
Abstract. Inaccuracies in the atomic shell model due to the
neglect of electron correlation and some relativistic effects are
examined. The asymptotic behavior of atomic valence electrons
is considered, and the accuracy of the asymptotic coefficient of
the electron wave function is evaluated with account for the
model errors. The coupling of the electron orbital momenta
and spins in atomic particles, molecules, and colliding particles
is discussed. The resonant charge exchange process is analyzed
in terms of the asymptotic theory, with the inverse of the typical
ion ± atom separation being used in the small-parameter expan-
sion of the cross section. The influence of atomic shell model
errors Ð via the valence electron asymptotic coefficient Ð on
the accuracy of the charge exchange cross section is discussed.
The relation between the cross section and the specifics of the
moment addition law for an ion ± atom collision event is eluci-
dated. The accuracy-estimated values of cross sections for the
slow-collision resonant charge exchange are given for most
elements in the periodic table.

1. Introduction

The atomic shell model [1 ± 5] is a convenient model for the
atomic structure, which describes the main features of the
physics of atoms. This model includes a one-electron
approach with an exchange interaction between electrons
due to the Pauli exclusion principle [6] and spin ± orbit
interactions for individual electrons. The errors of this
model result from neglecting the correlations between
electrons and from ignoring other relativistic interactions. If
we calculate the interaction potential of atomic particles and
the cross section of collisional processes within the framework
of the atomic shell model for atomic particles, the errors of the
latter model will be extended to these parameters. Below we
analyze this problem for the ion ± atom exchange interaction
potential at large separations that determines the cross
section of the resonant charge exchange process at low
collision energies.

The character of momentum addition is of importance
both for atoms or molecules and for collisional processes of
atomic particles. Within the framework of the atomic shell
model, we have two schemes of coupling of electron orbital
momenta and spins into the total atomic momentum (LS-
coupling and jj-coupling schemes), depending on the relation
between the exchange interaction of electrons and the spin ±
orbit interaction. The LS-scheme of coupling of electron
momenta provides a high accuracy for the relative positions
of atomic energy levels of a given electron shell in the case of
light atoms. For heavy atoms, when the jj-coupling scheme is
preferable, the accuracy in determination of energy levels is
worse and strongly drops with increasing atomic number.
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This is due to additional relativistic effects with respect to the
spin ± orbit interaction, and the role of these relativistic
interactions increases with increasing nuclear charge. This
will be shown for simple examples.

In molecules, the rotational energy is added to the above
two interactions, and this leads to six limiting cases of
momentum addition, which are known as the cases of Hund
coupling scheme [7, 8]. In the case of collisions of atomic
particles, the character of momentum addition becomes more
complex because some of the interaction potentials depend on
time. We consider slow collisions, when the velocity of
colliding particles is small compared to a typical electron
velocity, so that electrons are redistributed in the course of
collision in accordance with the variations of atomic fields.
Then the evolution of colliding atomic particles may be
connected with parameters of the quasi-molecule, that is the
system of colliding atoms for fixed nuclei, and the inter-
nuclear distance of colliding particles is a parameter in the
wave function of the quasi-molecule. In this case the number
of limiting cases of momentum coupling is the same as for
molecules (i.e. they relate to different cases of Hund coupling
scheme), but different limiting cases correspond to different
regions of the particle trajectory [9 ± 11].

Though a general method of momentum addition for
colliding particles is cumbersome, the coupling schemes are
simplified for certain collisional processes with participation
of slow atomic particles. This applies to quasi-resonant
processes in atomic collisions which are characterized by
large cross sections in comparison to a typical atomic cross
section. This means that the transition proceeds at large
separations between atomic particles that allows one to
connect the electronic terms of the quasi-molecule consisting
of colliding particles and to express the cross section of the
process under consideration through the parameters of free
atomic particles. This also simplifies the character of
momentum addition for colliding particles.

Below we consider this problem for the resonant charge
exchange process in slow collisions involving an ion and the
parent atom. This process results in the transition of a valence
electron from the field of one atomic core to another. The
transition proceeds at large separations between the colliding
ion and atom that allows one to construct an asymptotic
theory of this process [12 ± 14]. Then the cross section of this
process is given in the form of an expansion over a small
parameter which is an inverse value with respect to a typical
separation for this transition. The simple character of the
electron transition in this process simplifies the analysis of the
momentum coupling schemes in the theory of resonant
charge exchange in slow collisions. The demonstration of
this fact is the goal of this paper. An additional aim of the
paper is the determination of the errors following from
standard atomic models and the evaluation of the accuracy
of the asymptotic theory. The subsequent analysis shows that
the accuracy of the evaluated cross sections is usually
determined by the accuracy of atomic wave functions for
valence electrons of atoms.

2. Atomic shell model

2.1 Schemes of coupling of electron momenta in atoms
The atomic shell model considers an atom to consist of a
heavy Coulomb center and bound electrons, and the action of
other electrons and the Coulomb center on a test electron is

changed by an effective self-consistent field which does not
depend on the coordinates of the other electrons, but takes
into account the exchange interaction between electrons.
Therefore, the behavior of electrons is described by the
Hartree ±Fock equations [2, 4, 5, 15 ± 17]. The atomic shell
model distributes electrons over electron shells, so that
because of the spherically symmetric form of a self-consistent
field, each shell is characterized by the principal quantum
number and angular electron momentum. According to the
Pauli exclusion principle, only one electron can be found in
each state of each electron shell, and this state is also defined
by the projections of the angular momentum and spin of an
electron onto a given direction.

Below we use two schemes of coupling of electron
momenta in an atom, so that in the case of the LS-coupling
scheme the state of an individual electron is characterized by
the electron orbital momentum and spin, and we neglect the
spin ± orbit interaction in constructing the atom's electron
shell. Until we neglect the relativistic interactions, the
electronic terms of an atom are described by the quantum
numbers L, the total atomic orbital momentum, and S, the
total atomic spin. The momenta are added into the total
atomic momentum J, so that an atomic state is characterized
by the quantum numbers L, S, J, MJ, where MJ is the
projection of the total atomic momentum J onto a quantiza-
tion axis.

In the second case of momentum addition, when relati-
vistic interactions are dominant, the state of an individual
electron is characterized by its total momentum j which is a
sum of the orbital momentum of this electron and its spin.
The electron momenta of individual electrons are composed
into the total atomic momentum J, and an atomic state is
characterized by the quantum numbers J,MJ and also by the
total electron momenta of individual electrons. This is the jj-
coupling scheme for the coupling of electron momenta into
the total atomic momentum J.

Let us consider the character of the valence electron shell
filling using the example of valence p-electrons. This is of
interest for two reasons. First, such atoms occupy a certain
part of the periodic table of elements and, second, the
coupling of orbital and spin momenta is of importance in
this case.We start from theLS-scheme of coupling of electron
momenta, and within the framework of this scheme we
construct the electron shell p n. This shell includes n identical
electrons whose orbital electron momentum is one, and they
are located in the self-consistent field of the Coulomb center
and other electrons. We demonstrate the shell structure using
the example of an atom with a p2-electron shell, and Fig. 1
shows the method of distributing these two electrons over 6
possible states which differ by projections of the electron

m � ÿ1 m � 0 m � 1

s � ÿ1=2

s � 1=2

Figure 1.Distribution of valence p-electrons for atoms of the fourth group

of the periodic table of elements over cells of the electron shell for states

with themaximumatomic spin (open circles) andmaximum atomic orbital

momentum (crosses) [18].
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orbital momentum and spin. According to the Pauli exclusion
principle, only one electron can be placed in one cell, so that
the total number of possible states is C 2

6 � 15 in this case. Let
us distribute electrons throughout the states. First we extract
the state with the maximum orbital momentum, which is
indicated by open circles in Fig. 1 [18]. Take a direction of the
quantization axis such that the projection of the orbital
momentum of each electron onto this axis is equal to one.
Then the projection of the total atomic orbital momentum
onto this axis equals 2, and according to the Pauli exclusion
principle the total spin projection is zero. The electronic term
of this state is 1D; and the statistical weight relative to this
state (the number of projections of the atomic orbital
momentum) is 5. Next, let us construct the state with the
maximum projection of the total spin.We obtain that the spin
projection is one, and the total orbital momentum projection
is also one. This state corresponds to the term 3P which
includes 9 states with different projections of the atomic
orbital momentum and its spin. Therefore, the selected
terms 1D and 3P include 14 �5� 9� states from the total
number of 15, and the additional state is 1S. Hence, the
electronic terms of atoms of the fourth group of the periodic
table of elements with the valence shell p2 are 3P, 1D, 1S, and
the same terms relate to atoms of the sixth group of the
periodic table of elements with the valence shell p 4 (two p-
holes).

The electron shell for the jj-scheme of coupling of electron
momenta has a lower symmetry than in the case of the LS-
scheme. In this case each electron can have the momentum
1=2 or 3=2. The total number of states for an electron shell
with a given number of valence electrons is identical for both
schemes as well as the total momentum of electrons. Table 1
lists the electronic terms of atoms in the case of filling the p-
electron shells within the framework of the LS- and jj-
coupling schemes. Note that the Pauli exclusion principle,
which requires a certain symmetry of the total wave function
of electrons, restricts the total number of possible electronic
terms.

Due to the high accuracy of spectroscopic measurements,
it is convenient to compare the atomic energy levels according
to different models with the spectroscopic data for these levels
[19 ± 21], and this comparison allows one to ascertain the
reality of these models. In particular, let us compare the
position of the lower energy levels of atoms with the p2-shell
of valence electrons. Then both the LS- and jj-coupling
schemes lead to an identical sequence for the total momen-
tum of electrons, which is J � 0; 1; 2; 2; 0. The lightest atom
with this electron shell is carbon, C�2p2�, and the positions of
its excitation energies are 0, 0.002, 0.005, 1.264 and 2.654 eV,
respectively. This corresponds to the LS-coupling scheme
where there are three terms 3P, 1D, 1S with a weak splitting of
the lowest one. The electron excitation energies for the
heaviest atom with this electron shell, Pb �6p2�, are 0, 0.969,
1.320, 2.660, 3.653 eV. It is difficult to divide them into levels
and sublevels, i.e. this situation corresponds to an intermedi-
ate coupling scheme.

Thus, the above schemes of coupling of electron
momenta allow one sequentially to construct an atom
consisting of a heavy Coulomb center and electrons which
are located in the self-consistent field of this center and
other electrons. Within the framework of these schemes, we
neglect the correlations between the positions of individual
electrons (except an exchange interaction due to the Pauli
exclusion principle), and relativistic interactions involving
different electrons. What is the accuracy of such a scheme?
The simplest way to estimate the error relative to neglecting
the correlations between electrons consists in the analysis of
a two-electron atom or ion. In this case the one-electron
approximation leads to the Hartree ± Fock equations [15 ±
17] for the wave function of electrons. The energy of the
ground state and lower excited states in this system can also
be determined on the basis of the variational method [22 ±
25] which allows us to find the optimal electron wave
functions [21, 22]. Comparison of the calculated and
measured electron energies gives the error of the one-
electron approximation. In particular, the analysis of the
helium atom in the ground [23, 26 ± 28] and lower excited
states [23, 29 ± 31] which are determined on the basis of the
variational principle [22 ± 25] give an error of the order of
1 ± 2% for the total electron energy. This corresponds to an
error of several percent for the electron wave function.
Hence, correlations between electrons can make a signifi-
cant contribution to some atomic parameters.

Ignoring the electron correlation in the atom, which
corresponds to the Hartree ±Fock approach, can lead to a
certain error both in the positions of atomic levels and various
atomic parameters. Especially, the correlation between
electron positions is of importance for those parameters
which are determined by a small overlapping of wave
functions. These correlations are of importance for the rates
of forbidden radiative transitions and for the lifetimes of
autoionizing states. Alongside the correlation of electrons,
the shell scheme of atomic structure under consideration
neglects some relativistic interactions such as the interaction
of an electron spin with the fields created by other electrons.
We consider the validity of such assumptions below on the
basis of simple examples.

2.2 Lower excited states of rare gas atoms
The aboveLS- and jj-coupling schemes do not account for the
variety of possible interactions in a real atom. One can
demonstrate this for an atom which has two valence

Table 1. Electron shells of atoms with p-valent electrons.

LS-shell LS-term J jj-shell J

p

p2

p3

p4

p5

p6

2P
2P
3P
3P
3P
1D
1S
4S
2D
2D
2P
2P
3P
3P
3P
1D
1S
2P
2P
1S

1=2

3=2

0

1

2

2

0

3=2

3=2

5=2

1=2

3=2

2

0

1

2

0

3=2

1=2

0

�1=2�1
�3=2�1
�1=2�2
�1=2�1�3=2�1
�1=2�1�3=2�1
�3=2�2
�3=2�2
�1=2�2�3=2�1
�1=2�1�3=2�2
�1=2�1�3=2�2
�1=2�1�3=2�2
�3=2�3
�1=2�1�3=2�3
�1=2�2�3=2�2
�1=2�1�3=2�3
�1=2�2�3=2�2
�3=2�4
�1=2�2�3=2�3
�1=2�1�3=2�4
�1=2�2�3=2�4

1=2

3=2

0

1

2

2

0

3=2

3=2

5=2

1=2

3=2

2

0

1

2

0

3=2

1=2

0
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electrons. In this case the following four schemes of coupling
of electron momenta into the total atomic momentum are
possible [5]:

l1 � l2 � L ; s1 � s2 � S ; S� L � J �LS-coupling� ;
l1 � s1 � j1 ; l2 � s2 � j2 ; j1 � j2� J � jj-coupling� ;
l1 � l2 � L ; L� s1 � K ; K� s2 � J �LK-coupling� ;
l1 � s1 � j1 ; j1 � l2 � K ; K� s2� J �JK-coupling� :

�2:1�

Here, l1, l2 are the orbital momenta of electrons, and s1, s2 are
their spins. Restricting ourselves to the LS- and jj-coupling
schemes, we assume the combinations l̂1ŝ1, l̂2ŝ2, l̂1̂l2, ŝ1ŝ2 to be
the strongest in the Hamiltonian of electrons and neglect
some relativistic interactions. Below we shall try to under-
stand the validity of this approximation from the analysis of
positions of the lower excited states in rare gas atoms, which
are formed from the ground electronic state with the filled
electron shell np6 by the transition of one electron from this
shell into the state �n� 1�s. Thus, the excited states of rare gas
atoms under consideration are characterized by one p-hole in
the outer valence shell and one excited s-electron. In this case,
within the framework ofLS- and jj-coupling schemes, one can
find the positions of energy levels analytically and compare
these positions with real ones. From this one can determine
the accuracy of this assumption for different atoms numeri-
cally.

Let us consider the peculiarities of coupling of electron
momenta into the total atomic momentum for the electron
shell np5�n� 1�s. An inert gas ion has the electron shell np5

and the ground state 2P3=2:We denote byDf the fine-structure
splitting of ion levels, i.e. the distance between levels of the
2P3=2 and 2P1=2 ion states, and this will be used as a typical
energy of spin ± orbit interaction for excited atoms. There are
4 different energy levels for the lower atomic states. If we use
theLS-coupling scheme, these states are 3P2,

3P1,
3P0,

1P1.We
set these states in order of the atomic excitation in accordance
with the Hund rule. Within the framework of the jj-coupling
scheme, the sequence of states is the following:

s

�
3

2

�
2

; s

�
3

2

�
1

; s 0
�
1

2

�
0

; s 0
�
1

2

�
1

:

This notation is close to the usual notation of addition of
momenta for the case of jj-coupling, which usually has the
form � j1; j2�J and denotes that addition of momenta j1 and
j2 yields the total momentum J: So-called Pashen notation is
often used for excited atoms of rare gases for simplicity. Then
the above states in order of excitation of the atom are denoted
as 1s5, 1s4, 1s3, and 1s2. Below we take the energy of the state
1s5 to be zero and denote the difference of excitation energies
between this state and the others as e4, e3 and e2, so that, for
example, e2 is the difference of energies for levels 1s2 and 1s5
(see Fig. 2 [18]).

Table 2 contains some parameters of the lower excited
states for atoms of inert gases [19 ± 21]. Below we briefly

analyze these data. Along with the energies of these states, in
Table 2 the ratio is given for the difference in the energies of
the lowest states of the shells 2p and 1s in the Pashen notation
(or the �np5�n� 1�p� and �np5�n� 1�s� shells in the usual
notation) to the energy difference for the highest and lowest
states of the shell 1s. This ratio demonstrates the degree of
interaction between electron shells for a given atom.

One can extract two terms from the Hamiltonian which
describe the considered electronic states of a given atom:

Ĥ � ÿa l̂ ŝ1 ÿ b ŝ1ŝ2 ; �2:2�

where l̂ is the operator of the orbital momentum of the atomic
core, ŝ1 is the spin operator of the core, and ŝ2 is the spin
operator of an excited valence s-electron. Here and below we
use the Hartree atomic units �h � me � e2 � 1, if the units are
not indicated specially. The first term relates to the spin ±
orbit interaction for the core, the second term corresponds to
the exchange interaction of an excited electron with the
atomic core. In the case a5 b, the LS-coupling scheme
holds true, and if a4 b, the jj-coupling scheme is valid. The
determination of the level positions for an excited atom can be
done analytically, and then we express the positions of three
levels with respect to the lowest one through two parameters a
and b. If we find the values of these parameters from the
positions of two levels, comparison between the calculated
positions of the third term with its measured value allows us
to check the validity of this assumption numerically. More-
over, if we take the parameter a from the splitting of ion
levels, we can use two free parameters to check the
assumptions.

Let us introduce the total momentum of the electron and
core, Ĵ � l̂� ŝ1 � ŝ2, which is the quantum number because
this operator commutes with the Hamiltonian. The total
number of states of the electron shell under consideration is
the product of the number of projections of the atomic core
orbital momentum (3), projections of the atomic core spin
(2) and projections of the excited electron spin (2), i.e. the
total number of states is equal to 12. These states relate to
the total momentum J � 0; 1; 2; and there are two different
levels for J � 1. As is seen, the total number of projections
of the total momentum, i.e. the total number of states, is
equal to 12:

In order to find the positions of the 4 energy levels, it is
necessary to construct the wave functions of these states from
the wave functions of the orbital momenta and spins. We
denote by cm the wave function of the atomic core with a
projectionm of the orbital momentum onto a given direction.
Correspondingly, the wave functions w�, wÿ relate to the spin

Energy levels

jj-notation LS-notation Pashen
notation

Number
of states

�n� 1�s 0�1=2�01 1P1 1s2 3

�n� 1�s 0�1=2�00 3P0 1s3 1

�n� 1�s �3=2�01 3P1 1s4 3

�n� 1�s �3=2�02 3P2 1s5 5

Figure 2.Notation of the lower excited levels in atoms of inert gases [18].

Table 2. Energy parameters of lower excited states in atoms of inert gases.

