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Transport barrier formation
in a tokamak plasma

Razumova K A

It is a well-known fact that for many years research has been
conducted worldwide on the problem of building a reactor for
controlled fusion, a powerful and safe source of energy. The
main avenue of research, which has already led to a
technically feasible reactor project, uses plasma that has
currents flowing through it and is placed in a toroidal
magnetic field. The device became known as a tokamak.
Here I will not discuss the technical achievements reached in
this area of research, such as, say, plasma temperatures as
high as 35 keV and the high coefficient of utilization of the
magnetic field pressure. Rather, I will speak on the remark-
able properties of hot magnetized plasma, an amorphous
substance subject to all imaginable instabilities, which in
practice exhibits an order that could be expected only in
crystals.

In an ideal situation, a plasma placed in a strong magnetic
field will have small transport coefficients since the particles
participating in collisions can become shifted only by a
distance Dx � rLar. Actually, even when placed in a strong
magnetic field the plasma remains extremely mobile and is
subjected to numerous instabilities, which worsens energy
and particle confinement. I will not discuss the kinetic
instabilities, but, instead, I will touch on large-scale magne-
tohydrodynamic (MHD) instabilities, the leading factor in
determining the behavior of plasmas.

Since in a tokamak there is a current flowing along the
plasma ring, the magnetic lines of force wind around the
toroidal axis. The spacing of this winding is given by the
quantity

q � Btr

BpR
;

where Bt and Bp are the strengths of the toroidal and poloidal
magnetic fields, and r andR are the small and large radii of the
plasma torus. For some radii, the magnetic line of force can,
circling the torus one or more times, close on itself. Such
surfaces are called rational and are characterized by a number
m corresponding to the number of turns prior to closure. If, in
addition, such a line of force has wound itself around the
toroidal axis, it can be characterized by the number n of turns
around the axis. Thus,

q � Btr

BpR
� m

n
:

From the standpoint of energy, it is advantageous for the
current to flow along a real line of force rather than along the
torus, with the result that a plasma with a current is unstable
against concentrating along a pencil of rational lines of force.
Such a helical current bunch generates its own magnetic field,
which forms a `magnetic island'. The island will grow, but its
nonlinear interactions with the rest of the plasma limits this
growth, with the result that the island is of finite dimensions.
The size of the island depends on the variation of the `twist' of
themagnetic lines of force around the radius of what is known
as magnetic shear:

S � r

q

dq

dr
:

The larger the value of S, the smaller the island.
Neighboring islands may adjoin each other along their

edges. Nonlinear interaction at the edges leads to granulation
of the islands and even to the emergence of regions with
damaged magnetic surfaces, i.e. regions where the lines of
magnetic force are randomly mixed. Due to the very high
transport along the magnetic field, the plasma pressure in the
outer and inner parts of the island easily evens out. There is
also good thermal contact between islands, with the result
that the heat and the particles rapidly leave the area in a
direction transverse to the magnetic field.

The list of instabilities in plasma is extremely long. To
each action the plasma responds by generating an instability,
which changes the plasma's transverse transport path. But
each instability, drawing its energy from the unfortunate
gradient of a plasma parameter, leads to changes in this
gradient and to stabilization. Thus, the plasma tends to
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organize its profile in such a way so as to become as stable as
possible, i.e. to acquire a configuration with minimum
internal energy. One can expect that for different tokamaks
and a broad class of tokamak operational regimes the
dimensionless plasma pressure profiles are similar, provided
that one is able to find the correct normalization for the
plasma radius. This is demonstrated by Fig. 1 [1].

It was found that the `current' radius must be norma-
lized to the radius of a magnetic surface with a given q.
B B Kadomstev explained this phenomenon and showed that
a profile close to a self-consistent one corresponds to the
minimum of internal energy [2]. This leads to a situation in
which the transport coefficients depend not only on the local
characteristics but also on the state of the plasma as a whole.

Naturally, there can be no ideal profile, since the plasma is
constantly exposed to various factors. The strongest of these
are the boundary conditions, which distort the self-consistent
profile and, hence, increase the energy and particle flux to the
chamber wall. If we could create a narrow layer with small
transport coefficients near the edge of the plasma, the wall
would be separated from the plasma and the profile would be
closer to the optimal one.

