valuable scientific information, since experiments are per-
formed on intact liquid crystals and are free of many errors
intrinsic in other methods. The amount of the analyte may be
very small ( 30—50 mg). Also, the dependence of the

rotational viscosity y; on temperature and on the degree of
regularity can be exactly estimated.

9. Conclusion

Figure 26 represents the results of measuring the temperature
dependence of y, for BF-5 by three different methods [153].
Good agreement between them testifies to the validity of the
techniques employed.

Our analysis of the reviewed investigations has demon-
strated the paramount importance of the correct determina-
tion of boundary conditions, velocities of the LC flow or
rotation, and the external field, as well as of the proper choice
of the signal detectors. The shear flow technique appears to
provide the most comprehensive information about all
coefficients, but it requires a large amount of the analyte.

In,

02

s

|
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I | |
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Figure 26. Temperature dependences of the rotational viscosity coefficient
71 (poise) for pentylcyanobiphenyl measured by the rotating magnetic
field method (0), the light scattering technique (A), and from the relaxation
of the Freedericksz transition optical response (+) [153].
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Table 2. Viscosity coefficients of NLCs and methods for their measurement.

Notation for the viscosity Relation to other viscosity Name

Measuring technique

coefficient coefficients

w(i=1,...,6) — Leslie viscosity coefficients —

n ~ 1y — o3~ Dynamic viscosity Capillary or rotational

(—oayy /7 + o4+ 5) /2 viscometer

Ultrasonic shear

v n/p Kinematic viscosity Capillary viscometer

n (=0 + o4 +as5)/2 Miesowicz viscosity coefficients Poiseuille or v.lnn| Vv

1 (o3 + 01 + 016) /2 Couette v||m,nLl Vv

13 04/2 flow v.lnnlVy

M o L(v,n) =45°

7 o3 — 0 Rotational (Tsvetkov) viscosity coefficient Rotating magnetic field method
Freedericksz transition dynamics
Light scattering from thermal fluctuations
of the director

72 o3 + o Twist deformation constant Couette flow

in a velocity gradient

s 7 =3/ m Splay viscosity coefficient Freedericksz transition dynamics
Light scattering from thermal fluctuations
of the director

N 71— 3 /1, Bend viscosity coefficient Freedericksz transition dynamics

Light scattering from thermal fluctuations
of the director

The complete set of viscosity coefficients is obtainable by
measuring light scattering from thermal fluctuations of the
LC director. This approach requires only a small amount of
the LC substance, but the experiment cannot be done without
special instruments. The method evaluating the relaxation of
the Freedericksz transition is simple and also requires a small
amount of the LC for analysis.

The dynamic responses of LCs can be most conveniently
studied using optical methods. Acoustic methods, especially
suitable for measurements under high pressure, are also
efficient.

To estimate the rotational viscosity, the groups and
laboratories employing liquid-crystalline materials in their
practice, can use simple Ostwald or Haake viscometers
measuring the coefficients of kinematic and dynamic viscos-
ity and analyzing the Freedericksz transition relaxation in
planar oriented cells.

Table 2 lists the viscosity coefficients of NLCs and
methods for their determination [154]. The reader is also
referred to the reviews [155, 156].

The present article was deliberately confined to the
description of methods for only nematic LCs, which have
the simplest structure and are most widely used in practice.
Other phases are, as a rule, characterized by a larger number
of viscosity coefficients, which are measured by different
methods. A detailed discussion of this problem requires in a
special review.

The effect of the molecular structure on the viscosity of
nematic LCs was studied in [157, 158]. These works report
detailed experimental data and offer their theoretical inter-
pretation.

I cordially thank all the people who benefited the
preparation of this review. These are L. M Blinov, the
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the development of the contemporary science of liquid
crystals. They willingly shared their knowledge and experi-
ence with me, frequently provided me with their works prior
to publication, and displayed their persistent interest in and
encouragement of the my own ideas. Even more people
should be mentioned here whom I have contacted during my
work on different aspects of LC viscosity and other physical
properties. Special thanks are due to T L Khorunzhenko, of
the ‘Kometa’ R D Center Library, who has compiled a unique
bibliographic card index concerning liquid crystals. This
enabled me to include many rare publications, which are not
readily available, in the present review.

I dedicate this work to the memory of M Miesowicz,
V Tsvetkov, and F Leslie, the founders of mesogen viscosity
science.
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