Atom Df, cmÿ1 e3=Df e4=Df �e2 ÿ e3�=Df �e2p ÿ e5�=�e2 ÿ e5�
Ne
Ar
Kr
Xe

780.3
1432.0
5370.1
10537

0.996
0.984
0.972
0.866

0.54
0.43
0.18
0.11

0.09
0.10
0.13
0.11

7.7
4.9
1.9
1.01
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projections 1=2 and ÿ1=2 of the atomic core onto a given
direction, and the wave functions Z�, Zÿ describe spin states
of the excited electronwith the spin projections 1=2 andÿ1=2.
The atomic wave function consists of products of the above
wave functions, and we have 12 different combinations of
such products. Our task is to find eigenfunctions of the
Hamiltonian that requires the application of operators of
the angular momentum and spins. We have the following
relations for the orbital momentum operator [4, 32, 33]:

l̂zcm � mcm ; l̂�cÿ1 �
���
2
p

c0 ; l̂�c0 �
���
2
p

c1 ; l̂�c1 � 0 ;

l̂ÿcÿ1 � 0 ; l̂ÿc0 �
���
2
p

cÿ1 ; l̂ÿc1 �
���
2
p

c0 ;

where l̂� � l̂x � il̂y, l̂ÿ � l̂x ÿ il̂y, and we use l � 1. We have
identical relations for the spin operators [4, 32, 33]:

ŝ1zw� �
1

2
w� ; ŝ1zwÿ � ÿ

1

2
wÿ ; ŝ1�w� � 0 ;

ŝ1ÿw� � wÿ ; ŝ1�wÿ � w� ; ŝ1ÿwÿ � 0 ;

and the same relations for the operator ŝ2. Here ŝ� � ŝx � iŝy,
and ŝÿ � ŝx ÿ iŝy.

Let us denote the wave function of an atomic state with
total momentum J and projection M by CJM. Take the state
with J � 2, M � 2, whose wave function is C22 � c1w�Z�,
and evaluate the energy of this state. We have

ĤC22 � ÿal̂zŝ1zC22 ÿ bŝ1zŝ2zC22 � e5C22 ; �2:3�

where the energy of this state e5 (we denote it in Pashen
notation as 1s5) is equal to

e5 � ÿ a

2
ÿ b

4
: �2:4�

This energy corresponds to states with J � 2 and any
momentum projection onto a given direction.

Next, we construct the wave function of the state with
J � 0 as a result of coupling of the orbital momentum l̂ and
the total spin ŝ1 � ŝ2, which has the form

C00 � 1���
3
p c1wÿZÿ �

1���
3
p cÿ1w�Z� ÿ

1���
6
p c0w�Zÿ

ÿ 1���
6
p c0wÿZ� : �2:5�

Then we obtain equations

l̂̂s1C00 � ÿC00 ; ŝ1ŝ2C00 � 1

4
C00 ; ĤC00 � e3C00 :

The energy of this state as the eigenvalue of the Hamiltonian
is given by

e3 � aÿ b

4
: �2:6�

In order to determine the energies of states with J � 1, let
us consider the states with the momentum projection M � 1.
The wave functions of these states can be constructed from
j1 � c0w�Z�, j2 � c1wÿZ�, and j3 � c1w�Zÿ. Extracting
from these functions the wave function for the state J � 2,
M � 1, which has the form

F1 � C21 � 1���
2
p j1 �

1

2
j2 �

1

2
j3 ; �2:7�

we arrive at

l̂̂s1C21 � 1

2
C21 ; ŝ1ŝ2C21 � 1

4
C21 ; ĤC21 � e5C21 :

The energy e5 is the eigenvalue for this wave function and is
given by formula (2.4). Taking two other wave functions to be
normalized to unity, orthogonal to this function and
orthogonal each to other, we get

F2 � ÿ 1���
2
p j1 �

1

2
j2 �

1

2
j3 ; F3 � 1���

2
p j2 ÿ

1���
2
p j3 :

�2:8�

Next, we have

l̂̂s1F2 � ÿ 1

2
F2 ÿ 1���

2
p F3 ; l̂ ŝ1F3 � ÿ 1���

2
p F3 ;

ŝ1ŝ2F2 � 1

4
F2 ; ŝ1ŝ2F3 � ÿ 3

4
F3 :

Calculating the matrix elements of the Hamiltonian on the
basis of these relations, we obtain the following secular
equation for the eigenvalues of the Hamiltonian:

a

2
ÿ b

4
ÿ e

a���
2
p

a���
2
p 3

4
bÿ e

��������
�������� � 0 :

The solution of this equation gives the state energies

e2;4 � 1

4
�a� b� � 1

4

���������������������������������
9a2 ÿ 4ab� 4b2

p
: �2:9�

In the limiting case b � 0, when one can neglect the exchange
interaction, we have e4 � ÿa=2, e2 � a (i.e. e4 � e5, and
e2 � e3�. In the other limiting case a � 0, when one can
neglect the spin ± orbit interaction, we have e4 � ÿb=4,
e2 � 3b=4, i.e. e4 � e5 � e3 and the exchange splitting is
equal to b.

Let us take the position of the lowest excited level of an
inert gas atom as zero (e5 � 0). Then from the obtained
formulas it follows for the positions of the other energy levels:

e2;4 � 3

4
a� 1

2
b� 1

4

���������������������������������
9a2 ÿ 4ab� 4b2

p
; e3 � 3

2
a :

�2:10�

Table 3 contains the results which follow from comparison of
this formula with the positions of energy levels e2, e3, e4 for
real inert gas atoms. In this table Df is the fine-structure
splitting of levels for the corresponding free ion. As is seen,
this value is close to e3 (see also Table 2). The exchange
interaction parameter b according to the above formulas is
b � e4 � e2 ÿ e3. As follows from the data of Table 3, the
exchange interaction parameter slowly depends on the sort of
atom. Table 3 also gives the values of �9a2=4� b2 ÿ ab�1=2
which according to the obtained formulas equals the
difference e2 ÿ e4. Comparison of these values and also the
ion fine-structure splitting Df with e3 � 3a=2 for real atoms
shows that the above Hamiltonian includes the main part of
the interaction for the lower excited states of rare gas atoms.
In addition, Table 3 contains the ratio b=a which charac-
terizes the method of addition of momenta in the atom. In the
limiting case b4 a, this leads to the LS-scheme of coupling of
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momenta, and in the limiting case a4 b the jj-scheme of
momentum addition takes place. As is seen, in the argon and
krypton cases we come up against an intermediate case of
coupling, and the Hamiltonian (2.2) well describes the
positions of energy levels for these atoms.

Note that along with the positions of the 1s2 and 1s4
energy levels, the above operations allow us to find expres-
sions for the wave functions of these states. Indeed, represent-
ing the wave functionsC2 and C4 of these states in the form

C2 � c2F2 � c3F3 ; C4 � ÿc3F2 � c2F3 ;

we get from the SchroÈ dinger equations ĤC2;4 � eC2;4 the set
of equations for the coefficients of these wave functions:ÿhF2ĤF2i ÿ e

�
c2 � hF2ĤF3ic3 � 0 ;


F3ĤF2ic2 �
ÿhF3ĤF3i ÿ e

�
c3 � 0 :

Here we account for the wave functions Fi as well as
coefficients ci being real quantities. This is the secular set of
equations for determination of the energy levels. Simulta-
neously, this allows one to find the expansion coefficients.
Indeed, introducing

x � hF2ĤF2i ÿ hF3ĤF3i
hF3ĤF2i

� 1

2
���
2
p
�
1ÿ 2b

a

�
� 1

2
���
2
p
�
1ÿ 3b

Df

�
�2:11�

and accounting for the normalization condition c22 � c23 � 1,
we get

c22;3 �
�������������
1� x2
p � x

2
�������������
1� x2
p : �2:12�

Table 3 contains the values of these parameters for the excited
atoms under consideration.

Now let us analyze the results obtained for this problem,
which are given in Table 3. From this it follows that the
assumption used is valid while relativistic interactions are not
large. Even in the krypton case the ion doublet splitting and
the difference of energies of levels 1s3 and 1s5 differ by 2.8%,
whereas in the xenon case this difference is about 13%. Next,
under the assumptions used the relative positions of levels 1s2
and 1s4 differ from the real value by 0.14% in the krypton
case, while in the xenon case this difference is above 5%. We
may conclude that the accuracy of the approach is higher, the
smaller the relativistic corrections to the atomic energy, and
the error in this model increases nonlinearly with respect to
relativistic interactions. Hence, additional relativistic interac-
tions are significant when the condition of the jj-coupling
scheme is valid. In addition, the interaction of the 1s and 2p
shells in the Pashen notation, that is stronger for xenon than
for other rare gas atoms, also influences the accuracy of the
model. Note that this interaction between shells, which mixes
shells np5�n� 1�s and np5�n� 1�p as a result of the exchange
interaction between electrons, influences the parameter b
which is responsible for the exchange interaction in the

atom. Because an �n� 1�p-excited electron interacts weakly
with internal electrons, interaction between shells does not act
on the fine-structure splitting of levels in the atomic core, that
is, the interaction between shells does not influence the spin ±
orbit interaction of the atomic core. Therefore, the deviation
of the difference e3 ÿ e5 from the fine-structure splitting of ion
levels for xenon may be related to additional relativistic
effects.

2.3 Radiation from the first excited states of rare gas
atoms
The analysis of first excited states in rare gas atoms is useful
because it gives analytical expressions for atomic parameters,
so that their comparison with real parameters allows us to
find the accuracy of the approximation. Above we used this
for the determination of energy levels. Now we continue this
analysis for the determination of radiative parameters of the
lower excited states in rare gas atomswhere correlation effects
can be more essential. The electron shell for these excited
states of rare gas atoms is np5�n� 1�s, and radiative
transitions np5�n� 1�s! np6 are allowed in the dipole
approximation to the interaction between these atomic states
and the radiation field. But only two of the four states in this
group are resonantly excited states. Below we extract these
states and find the parameters of these radiative transitions.
For this goal we represent the wave function of electrons for
the excited atom in the form

CJM �
X

m; s1 ;s2

1

2
1 j

s1 mÿ s1 m

24 35 1

2
j J

s2 m M

24 35cm ws1Zs2 :

�2:13�

Here, s1, s2, mÿ s1 are the projections of the spin of the
atomic core, the spin of the valence electron and the orbital
momentum of the atomic core onto a given direction,
respectively, j is the total momentum of the atomic core, and
J is the total atomic momentum. Though this expression is
written within the framework of the jj-coupling scheme, it is
valid in the general case too, because the total atomic
momentum J is a quantum number. Dividing the atom into
the atomic core and valence electron, we represent the wave
function of the ground atomic state as a combination of
products of their spin and spatial wave functions. In the
general case this is not correct, but because the electron shell
for the ground atomic state is filled, spins of the valence
electron and atomic core have opposite directions, and the
total spin is zero. This allows one to represent the total wave
function for the ground atomic state as a product of the
spatial and spin wave functions of electrons, that is, the
atomic wave function for the ground state has the form

F � j0

1���
2
p �w�Zÿ ÿ wÿZ�� ; �2:14�

where w�, wÿ, Z�, Zÿ are the spin wave functions of the atomic
core and valence electron with the spin projection �1=2 onto

Table 3. Energy parameters of the first excited states of rare gas atoms (all the energy parameters are expressed in cmÿ1).

Atom Df e3 b b=a e2 ÿ e4
���������������������������������
9a2=4� b2 ÿ ab

p
x c23

Ne
Ar
Kr
Xe

780
1432
5370

10537

777
1410
5220
9129

1488
1453
1600
1966

2.9
1.5
0.46
0.32

1430
1649
4930
9140

1430
1653
4923
8674

ÿ1.67
ÿ0.72
0.038
0.16

0.071
0.207
0.481
0.423
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a given direction; j0 is the spatial wave function for the
ground state of an atom which consists of an atomic core and
valence electron.We used above the assumption that the total
spin of the atom in the ground state equals zero. The
probability of radiative transition per unit time is propor-
tional to the square of the matrix element of the atomic dipole
moment operator which does not depend on electron spins.
Hence it is convenient to project the wave function of the
excited state (2.13) onto the spin wave function of the ground
state (2.14). This gives

hCJMjFi � 1���
2
p

1

2
1 j

1

2
M M� 1

2

2664
3775

1

2
j J

ÿ 1

2
M� 1

2
M

2664
3775

ÿ 1���
2
p

1

2
1 j

ÿ 1

2
M Mÿ 1

2

2664
3775

1

2
j J

1

2
Mÿ 1

2
M

2664
3775 : �2:15�

Below we will show that this quantity goes to zero for the
states 1s3 and 1s5. Let us take a quantization axis for the
lowest excited state, 1s5 or �3=2�2 state, such that the
momentum projection onto this axis is M � 2. Then all the
Clebsch ±Gordan coefficients in formula (2.15) except the
last one are equal to zero because their momentum projec-
tions exceed their values, and the matrix element becomes
zero. This results from the symmetry of the wave function.
Indeed, the wave function (2.13) for M � 2 takes the form
C22 � c�1w�Z�, i.e. the total spin wave function of the
valence electron and atomic core corresponds to their total
spin S � 1, while the spin of the ground atomic state is zero.
For the 1s3 or �1=2�0 state formula (2.15) assumes the form

hC00jFi � 1���
2
p

1

2
1

1

2
1

2
0

1

2

2664
3775

1

2

1

2
0

ÿ 1

2

1

2
0

2664
3775

0BB@

ÿ
1

2
1

1

2

ÿ 1

2
0 ÿ 1

2

2664
3775

1

2

1

2
0

1

2
ÿ 1

2
0

2664
3775
1CCA :

As is seen, the second term in this expression equals the first
and eliminates it. Thus, the states 1s5 and 1s3 are metastable
states and dipole radiative transitions from these states to the
ground state are forbidden.

The radiative lifetime of an excited state is inversely
proportional to the square of the matrix element of the
dipole moment operator of the atom:

1

tf
� ��h0jDj f i��2 ; �2:16�

where indices 0; f refer to the ground and the considered
excited states. For the wave function of the ground atomic
state we use formula (2.14), and the wave function of the
lowest excited state with the projection of the total momen-
tum 2 onto a given direction has the form

C5 � c1w�Z� ;

where c1 is the spatial wave function of the core and test
electron with a projection of one of the angular momentum

onto a given direction. As is seen, the matrix element
hC0jDjC5i � 0 because of the orthogonality of spin wave
functions in accordance with formula (2.15).

Using formula (2.5) for the wave function of the state 1s3
one finds

C2 � 1���
3
p c1wÿZÿ �

1���
3
p cÿ1w�Z�

ÿ 1���
6
p c0w�Zÿ ÿ

1���
6
p c0wÿZ� ;

and it is seen that the matrix element hC0jDjC3i � 0 because
of the orthogonality of spin wave functions of the core and a
test electron. Thus, the states 1s5, 1s3 are metastable and are
characterized by an infinite radiative lifetime with respect to
dipole radiation.

For determination of the radiative lifetimes of the states
1s4 and 1s2 we use the wave functions of these states according
to formulas (2.7), (2.8). First we write down the dipole
moment operator of the atom in the form

D �
X
m

�i sin ym cosfm � j sin ym sinfm � k cos ym�rm ;

where i, j, k are the unit vectors directed along the axes x; y; z,
respectively, and the subscript m corresponds tomth electron
whose spherical coordinates are rm; ym;Fm. Because the basis
wave functions have the form

j1 � c0w�Z� ; j2 � c1wÿZ� ; j3 � c1w�Zÿ ;

we obtain for matrix elements:

C0jDjj1

� � 0 ;


C0jDjj2

� � C�ÿi� ij� ;

C0jDjj3

� � C�iÿ ij� :

Thus, the rate of the radiative transition is determined by the
amplitude of the wave functionF3 entering the wave function
of the excited state. From this we get the ratio of the radiative
lifetimes of the resonantly excited states:

t�1s2�
t�1s4� �

c22
c23
�

�������������
1� x2
p ÿ jxj�������������
1� x2
p � jxj ; �2:17�

where the parameter x is given by formula (2.11). Table 4
contains the measured radiative lifetimes t�1s2� and t�1s4� of
resonantly excited states in rare gas atoms [21, 34], the ratio of
these quantities, and an evaluated ratio of the lifetimes if the
exchange and spin ± orbit interactions are taken into account.
Comparison between these values shows their accuracy
within the framework of the assumptions made. Analysis of
the data fromTable 4 shows that the measured and calculated
radiative lifetimes of the lower resonantly excited states of
rare gas atoms differ more strongly than the energies of
excited levels. Indeed, the correlation effects are of impor-
tance for radiative atomic parameters that creates an
additional source of error for the atomic model under

Table 4. Radiative lifetimes for lower resonantly excited states of rare gas
atoms.

Atom t�1s2�, ns t�1s4�, ns t�1s2�=t�1s4� c22=c
2
3

Ne
Ar
Kr
Xe

1.6
2.0
3.2
3.5

25
10
3.5
3.6

16
5
1.1
1.0

13
3.8
1.1
1.4
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consideration Ð both for light and heavy atoms. As follows
from the data of Table 4, this error is estimated as� 10ÿ20%
with respect to the radiative parameters.

Thus, the analysis of energy levels for the lower excited
electron shell in rare gas atoms and their radiative parameters
demonstrates the general positions of the atomic shell model.
This model, along with the interaction of electrons with the
Coulomb center and Coulomb interaction between electrons,
also includes the exchange interaction between electrons due
to the Pauli exclusion principle and spin ± orbit interaction for
valence electrons. In the limiting cases, depending on the ratio
between two last interactions, the LS- or jj-coupling schemes
of momenta are realized. The atomic shell model neglects the
correlation between electrons, which occurs due to the
violation of the one-electron approach. The correlation
between electrons is not significant for the atomic energy
parameters, but it is more essential for radiative atomic
parameters, and becomes of importance for two-electron
and many-electron transitions in atomic particles.

2.4 Correlations between atomic electrons
Thus, in the atomic shell model which uses a one-electron
approach, we encounter two types of errors in atomic
parameters. The first type relates to some relativistic interac-
tions, additional to the spin ± orbit interaction of individual
electrons, and the scale of such errors was discussed above.
The second type of error is caused by correlation effects in the
atomic shell model. These effects follow from the one-electron
approach which accounts for the electron correlation due to
the Pauli exclusion principle only.

The character of correlation effects has mostly been
studied for a two-electron atom [5]. For their analysis,
alongside the coordinates of the two electrons r1, r2 , the
relative distance between electrons r12 � jr1 ÿ r2j is intro-
duced into the consideration. In combination with the
variational principle for the ground and lower excited states
of a two-electron atom, the introduction of r12 into the trial
wave function of electrons allows one to improve the accuracy
of the variational method for the atomic energy by taking into
account the correlation effects [26, 27, 35, 36]. In particular,
usage of the trial wave function for the ground state of the
helium atom, which includes the distance between electrons
r12 and uses 1024 varying parameters [37], allows one to
account for the correlation effects there with a high accuracy.
The other method of such a type introduces the relative
distance between electrons in the SchroÈ dinger equation [38],
and this allows one to account for the correlation effects in a
more compact way. The use of 52 varying parameters for the
ground state of the helium atom within the framework of this
approach [39] provides the same accuracy for correlation
effects as the above-mentioned calculation with 1024 varying
parameters.

The above analysis of radiative parameters of rare gas
atoms testifies to the error arising from neglecting the
correlation effects. But for two-electron transitions the
correlation effects are principle. The analysis of autoionizing
states with two excited electrons shows the molecule-like
character of electron correlations [40 ± 45]. This provided the
basis for the configuration interaction method [46 ± 49] which
also suits stable two-electron atoms and allows one to
calculate various parameters, such as the atomic energies,
oscillator strengths, and quadrupole momenta, accounting
for the electron correlations. Other methods exist for this goal
[49], but we will not consider them, because our task is only to

estimate corrections to the energies and interaction potentials
of atomic particles due to the correlations between electrons.
The quantitative characteristic of corrections due to electron
correlations is the overlap integral for the Hartree ± Fock
wave function CHF which corresponds to the one-electron
approach and the wave function CCI of the configuration
interaction method that accounts for electron correlations.
These overlap integrals are given in Table 5 for some states of
alkali-earth atoms with two excited electrons [50, 51].