No matter how fantastic this idea sounds, it was actually
realized once.

A group of researchers workingwith theGermanASDEX
tokamak discovered an operational regime with an external
transport barrier (a local minimum of transport coefficients).
The electron temperature Te and electron concentration ne
were found to have steep gradients at the edge of the plasma.
This type of regime became known as the H-mode, and in it
the plasma confinement is longer by a factor of roughly two.
Although empirically the conditions under which such a
regime is formed have been thoroughly studied and although
this regime has been adopted as the main one for the reactor,
the physics of this formation is far from clear. Why, in a
narrow zone near a certain magnetic surface, are the
conditions for plasma confinement much better?

One of the reasons for this is the formation of rapid
poloidal rotation (Vp � 1ÿ5� 106 cm sÿ1) within a small
layer of the plasma periphery. The most probable instability
responsible for the loss of heat from ions and particles proper
is the drift ± gradient mode, in which the plasma is ejected in
the form of relatively long-wave `tongues'. Nonuniform
rotation along the radius smears these tongues and prevents
the development of the instability. Experiments have corro-
borated this result. But where does the rotation come from?
Why does the electron confinement time increase?

Nature prepared another present for the researchersÐ
local internal transport barriers. The theory predicts than
many MHD instabilities can be stabilized if S < 0, i.e. the
current has a hollow profile. Such a configuration emerges
either because of a skin-effect or in generation of a non-
inductive current in the proper zone of the plasma.

In the beginning the experiments followed the first path.
During the current-growth phase the plasma was subjected to
powerful additional heating: a flux of high-energy neutral
atomswas injected into the plasma at an angle to themagnetic
field, and the recharging of these atoms heated the plasma.
Improvement of confinement was discovered by Synakowski|̄
et al. [4] (Fig. 2), but the zones with reduced transport
coefficients proved to be not in the region where S < 0 but
in the zero-shear zone. By such heating method torque is
introduced into the plasma. This could serve as an explana-
tion of the phenomena, as the presence an external barrier
explains the H-mode. However, experiments were soon held
in which heating did not introduce a torque into the plasma,
while a local transport barrier still appeared.

The T-10 tokamak at the Russian Scientific Center
`Kurchatov Institute' uses electron cyclotron resonance
(ECR) as a source of additional heating (naturally, only
electrons are heated in this method). If the ECR waves are
input at an angle to the magnetic fields, noninductive
generation of a current in a given fairly narrow zone of the
plasma is possible. Here no torque is introduced into the
plasma. The zone of the introduced power and current
generation amounts to three-tenths of the total radius of the
plasma (such a zone can be made even more local). Thus,
current may be generated at different radii both in the
direction coinciding with that of the plasma current (CoCD)
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and in the opposite direction (CounterCD), which means that
the profile q�r� can be changed arbitrarily (Fig. 3).

Experiments conducted with T-10 by a group of research-
ers have shown [5] that local barriers can appear at a negative
shear with a central CounterCD or with a noncentral CoCD,
with the barrier always forming in the region with low shear
and values of q close to the rational one. Since the current is
generated not immediately after ECR sets in but gradually
increases due to the skin redistribution process, the q�r�
profile also changes gradually. When the region dq= dr � 0
approaches the rational value, the MHD instability level
decreases sharply and a barrier begins to form. A further
increase in q0, which corresponds to the zero derivative, and
its passage through the rational value lead to a new upsurge of
MHD activity, followed by stabilization near the rational
surface and formation of a new barrier (Fig. 4).

If the value of q0 corresponds to the limit in the condition
for barrier formation, the improvement of confinement in the
inner zone and the corresponding redistribution of the

current density can, as a result of q decreasing within the
barrier, force this quantity to leave the necessary range of
values, so that the barrier disintegrates. In this case a periodic
improvement and deterioration of confinement is observed.