The development of the atomic shell model was simulta-
neous with the creation of quantum mechanics [52 ± 54]. This
model includes the basic features of the behavior of bound
electrons which are located in the field of the nuclear
Coulomb center. The atomic shell model allowed one to
check the postulates of quantum mechanics. As a model, the
atomic shell model leads to errors of two types for atomic
parameters, those due to correlations of electrons and those
owing to relativistic interactions, additional to the spin ± orbit
interactions for individual electrons. As follows from the
above analysis, these errors are not essential if we determine
the positions of atomic energy levels in light atoms. In the case
of energy parameters of heavy atoms and radiative atomic
parameters these errors may be significant.

3. Wave function of valence electrons

3.1 Fractional parentage scheme of the atom
The atomic shell model corresponds to a one-electron
description of the atom. Then the wave function of atomic

Table 5. Square of the overlap integral jhCCIjCHFij2 for the Hartree ±
Fock wave function CHF and the wave function CCI of the configuration
interaction method for alkali-earth atoms [50, 51].

Atom Be Be Be Be Be Be Be

Shell 2s2 2s2p 2s2p 2s3s 2s3s 2p2 2p2

Term 1S 3P 1P 3S 1S 1D 3P��hCCIjCHFi
��2 0.89 0.99 0.92 0.97 0.95 0.72 0.99

Atom Mg Mg Mg Mg Mg Mg Mg

Shell 3s2 3s3p 3s3p 3s4s 3s4s 3s3d 3p2

Term 1S 3P 1P 3S 1S 1D 3P��hCCIjCHFi
��2 0.92 0.98 0.93 0.96 0.92 0.65 0.98

Atom Ca Ca Ca Ca Ca Ca Ca

Shell 4s2 4s4p 4s3d 4s4p 4s5s 4s5s 4p2

Term 1S 3P 1D 1P 3S 1S 3P��hCCIjCHFi
��2 0.92 0.96 0.85 0.85 0.96 0.92 0.88

Atom Sr Sr Sr Sr Sr Sr Sr

Shell 5s2 5s5p 5s4d 5s5p 5s6s 5p2 5s6s

Term 1S 3P 1D 1P 3S 3P 1S��hCCIjCHFi
��2 0.92 0.93 0.83 0.68 0.72 0.57 0.59

Atom Ba Ba Ba Ba Ba Ba Ba

Shell 6s2 6s5d 6s6p 6s6p 5d2 5d2 6s7s

Term 1S 1D 3P 1P 3P 1S 3S��hCCIjCHFi
��2 0.92 0.88 0.89 0.53 0.83 0.76 0.92
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electrons is a combination of products of one-electron wave
functions. This combination takes into account the symme-
try of the electron wave function with respect to permutation
of electrons. In reality, the radial symmetry of atomic fields
and the character of addition of momenta of individual
electrons to the total atomic momenta simplifies the
construction of the atomic wave function. Our task is now
to construct the atomic wave function by extraction of one
valence electron from the total wave function of electrons,
which is made on the basis of the fractional parentage
scheme of the atom [1, 3, 55]. The connection between the
total wave function of electrons and the wave function of a
test valence electron is more complicated if the relativistic
interactions are small and the atom has a higher symmetry.
This connection within the framework of the LS-coupling
scheme takes the form [1, 3, 55]

CLSMLMS
�1; 2; . . . ; n� � 1���

n
p P̂

X
lmsmsms

GLS
ls �le; n� ;

le l L
m m ML

� � 1

2
s S

s ms MS

" #
cl e

1
2ms
�1�Clsmms

�2; . . . ; n� :

�3:1�
Here, n is the number of valence electrons, the operator P̂
transposes positions and spins of a test electron, which is
described by the argument 1, and other valence electrons, L,
S, ML, MS are the quantum numbers of the atom, l, s, m, ms

are the quantum numbers of the atomic core, le,
1
2
, m, s are the

quantum numbers of an extracted valence electron, and
GLS

ls �le; n� is the fractional parentage coefficient or the
Racah coefficient [1, 3] which is responsible for the connec-
tion of an extracting electron with the atomic core in the
formation of the atom. It is of importance that the removal of
one valence electron from the atom leaves a finite number of
states for the atomic core. Table 6 lists the magnitudes of
fractional parentage coefficients for s- and p-electron shells
[1, 3, 21, 55]. In the cases of d- and f-electrons, several
different states of the atom can be characterized by the same
values of L and S. In order to distinguish them, one more

quantum number v, the state seniority, is introduced [5, 56].
Below we will be guided by s- and p-valence electrons and
exclude the seniority parameter from consideration.

The fractional parentage coefficients satisfy the condition
which follows from the normalization of the wave function:X

lsv

�
GLS

ls �le; n; v�
�2 � 1 : �3:2�

Thenumber of electrons in a filled electron shell is equal to
4le � 2. From the symmetry between electrons and holes, the
analogy follows between the case of removal of one vacancy
from a shell containing n� 1 vacancies and 4le � 3ÿ n
electrons, and the case of removal of one electron from the
shell containing n electrons. This correspondence is expressed
by the formula

GLS
ls �le; n� � �ÿ1�L�l�S�sÿleÿ1=2

�
�

n�2s� 1��2l� 1�
�4le � 3ÿ n��2S� 1��2L� 1�

�1=2
GLS

ls �le; 4le � 3ÿ n� :
�3:3�

The mathematical formalism based on the Clebsch ±Gordan
coefficients and the fractional parentage coefficients occupies
a central place in the theory of atoms. This formalism allows
one to take into account the symmetry of atomic particles
when analyzing their properties.

In the jj-coupling case, the fractional parentage scheme is
simpler. Indeed, in the case of the LS-coupling scheme, an
atomic state is characterized by the quantum numbers L,ML,
S,MS in neglecting relativistic interactions, and the fractional
parentage scheme includes 11 quantum numbers: L, ML, S,
MS for the atom, l, m, s, ms for an ion, and le, m, s for a test
electron. In the case of the jj-coupling scheme, these quantum
numbers are the total momenta of the atom, ion, electron and
their projections onto the quantization axis. Hence, in this
case instead of formula (3.1) we arrive at

CJMJ
�1; 2; . . . ; n� � 1���

n
p P̂

X
J 0MJ 0mj

j J 0 J

mj MJ 0 MJ

" #

� cjmj
�1�CJ 0MJ 0 �2; . . . ; n� �3:4�

thatmeans the ion and electronmomenta are composed to the
total atomic momentum within the framework of a given
electron shell of the atom. Here, jmj, J

0MJ 0 , JMJ are the
quantum numbers of the electron, the atomic core, and the
atom, which include the total atomic momentum and its
projection onto the selected direction. Thus, a decrease in
the atomic symmetry lowers the complexity of the atomic
fractional parentage scheme.

3.2 Asymptotic behavior of atomic wave functions
The atomic fractional parentage scheme allows one to extract
one valence electron from an electron shell consisting of
several identical electrons. This is of importance for one-
electron atomic parameters, including the ion ± atom
exchange interaction at large separations, which is deter-
mined by the transition of one valence electron from one
core to another. This interaction is determined by the
positions of a valence electron far from the core, and we
shall find below the asymptotic expression for the wave
function of a valence electron at large distances from the
core. Within the framework of the one-electron approxima-

Table 6. Fractional parentage coefficients for valence s- and p-electron
shells. The electron shells of the atom and atomic core are indicated along
with their electronic terms.

Electron shell
GLS
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s(2S)

s2(1S)

p(2P)

p2(3P)

p2(1D)

p2(1S)

p3(4S)

p3(2D)

p3(2P)

(1S)

s(2S)

(1S)

p(2P)

p(2P)

p(2P)

p2(3P)

p2(1D)

p2(1S)

p2(3P)

p2(1D)

p2(1S)

p2(3P)

p2(1D)

1

1

1

1

1

1

1

0

0

1=
���
2
p

ÿ1= ���
2
p

0

ÿ1= ���
2
p

ÿ ����������
5=18

p

p3(2P)

p4(3P)

p4(1D)

p4(1S)

p5(2P)

p6(1S)

p2(1S)

p3(4S)

p3(2D)

p3(2P)

p3(4S)

p3(2D)

p3(2P)

p3(4S)

p3(2D)

p3(2P)

p4(3P)

p4(1D)

p4(1S)

p5(2P)

���
2
p

=3

ÿ1= ���
3
p����������

5=12
p
ÿ1=2
0 ��������
3=4

p
ÿ1=2
0

0

1 ��������
3=5

p
1=

���
3
p

1=
�����
15
p

1

March, 2001 Atomic structure and the resonant charge exchange process 229



tion, we represent the wave function of a given electron with
quantum numbers lm 1

2 s in the following form

clm 1
2 s
� Rl�r�Ylm�y;j�ws ; �3:5�

where Rl�r� is the radial wave function, Ylm�y;j� is the
electron angular wave function, ws is the electron spin
function, and r; y;j are the spherical coordinates of this
electron. In the course of removal of an electron from the
atom, only the radial wave function varies. Hence, below we
concentrate our attention on the radial electron wave
function and find its asymptotic expression. Because at large
distances from the atom an exchange interaction of electrons
in the atom is not essential, we neglect this effect. Next, the
self-consistent field potential far from the atom coincides with
the Coulomb field of the atomic core. Thus, the SchroÈ dinger
equation for the radial function of a test valence electron
located far from the core has the form

1

r

d2

dr2
�rRl� �

�
2eÿ 2Z

r
� l�l� 1�

r2

�
Rl�r� � 0 ; �3:6�

whereZ is the core charge. Introducing the electron energy by
the relation e � ÿI � ÿg2=2, where I is the atomic ionization
potential, we obtain the asymptotic solution of this equation
at large r:

Rl�r� � ArZ=gÿ1 exp�ÿrg� ; rg4 1 ; rg2 4Z : �3:7�

We consider below the asymptotic behavior of valence
electrons in atoms �Z � 1� and negative ions �Z � 0�. The
asymptotic coefficient A is determined by the electron
behavior in an internal atomic region where the electron
considered is located and formula (3.7) is violated. This
coefficient can be obtained by comparison of the asymptotic
wave function (3.7) with that at middle distances from the
nucleus. Indeed, numerical methods of solution of the
SchroÈ dinger equation enable us to determine the electron
wave function in a region where electrons are mostly located.
Such a solution gives rise to an error at large distances from
the nucleus, because these electron positions give a small
contribution to the atomic energy. An increase in the
accuracy of the electron wave function makes it correct over
a wider range of electron distances from the center. Then
there is a range of distances of a test valence electron from the
center where, on the one hand, the asymptotic expression
(3.7) is valid and, on the other hand, a numerical wave
function is correct. Comparing the wave functions in this
region, one can find the parameter A. Table 7 contains
recommended asymptotic parameters for the wave function
of valence electrons in atoms [21], which were obtained on the
basis of numerical calculations [57, 58] for the wave functions.
These parameters are contained in formula (3.7) for the
asymptotic expression of the radial wave function of a
valence electron.

Note that if the Coulomb interaction of an electron with
the atomic core takes place in the basic region of electron
location, i.e. normalization of the wave function is deter-
mined by this range of distances from the core, we have the
following expression for the asymptotic coefficient of a
valence s-electron [14, 21, 59]:

A � g3=2�2g�1=g
G�1=g� : �3:8�

This expression can also be used for the p-electron as an upper
limit for the asymptotic coefficient.

3.3 Determination of the asymptotic coefficient
We now demonstrate the method of determining the
asymptotic coefficient A using the example of the helium
atom in the ground state. This analysis permits us to estimate
the reliability of this information. As a basis we use the one-
electron wave functions which depend only on electron
distances from the nuclei and follow from the variational
principle. The simplest electron wave function has the
hydrogen-like form

C�r1; r2� � C exp
�ÿZeff�r1 � r2�

�
; C � Z 6

eff

p2
;

where r1, r2 are the distances of the electrons from the nucleus,
and Zeff � 27=16 follows from the variational principle for
the helium atom in the ground state. Then the electron density
r�r� which is normalized by the relation�1

0

r�r�r2 dr � 2 ;

at a large distance r from the center is written as

r�r� � 2

�1
0

��C�r1; r���2r21 dr1 � 8Z 3
eff exp�ÿ2Zeffr�

� 38:4 exp�ÿ3:375r� :
We compare this quantity with the asymptotic density which
according to formula (3.7) has the form

r�r� � 2A2rÿ0:511 exp�ÿ2:687r� :

The comparison gives for the asymptotic coefficient:

A2�r� � 19:2r 0:511 exp�ÿ0:688r� : �3:9�

Note that this wave function, which follows from the
variational principle, leads to the ionization potential

Table 7. Asymptotic parameters of valence electrons.

Atom
(state)

Shell g A Atom
(state)

Shell g A

He (1S)
Li (2S)
Be (1S)
B (2P)
C (3P)
N (4S)
O (3P)
F (2P)
Ne (1S)
Na (2S)
Mg (1S)
Al (2P)
Si (3P)
P (4S)
S (3P)
Cl (2P)
Ar (1S)
K (2S)
Ca (1S)
Cu (2S)
Zn (1S)
Ga (2P)

1s2

2s
2s2

2p
2p2

2p3

2p4

2p5

2p6

3s
3s2

3p
3p2

3p3

3p4

3p5

3p6

4s
4s2

4s
4s2

4p

1.344
0.630
0.828
0.781
0.910
1.034
1.000
1.132
1.259
0.615
0.750
0.663
0.774
0.878
0.873
0.976
1.076
0.565
0.670
0.754
0.831
0.664

2.9
0.82
1.6
0.88
1.3
1.5
1.3
1.6
1.8
0.74
1.3
0.61
1.1
1.6
1.1
1.8
2.0
0.52
0.95
1.3
1.7
0.60

Ge (3P)
As (4S)
Se (3P)
Br (2P)
Kr (1S)
Rb (2S)
Sr (1S)
Ag (2S)
Cd (1S)
In (2P)
Sn (3P)
Sb (4S)
Te (3P)
I (2P)
Xe (1S)
Cs (2S)
Ba (1S)
Au (2S)
Hg(1S)
Tl (2P)
Pb (3P)
Bi (4S)

4p2

4p3

4p4

4p5

4p6

5s
5s2

5s
5s2

5p
5p2

5p3

5p4

5p5

5p6

6s
6s2

6s
6s2

6p
6p2

6p3

0.762
0.850
0.847
0.932
1.014
0.554
0.647
0.746
0.813
0.652
0.735
0.797
0.814
0.876
0.944
0.535
0.619
0.823
0.876
0.670
0.738
0.732

1.3
1.6
1.5
1.8
2.1
0.48
0.86
1.2
1.6
0.58
1.0
1.7
1.6
1.9
2.2
0.41
0.78
1.6
1.9
0.55
1.1
1.4
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I � 23:06 eV instead of the accurate value 24.56 eV. If we use
the trial wave function in the form

C�r1; r2� � C
�
exp�ÿar1 ÿ br2� ÿ exp�ÿbr1 ÿ ar2�

�
;

then we obtain from the variational principle: a � 1:189,
b � 2:183 [23, 31] and the ionization potential is I � 23:83 eV
that is closer to the accurate value. This gives for the electron
density far from the atomic center:

r�r� � 4

�
1

a3b 3
� 64

�a� b�6
�ÿ1

�
�
exp�ÿ2ar�

b 3
� 16 exp

�ÿ�a� b�r�
�a� b�3 � exp�ÿ2br�

a3

�
� 3:817 exp�ÿ2:378r� � 16:57 exp�ÿ3:372r�
� 23:62 exp�ÿ4:366r� ;

and the asymptotic coefficient squared is equal to

A2�r� � r 0:511
�
1:908 exp�0:309r� � 8:286 exp�ÿ0:685r�

� 11:81 exp�ÿ1:679r�� : �3:10�
The variation of the asymptotic coefficient over the range
under consideration gives an estimate of its accuracy. One
more method to evaluate the accuracy relates to the use of the
next terms in the expansion of the wave function (3.7) in a
small parameter 1=r. In particular, in the helium case we now
obtain for the asymptotic coefficient:

A2
1 �

A2
0

1� 0:095=r
; �3:11�

where the subscript indicates an approach to the asymptotic
wave function, and the quantity A0 was calculated above.

From these results one can find a range of distances where
the function A�r� weakly varies with r (see Fig. 3). This takes
place near the minimum of A�r�, which occurs at r � 1:65 for
A0�r� and r � 1:55 for A1�r�. Function (3.9) has a maximum
at r � 0:75. From this analysis it follows that the simple wave
function leads to a significant error. Indeed, taking the region
r � 0:4ÿ2:6, we find that the asymptotic coefficient accord-
ing to formula (3.10) is A � 2:98� 0:05 in this range, and

according to formula (3.11) it is A � 2:87� 0:07, so that on
the basis of these data we obtain

A � 2:9� 0:1 : �3:12�

Formula (3.9) gives A � 2:8� 0:3 in this range, i.e. the use of
a simple wave function increases the error several times. This
example shows that the identical wave functions of the same
valence electrons lead to a significant error.

It is clear that an error in the Hartree ±Fock wave
functions is transferred to the asymptotic coefficient A.
Next, the use of the simplified versions of the Hartree ± Fock
wave functions increases the error in the asymptotic coeffi-
cient, which is found on the basis of such wave functions as
was demonstrated for the helium atom. In particular, the
standard exponential approximation for one-electron wave
functions [57, 58, 60] is accompanied by a significant error in
the asymptotic coefficient. Moreover, for such wave func-
tions the above method of determination of the asymptotic
coefficient can lead to a monotonic dependence A�r� that
hampers the extraction of a range of distances r suitable for
determining the asymptotic coefficient and its error by
comparison of the asymptotic and approximated wave
functions. This is true for the above-discussed helium case.

3.4 Asymptotic wave function of electrons in a negative
ion
Negative ions are the bound states of electrons with neutral
atomic particles [61, 62]. The binding energy of a valence
electron is called the electron affinity of an atom or molecule
and is denoted EA. The asymptotic expression for the wave
function of a valence electron in a negative ion according to
Eqn (3.7) is

R�r� � A

r
exp�ÿrg� ; �3:13�

where g � ����������
2EA
p

. Note that the atoms with filled electron
shells, as atoms of alkali-earthmetals and atoms of rare gases,
do not usually form negative ions. Most elements have only
one state of the negative ion, and stable negative ions of
elements of group IV of the periodic table can be found in
three different electronic states. Figure 4 contains informa-
tion about the electron affinity of the atoms. The basic data of
this figure are taken from Ref. [63], and the data of Refs [64 ±
69] are also included in Fig. 4. The accuracy of the data is such
that the error is one or several units in the last significant
figure. The word `absent' is used in the cases where a stable
atomic negative ion does not exist. Notice that the most
accurate contemporary method to measure the EA is based
on determination of the threshold of electron photodetach-
ment from negative ions by laser radiation. Schematically,
this method has two versions. In the first case, a beam of
negative ions is irradiated by a tuned laser, and the threshold
photon energy for this process is found. In the second case,
the laser frequency is fixed and the distribution of released
electrons over kinetic energy is measured, so that the
maximum kinetic energy for a given direction of motion is
detected. These methods of determining the threshold of the
photodetachment process are joined with taking into account
additional factors which improve the accuracy of the results.
In particular, the threshold form of the photodetachment
cross section is used and the wavelength for the photodetach-
ment threshold is compared with the known wavelengths of
resonant radiative transitions in atoms. Such a calibration

3.1

A

3.0

2.9

2.8
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 r, a0

(3.9)

(3.10)

(3.11)

He

Figure 3. Determination of the asymptotic coefficient A of the electron

wave function for the helium atom on the basis of formulas (3.9) ± (3.11).
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Periodic table of elements ì negative ions

Period
G r o u p

I II III IV V VI VII VIII

1
1s2 1S0

1H 0.75420
Hydrogen

2s 2S1=2
abs. 2He

Helium

2
2s2 1S0

3Li 0.6180
Lithium

2p 2P1=2

4Be abs.
Beryllium

2p2 3P0

0.27972 5B
Boron

2p3

4S3=2 1.2621 6C
2D3=2 0.033 Carbon

2p4 3P0

abs. 7N
Nitrogen

2p5 2P3=2

1.4611103 8O
Oxygen

2p6 1S0
3.401190 9F

Fluorine

2p63s 2S1=2
abs. 10Ne

Neon

3

3s2 1S0

11Na 0.54793

Sodium

3p 2P1=2

12Mg abs.