Let us follow the process of barrier formation using the
example of the changes in the intensity of X-ray radiation
(Fig. 5). What is interesting is that the process begins not only
when the electron temperature begins to increase in the ring,
where the barrier forms, but also with the simultaneous
central region temperature begins to drop, even if the entire
ECR power is input at the center (central CounterCD). Only
after the barrier has completely formed will the central region
of the plasma begin to fill.

Thus, we see that the formation of a local electron
transport barrier requires that a certain profile q�r� exist in
the vicinity of the resonance surface. And what role does
rotation play? We know that it has been shown that namely
plasma velocity shear determines the formation of local
gradient of particle concentration and ion temperature.

Let us again turn to the experiments conducted on the
T-10 tokamak. Here an important result was obtained thanks
to the unique methods of plasma diagnostics developed in
connection with these experiments, methods that made it
possible to measure the changes in the potential profile in the
plasma by probing the plasma with beams of heavy ions [6].
When the ECR power was input at one-half of the plasma
radius, a barrier at the rational surface q � 1 was found to
form in this region. Naturally, MHD instabilities, which
appeared inside the region, reduced the energy confinement
time. Nevertheless, a certain increase in the electron tempera-
ture was observed (Fig. 6). The experimenters were able to
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measure the relative electric potential of the plasma, fÿ f0.
The measurements showed that a deep narrow potential well
formed near the barrier as the temperature Te increased. This
is an indication that near the barrier the balance between the
ambipolar fluxes of electrons and ions was disrupted, while
the Coulomb forces instantaneously brought the situation
into balance again.

What initiated this disbalance? Did the ion flux increase in
strength? No, the experiment showed that ion confinement
had increased by a factor of 1.5. Hence the electron
confinement improved. The new potential well generated a
strong electric field that rapidly varied along the radius, with
the result that a rotation velocity shear emerged, so that
confinement of the ion component improved.

Thus, the process begins with the profile q�r� and the
increase in the electron lifetime.What is the relationship here?
This question has still to be answered. In the steady-state
phase of the process the well is transformed into a steplike
decrease of potential toward the inner side of the torus (see
Fig. 6).

One more remarkable phenomenon was observed in the
experiments involving the T-10 tokamak. The formation of
the local barrier is accompanied (simultaneously!) with the
formation of an external barrier separated from the former by
one-half of the tokamak radius.

The pattern of formation of this external barrier is quite
similar to that observed inside Ð a potential well is formed.
However, here particle confinement is improved, and the
electron concentration gradient increases. A thorough exam-
ination shows that double and even triple barriers are
observed in many experiments with different tokamaks.

How are these surfaces connected? What a connection do
exist between these surfaces? Indeed, there is not a single
mode in a torus that can exist in pure form, since the
harmonics of this mode are also generated. In the case at
hand the local barrier was formed at q � 1, while the external
barrier was formed at q � 2. Possibly, a substantial change in
the profile of a magnetic island on one resonance surface may
lead to a similar change on another such surface. But then we
are forced to believe that the H-mode also begins its
formation within a region with a given shear near the
resonance surface. The scientific community is not yet ready
for such a discovery, and so the question remains open. What
is true is that plasma is capable of resounding like a cavity.

Thus, local barriers destroy the bonds in the plasma that
(due to turbulence) determined self-consistent profiles and
make it possible for steeper parameters gradients to set in
local layers. The nonlinearity in the development of instabil-
ities in the high-temperature plasma of a tokamak leads not to
chaotization and disintegration of the plasma but to forma-
tion of self-organizing structures capable of producing high
particle and energy confinement characteristics.

This makes it possible in terrestrial conditions to reach,
within limited volumes, plasma temperatures (T4 4� 108 K)
that exceed the temperature inside the Sun by tens of times.
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Model for the formation of hummocks
in a drifting ice cover

A V Marchenko

1. Introduction

Hummocks constitute a characteristic feature of the sea ice
cover. They are produced by the deformations caused by the
compression and shearing of the ice cover generated by wind
and sea currents. The hummocks are formed in the open
ocean and in the vicinity of the shores and greatly affect
navigation in the ice-covered sea of the Arctic regions. The
hummocks produced in the sea-shelf regions near the
hydrotechnical structures greatly affect the distribution of
the loads exerted by the ice on these structures.

The hummocks are pieces of ice pushed out under and
over the surface of the surrounding flat ice cover. The above-
water part of a hummock, the sail, may be several meters high
while the height of the underwater part, the keel, may be tens
of meters. Hummocks are fairly often extended horizontally
[1]. Hummocks have a significant influence on the rheological
properties of the ice cover and make it spatially inhomoge-
neous and anisotropic.

Theoretical modeling of hummock formation (the ridging
process) may be classified into two types of analyses. In the
studies of the first type (see, for instance, [2]) the ridging
processes are taken into account in the large-scale simulation
of the ice cover dynamics. Ridging is treated as the main
mechanism for evolution of the ice cover thickness profile.
The simulation yields the evolution of the thickness distribu-
tion for the ice cover under plastic strain. The structure and
evolution of an individual hummock are ignored in the
simulation process.

The first model of hummock formation was developed by
Parmeter andCoon [3] in 1973. Parmerter and Coon analyzed
theobservational data andput forward ahypothesis that there
was a maximum hummock height depending on the thickness
of the ice sheets making up the hummock. According to the
hypothesis, a hummock grows in height and width if its
vertical dimension is smaller than the maximum size and
after its height has reached the maximum size only the
hummock width grows. The maximum hummock height is
determined by the bending load breaking down the edge of the
floe pushing against the hummock owing to the lack of
balance between gravity and the lifting force acting on the
hummock edge in water. Parmeter and Coon estimated the
compression stress required for the hummock formation from
the equations for conservation of mass and energy.

Hopkins and co-workers [4, 5] used a different approach
tomodeling the ridging process. They treated a hummock as a
pile of ice blocks of a given shape with viscous elastic forces
acting between them. The motion of each ice block is
described by a separate equation. New ice blocks are
produced in the model when the floe edge pushes against the

hummock. High-capacity computer simulations involved
calculations of the motion for the large number of ice blocks
making up the hummock yielding a realistic representation of
the ridging process and confirming the hypothesis of the
maximum hummock height.

It was only in 1998 that a hummock was produced under
laboratory conditions [6] in the ice basin of the Technological
University in Helsinki. The thickness of the artificially frozen
ice was not more than 10 cm. The experimental results
demonstrated that the growth of the hummocks under
compression was accompanied by floes being pushed under
hummocks so that these two processes cannot be monitored
separately in practice. The results of the laboratory experi-
ments are corroborated by the data of observations con-
ducted in northern Baltic Sea which demonstrated that ice
hummocks were largely composed of flat floes piled up on
each other.

The objective of the present study was to develop a model
of the ridging process that would make it possible to analyze
the formation of hummocks in the ice cover consisting of an
arbitrary number of floes. It is assumed that the hummocks
are formed at the lines of contact between floes driven by
winds. The suggested mechanism is valid for the sea ice cover
in which the regions of flat and ridged ice can always be
identified. A flat ice cover region is broken down under
compression so that hummocks are produced while the flat
ice regions are displaced with respect to each other. It will be
demonstrated that the displacements are periodic owing to
the self-sustained oscillations accompanying shifting of the
drifting ice [7].

2. Basic equations

Let us consider the conservation of mass, momentum, and
energy for an ice layer floating on a liquid surface. The
appropriate differential equations for the one-dimensional
case are

qm
qt
� qmv

qx
� 0 ;

qmv
qt
� qmv2

qx
� qs

qx
� f ;

qE
qt
� qEv

qx
� qsv

qx
� f v : �2:1�

Here m is the mass of the ice floating on the unit surface area
of the ocean, v is the ice drift velocity, s are the internal
stresses in the ice,E is the surface energy density of the ice, f is
the friction force of the atmosphere and the ocean acting on
the ice, x is the horizontal coordinate, and t is the time.

The ice concentration on the ocean surface is assumed to
be unity and we can writem � rih�x; t�where h�x; t� is the ice
thickness and ri � 930 kg mÿ3 is the sea ice density. The
surface energy density of the ice cover is given by the equation

E � K� P�W ; �2:2�
whereK � rihv

2=2 is the surface density of the kinetic energy,
and P and W are the surface densities of the potential and
internal energies.