Magnesium

3p2

3P0 0.4328 13Al
1D2 0.11

Aluminium

4S3=2 1.385 3p3

2D3=2 0.5272 14Si
2D5=2 0.5255
2P1=2 0.029 Silicon

3p4 3P0

0.7465 15P

Phosphorus

3p5 2P3=2

2.077104 16S

Sulfur

3p6 1S0
3.61269 17Cl

Chlorine

3p64s 2S1=2
abs. 18Ar

Argon

4

4s2 1S0

19K 0.5015
Potassium

4p 2P1=2

20Ca 0.0245
Calcium

3d4s24p

21Sc 3F2 0.19
Scandium 3D1 0.04

3d34s2 4F3=2

22Ti 0.08
Titanium

3d44s2 5D0

23V 0.52
Vanadium

3d54s2 6S5=2

24Cr 0.66
Chromium

3d64s2 5D4

25Mn abs.
Manganese

3d74s2 4F9=2

26Fe 0.151
Iron

3d84s2 3F4

27Co 0.662
Cobalt

3d94s2 2D5=2

28Ni 1.16
Nickel

3d104s2 1S0
1.235 29Cu

Copper

4p 2P1=2

abs. 30Zn
Zinc

4p2 3P0

0.43 31Ga
Gallium

4S3=2 1.2327 4p3

2D3=2 0.4014 32Ge
2D5=2 0.3773 Germanium

4p4 3P0

0.81 33As
Arsenic

4p5 2P3=2

2.02067 34Se
Selenium

4p6 1S0
3.363590 35Br

Bromine

4p65s 2S1=2
abs. 36Kr

Krypton

5

5s2 1S0

37Rb 0.48592
Rubidium

5p 2P1=2

38Sr 0.048
Strontium

4d5s25p

39Y 3F2 0.31
Yttrium 3D1 0.16

4d35s2 4F3=2

40Zr 0.43
Zirconium

4d45s2 5D0

41Nb 0.89
Niobium

4d55s2 6S5=2

42Mo 0.748
Molibdenum

4d65s2 5D4

43Tc 0.6
Technetium

4d75s2 4F9=2

44Ru 1.0
Ruthenium

4d85s2 3F4

45Rh 1.137
Rhodium

4d95s2 2D5=2

46Pd 0.562
Palladium

4d105s2 1S0
1.302 47Ag

Silver

5p 2P1=2

abs. 48Cd

Cadmium

5p2 3P0

0.40 49In

Indium

4S3=2 1.1121 5p3

2D3=2 0.3976 50Sn
2D5=2 0.3046

Tin

3P2 1.047 5p4

3P1 0.714 51Sb
3P0 0.700
1D2 0.131 Antimony

5p5 2P3=2

1.9708 52Te

Tellurium

5p6 1S0
3.05904 53I

Iodine

5p66s 2S1=2
abs. 54Xe

Xenon

6

6s2 1S0

55Cs 0.47163
Cesium

6p 2P1=2

56Ba 0.15
Barium

5d26s2 3F2

57La 0.5
Lanthanum

5d36s2 4F3=2

72Hf abs.
Hafnium

5d46s2 5D0

73Ta 0.32
Tantalum

5d56s2 6S5=2

74W 0.815
Tungsten

5d66s2 5D4

75Re 0.2
Rhenium

5d76s2 4F9=2

76Os 1.1
Osmium

5d86s2 3F4

77Ir 1.5638
Iridium

5d96s2 2D5=2

78Pt 2.128
Platinum

5d106s2 1S0
2.30863 79Au

Gold

6p 2P1=2

abs. 80Hg
Mercury

6p2 3P0

0.4 81Tl
Thallium

6p3 4S3=2
0.364 82Pb

Lead

6p4 3P0

0.95 83Bi
Bismuth

6p5 2P3=2

1.9 84Po
Polonium

6p6 1S0
2.8 85At

Astatine

6p67s 2S1=2
abs. 86Rn

Radon

7
7s2 1S0

87Fr 0.46
Francium 3d74s2 4F9=2

26 Fe 0.151
Iron

Valence electron shell

Electron binding energy

Electronic termSymbol

Element

Atomic number

Figure 4. Electron affinity of atoms for elements of the periodic table. There may be an error in the last digit. Abbreviation `abs.' is used for `absent' (see the text).
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allows one to improve the accuracy of the threshold
wavelength. As a result, the laser method provides a high
accuracy for the electron affinities obtained, and other
methods for determination of electron affinities can compete
with the laser method only in the case of complex molecules.

The asymptotic coefficient for the wave function of a
valence electron in a negative ion can be found by means of
the standard method which was described in the previous
section. We now do this operation for the hydrogen negative
ion where two bound electrons are located in the proton
Coulomb field. Take the Chandrasekhar wave function of
electrons [65]:

C�r1; r2� � C
�
exp�ÿar1 ÿ br2� ÿ exp�ÿbr1 ÿ ar2�

�
� ÿ1� cjr1 ÿ r2j

�
; �3:14�

and the variational principle gives the following parameters
of this wave function: a � 1:039, b � 0:283, c � 0 for the two-
parameter form of the wave function, and a � 1:075,
b � 0:478, c � 0:312 if we use three parameters. The electron
affinity of the hydrogen atom is 0.367 eV in the first case and
0.705 eV in the second one, instead of the accurate value
0.754 eV.

Repeating the operations of the previous section, we
obtain for the asymptotic coefficient squared:

A2�r� � r2
�
0:0695 exp�ÿ0:096r� � 0:540 exp�ÿ0:852r�
� 3:44 exp�ÿ1:608r�� �3:15�

in the first case, and

A2�r� � r2
��0:102� 0:0411r� 0:0064r2� exp�ÿ0:486r�
� �0:660� 0:218r� 0:0341r2� exp�ÿ1:063r�
� �2:20� 0:468r� 0:0729r2� exp�ÿ1:68r�� �3:16�

in the second. Figure 5 depicts the asymptotic coefficients
obtained on the basis of these formulas. As a result, we have
A � 1:07� 0:03 on the basis of formula (3.15), and
A � 1:19� 0:01 if we use formula (3.16) and r ranges in
both cases from 2 up to 5. Here, the statistical error is
indicated only, and the real accuracy of this asymptotic
coefficient is worse. Nevertheless, the accuracy of the

asymptotic coefficient for a negative ion is usually better
than that for an atom because of the absence of interaction of
a weakly bound electron with its core outside the atom. Both
formulas (3.15) and (3.16) give for the asymptotic coefficient
A � 1:13� 0:06 in the range r � 2ÿ5:

For determination of the asymptotic coefficient one can
fall back on that the electron affinity of atoms is relatively
small. This means that an atomic size is small compared to the
size of the negative ion. Then expression (3.13) is valid in the
basic region of electron location, and from the normalization
condition of the electron wave function we have

A �
�����
2g

p
: �3:17�

This is a rough approximation because the atomic region
gives a contribution to the normalization integral. One can
improve the correctness of this relation using additional
information from the scattering of a slow electron by the
atom. Indeed, let us consider the finite radius model for the
electron ± atom interaction, so that the wave function of a
weakly bound electron equals zero for r < r0; where r0 is the
effective atomic radius. Because the interaction of a valence
electron with the atom is absent for r > r0, the solution of the
SchroÈ dinger equation for r > r0 is given by formula (3.13),
and from the normalization of this wave function we have

A �
�����
2g

p
exp�gr0� : �3:18�

As is seen, this effect must be taken into account even for
small values of the parameter gr0.

For determination of the parameter r0 one can apply to
the identical behavior of a free and bound electron outside the
atom near its boundary. Indeed, the wave function of a slow
free s-electron outside the coverage of an atomic field takes
the form [4, 71]

Rq�r� � 1

r
sin�qrÿ d0� ;

where q is the electron wave vector, r is the electron distance
from the atom, and the scattering phase of s-electron d0 is
equal to d0 � ÿLq at a small electron wave vector, where L is
the scattering length for a slow electron on the atom. This
relation is valid for a slow electron q5 1 and is the definition
of the scattering length L: As follows, the logarithmic
derivative of this wave function on the atomic surface is

d ln
�
rRq�r�

�
dr

����
r�r0
� 1

r0 ÿ L
; �3:19�

and the logarithmic derivative of a bound electron wave
function on the atomic surface according to formula (3.13)
is equal to

d ln
�
rRq�r�

�
dr

����
r�r0
� ÿg : �3:20�

Because inside an atom and in the vicinity of its boundary the
behavior of free and bound electrons is identical, the
logarithmic derivatives of their wave functions coincide on
the atomic boundary, giving [72]

r0 � Lÿ 1

g
: �3:21�

1.2

A

1.1

1.0
1 2 3 4 5

(3.16)

(3.15)

r, a0

Figure 5. Determination of the asymptotic coefficient A of the electron

wave function for the hydrogen negative ion on the basis of formulas (3.16)

and (3.15).
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In particular, in the case of the hydrogen negative ion we have
L � 5:8, g � 0:235, so that r0 � 1:55, and according to
formula (3.18) we have A � 1:0 in rough accordance with
the above result.

This finite radius model of an atom accounts for the
exchange interaction of a free or weakly bound electron with
internal electrons. This interaction acts inside the atom only,
while the polarization electron ± atom interaction can be of
importance far from the atom. The polarization interaction
determines the expansion of the cross section of electron ±
atom scattering at small electron energies [73]. We now
account for the influence of the polarization interaction with
the atom on the wave function of a weakly bound s-electron
on the basis of the method of Ref. [74] and the role of the
polarization interaction for the asymptotic coefficient of the
weakly bound electron in negative ions. The radial wave
function of this electron satisfies the SchroÈ dinger equation

d2

dr 2
�
rR�r��� � a

r 4
ÿ g2

�
rR�r� � 0 ; �3:22�

where a is the atomic polarizability. This wave function
satisfies the boundary condition

d ln
�
rR�r��
dr

����
r�0
� ÿ 1

L
: �3:23�

Introducing a reduced variable x � r�g2=a�1=4 and the
small parameter b � �ag2�1=4 of the perturbation theory, we
rewrite the above SchroÈ dinger equation in the form

d2j
dx2
� b2

�
1

x4
ÿ 1

�
j � 0 ;

where j � rR�r�: Taking into account b5 1 and following
paper [74], we use the perturbation operator of the perturba-
tion theory in the form

V �
ÿb2 ; x4 1 ;

b2

x4
; x5 1 :

8><>:
Then the SchroÈ dinger equation in the zero approximation is
given by

d2j
dx2
� b2

x4
j � 0 ; x4 1 ;

d2j
dx2
ÿ b2j � 0 ; x5 1 : �3:24�

This equation has the following solutions [74]

j � Cx sin

�
b
x
� d
�
; x4 1 ;

j � A exp�ÿbx� ; x5 1 : �3:25�

and in the case x5 1 this electron wave function coincides
with that of formula (3.13).

The phase d in expression (3.25) of the wave function can
be determined from the behavior of a free electron under the
assumption that in the region of action of an atomic field the
wave functions of free and weakly bound electrons are
identical. The wave function of a free electron outside the

atom is

j � const �rÿ L� ; �3:26�

whereL is the electron scattering length. Thewave function of
a slow electron outside the atom satisfies the SchroÈ dinger
equation

d2j
dr 2
� a
r 4

j � 0 ;

and its solution is given by formula (3.25):

j � Cx sin

�
b
x
� d
�
:

This function is transformed into j � C�b� dx� at large
x4 b, that is r4

���
a
p

. Comparing this expression for the
electron wave function with that of formula (3.26), we find for
the phase d in formula (3.25):

d � ÿ
���
a
p
L
� ÿ b2

gL
: �3:27�

In principle, the solution of the SchroÈ dinger equation
allows us to connect the values L, g, a by equalizing the
logarithmic derivatives of the wave functions (3.25) at x � 1.
This operation holds true for b5 1, when the polarization
interaction is relatively weak in the basic region of location of
a weakly bound electron. As a result, we obtain

tan�b� d� � b
1� b

: �3:28�

Comparing the solution of this equation with formula (3.27),
one can find the electron scattering length

L � b
�
g
�
1ÿ 1

b
arctan

b
1� b

��ÿ1
: �3:29�

In the limit b! 0 this givesL � 1=g, as we have from formula
(3.21) for r0 � 0.

Table 8 contains the parameters of alkali metal atoms: the
polarizability [75] and the scattering length L [71] if the total
electron and atomic spin is zero, and also the scattering length
calculated on the basis of formula (3.29) under the assump-
tion that b5 1 and the polarization interaction acts on the
weakly bound electron and atom outside the atomic bound-
ary. The comparison between the electron scattering lengths
of Table 8 shows that this model is not true. Moreover, this
model cannot explain that the scattering length becomes
negative for heavy alkali metal atoms. This contradiction

Table 8. Parameters of alkali metal atoms and their interaction with
electrons.

Ion
(state)

g L a b L

[formula
(3.29)]

r A

[formulas
(3.18), (3.30)]

Hÿ(11S)
Liÿ(21S)
Naÿ(31S)
Kÿ(41S)
Rbÿ(51S)
Csÿ(61S)

0.235
0.213
0.201
0.192
0.189
0.188

5.8
3.6
4.2
0.4
(ÿ1.8)
ÿ4.0

4.5
162
162
290
320
400

0.706
1.65
1.60
1.81
1.84
1.94

6.8
12
12
14
14
15

1.5
3.9
4.2
5.2
5.6
6.3

1.0
1.5
1.5
1.7
1.8
2.0
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for the electron scattering lengths is not connected with a
simplified solution of equation (3.22). The main reason is that
the polarization interaction is formed at large distances, and
another character of interaction takes place in the region of a
weakly bound electron.

Taking things altogether, we neglect the interaction
between a weakly bound electron and a residual atom in a
negative ion outside the atom. We assume that the weakly
bound electron cannot penetrate inside the atom due to the
exchange interaction with internal electrons. Then we use the
finite radius model for determining the asymptotic coefficient
of a weakly bound electron, and the asymptotic coefficient is
given by formula (3.18) with r0 � r, where r is the mean
atomic radius. Table 8 contains values of this parameter [21]
for alkali metal atoms and also the asymptotic coefficient of
their negative ions, which are calculated in this way.

Thus, from the above analysis we obtained that the wave
function of valence electrons in the atom on neglecting
relativistic interactions is determined by the fractional
parentage scheme, and the behavior of a weakly bound
valence electron far from the atomic core is described by its
binding energy and the asymptotic coefficient which char-
acterizes the amplitude of the electron wave function far from
the core. The asymptotic coefficient in turn is determined by
the exchange interaction of this electron with electrons of the
core, which results in electron repulsion from the core.

4. Ion ± atom exchange interaction

4.1 Exchange interaction between the ion
and parent one-electron atom at large separations
The exchange interaction potential of atomic particles is
determined by the overlapping of the electron wave functions
which reside on different atomic centers. Below we determine
the exchange interaction potential of an ion with the parent
atom, which is connected with the transition of a valence
electron from the field of one ion to the field of another, and
the nature of this interaction is illustrated in Fig. 6. We first
consider the case when the valence electron is found in an s-
state so that the system has two states composed from states
related to location of the electron in the field of the first and
second ion (see Fig. 6).

Let us denote the electron wave function centered on the
first nucleus by c1, and the wave function centered on the
second nucleus by c2. The electron Hamiltonian has the

form

Ĥ � ÿ 1

2
D� V�r1� � V�r2� � 1

R
: �4:1�

Here, R is the distance between atomic cores, r1, r2 are the
distances of the electron from the corresponding nucleus,V�r�
is the electron ± ion interaction potential, and far from the ion
this potential is the Coulomb one: V�r� � ÿ1=r. We use the
symmetry of the problem, so that the symmetry plane is
perpendicular to the line joining the nuclei and bisects it, and
the electron reflection with respect to this plane conserves the
electron Hamiltonian. Hence, the electron eigenstates can be
divided into even and odd ones, depending on whether their
wave functions conserve or change their sign as a result of
reflection with respect to the symmetry plane. Evidently, at
large separations these wave functions are the following
compositions of c1 and c2 which correspond to the location
of the electron in the field of the corresponding atomic core:

cg �
1���
2
p �c1 � c2� ; cu �

1���
2
p �c1 ÿ c2� : �4:2�

These wave functions are appropriate to the interacting ion
and atom and satisfy the SchroÈ dinger equations

Ĥcg � egcg ; Ĥcu � eucu ; �4:3�

where eg�R�, eu�R� are the energy eigenvalues of these states.
We define the exchange interaction potential in this case as

D�R� � eg�R� ÿ eu�R� : �4:4�

In order to determine this quantity at large distances
between nuclei, we apply to the following method [76]. Let
us multiply the first equation (4.3) by c�u, the second equation
by c�g, take the difference of the obtained equations and
integrate the result over the volume O which is a half-space
bounded by the symmetry plane. Since the distance between
the nuclei is large, the wave function c2 is zero inside this
volume and the wave function c1 is zero outside this volume.
Hence one obtains�

O
c�ucg dr �

1

2
;

and the relation desired takes the form

eg�R� ÿ eu�R�
2

� 1

2

�
O

cgDcg ÿ cuDcu

� �
dr

�
�
S

�
c2

q
qz

c1 ÿ c1

q
qz

c2

�
ds ;

where S is the symmetry plane which restricts the integration
region; we use relations (4.2) with real wave functions, and the
z-axis joins the nuclei. Take the origin of the coordinate
system in the center of the line joining the nuclei. Since the
electron is found in the s-state in the field of each atomic core,
its wave functions in this coordinate system can be repre-
sented in the form

c1 � c

 ��������������������������������
z� R

2

�2

� r2

s !
;

c2 � c

 ��������������������������������
zÿ R

2

�2

� r2

s !
; �4:5�

2

ÿ

1

e

� �

1 2
��

ÿ e

c1

c2

Figure 6. Electron in the field of two identical centers. Reflection in the

symmetry plane corresponds to the transformation c1 ! c2, c2 ! c1.

This yields the eigenfunctions of the system, so that the even electron wave

function which retains its sign under reflection is cg � �c1 � c2�=
���
2
p

, and

the odd wave function is cu � �c1 ÿ c2�=
���
2
p

.
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where r is the distance from the axis in the direction
perpendicular to it. Since ds � 2pr dr, we have from the
above relation [76]:

eg�R� ÿ eu�R� �
�1
0

2pr dr

"
c

 ��������������������������������
zÿ R

2

�2

� r2

s !

� q
qz

c

 ��������������������������������
z� R

2

�2

� r2

s !
ÿ c

 ��������������������������������
z� R

2

�2

� r2

s !