The surface density of the potential energy of the floating
ice is given by the equation

P � rig
�z�
zÿ

z dzÿ rwg
� 0

zÿ
z dz �2:3�
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It equals the difference between the potential energy of the
ice taken from the level z � 0 of the unperturbed liquid
surface and the potential energy of the liquid displaced by
the ice. Here rw � 1020 kg mÿ3 is the seawater density. The
upper and lower surfaces of the ice cover are determined by
the equations z � zÿ�x; t� and z � z��x; t�. The thickness of
the ice cover is h � z� ÿ zÿ.

A further simulation step included the processes of
irreversible ice cover compression accompanied with varia-
tion of its thickness and dissipation of the mechanical energy.
The variation of the internal energy is determined by the
energy dissipation

dW � dD5 0 : �2:4�
The variation of the ice thickness under compression is
determined by ridging and rafting processes. Ridging gives
rise to hummocks produced by ice rubble. Rafting is the piling
up of flat ice sheets. Sometimes compression is determined by
a combination of ridging and rafting.

As the ice thickness grows the potential energy of the ice
increases irreversibly,

dP5 0 : �2:5�
Let us assume that a flat ice cover includes a ridged ice region
with the boundaries x � xÿ�t� and x � x��t�. For x < xÿ and
x > x� the ice thickness is constant and equals x � xÿ and
x � x�, respectively.

dUr

dt
� �hQ� ; �2:6�

dIr
dt
� �s� � ri�hvQ� � Fr ; �2:7�

dEr

dt
� �sv� � �EQ� � Ar ; �2:8�

where Ur, Ir and Er are the linear density of volume, impulse
and energy of the ice in the region x 2 �xÿ; x��, and
�l� � l� ÿ lÿ for any symbol l or combination of symbols

The flows Q�5 0 and Qÿ4 0 are defined by the
formulae

Q� � dx�
dt
ÿ v� ; �2:9�

where v� and vÿ are the ice drift velocities in the regions
x > x� and x < xÿ.

The values s� and sÿ are equal to the stress in the flat ice
covers for x � x� and x � xÿ; E� and Eÿ are the ice surface
energy densities in the region x > x� and x < xÿ, Fr is the
external drag force, acting on the ridge by x 2 �xÿ; x��, and
Ar is the power of this force.

The system of equations (2.6) ± (2.8) is a generalization of
the relationships at a discontinuity [8] for the case when
material is built up at the fracture. Similar relationships
have been considered in the theory of gas diffusion with an
admixture of dispersive particles [9], where the necessity of
their inclusion was connected with the overturning of
compression waves. Such a surface has been called `sheet'.
Physically, the sheeting corresponds to those regions where
one may not neglect the collisions between particles of the
admixture. Sheet fractures have been used to describe the
formation and drift of bands of unbroken ice in a dispersive
ice cover [10, 11]. In this case, the properties of the material
also change on the surface of the fracture since the ice cover
inside the hummock is made up of lumps of ice.

3. Evaluation of the characteristic scale
of the problem

The friction force acting between the ice cover and the water
determines a rather low velocity of ice drift under natural
conditions. Therefore, we can take V � 0:1 m sÿ1 as a
characteristic scale of the ice drift velocity [12].

In the conditions under consideration the characteristic
time scale for the ice drift is determined by the self-sustained
oscillations of the ice cover. The observational data demon-
strate that for a constant wind acting on the ice, the ice
deformation proceeds in the form of quasi-periodic shifts
produced by the relative displacements of the floes [7]. The
period of such shifts can be as long as several minutes [13].
This is whyT � 1min is selected as a characteristic time scale.

The measurements made under natural conditions for the
ice cover [14] yielded the highest stresses of the order of
105 N mÿ1. Stresses of the order of 104 N mÿ1 correspond to
the initial stages of the ridging process. This is why we have
selected S � 104 N mÿ1 as a characteristic stress.