� q
qz

c

 ��������������������������������
zÿ R

2

�2

� r2

s !#
z�0

� pR
�1
0

dr2
q
qr2

c2

 �����������������
R 2

4
� r2

r !
� pRc2

�
R

2

�
: �4:6�

In the course of the preparation of this formula we used the
obvious relation

q
qz

"
c

 ��������������������������������
zÿ R

2

�2

� r2

s !#
z�0
� R

q
qr2

c

 ����������������
R2

4
� r2

r !
:

Now let us connect the molecular wave function c�r� of
the s-electron with the atomic one cat which is given by
formula (3.7) at large electron distances from the atomic core
and is determined by the SchroÈ dinger equation

ÿ 1

2

q2

qr 2
�rcat� ÿ

1

r
cat � ÿ

g2

2
cat ;

where g2=2 is the electron binding energy. The solution of this
equation is given by formula (3.7):

cat�r� � Ar 1=gÿ1 exp�ÿrg� :

Take the molecular wave function in the form c�r� �
w�r�cat�r� and compare the SchroÈ dinger equations for
molecular and atomic wave functions near the axis and far
from nuclei, where one can use the asymptotic form of the
interaction potential V�r� � ÿ1=r in formula (4.1) for the
electron Hamiltonian. So, we have from the SchroÈ dinger
equation for c on neglecting the second derivative of w near
the axis:

g
qw
qr1
�
�
1

R
ÿ 1

r2

�
w � 0 :

Solving this equation, we connect the molecular wave
function of the s-electron near the axis with the atomic wave
function that allows us to express the ion ± atom exchange
interaction potential through asymptotic parameters of the
valence s-electron in the atom [13]:

D � A2R 2=gÿ1 exp
�
ÿRgÿ 1

g

�
: �4:7�

In particular, this formula yields for the exchange interaction
potential of the proton and hydrogen atom in the ground
state [4, 77]:

D � 4

e
R exp�ÿR� :

Formula (4.7) shows the asymptotic expression for the
exchange interaction potential of a one-electron atom with a

valence s-electron and its atomic core. The criterion of
validity of this formula has the form

Rg4 1 ; Rg2 4 1 : �4:8�
Formula (4.7) admits a generalization. Consider the

interaction of a one-electron atom with the parent ion for an
electron angular momentum l and its projection m onto the
molecular axis. Then the electron wave function is
c�r� � Ylm�y;j�F�r�, where r; y;j are the spherical coordi-
nates of the electron if its center coincides with the
corresponding nucleus, and the z-axis is directed along the
molecular axis. In determination of the exchange interaction
potential wemay draw on the preparation of formula (4.7) for
the s-electron and would have to make changes in the
integration over dr. Then we arrive at

D �
�1
0

��Ylm�y;j�
��2F2�r�r dr ;

where r � ����������������������
R 2=4� r2

p
is the distance from each nucleus for

the electron located in the symmetry plane. Since
F�r� � exp�ÿgr�, the integral converges at small r
�r � ��������

R=g
p

5R� (see also Fig. 7). Then one finds

F�r� � F
�
R

2

�
exp

�
ÿ gr2

R

�
:

This corresponds to small angles y � 2r=r, and since
Ylm�y;j� � ym for y5 1, we have

Dm � D0

�1
0

exp

�
ÿ 2gr2

R

�����Ylm�y; 0�
ym

����2���� 2rR
����2m 4grR dr ;

where D0 is the exchange interaction potential defined by
formula (4.7) in the case of zero angular momentum of the
valence electron which has the same radial wave function.
Since the exchange interaction potential does not depend on
the sign of m, we take themomentum projection to be positive.
Thus, we find for the exchange interaction potential of a one-
electron atom with the parent ion [10, 14]:

Dm � A2R2=gÿ1ÿm exp
�
ÿRgÿ 1

g

� �2l� 1��l� m�!
�lÿ m�!m!�2g�m : �4:9�

1 2

34
5

6

Figure 7. Electron regions which determine the exchange interaction

potential of the ion and its parent atom at large distances between nuclei.

1, 2 are internal regions of the atoms where the electrons are located; 3, 4

are regions where the asymptotic expressions for the atomic wave

functions are valid; 5 is the region where the quasi-classical approach is

valid for valence electrons (it is restricted by the dotted line); 6 is the region

which gives the main contribution to the exchange interaction potential of

these atomic species. Since the volume of region 6 is of the order of R 2,

whereR is the distance between nuclei, and regions 1, 2 occupy a volume of

the order of the atomic value, on the basis of the asymptotic data for

atomic wave functions one can evaluate the exchange interaction potential

with an accuracy of the order of 1=R 2.

236 B M Smirnov Physics ±Uspekhi 44 (3)



In this way for the case of structureless cores and nonzero
electron momentum, the ion ± atom exchange interaction
potential is characterized by the electron momentum projec-
tion m onto the molecular axis and is given by [10, 14, 78, 79]

Dl m � D0
�2l� 1��l� jmj�!
�lÿ jmj�!jmj!�Rg�jmj

; �4:10�

where l is the electron orbital momentum, and D0 is the
exchange interaction potential of the s-electron with the same
asymptotic radial wave function (3.7) of the transiting
electron. From this follows the ratio of the exchange
interaction potential in the case of transition of a p-electron
with one momentum projection to that with another projec-
tion:

D11�R�
D10�R� �

2

Rg
: �4:11�

This ratio is small at large separations. Formula (4.11)
describes the ion ± atom exchange interaction potential if the
atom has one valence electron at large separations according
to the criterion (4.8). This interaction potential is determined
by the overlapping of electron wave functions which
correspond to the location of the electron in the field of the
first and second cores (see Fig. 7). According to the criterion
(4.8), this formula is not suitable for highly excited atoms and
relates to the ground and lower excited atomic states.

4.2 Ion ± atom exchange interaction for light atoms
In the case of light atoms one can neglect relativistic
interactions and construct an atom within the framework of
the LS-coupling scheme for the atom. This means that the
energy difference for various orbital momentum projections
of electrons onto the molecular axis connecting the atom and
ion significantly exceeds the fine-structure splitting for the
atom or ion. Then the quantum numbers of the molecular ion
are the atomic quantum numbers L, S, ML, MS and the
quantum numbers of the ion l, s, m, ms. We sum up the
electron momenta le, 1=2 and the momenta of the atomic core
l, s into the atomic momenta L, S, and then the atomic spin S
and the spin of another atomic core s are summed into the
total spin I of the molecular ion. Using formula (3.1) for the
atomic wave function within the framework of the fractional
parentage scheme and substituting it into the expression for
the exchange interaction potential, we obtain [10, 11, 14, 79]

D � n�GLS
l s �2

X
m;m 0;M 0

L

X
s; s 0;ms;m 0s

X
MS;M 0

S

le l L
m m M 0

L

� �

� le l L
m m 0 ML

� � 1

2
s S

s ms MS

" # 1

2
s S

s 0 m 0s M 0
S

24 35
� s S I

ms MS M

� �
s S I
m 0s M 0

S M

� �
Dm

� n�GLS
l s �2

X
m

le l L
m m m� m

� �
le l L
m ML ÿ m ML

� �

� �2S� 1� s
1

2
S

s I S

8<:
9=;Dm

� n
I� 1=2

2s� 1
�GLS

l s �2
X
m

le l L
m m m� m

� �
� le l L

m ML ÿ m ML

� �
Dm : �4:12�

Here,M is the projection of the total spin I onto themolecular
axis; the result obtained does not depend on this quantity
because the influence of the spin on the exchange interaction
is determined by the Pauli exclusion principle only, and the
fine-structure splitting is assumed to be small. We applied to
the properties of the Clebsch ±Gordan coefficients. Note that
the summation of the Clebsch ±Gordan coefficients over spin
projections leads to the 6j-Wigner symbol which is denoted by
braces, and its known value was used. Formula (4.12) gives
the asymptotic expression for the exchange interaction
potential of an atom with its atomic ion within the frame-
work of the LS-coupling scheme. The criterion of validity of
this expression is also given by formula (4.8).

This exchange interaction potential weakly depends on
the total molecular spin I. Indeed, the level splitting
corresponding to the different total spin of the quasi-
molecule varies at large separations R as exp�ÿ2gR�, because
this exchange interaction potential is determined by the
overlapping of the wave functions of electrons which are
centered on different atomic particles. Since this interaction
potential is relatively small, one can average formula (4.12)
over the molecular total spin. Next, since the exchange
interaction potential Dm decreases with increasing m as Rÿm,
one can restrict its consideration to the term in the sum (4.12)
with the minimal m, and formula (4.12) then takes the form
[10, 11, 14, 79]

D�lem; l m s;LMLS� �
�I� 1=2

2s� 1
n�GLS

l s �2

� le l L
m m m� m

� �
le l L
m ML ÿ m ML

� �
Dm ; �4:13�

where Dm is given by formula (4.9). Formula (4.13) relates to
case `a' of Hund coupling scheme when relativistic interac-
tions are small. The method used allows us to express the
ion ± atom exchange interaction potential through asympto-
tic parameters of the radial wave function of a valent atomic
electron. The above formulas give the first term of the
asymptotic expansion of the ion ± atom exchange interaction
potential at large distances between nuclei. The next terms of
the potential expansion in a power series of a small parameter
of the theory are of order 1=R relative to the first term.

4.3 Ion ± atom exchange interaction for valence p-electrons
of light atoms
Formula (4.13) for the ion ± atom exchange interaction
potential is valid in the limit when relativistic interactions
are small. This means that the energy level splitting for the
molecular ion due to the long-range ion ± atom interaction
significantly exceeds the spin ± orbit interaction for colliding
ion and atom. This allows us to take the quantum numbers L,
ML, S of the atom and l, m, s of the ion as quantum numbers
of the quasi-molecule, and the quantization axis is the line
joining the atom and ion. Below we derive the criterion of
validity of this approach. The energy level splitting over the
projection of orbital momenta of atom and ion is determined
by a long-range ion ± atom interaction potential having the
form

U�R� � Qat

R3
�QatQi

R5
; �4:14�

where Qat and Qi are the projections of the atomic and ion
quadrupole moment tensor onto the axis joining the nuclei,R
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is the distance between the atom and ion, and formula (4.14) is
an expansion in the small parameter 1=R. The first term of
this expansion corresponds to interaction of the ion charge
with the atomic quadrupole moment, while the second term
represents the interaction of the atomic and ion quadrupole
momenta. Formula (4.13) is valid if the first term of formula
(4.14) is large compared to the atomic fine-structure splitting,
and the second term of this formula significantly exceeds the
ion fine-structure splitting.

The quadrupole moment of an atomic particle is repre-
sented by [80, 81]

Q � 2
X
i



r2i P2�cos yi�

� � 2
X
i

li�li � 1� ÿ 3m2
i

�2li ÿ 1��2li � 3� r
2
i ; �4:15�

where ri, yi are the spherical coordinates of ith electron, li, mi

are the angular momentum of this electron and its projection
on the field direction. SinceXm

l�ÿm

�
l�l� 1� ÿ 3m2

� � 0 ;

filled electron shells do not give a contribution to the atomic
quadrupole moment, and it is determined by valence (outer)
electrons.

Using expression (3.1) for the atomic wave function, we
obtain for the atomic quadrupole moment after summation
over spin projections:

Q�LSML� � n
X
l sm

qm
��GLS

ls �le; n�
��2 le l L

m ML ÿ m ML

� �2
:

�4:16�
Here, L, ML, S are the orbital momentum, its projection
on the field direction, and the atomic spin, correspond-
ingly, le is the momentum of the valence electron, m is its
projection onto the field direction, n is the number of
identical valence electrons, l and s are the orbital
momentum and spin of the atomic core, and the one-
electron quadrupole moment in conventional units is equal
to (e is the electron charge)

qm � 2e
le�le � 1� ÿ 3m2

�2le ÿ 1��2le � 3� r
2 : �4:17�

where the quantity r2 relates to a valence electron. Consider-
ing the case of the p n electron shell, we have

Q�p n;LSML� � 2n

5
er2
X
l sm

�2ÿ 3m2���GLS
l s �p n���2

� 1 l L
m ML ÿ m ML

� �2
: �4:18�

Table 9 contains the values of reduced quadrupole momenta
for the ground-state atoms with valence p-electrons.

From formula (4.16) one can explain the general proper-
ties of the atomic quadrupole moment. The first property

Q�p n;LS;ML� � Q�p n;LS;ÿML� �4:19a�

follows from the transformation m;ML ! ÿm;ÿML in the
above expression for the atomic quadrupole moment.

The second property of the atomic quadrupole moment
uses the analogy between an electron and hole. This gives

Q�p n;LS;ML� � ÿQ�p6ÿn;LS;ML� : �4:19b�

Notice that the quadrupole momenta of one electron and one
hole with identical quantum numbers have a different sign.
This can also be explained by the different charge sign for an
electron and hole.

The third property relates to summation over projections
of the atomic momentum, that is analogous to averaging over
the field direction and givesX

ML

Q�p n;LS;ML� � 0 : �4:19c�

Formula (4.18) for the atomic quadrupole momentum
allows one to determine this quantity for nonzero-momentum
atoms containing several electrons. In particular, Table 9
contains the reduced quadrupole momenta for the ground
states of atoms with a unfilled p-shell, and the above
consideration is valid if the following criteria hold true:

Qat

R3
4D at

f ;
QatQi

R5
4D i

f ; �4:20�

where D at
f , D i

f are the fine-structure splitting energies for the
atom and ion, correspondingly. Note that the energy of the
molecular ion under consideration is degenerate over the
momentum directions, i.e. it depends on jMLj and jmj in
accordance with Eqn (4.19a).

We now consider the ion ± atom exchange interaction
potential under the condition (4.20) in the case of valence p-
electrons. We use the analogy of the exchange interaction
potentials for elements of groups III and VIII, for elements of
groups IV and VII or for elements of groups V and VI of the
periodic table, which follows from the analogy in transitions
of a valence electron and hole. Correspondingly, we obtain
identical expressions for the exchange interaction potentials
in these cases.

In the case of atoms of group III with one valence p-
electron and ions of groupVIII with one valence p-hole, when
the ground states of the atom and ion are 1S and 2P,
respectively, the exchange interaction potential of the inter-
acting atom and ion depends only on the momentum
projection of a transferring electron (hole), and according to
formula (4.13) it has the form

while the connection between one-electron exchange interac-
tion potentials that correspond to different momentum
projections onto themolecular axis is given by formula (4.11).

If we take the direction on which the projection of the
electronmomentum is zero as a quantization axis, and denote
the angle between this and molecular axes by y, the exchange

Table 9. Values Q�p n;LS;ML�=r2 for the ground states of atoms with p n-
electron shells.

State (p)2P (p2)3P (p3)4S (p4)3P (p5)2P

ML � 0 4=5 ÿ4=5 0 4=5 ÿ4=5
jMLj � 1 ÿ2=5 2=5 ë ÿ2=5 2=5

DML
�

ML � ÿ1 ML � 0 ML � �1 , (4.21)
D11 D10 D11
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interaction potential of an atom and parent ion in the case of
groups III and VIII of the periodic table of elements is defined
by the expression

D�y� � D10 cos
2 y� D11 sin

2 y : �4:22�

For elements of group IV of the periodic table, we have the
ground states (p2)3P and (p)2P for the atom and ion,
correspondingly, i.e. the ion and atomic orbital momenta
are l � L � 1 in this case. We specify the following para-
meters in formula (4.13): n � 2,GLS

ls � 1, and the total spin of
the molecular ion can take the values I � 1=2, 3=2 with the
probabilities of these states being 1=3 and 2=3, correspond-
ingly. This yields �I� 1=2 � 5=3. Using the values of the
Clebsch ±Gordan coefficients, we find the matrix of the
reduced ion ± atom exchange interaction potential DmML

:

Here, m,ML are the initial projections of the angular ion and
atomic momenta, so that after transition of an electron with
the projection m of the angularmomentumonto themolecular
axis these final values becomem� m andML ÿ m for the atom
and ion, correspondingly. Because of the relation

1 1 1
0 0 0

� �
� 0 ;

the momentum projection of the electronmaking transition is
nonzero for zero initial momentum projections of the atom
and ion. Matrix (4.23) brings about the exchange interaction
potential as a function of the angles between the quantization
and molecular axes:

D�y� � 5

3

�
D10 sin

2 y1 sin
2 y2 � D11�cos2 y1 � cos2 y2�

�
; �4:24�

where y1, y2 are the angles between the molecular axis which
joins nuclei and the quantization axes for the atom and ion,
correspondingly, so that the electron momentum projection
onto the quantization axis is zero.

In the case of atoms of group VII of the periodic table of
elements, we have the atomic ground state �p5�2P, the ion
ground electronic state �p4�3P, and the parameters of the
expression for the ion ± atom exchange interaction potential
are n � 5, GLS

ls �
��������
3=5

p
. Though these values differ from

those for elements of group IV of the periodic table, the
matrix DmML

of the ion ± atom exchange interaction potential
is the same as for elements of group IV. This testifies the
analogy in transition of a p-electron and p-hole for the
exchange interaction potential.

In the case of atoms of group V of the periodic table of
elements, we are dealing with the atomic ground electronic
state �p3�4S, the ion ground electronic state �p2�3P, and
ML � 0. The parameters of the ion ± atom exchange interac-
tion potential are n � 3, GLS

ls � 1. The total quasi-molecular
spin can take the values I � 1=2, 3=2, 5=2 with the prob-
abilities of these states being 1=6, 1=3 and 1=2, correspond-
ingly, so that �I � 11=6. From this we find for the ion ± atom

interaction potential on the basis of formula (4.13):

D�m� � 3

�
�I� 1

2

�
1 1 0
m m 0

� �
1 1 0
m ÿm 0

� �
Dm

� 7
1 1 0
m m 0

� �
1 1 0
m ÿm 0

� �
Dm ; �4:25�

where m is the momentum projection onto the molecular axis
for the electron making transition, m is the analogous
parameter for the ion, and according to the character of
momentum coupling m � ÿm. In this case we obtain the
following matrix of the reduced ion ± atom exchange interac-
tion potential as a result of its averaging over the total spin I:

This matrix is similar to that for the transition of a p-electron
between two structureless atomic cores.

Introducing an angle y between the molecular axis and
quantization axis onto which the projection of the ionic
momentum is zero, we obtain for the ion ± atom exchange
interaction potential

D�y� � 7

3
�D10 cos

2 y� D11 sin
2 y� : �4:27�

With an accuracy up to a numerical factor, this matrix of the
exchange interaction potential is identical to that of a p-
electron in the field of two structureless atomic cores (4.21),
and this analogy also relates to the exchange interaction
potential for atoms of groups III and VIII of the periodic
table of elements, which is given by formula (4.22).

In the case of the interaction event involving atoms of
group VI of the periodic table of elements, we are concerned
with the atomic ground state �p4�3P, the ion ground electronic
state �p3�4S, and the parameters of the expression for the
ion ± atom exchange interaction potential being n � 4,
GLS

ls � 1=
���
3
p

. In this case we obtain the same form of the
matrix of the exchange interaction potential as for elements of
group V. Thus we see the analogy between the transition of a
p-electron and p-hole for the ion ± atom exchange interaction
potential.

Though we are restricted to the ground states of the ion
and parent atom, this is a general scheme of construction of
the ion ± atom exchange interaction potential. Being averaged
over the total quasi-molecular spin I, the exchange interaction
potential depends on the ion m and atom ML angular
momentum projections onto the molecular axis. This corre-
sponds to the LS-coupling scheme for atoms and ions, i.e. we
neglect the spin ± orbit interaction. Hence, the above expres-
sions correspond to the following hierarchy of the interaction
potentials:

Vex 4U�R�4D�R� ; �4:28�

where Vex is a typical exchange interaction potential for
valence electrons inside the atom or ion, U�R� is the long-
range interaction potential between the atom and ion at large
separations R, and D�R� is the exchange interaction potential
between the atom and ion. Within the framework of the LS-
coupling scheme for atoms and ions, we assume the excitation
energies inside the electron shell to be relatively large, and this
criterion is fulfilled for light atoms and ions. In the same

D�m;ML� � 5

3

ML � ÿ1 ML � 0 ML � 1

: �4:23�m � ÿ1 D10 D11 D10

m � 0 D11 2D11 D11

m � 1 D10 D11 D10

D�m� � 7

3

m � ÿ1 m � 0 m � 1
. (4.26)

D11 D10 D11
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manner one can construct the exchange interaction potential
matrix for excited states within a given electron shell.

Because the exchange interaction potential is determined
by the transition of one electron from a valence electron shell
and a transferring electron carries a certain momentum and
spin, additional selection rules occur for the one-electron
interaction. In particular, in the case of transition of a p-
electron, the selection rules take the form

jLÿ l j4 1 ; jSÿ s j4 1

2
: �4:29�

These selection rules follow from the properties of the
Clebsch ±Gordan coefficients in formula (4.13). If these
conditions are violated, the ion ± atom exchange interaction
potential is zero on the scale of one-electron interaction
potentials. In particular, this interaction potential is zero for
atoms of group V in the ground state �p3�4S and their ions in
the excited states �p2�1D and �p2�1S, and also for atoms of
group VI in excited states �p4�1D and �p4�1S, when the ion is
found in the ground state �p3�4S. In these cases, the addition
of one electron to the ion does not allow formation of an atom
with a given spin, that is, criterion (4.29) is violated. In the
samemanner, the one-electron exchange interaction potential
of atoms of groupV in the excited state �p3�2Swith their ion in
the excited state �p2�1D is zero.

4.4 Ion ± atom exchange interaction potential
for case `c' of Hund coupling scheme
The above consideration relates to case `a' of Hund coupling
scheme [7, 8] when the fine splitting of levels is relatively small,
and criterion (4.20) allows us to choose the momentum
projections ML, m of the interacting ion and atom onto a
joining line as quantum numbers of the molecular ion
consisting of the given ion and atom. We now take a look at
the other possibilities of momentum coupling which relate to
another cases of Hund coupling of momenta in the molecule.
Following Hund's analysis [7, 8], we consider three types of
interaction in a diatomic molecule. The first type is described
by the interaction potential Ve that corresponds to the so-
called interaction between the orbital angular momentum of
electrons and the molecular axis. This includes both the
electron exchange interaction potential Vex inside atoms and
the interaction potential between atoms U�R� on neglecting
the relativistic effects. Above we considered the case of these
interactions only, and then the electronic terms were char-
acterized by a certain projection of the molecular orbital
angular momentum onto the molecular axis. The second type
of interaction whose potential is denoted byDf corresponds to
the spin ± orbit interaction and some other relativistic inter-
actions. The third type of interaction in a diatomicmolecule is
denoted by Vr and accounts for an interaction between the
orbital or spin electron momenta and rotation of the
molecular axis. Often this interaction is called the Coriolis
one, and it is determined by the rotation of themolecular axis.
Depending on the ratio between the potentials of these
interactions, a certain character of coupling of the molecular
momenta is realized, thus leading to appropriate quantum
numbers of this molecule. Possible types of the ratio between
the above interaction potentials determine the various limit-
ing cases which are known as the Hund coupling cases. The
various cases of Hund coupling scheme are summarized in
Table 10 together with the quantum numbers which describe
the electronic terms of the molecule in respective cases.

Table 10 represents the standard classification of Hund
coupling of momenta as it was given by R SMulliken in 1930.
Considering the problem of the resonant charge exchange
process, one can restrict oneself to cases `a' and `c' only.
Above we analyzed case `a' of Hund coupling scheme for the
exchange ion ± atom interaction potential at large separa-
tions. Note that because of the weak ion ± atom interaction in
comparison with the electron exchange interaction inside the
atomic particles, the quantum numbers of individual atomic
particles become the quantum numbers of the quasi-mole-
cule. In addition, at large separations degeneracy of the
electronic terms arises both for the projection of the total
electron spin of the molecular ion and also its total spin
because of the weak ion ± atom interaction, so that the
quantum numbers of the quasi-molecule at large separations
are l, m, s, L,ML, S, as we took above.

In case `c' of Hund coupling scheme we consider only the
spin ± orbit interaction and neglect other relativistic interac-
tions. This allows us to use the jj-coupling scheme for an
individual atomic particle, and because the ion ± atom
interaction potential is small in comparison with the
exchange interaction potential of electrons inside atomic
particles, and this in turn is small compared to the spin ±
orbit interactions, the quantum numbers of the individual ion
and atom remain the quantum numbers of the quasi-molecule
at large separations. Thus, the quantumnumbers of the quasi-
molecule under consideration for case `c' of Hund coupling
scheme are J,MJ, the total atomic electronmomentum and its
projection onto the molecular axis, and also j,mj, i.e. relevant
quantum numbers for the ion.

We now examine the ion ± atom exchange interaction
potential in case `c' of Hund coupling scheme and for one p-
electronmaking transition between structureless cores. In this
case, the spin ± orbit splitting of electronic levels is large
compared to the electrostatic ion ± atom interaction, and the
quantum numbers of the molecular ion are j, mj Ð the total
electron momentum and its projection onto the quasi-
molecular axis. We have the following relations between the
exchange interaction potential Djmj

for case `c' of Hund
coupling and the exchange interaction potentials Dlm for
case `a' of Hund coupling, which are given by formula (4.10):

D1=2; 1=2 � 1

3
D10 � 2

3
D11 ; D3=2; 1=2 � 2

3
D10 � 1

3
D11 ;

D3=2; 3=2 � D11 : �4:30�

Table 10. Cases of the Hund coupling scheme.

Hund case Relation Quantum numbers

a

b

c

d

e

Ve 4Df 4Vr

Ve 4Vr 4Df

Df 4Ve 4Vr

Vr 4Ve 4Df

Vr 4Df 4Ve

L;S;Sn

L;S;SN

O

L;S;LN;SN

J; JN

N o t e. In the notation usedL is the electron angular momentum, S is the
total electron spin, J is the total electron momentum, L is the projection
of the electron angular momentum onto the molecular axis, O is the
projection of the total electron momentum J onto the molecular axis, Sn

is the projection of the electron spin onto the molecular axis, andLN, SN,
JN are the projections of these momenta onto the direction of the nuclear
rotation momentum N.
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This connection is established in a simple way on the basis of
the relation between the electron wave functions for these
states. Thus, the behavior of the electronic term of a quasi-
molecule consisting of an ion and parent atom depends on the
character of coupling between electron momenta.

Introducing an angle y between the quantization axis for
the electron momenta and molecular axis, we arrive at the
following expressions for the ion ± atom exchange interaction
potentials of a p-electron and structureless cores in case `c' of
Hund coupling scheme:

D1=2 � 1

3
D10 � 2

3
D11 ;

D3=2�y� �
�
1

6
� 1

2
cos2 y

�
D10 �

�
1

3
� 1

2
sin2 y

�
D11 ; �4:31�

where the quantities D10 and D11 correspond to case `a' of
Hund coupling scheme and are determined by formula (4.10).

Evidently, in case `c' of Hund coupling of momenta when
the spin ± orbit interaction dominates, it is correct to use the
jj-coupling scheme for electron momenta in the atom and ion.
In this case the character of coupling of electron momenta is
simpler than in the case of theLS-coupling scheme because of
a lower symmetry of electron shells. Hence, the ion ± atom
exchange interaction potential is expressed through the one-
electron exchange interaction potential in a simpler way.
Table 11 contains parameters of electron shells for the
ground electronic states of atoms and ions having a p-
electron shell. Note that in the case of jj-coupling, the
analogy in transitions of a p-electron and p-hole is lost
because of the different sign of the spin ± orbit interaction
potential for an electron and hole. Hence, the ion ± atom
exchange interaction potential is different for the cases when a
p-electron shell of an atom and its ion are replaced by shells
consisting of identical p-holes.

In the case of group VI of the periodic table of elements,
the one-electron exchange interaction potential is zero if the
atom and ion are found in the ground states, since the
exchange interaction can result from the transition of two
electrons only. Note that for all the groups of the periodic
table of elements with an incomplete p-electron shells, when
atoms and their ions are found in the ground state, the one-
electron exchange interaction potential is not zero for case `a'
of Hund coupling scheme.

The principal difference between cases `a' and `c' of Hund
coupling scheme for the exchange interaction potential of an
atom and its ion with unfilled p-shells is due to the lower
symmetry for case `c'. Then the electron shell is divided into
two independent subshells with j � 1=2 and j � 3=2. There-
fore, the criterion of one-electron transition requires, instead
of Eqn (4.29), that the difference in the number of electrons of

a given j for the interacting atom and ion does not exceed one.
This criterion is violated more often than the criterion (4.29)
because of the lower atomic symmetry.

Thus, the exchange interaction potential of an atom with
its ion is determined by electron transfer between cores, and at
large separations this interaction potential decreases expo-
nentially with increasing distance between nuclei. The
interaction potential is governed by the character of coupling
of the electronmaking transitionwith cores, and this in turn is
connected with the symmetry of interacting atomic particles.

5. Resonant charge exchange in slow collisions

5.1 Peculiarities of the resonant charge exchange process
The resonant charge exchange process proceeds according to
the scheme

A� �A! A�A� : �5:1�

As a result of this process, a valence electron passes from the
field of one atomic core to another. In slow collisions, when
the collision velocity is small compared to an atomic velocity,
the rate of this process is expressed through electronic terms
of the quasi-molecule constituted from the colliding particles.
This process was first analyzed byMassey et al. [82, 83] on the
basis of the phase theory of collisional processes. Sena [84 ±
86] applied to the classical character of motion of colliding
particles that allowed him to ascertain the physical nature of
the process and find the dependence of the cross section on
collisional parameters. In particular, the resonant charge
exchange cross section sres depends on the relative velocity
of collision v as [84, 87]

sres � p
2g2

ln2
v0
v
: �5:2�

Here, g � �����
2I
p

, I is the ionization potential of an atom A, and
the parameter v0 4 1. Since this formula may be rewritten in
the form

sres � p
2g2
�gR0�2 ;

we obtain a weak dependence of the cross section on the
collision energy because gR0 4 1, and 1=gR0 is a small
parameter of the asymptotic theory. The data of Table 12
demonstrate this fact. In this table the relative variation of the
cross section for process (5.1) is given for an increase in the
collision energy by ten times. One can see that the greater the
relative cross section of this process, the weaker the energy
dependence. Therefore, the weakest energy dependence of the
cross section occurs at small collision energies.

The cross section of a slow collision process can be
expressed through the parameters of the electronic terms
which are responsible for the process. The eigenstates of the

Table 11. Ground states of atoms with p-electron shells within the
framework of LS- and jj-coupling schemes. D is the ion ± atom exchange
interaction potential for case `c' of Hund coupling scheme.

Shell J LS-term jj-shell D

p

p2

p3

p4

p5

p6

1=2

0

3=2

2

3=2

0

2P1=2

3P0

4S3=2
3P2

2P3=2

1S0

�1=2�1
�1=2�2
�1=2�2�3=2�1
�1=2�1�3=2�3
�1=2�2�3=2�3
�1=2�2�3=2�4

D1=2

D1=2

D3=2

0

D1=2

D3=2

Table 12. Relative decrease Dsres=sres of the cross section of resonant
charge exchange for an increase in the collision energy by an order of
magnitude �E=E0 � 10� and for a decrease in the asymptotic coefficient by
20% (A=A0 � 0:8�.
gR0 6 8 10 12 14 16

Dsres=sres �E=E0 � 10� 0.347 0.267 0.217 0.183 0.158 0.139

Dsres=sres �A=A0 � 0:8� 0.143 0.108 0.087 0.073 0.063 0.055

�sres=s0 1.17 1.09 1.05 1.03 1.02 1.01
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quasi-molecule A�2 are divided into odd and even in
accordance with the properties of the wave functions of
these states to conserve or change the sign as a result of
electron reflectionwith respect to the symmetry planewhich is
perpendicular to the molecular axis and bisects it. If at the
beginning an atom A and ion A� have only one electronic
state, there are only one even and one odd quasi-molecular
state with the wave functions cg�r;R�, cu�r;R�, and energies
eg�R�, eu�R� [see formulas (4.2), (4.3)]. Here, r defines the
electron coordinates, andR is the distance between the nuclei.
At large separations we have

cg �
1���
2
p �c1 � c2� ; cu �

1���
2
p �c1 ÿ c2� ; �5:3�

where the wave functions c1, c2 correspond to the electron
location in the field of the first or second ion, correspond-
ingly.

Assuming the absence of inelastic transitions, one can
construct a molecular wave functionC, if before the collision
t! ÿ1 the electron is bound to the first atomic core
�C�r;R;ÿ1� � c1�r��. Because the two quasi-molecular
states are developed independently, we get

C�r;R; t� � 1���
2
p cg�r;R� exp

�
ÿi
�t
ÿ1

eg�t 0� dt 0
�

� 1���
2
p cu�r;R� exp

�
ÿi
�t
ÿ1

eu�t 0� dt 0
�
: �5:4�

Here, the relative motion of nuclei R�t� is given, and for free
motion it has the form R � �v 2t 2 � r2�1=2, where v is the
collision velocity, and r is the impact parameter of the
collision. From this we obtain for the probability Pres of the
charge exchange process and its cross section [76]:

Pres � sin2 z�r� ; z�r� �
�1
ÿ1

D�R�
2

dt ;

D�R� � eg ÿ eu ; sres �
�1
0

2pr dr sin2 z�r� : �5:5�

Formula (5.5) expresses the parameters of the charge
exchange process through electronic terms eg�R�, eu�R� of
the quasi-molecule consisting of colliding particles. This
connection was first established by Firsov [76] and Demkov
[87].

One more peculiarity of this slow-collision process is the
large cross section in comparison to the typical atomic value.
This allows us to construct an asymptotic theory [12 ± 14]
which treats the cross section as a result of an expansion in
terms of a small parameter 1=� ���sp g�. In this case, restricting
ourselves to two terms in the expansion over the small
parameter, we have for the charge exchange cross section
[12 ± 14]:

sres � pR2
0

2
; where z�R0� � exp�ÿC�

2
� 0:28 : �5:6�

Here C � 0:577 is the Euler constant.
Thus, within the asymptotic theory of the resonant charge

exchange process, we suppose the electron transition to
proceed at large distances between nuclei compared to the
orbit size of a transferring electron. Then we can use the

asymptotic expression of the exchange interaction potential
of the ion and atom, D�R� � eg ÿ eu, and this quantity is
expressed in turn through asymptotic parameters of the
atomic wave function at large distances of the electron from
its atomic core. Hence, in this version of the asymptotic
theory we do not use the electron distribution inside the
atom, and information about the electron behavior inside the
atom is included in the theory indirectly through the
asymptotic coefficient of a valence electron. According to
Fig. 7, the contribution of internal atomic regions to the
overlap integral is of order 1=R2. Therefore, representing the
cross section of the resonant charge exchange as an expansion
in terms of a small parameter 1=R, one may consider only the
first two terms of this expansion, and accounting for the
subsequent terms is not correct. Formula (5.6) takes into
account two terms of the power expansion in a small
parameter. Hence, this asymptotic theory is characterized by
a certain accuracy, and this accuracy cannot be improved
within the framework of the information used.

Because of the simplicity and high accuracy, the asympto-
tic theory can be used for evaluation of the cross sections of
resonant charge exchange for many elements of the periodic
table, that has been considered repeatedly [88 ± 91]. We note
that formula (5.6) relates to the case of transition of an s-
electron (or s-hole) between structureless cores, when only
two quasi-molecular terms partake in the process. If the
colliding ion and atom have unfilled electron shells, the
charge exchange process proceeds simultaneously with
transitions between atomic or ion states, in particular, charge
exchange can be accompanied by rotation of electron
momenta of colliding atomic particles. Unfortunately, this
fact was ignored in some calculations [92 ± 95]. Below we
analyze various cases of the resonant charge exchange
process.

5.2 Cross section of resonant charge exchange
with the transition of s-electron
First we consider the resonant charge exchange process (5.1)
when an s-electron makes transition from one atomic core to
the other. In this case, from formula (4.7) for the potential of
the exchange interaction we obtain for the phase of the charge
exchange process, on the assumption of free motion of nuclei
�R2 � r2 � v 2t 2�, the following expression

z0�r� �
�1
ÿ1

D�R�
2

dt � 1

v

������
pr
2g

r
D�r�

� 1

v

�����
p
2g

r
A2 exp

�
ÿ 1

g

�
r 2=gÿ1=2 exp�ÿrg� ; �5:7�

and the cross section according to formula (5.5) is equal to
[12]

sres � pR 2
0

2
; where

1

v

�����
p
2g

r
A2 exp

�
ÿ 1

g

�
R

2=gÿ1=2
0

� exp�ÿR0g� � 0:28 : �5:8�

In particular, the velocity dependence (5.2) follows from this
formula if we assume the basic dependence z�R0� to be
exponential.

In order to ascertain the accuracy of the asymptotic
theory, we examine the charge exchange of a proton on a
hydrogen atom at a collision energy of 1 eV in the laboratory
coordinate system and analyze the various versions of the
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asymptotic theory. In this case, formula (5.8) takes the form

sres � pR 2
0

2
; where z�R0�� 1

v

4

e

���
p
2

r
R

3=2
0 exp�ÿR0�� 0:28 :

�5:9a�

One can account for the next term of the expansion of the
phase z�R0� in terms of the small parameter 1=R0. Then
formula (5.8) assumes the form

sres � pR 2
0

2
; where z�R0� � 1

v

4

e

���
p
2

r
R

3=2
0

�
1� 7

8R0

�
� exp�ÿR0� � 0:28 : �5:9b�

One can evaluate the exchange phase z�r� on the basis of the
exchange interaction potential D�R�, directly using formula
(5.5). This gives for the charge exchange cross section:

sres � pR 2
0

2
; where z�R0� � 4R 2

0

v e

�
K0�R0�

� 1

R0
K1�R0�

�
� 0:28 : �5:9c�

Finally, one can find the charge exchange cross section
directly on the basis of formula (5.5):

sres �
�1
0

2pr dr sin2 z�r� ; �5:9d�

where the charge exchange phase is given by formulas
(5.9a), (5.9b) and (5.9c). Calculation of the cross section in
the hydrogen case at an energy of 1 eV in the laboratory
coordinate system gives, on the basis of the above formulas
for the values of the charge exchange cross section: 172, 175,
and 175, correspondingly, in atomic units, if we use
formulas (5.9a), (5.9b) and (5.9c), and also 170, 173, and
174, if we use formula (5.9d) with the above expressions for
the phase of charge exchange. The statistical treatment of
these data gives 173� 2 for the average cross section, i.e.
the error in this case, which can be considered as the best
accuracy of the asymptotic theory, comes to approximately
1%.

In reality, the accuracy of the asymptotic theory is
determined by the small parameter 1=�R0g� and the above
accuracy is of the order of 1=�R0g�2. Table 13 lists the values
of the parameter R0g for some cases of resonant charge
exchange with the transition of an s-electron at an energy of
1 eV in the laboratory coordinate system. These values
confirm that the best accuracy of the asymptotic theory is of
the order of 1%.

The asymptotic theory leans upon the asymptotic coeffi-
cient A for the radial wave function (3.7) of a transferring

electron, and this coefficient can be found by comparison of
the calculated wave function and that of formula (3.7) in the
range where both wave functions are valid. The accuracy of
this operation is better, themore accurate the calculation. The
error DA in this quantity influences the accuracy of the cross
section. From formula (5.8) follows the relative accuracy of
the cross section Ds:

Dsres
sres

� 4

R0g
DA
A

: �5:10�

One can see that this error arises in the first approximation of
the power expansion of the charge exchange cross section in a
small parameter. In particular, if the error in the asymptotic
coefficient isDA=A � 10%, the error in the cross section is 3 ±
4 % for the cases of Table 13, as follows from formula (5.10)
and Table 12. In particular, the asymptotic coefficient for the
ground-state helium atom is 2:8� 0:3, as was found in
Section 3.3 on the basis of the hydrogenlike electron wave
functions. According to formula (5.10), this corresponds to
an accuracy of 4% at a collision energy of 1 eV. Thus, the
accuracy of the asymptotic coefficients is of importance for
the accuracy of the asymptotic theory in relation to the cross
section of resonant charge exchange, and the accuracy of the
cross sections of resonant charge exchange with the transition
of an s-electron lies in reality between 1% and 5% at small
collision energies.

Figures 8 and 9 give the cross sections of resonant
charge exchange for collisions of rubidium and cesium
atoms with their ions depending on the collision energy,
and Fig. 10 depicts the cross sections of the resonant charge
exchange process involving negative ions of alkali metal
atoms. The cross section is evaluated in these cases on the
basis of formula (5.8). Note that the resonant charge
exchange process with the transition of an s-electron
proceeds not only in the case of valence s-electrons, but in
most cases of atoms and ions with unfilled d-electron shells
in the ground states. For the ground states of these atoms
and ions, the resonant charge exchange process is deter-
mined by the transition of an s-electron. Such cases are
included in the tables of Figs 11, 12 for the cross sections of
resonant charge exchange for the ground atomic and ion
states and for most elements of the periodic table.

Table 13. Values of the parameter R0g for resonant charge exchange
accompanied by the transition of an s-electron at an energy of 1 eV in the
laboratory coordinate system.

Element H He Li Be Na Mg K Ca Cu

R0g 10.5 10.5 13.6 12.7 14.9 13.8 15.7 14.7 14.3

Element Zn Rb Sr Ag Cd Cs Ba Au Hg

R0g 14.0 16.3 15.4 14.5 14.4 16.8 16.0 14.5 14.5

Rb� +Rb2

1

5

4
3

s,
1
0
ÿ1

4
cm

2

10 20 50 100 200 500 1000 2000 5000 E, eV
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0.5

Figure 8. Cross sections of resonant charge exchange for rubidium. Curve

1 corresponds to formula (5.8); 2 Ðexperimental data [99], 3 Ð [96], 4 Ð

[98], 5Ð [97].
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5.3 Cross section of resonant charge exchange
with the transition of p-electron
The asymptotic theory is rather simple for the transition of an
s-electron, when the exchange phase z�r� is given by formulas
(5.5) and (5.7). The cross section of the resonant charge
exchange process is determined by formula (5.5), which
accounts for two terms in the power expansion in a small
parameter of the asymptotic theory. When a valence p-
electron makes transition from one atomic core to the other

in the course of a collision, the processes of charge exchange
and rotation of the electron momentum are entangled. One
can partially separate these processes because charge
exchange proceeds in a narrow range of internuclear
distances, where the molecular axis turns through a small
angle of the order of 1=

��������
R0g
p

. Indeed, the range of distances
between nuclei DR, where the phase of charge exchange z
varies significantly, is DR � 1=g, and this corresponds to an
angle of rotation # � vt=R � 1=

������
Rg
p

5 1. Therefore, one can
neglect the depolarization process in the course of the electron
transition, but this lowers the accuracy of the asymptotic
theory. Below we consider the case of transition of a p-
electron in the resonant charge exchange process.

Separating in this way the depolarization of colliding
atom and ion from the charge exchange process, we average
the cross section over the directions of the molecular axis with
respect to the quantization axis. Considering the transition of
a p-electron, we introduce an angle y between the quantiza-
tion axis for the electron momenta and the molecular axis of
the colliding atom and ion, and this quantity varies in the
course of a collision because of rotation of the molecular axis.
We denote this angle by # at the distance of closest approach
of colliding particles, and the average cross section �s of
resonant charge exchange is equal to

�sres � 1

2

�1
ÿ1

s�#� d cos# ; �5:11�

where s�#� is the cross section of charge exchange at an angle
# between the impact parameter of collision and the
quantization axis. Figure 13 shows the geometry of a
collision in a center-of-mass coordinate system, when the
configuration of colliding particles is close to that at the
distance of closest approach. We have the following relation
which connects the current angle y between themolecular and
quantization axes and the angle # between these axes at the
distance of closest approach:

cos y � cos# cos a� sin# sin a cosj ; �5:12�

where a, j are the polar angles of the molecular axis, so that
sin a � vt=R, where v is the collision velocity, t is time, and R
is a distance between colliding particles.

A small parameter of the theory 1=rg simplifies the
determination of the phase and cross section of this process.
Formulas (4.22) and (4.24) give the expressions for the
exchange interaction potentials of atoms and their ions with
unfilled p-shells, neglecting the spin ± orbit interaction. These
expressions, accounting for the relation (4.11), can be
considered as a power expansion of the exchange interaction
potentials in a small parameter 1=rg. Then on the basis of
formula (5.6) we have for the charge exchange phase in the
case of atoms of groups III, V, VI, and VIII of the periodic
table of elements:

z�r; #;j� � z�r; 0�
�
cos2 #ÿ 1

gr
cos2 #

� 1

gr
sin2 #�2� cos2 j�

�
: �5:13�

This expression relates to large impact parameters of the
collision, and z�r; 0� is the phase of the charge exchange
process when a quantization axis has the same direction as the
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Figure 9. Cross sections of resonant charge exchange for cesium. Curve 1

corresponds to formula (5.8); 2 Ðexperimental data [100], 3 Ð [99], 4 Ð

[101], 12Ð [127], 13Ð [102].

s,
1
0
ÿ1

4
cm

2

9

8

7

6

5

4

3

2

1

0
10 100 1000 E, eV

Cs

Rb

K

Na

Figure 10. Cross sections of resonant charge exchange for negative ions of

alkali metals. The solid curve corresponds to formula (5.8), � Ð

experimental data [107].

244 B M Smirnov Physics ±Uspekhi 44 (3)

[96], 5 Ð [106], 6 Ð [104], 7 Ð [105], 8 Ð [97], 9 Ð [98], 10 Ð [103], 11 Ð



Periodic table of elements (cross sections of resonant charge exchange)

Period G r o u p
I II III IV V VI VII VIII

1

1.008 1s 2S1=2

1H 1.000 6.12
2.00 4.82

Hydrogen 3.65

1s2 1S0 4.003
3.4 1.344 2He
2.7 2.87
2.1 Helium

2
6.491 2s 2S1=2

3Li 0.630 26
0.82 22

Lithium 18

9.012 2s2 1S0

4Be 0.828 13
1.6 10

Berillium 8.2

2p 2P1=2 10.81
13 0.781 5B
11 0.88
8.5 Boron

2p3 3P0 12.011
9.9 0.910 6C
8.6 1.3
6.9 Carbon

2p3 4S3=2 14.007
7.6 1.034 7N
6.2 1.5
5.0 Nitrogen

2p4 3P2 15.999
8.1 1.000 8O
6.6 1.3
5.3 Oxygen

2p5 2P3=2 18.998
6.0 1.132 9F
4.9 1.6
4.0 Fluorine

2p6 1S0 20.179
4.1 1.259 10Ne
3.3 1.8
2.6 Neon

3
22.990 3s 2S1=2

11Na 0.615 31
0.74 26

Sodium 21

24.305 3s2 1S0

12Mg 0.750 18
1.3 15

Magnesium 12

3p 2P1=2 26.982
22 0.663 13Al
19 0.61
15 Aluminium

3p2 3P0 28.086
18 0.774 14Si
15 1.1
12 Silicon

3p3 4S3=2 30.974
13 0.878 15P
11 1.6
9.2 Phosphorus

3p4 3P2 32.06
12 0.873 16S
10 1.1
8.4 Sulfur

3p5 2P3=2 35.453
10 0.976 17Cl
8.4 1.8
6.9 Chlorine

2p6 1S0 39.948
7.0 1.076 18Ar
5.8 2.0
4.7 Argon

4

39.098 4s 2S1=2

19K 0.565 40
0.52 34

Potassium 28

40.08 4s2 1S0

20Ca 0.670 25
0.95 21

Calsium 17

44.956 3d4s2 2D3=2

21Sc 0.693 24
1.1 20

Scandium 16

47.88 3d24s2 3F2

22Ti 0.708 22
1.2 19

Titanium 15

50.942 3d34s2 4F3=2

23V 0.704 23
1.2 19

Vanadium 16

51.996 3d54s 7S5=2

24Cr 0.705 22
1.1 19

Chromium 15

54.938 3d54s2 6S5=2

25Mn 0.739 20
1.3 17

Manganese 14

55.847 3d64s2 5D4

26Fe 0.762 18
1.4 15

Iron 13

58.933 3d74s2 4F9=2

27Co 0.760 19
1.4 16

Cobalt 13

58.69 3d84s2 3F4

28Ni 0.749 20
1.4 17

Nickel 14

3d104s 2S1=2 63.546
19 0.754 29Cu
16 1.3
13 Copper

4s2 1S0 65.38
15 0.831 30Zn
12 1.7
10 Zinc

4p 2P1=2 69.72
24 0.664 31Ga
20 0.60
16 Gallium

4p2 3P0 72.59
21 0.762 32Ge
18 1.3
15 Germanium

4p3 4S3=2 74.922
16 0.850 33As
13 1.6
11 Arsenic

4p4 3P2 78.96
16 0.847 34Se
13 1.5
11 Selenium

4p5 2P3=2 79.904
12 0.932 35Br
10 1.8
8.2 Bromine

4p6 1S0 83.80
9.0 1.014 36Kr
7.5 2.1
6.2 Krypton

5

85.468 5s 2S1=2

37Rb 0.554 45
0.48 38

Rubidium 32

87.62 5s2 1S0

38Sr 0.647 29
0.86 25

Strontium 20

88.906 4d5s2 2D3=2

39Y 0.682 25
1.0 21

Yttium 18

91.22 4d25s2 3F2

40Zr 0.709 23
1.2 20

Zirconium 16

92.906 4d45s 6D1=2

41Nb 0.711 23
1.2 20

Niobium 16

95.94 4d55s 7S3

42Mo 0.722 22
1.2 19

Molibdenum 15

[98] 4d55s2 6S5=2

43Tc 0.731 22
1.3 18

Technetium 15

101.07 4d75s 5F5

44Ru 0.736 21
1.2 17

Ruthenium 14

102.91 4d85s 4F9=2

45Rh 0.741 21
1.2 17

Rhodium 14

106.42 4d10 1S0

46Pd 0.783 18
2.1 16

Palladium 13

4d105s 2S1=2 107.87
20 0.746 47Ag
17 1.2
14 Silver

5s2 1S0 112.41
16 0.813 48Cd
14 1.6
11 Cadmium

5p 2P1=2 114.82
26 0.652 49In
22 0.58
18 Indium

5p2 3P0 118.69
23 0.735 50Sn
19 1.0
16 Tin

5p3 4S3=2 121.75
20 0.797 51Sb
17 1.7
14 Antimony

5p4 3P2 127.60
19 0.814 52Te
16 1.6
13 Tellurium

5p5 2P3=2 126.90
16 0.876 53I
13 1.9
11 Iodine

5p6 1S0 131.29
12 0.944 54Xe
10 2.2
8.2 Xenon

6

132.90 6s 2S1=2

55Cs 0.535 51
0.41 44

Cesium 36

137.33 6s2 1S0

56Ba 0.619 35
0.78 29

Barium 25

138.90 5d6s2 2D3=2

57La 0.640 32
0.90 27

Lanthanum 23

178.49 5d26s2 3F2

72Hf 0.740 22
1.3 18

Hafnium 15

180.95 5d36s2 4F3=2

73Ta 0.762 20
1.4 17

Tantalum 14

183.85 5d46s2 5D0

74W 0.766 20
1.4 17

Tungsten 14

186.21 5d56s2 6D5=2

75Re 0.761 20
1.4 17

Rhenium 14

190.2 5d66s2 5D4

76Os 0.801 18
1.7 15

Osmium 13

192.22 5d76s2 4F9=2

77Ir 0.816 17
1.7 14

Iridium 12

195.08 5d96s3 3D3

78Pt 0.812 17
1.5 14

Platinum 12

5d106s 2S1=2 196.97
16 0.823 79Au
14 1.6
11 Gold

5d106s2 1S0 200.59
14 0.876 80Hg
12 1.9
10 Mercury

6p 2P1=2 204.38
24 0.670 81Tl
21 0.55
17 Thallium

6p2 3P0 207.2
24 0.738 82Pb
20 1.1
17 Lead

6p3 4S3=2 208.98
26 0.732 83Bi
22 1.4
19 Bismuth

6p4 3P2 [209]
21 0.788 84Po
18 1.5
15 Polonium

6p5 2P3=2 [210]
20 0.813 85At
17 1.9
15 Astatine

6p6 1S0 [222]
15 0.889 86Rn
12 2.3
10 Radon

z

7
[223] 7s 2S1=2

87Fr 0.542 53
0.49 45

Francium 38

226.02 7s2 1S0

88Ra 0.623 35
0.78 30

Radium 25

227.03 6d7s2 2D3=2

89Ac 0.636 32
0.70 27

Actinium 22

Actinides

6d27s2 3F2

232.04 0.675 28

90Th 0.94 24
Thorium 20

5f26d7s2 4K11=2

231.04 0.647 30

91Pa 0.70 25
Protactinium 21

5f36d7s2 5L6

238.03 0.670 28

92U 0.89 24
Uranium 20

5f46d7s2 6L11=2

237.05 0.580 46

93Np 0.70 39
Neptunium 33

5f67s2 7F0

[244] 0.612 38

94Pu 0.73 32
Plutonium 27

5f77s2 8S7=2
[243] 0.569 49

95Am 0.70 42
Americium 36

137.33 6s1 1S0

56Ba 0.619 35
0.78 29

Barium 25

Valence electron shell

Asymptotic parameters

Cross section of resonant charge exchange
(in 10ÿ15 cm2 at 0.1, 1, and 10 eV
in lab coordinates)

Electronic term
Symbol

Element

Atomic number

Atomic weight

Figure 11. Cross sections of resonant charge exchange for basic elements of the periodic table.
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molecular axis at the distance of closest approach. The
quantity z�r; 0� can be expressed through the charge
exchange phase z0 which is given by formula (5.7) and relates
to the transition of an s-electron with the same asymptotic
parameters g, A. This connection for the resonant charge
exchange process involving atoms of groups III and VIII of
the periodic table of elements has the form

z�r; 0� � 3z0�r� ; �5:14a�

and for atoms of groups V and VI this connection becomes

z�r; 0� � 7z0�r� : �5:14b�

Note that our analysis relates to the ground state of the
colliding atom and ion.

In the case of atoms of groups IV and VII of the periodic
table of elements, the expression for the charge exchange
phase at large collision impact parameters takes the form

z�r; #;j� � 5z0�r�
�
sin2 #1 sin

2 #2 � 1

gr

�
2 cos2 #1

� 2 cos2 #2 � sin2 #1 cos
2 #2 � cos2 #1 sin

2 #2

ÿ sin2 #1 sin
2 #2�cos2 j1 � cos2 j2�

� sin 2#1 sin 2#2 cosj1 cosj2

��
; �5:15�

where #1, j1 and #2, j2 are the polar angles of the
quantization axes of the atom and ion, correspondingly,
with respect to the molecular axis at the distance of closest
approach.

We can use formula (5.6) for the resonant charge
exchange cross section at # � 0 and take into account that
the angular dependence of the cross section is logarithmic,
according to formula (5.2), so that the average cross section of
this process is close to that at zero angle. Hence, the average
cross section can be determined as an expansion over the
small parameter of the theory. Indeed, taking the basic
dependence of the exchange phase z�r; #;j� on the collision
impact parameter r to be exponential z�r; #� � exp�ÿgr�, we
have in the case of atoms of groups III, V, VI, VIII of the
periodic table of elements:

R0�#;j� � R0�0� � 1

g
ln

z�r; #;j�
z�r; 0� : �5:16�

We account for the atom and ion in the ground states,
including the S-state, so that the angles #, j characterize
the quantization axis direction for an atomic particle with a
nonzero momentum. This gives for the average cross
section of resonant charge exchange according to formula
(5.11):

�sres � 1

4

�1
0

�2p
0

�
R0�0� � 1

g
ln

z�R0; #;j�
z�R0; 0�

�2
d cos# dj : �5:17�

In essence, formula (5.17) means that the dependence of the
exchange phase z on the collision impact parameter r has the
form z � exp�ÿgr�. This formula is the basis for determina-
tion of the average cross section of the resonant charge
exchange, when this process results from the transition of a
p-electron. This formula is valid for elements of groups III, V,
VI, VIII of the periodic table when the atoms and ions are in
the ground states, and one of these states is the S-state, so that
the phase of the charge exchange depends on two angles #, j.
In the same manner one can find the charge exchange phase
for elements of groups IV and VII, which depends now on 4
angles: #1, j1, #2, j2. The data for the cross sections of
resonant charge exchange for these cases are compiled in the
table of Fig. 11.

Let us compare the cross sections of resonant charge
exchange for transitions of s and p valence electrons if these
electrons are characterized by the same asymptotic para-
meters g and A. Supposing the dependence of the charge
exchange phase z�r; #;j� on the collision impact parameter r
to be exponential z�r; #;j� � exp�ÿgr� and neglecting the
momentum rotation during the electron transition, we obtain
for the average cross section �sres of the resonant charge
exchange process:

�sres � s0

�1
0

d cos#

�2p
0

dj
2p

�
1� 1

gR0
ln

z�r; #;j�
z0�r�

�2
:

Lanthanides

4f5d 6s2 1G4

140.12 0.638 32

58Ce 0.88 27
Cerium 23

4f 36s2 4I9=2
140.91 0.634 32

59Pr 0.84 28
Praseodymium 23

4f 46s2 5I4
144.24 0.637 32

60Nd 0.85 27
Neodymium 23

4f 56s2 6H5=2

[145] 0.640 32

61Pm 0.86 27
Promethium 22

4f 66s2 7F0

150.36 0.644 31

62Sm 0.88 26
Samarium 22

4f 76s2 8S7=2
151.96 0.646 31

63Eu 0.89 26
Europium 22

4f 75d 6s2 9D2

157.25 0.672 28

64Gd 1.0 24
Gadolinium 20

4f 96s2 6H15=2

158.92 0.657 30

65Tb 0.93 25
Terbium 21

4f106s2 5I8
162.50 0.661 29

66Dy 0.94 25
Dysprosium 20

4f116s2 5I15=2
164.93 0.665 29

67Ho 0.96 24
Holmium 20

4f126s2 3H6

167.26 0.670 28

68Er 0.98 24
Erbium 20

4f136s2 2F7=2

168.93 0.674 28

69Tm 0.99 23
Thulium 19

4f146s2 1S0
173.04 0.678 27

70Yb 1.0 23
Ytterbium 19

4f145d 6s2 2D3=2

174.97 0.632 34

71Lu 0.92 29
Lutetium 24

Figure 12. Cross sections of resonant charge exchange for lanthanides.
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Figure 13. Geometry of the nuclear trajectory in the centre-of-mass

coordinate system. 1 Ð quantization axis, 2 Ð molecular axis at the

distance of closest approach, 3Ðcurrent molecular axis, 4Ðtrajectory of

nuclear motion. y, # are the angles between the quantization and

molecular axes, current and at the distance of closest approach, a, j are

the polar angles of the current molecular axis with respect to that for the

distance of closest approach.
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Here, s0 is the cross section for resonant charge exchange for
an s-electron making transition with the same asymptotic
parameters, and z0�r� is the charge exchange phase for an s-
electron, which is given by formula (5.7). Table 12 contains
the ratios of the cross sections for elements of groups III and
VIII of the periodic table depending on a small parameter of
the asymptotic theory. The use of additional assumptions for
evaluating the charge exchange cross sections with a transi-
tion of a p-electron decreases the accuracy of the asymptotic
theory in this case.

Note that the above considerations relate to the ground
states of colliding atom and ion. In the case of excited atoms
and ions with valence p-electrons, the cross section may be
significantly different for various states. For example, in the
case of the process

O�� 4S� �O! O�O�� 4S� ;

where the ion is found in the ground state, the cross section is
zero for excited atomic 2D and 2S states of this p3-valent shell.
Because the statistical weight of the atom in the ground state
is 3=5 with respect to the total number of atomic states for this
electron shell, the cross section of the process under con-
sideration significantly depends on the method of initial
preparation of atoms and ions.

5.4 Resonant charge exchange in case `c'
of Hund coupling scheme
The above analysis corresponds to the criterion (4.28) on
neglecting the relativistic effects. In reality, depending on the
hierarchy of interaction potentials and characteristic energies
in a system, we have a certain character of description of
interactions and processes. In the case of an atom, we
considered two types of interactions: Vex, the exchange
interaction potential involving identical valence electrons,
and Df, the fine-structure splitting of energy levels due to
spin ± orbit interaction for each valence electron. Different
relations between these interaction potentials lead to the LS-
or jj-coupling schemes in the atomic case. For a molecule, a
system of two interacting atomic particles, the rotational
energy Vr is added to these interaction potentials, and we
have six different cases of Hund coupling scheme for this
system, depending on the relation between these potentials,
which are given in Table 10. In the case of the collision of two
atomic particles, the number of the limiting cases increases
due to the new energy parameters 1=t and De, where t is a
typical collision time, and De is the transition energy. In this
case the analysis of the limiting cases between the interaction
potentials becomes more complex. Nikitin [9] introduced the
hierarchy of typical energy parameters in the analysis of
collisional processes [9 ± 11, 108]. Below we apply to this
analysis for the resonant charge exchange process.

Thus, we have the following typical interaction potentials
and energies for the process of interest:

Vex;Df;Vr;
1

t
; U�R�;D�R�;E : �5:18�

Here, along with the above parameters, we included in this list
the long-range interaction potential of colliding atomic
particles U�R�, the ion ± atom exchange interaction potential
D�R�, and the collision energy E. We consider slow collisions
when D�R0� � 1=t is small compared to a typical atomic
energy � 1, so that inelastic transitions involving the valence

electron shells of the atom and ion are absent. This criterion
takes the form

t � 1

v

������
R0

g

s
4 1 ; or E5m

R0

g
; �5:19�

where v is the collision velocity, R0 � �������
sres
p

, sres is the
resonant transfer cross section, andm is the mass of colliding
particles. The other criterion

mR0v4 1 �5:20�

allows us to use the classical law of nuclear motion. In
addition to this, the rotational energy is

Vr � dy
dt
� v

R0
� 1

t
��������
R0g
p � D��������

R0g
p 5D : �5:21�

The above consideration corresponds to the conditions

Vex 4U�R0�4D�R0�4Vr and Df 5Vex;U�R0�: �5:22�

Under these conditions one can neglect the spin ± orbit
interaction, and the orbital momentum projections of an
atom and ion are the quantum numbers. This corresponds
to case `a' ofHund coupling scheme.Within the framework of
this coupling mechanism, one can change the ratio between
Vex and D. In particular, in the case D4Vex or Vext5 1 the
states of the initial electron and ion shells are mixed in
collisions. This requires attraction of another model of the
electronic states of atoms and ions, like that of Fig. 1, i.e. in
this case we observe the other quantum numbers of the states,
which correspond to a lower symmetry of atomic particles,
but the character of the charge exchange process is identical in
these cases.

Now we consider the resonant charge exchange process
within the framework of case `c' of Hund coupling scheme,
when

Df 4Vex 4Vr �5:23�

according to the data of Table 10. This criterion leads to the
jj-coupling scheme in the atom and ion that in turn
corresponds to a transition of one electron with a given
total momentum j in the process of resonant charge
exchange. Below we analyze the character of resonant
charge transfer for atoms and ions with valence p-
electrons. In case `c' of Hund coupling scheme with the
transition of a p-electron or p-hole between two filled
atomic cores, we have only one electronic term, if the
electron momentum is 1=2. The exchange interaction
potential for this fine-structured state of the atom or ion is
given by formula (4.30), thus leading to the following charge
exchange phase

z1=2�r; #� � z0�r�
�
1� 4

rg

�
; �5:24�

where z0�r� is the charge exchange phase defined according to
formula (5.7), so that 3z0�r� is the charge exchange phase for
zero projection of the electron momentum onto the impact
parameter of collision in case `a' of Hund coupling scheme. In
the case when the total electron momentum is 3=2, the
exchange phase within the framework of case `c' of Hund
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coupling scheme follows from formulas (4.31):

z3=2�r; #� � z0�r�
�
1

2
� 3

2
cos2 #

� 1

rg

�
1

2
� 9

2
sin2 #� 3

2
sin2 # cos2 j

��
; �5:25�

where #, j are the polar angles of the collision impact
parameter or the molecular axis at the distance of closest
approach with respect to the quantization axis.

In order to understand the sensitivity of the cross section
of the charge exchange process to different schemes of
coupling of electron momenta, in Table 14 we give the
corresponding cross sections of this process for rare gases,
i.e. �s is the average cross section for case `a' of Hund coupling
scheme, s�# � 0� is the cross section of this process when the
projection of the orbital momentum of the hole on the impact
parameter direction is zero, and s1=2 and s3=2 are the charge
exchange cross sections for the total ion momenta 1=2 and
3=2, correspondingly. We take the atomic ionization poten-
tial for the formation of an ion in different fine-structured
states to be identical, so that the difference in the cross
sections under consideration is solely determined by the
process dynamics. According to the data of Table 14, the
difference in the average cross sections for different coupling
schemes is small and is lower than the accuracy of these
evaluations which is determined by the accuracy of asympto-
tic coefficients of the wave function of an atomic valence
electron. Hence, in spite of the significant dependence of the
cross section of resonant charge exchange on the direction of
the orbital momentum, the average cross section of this
process is not sensitive to the scheme of coupling of electron
momenta if the process is allowed in the one-electron
approach. Hence, the cross sections averaged over initial
states weakly depend on the coupling scheme for atoms of
groups III and VIII. The difference between the cross sections
of this process can be dramatic for certain initial atomic and
ion states because of the different selection rules for one-
electron transitions within the framework of these coupling
schemes. Some calculated results of the cross sections for
resonant charge transfer are given in the tables of Figs 11, 12
which are based on case `a' of Hund coupling scheme.

Let us consider the charge exchange process of rare gas
atoms and ions if the ions are found in the ground state
� j � 3=2� at the beginning. Then at small collision velocities
only the ion ground state partakes in the process, and the
transition into the ion state j � 1=2 is forbidden. At high
collision velocities this channel is opened, and the resonant
charge exchange process corresponds to case `a' of Hund
coupling scheme. Let us assume that these coupling schemes
leads to an identical cross section, so that the variation of
the cross section in the course of transition between cases `c'
and `a' of Hund coupling scheme is due to the different

atomic ionization potentials corresponding to various fine-
structured ion states. The jump in the cross section due to
this effect is

D�sres � 1

3

DI
I

�sres ; �5:26�

where the first factor is the probability of the ion state
j � 1=2, and the second factor accounts for the dependence
(5.2) of the cross section on the electron binding energy.
According to this formula, the relative variation of the cross
section is about 0.4% for Ar, about 2% for Kr and about 4%
for Xe. First this effect was examined experimentally in Ref.
[109]. A collision velocity v for this transition can be estimated
from the expression for a typical time of the process:

t � 1

v

������
R0

g

s
� Df ;

as follows from formula (5.7), and a typical collision energy
for this transition is estimated as� 10 eV for Ar,� 100 eV for
Kr, and � 600 eV for Xe. Figures 14 ± 16 depict the cross
sections of resonant charge exchange as a function of the
collision energy for Ne, Kr, and Xe.

Table 14.Resonant charge exchange cross sections for rare gases at an ion
energy 1 eV.

Element Ne Ar Kr Xe Rn

�sres=sres�# � 0� 0.85 0.86 0.888 0.87 0.87

s1=2=�sres 1.02 1.02 1.02 1.02 1.02

s1=2=s3=2 0.995 0.995 0.995 0.995 0.995

�sres, 10ÿ15 cm2 3.3 5.8 7.5 10 12
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Figure 14. Cross sections of resonant charge exchange for neon. 1 Ð

formulas (5.13), (5.17); experiment: 2 Ð [123], 3 Ð [111], 4 Ð [118], 5 Ð

[119], 6 Ð [114], 7 Ð [117], 8 Ð [110], 9 Ð [115], 10 Ð [112], 11 Ð [113],

12Ð [120].
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Figure 15. Cross sections of resonant charge exchange for krypton. 1 Ð
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5.5 Experimental aspects of resonant charge exchange
When we constructed the table of the cross sections of the
resonant exchange process for various elements of the
periodic table (Figs 11 and 12), we applied to the theoretical
data only for the following reasons. First, the accuracy of the
asymptotic theory is better than the experimental results
(excluding the case of helium). Second, the experimental
data are restricted to certain elements, and the collision
energies for some elements are limited. Third, in many cases
we cannot determine the accuracy of the experimental data.
Hence, the experimental studies give a restricted contribution
to the data on resonant charge transfer, and below we
consider them rather briefly.

The experimental methods of measuring the resonant
charge exchange cross sections lean upon the fact that the
cross section of this process significantly exceeds the cross
section of ion ± atom elastic scattering at the collision energies
under consideration. Then the simple version of the experi-
ment is based on the passage of an ion beam through a gas or
vapor of parent atoms in a collisional chamber or drift tube,
where the mean free path of ions with respect to the process is
large or comparable with the paths of ions in a gas or vapor.
Then the resonant charge exchange cross section is deter-
mined from a decrease in the ion beam intensity after passage
through a gas. The above measurements of the cross sections
of resonant charge transfer for rare gases (Figs 14 ± 16) are
based on this technique.

In some cases it is problematic to create an atomic vapor
of a given element. Then atoms are taken in the form of a
beam, and charge exchange event results from intersection of
the ion and atomic beams, or when the ion beamovertakes the
atomic beam. In particular, crossing beam methods are used
for measurement of the cross section of resonant charge
exchange of a proton or deuteron in collisions with the
hydrogen atom [104, 128, 129], and in some experiments for
rubidium and cesium (see Figs 8, 9). This can also be achieved
by using merging beams [130, 131].

The resonant charge exchange process governs the
mobility of ions in the parent gas. Because at not low
temperatures elastic ion ± atom scattering gives a small
contribution to the ion mobility in the parent gas, the charge
transfer is determined by the resonant charge exchange
process according to the Sena effect, as is shown in Fig. 17.
The mobility of ions in a gas at small electric field strengths in
the first Chapman ±Enskog approximation [132, 133] is
expressed through the diffusion cross section of ion ± atom

scattering:

s � �
�
�1ÿ cos y� ds ; �5:27�

where y is the scattering angle in the center-of-mass
coordinate system. If we neglect the elastic cross section, the
scattering angle of the ion due to the resonant charge transfer
process in the center-of-mass coordinate system is equal to
y � p, so that we have [134]

s � � 2sres ;

where sres is the cross section of resonant charge exchange.
According to formula (5.2), this cross section weakly depends
on the collision velocity and that leads in the first Chapman ±
Enskog approximation to the following expression for the ion
mobility in the parent gas at low electric field strengths [135]:

K � 3
���
p
p

e

16N
�������
Tm
p

sres�2:2vT�
: �5:28�

Here,N is the number density of atoms in the gas, T is the gas
temperature expressed in energy units, m is the ion or atom
mass, e is the electron charge, and the argument in the cross
section of resonant charge exchange shows the velocity at
which this cross section is taken, so that vT �

������������
2T=m

p
. Here

we use the conventional units.
The second term of the power expansion in a numerical

parameter of the Chapman ±Enskog approximation gives a
correction of 2% to the ion mobility and to the diffusion
coefficient of the ion in a gas, if the cross section does not
depend on the collision velocity [132, 133]. Taking this into
account, for the ion mobility in the parent gas in the
limiting case of low electric field strengths [136, 137] we
arrive at

K � 0:341e

N
�������
Tm
p

sres�2:1vT�
: �5:29�

Correspondingly, the ion drift velocity w and its diffusion
coefficient D in the gas in this case assume the form

w � KE ; D � eK

T
;

where E is the electric field strength.
Usually the mobility is reduced to the number density of

gas atoms under normal conditions [138, 139], i.e.
N � 2:69� 1019 cmÿ3. Hence, it is convenient to rewrite
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formula (5.29) in the form

K � 1340�������
Tm
p

sres�2:1vT�
; �5:30�

where the mobility is expressed in cm2 (V s)ÿ1, the tempera-
ture T is given in Kelvin, the mass m of atoms and ions is
expressed in atomic mass units, and the resonant charge
exchange cross section is given in 10ÿ15 cm2.

Above we neglected the elastic scattering of the colliding
ion and atom in the course of the resonant charge exchange
process. At large distances R between the colliding ion and
atom, the polarization interaction acts between them, and the
cross section of ion ± atom elastic scattering varies with the
collision velocity v as � 1=v. The resonant charge exchange
cross section weakly depends on the collision velocity.
Therefore, elastic scattering can influence the charge transfer
during ion ± atom collisions at small velocities, and this effect
has to be taken into account for the ion mobility at low
temperatures. The size of this effect can be understood from
Table 15 where a decreaseDK of the ionmobility in the parent
gas is given due to elastic ion ± atom scattering, which is
determined by the polarization interaction. This effect is
taken into account in Fig. 18, where the mobility of atomic
helium ions in helium in the limit of low electric field
strengths, which is evaluated on the basis of formula (5.30),
is compared with available experimental data [140 ± 144].

The drift velocity of atomic ions in the parent gases is
given by formula (5.30) in the limit of low electric field
strengths, when the drift velocity is small in comparison
with the thermal velocity of the atomic ion, so that

eEl5T ; �5:31�

where l � 1=�Nsres� is themean free path of ions in the parent
gas. Let us consider the other limit of high electric field
strengths and, following Refs [85, 86], we find the ion drift

velocity under the assumption that the charge exchange cross
section sres does not depend on the collision velocity.
According to Fig. 17, ions are accelerated in the direction of
the electric field, and the velocity in the field direction is large
in comparison with that in transverse directions. We intro-
duce the distribution function f �vx� of ions over velocities vx
in the field direction, which is analogous to the probability
P�t� of absence of charge exchange during a time t after the
previous exchange event. This probability satisfies the
equation

dP

dt
� ÿnP ;

where n � Nvxsres is the rate of the resonant charge exchange
process. The solution of this equation is

P�t� � exp

�
ÿ
�t
0

n dt 0
�
:

The equation of motion for the ion, viz.

m
dvx
dt
� eE ;

connects the ion velocity and the time after the last charge
exchange event by the expression

vx � eEt

m
;

so that P�t� gives the velocity distribution function for the
ions. Assuming the cross section of the resonant charge
transfer process sres to be independent of the collision
velocity, we obtain for this distribution function

f �vx� � C exp

�
ÿ mv 2x
2eEl

�
; vx > 0 ;

where C is a normalization factor, and the mean free path of
ions in the parent gas is l � 1=�Nsres�. From this we have for
the ion drift velocity

w � hvxi �
�����������
2eEl
pm

r
; �5:32�

and according to the criterion, which is reciprocal with respect
to (5.31), this drift velocity significantly exceeds the thermal
velocity of atoms. The drift ion velocity in the intermediate
region of electric field strengths can be determined from the
solution of the kinetic equation for the ion distribution
function [145, 146]. It is convenient to approximate the ion
drift velocity in the form

w �
������
2T

m

r
0:48x

�1� 0:22x 3=2�1=3
;

where x is the solution of the equation

x � eE

2TNsres
��������������������������������������4:5� 1:8x�2T=mp ;

and is essentially a weak velocity dependence on sres. Figure
19 compares this formula with experimental data [147 ± 149].
Thus, the resonant charge exchange process whose nature is
closely connected with the structure of atomic particles is of
importance for ion transport processes in parent gases. The

Table 15.Relative decrease of the ionmobility DK=K in the parent gases at
room temperature due to elastic ion ± atom scattering [137].

Ion, gas He Ne Na Ar K Kr Rb Xe Cs

DK=K, % 6 9 8 9 9 18 9 21 7
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Figure 18.Mobility of He�in helium in weak fields. Theory: 1Ð formula

(5.28), 2 Ð [139]; experiment: 3 Ð [140], 4 Ð [141], 5 Ð [142], 6 Ð [143],

7Ð [144].
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asymptotic theory accounts for the nature of the process,
simplifies the analysis of the process and permits one to
evaluate its parameters with an acceptable accuracy under
various real conditions.

6. Conclusions

We have considered the character of coupling of electron
momenta in atoms and its role in the process of resonant
charge exchange. The analysis shows that the LS-scheme of
momentum coupling, which is valid for light atoms, is useful
for the description of valence electron shells of individual
atoms. Since some relativistic interactions are not taken into
account within the framework of the jj-scheme of momentum
addition, this scheme is not accurate for the description of
heavy atoms, so that the LS-scheme of coupling of electron
momenta may be used for a qualitative description of these
atoms alongside other coupling schemes. We note the
importance of correlation effects in atoms due to the
violation of the one-electron approach for atoms. In
particular, neglecting these effects in atoms leads to an error
in the asymptotic coefficient which characterizes the ampli-
tude of the wave function of a valence electron far from the
nucleus.

All the above problems of electron coupling and correla-
tions between electrons are of importance for the analysis of
processes involving atomic particles. Then additional pro-
blems occur due to the motion of atomic particles and their
interaction. From this standpoint resonant charge exchange
in slow collisions is the simplest of such processes, since the
electron transition proceeds at large internuclear distances
where interaction between colliding particles is weak, the
molecular axis turns by a small angle during the electron
transition, and nuclear motion has a classical character. The
weakness of interaction allows us to use a specific perturba-
tion method and to extract different effects, considering them
separately. In spite of this simplicity, the process of resonant
charge exchange is characterized by several limiting cases with
respect to the coupling of atom and ion momenta, to the
rotation of the molecular axis, and to the ion ± atom
interaction. According to the experience acquired from the
above analysis, in reality case `a' of Hund coupling scheme,
which is a generalization of the LS-coupling scheme of

addition of electron momenta in an atom with respect to
molecular particles, is suitable for evaluation of the resonant
charge exchange cross sections for light elements, while case
`c' of Hund coupling scheme is preferable for heavy atoms
when the jj-coupling scheme is better for composingmomenta
in individual atomic particles. Nevertheless, the resonant
charge exchange cross sections, evaluated on the basis of
these coupling schemes and averaged over the momentum
projections of the colliding ion and atom, are not sensitive to
the coupling scheme if the one-electron transition is allowed
for different channels of this process. If this transition is
forbidden for some channels, the difference in the cross
sections within the framework of cases `a' and `c' of Hund
coupling scheme can be significant.

This analysis exhibits the general problems of the theory
of slow atomic collisions for quasi-resonant processes if the
electron transfer proceeds at large separations between
colliding atomic particles, where these atomic particles
conserve their individuality. Because the cross sections of
such processes are expressed through asymptotic parameters
of colliding atomic particles, this analysis shows the connec-
tion between the problems of physics of individual atomic
particles and the physics of atomic collisions.

The author thanks R S Berry who showed the author the
importance of correlation effects for two-electron atoms. This
paper is partially supported by RFBR (grant # 00-02-17090).
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