Let us make an order-of-magnitude estimate of the terms
in equations (2.6) ± (2.8). The friction force with which the
water is acting on the hummock keel is estimated as

Fr � rwCwhkdv2 ;

where Cw � 1 is the resistance coefficient for non-stream-
lined bodies, dv is the difference between the velocities of the
water and the ice, and hk is the distance from the point of
the hummock which is the deepest in the water to the lower
ice surface. For the sake of assessments we shall take
hk � 10 m and dv � 0:1 m sÿ1. Then the assessment yields
Fr � 100 N mÿ1.

Let us evaluate the inertial term in equation (2.7)
assuming that the hummock has a triangular sail shape with
side edge angles of the sail and keel being 30� (see Fig. 1) [1].
Under such conditions the hummock volume per unit length
is Ur � 2h2k � 200m2. The inertial term is of the order of
riUrVT

ÿ1 � 300 N mÿ1.
Let the characteristic ice thickness be h � 1 m. The

penultimate term on the right-hand side of equation (2.7) is
of the order of rihV

2 � 10 N mÿ1. Hence we obtain the
estimate �s�5S. In other words, the difference between
stresses on two sides of a triangular hummock is much
smaller than the stresses themselves. Therefore, we can take

�s� � 0 : �3:1�
in the stress calculations. Note that this equation is inapplic-
able to hummocks of trapezoid shape with a fairly large

jxÿ x�
x

z

hs � dh

dh

ÿ�1ÿ d�h

ÿhk ÿ �1ÿ d�h

Figure 1.
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volume Ur. Let us estimate the width of a trapezoid-shaped
hummock for which the inertial term is of the order of
105N mÿ1 (the extreme stresses generated with the formation
of large hummocks). Let us take Ur � �hk � hs�Lr where hs is
the sail height and hk � hs � 20 m. The condition
riUrVT

ÿ1 � 104 N mÿ1 yields Lr � 300 m.
Using similar estimates we can demonstrate that in

equation (2.8) for the energy the characteristic values of
both the kinetic energy of the hummock and the work Ar are
much smaller than other terms of the equation. Therefore, we
shall assume below that

dEr � dPr � dDr : �3:2�

Let us estimate the characteristic values of the densities of
the potential Pf and kinetic Kf energies of a flat ice cover.
These densities are given by

2Pf � drigh
2 ; 2Kf � rihv

2 ; �3:3�

where v is the drift velocity and h is the ice thickness.
Assuming v � V and h � 1 m we obtain Kf 5Pf. Using this
estimate we assume below that

Ef � Pf : �3:4�

4. Hypotheses on the self-similarity
of the hummock shape and energy dissipation

The hypothesis that the hummock shape is self-similar
consists in the assumption that the variation of the shapes of
the underwater and above-water parts of the hummock (the
sail and the keel) is determined by the variation of the
hummock volume during the ridging process. The sail and
the keel of the hummock are at hydrostatic equilibrium in the
course of the process. Hence we obtain the equations

dPr � dPr

dUr
dUr ; dLr � dLr

dUr
dUr ; �4:1�

where Lr � x� ÿ xÿ is the hummock width.
The observational data indicate that the shape of the

hummock sail and keel are often close to a triangular or
trapezoid shape [1]. For a hummock of triangular shape with
the same angle j of the side edges of the sail and the keel
produced in a flat ice cover of the height h (see Fig. 1) the self-
similarity hypothesis yields the following equations

Ur � hLr � AL2
r ;

2Pr � rigLr

�
dh2 � 2Lr�dAh� BLr�

�
;

2hk � Lr tgj ; hs � ghk ; �4:2�
where the coefficients A, B, and g are given by the equations

4A � �1� 2g2� tgj ;

24B � �1� 2g��g tgj�2 ;

g �
�����������
d

1ÿ d

r
; d � rw ÿ ri

rw
:

The self-similarity hypothesis is satisfied in the process of
rafting of two floes (see Fig. 2). Under these conditions the

following equations are satisfied:

Ur � Lr�h� � hÿ� ; 2Pr � ridgLr�h� � hÿ�2 : �4:3�

To determine the dissipative function we shall take

dDr � �s�dQ� ÿ sÿdQÿ� dt5 0 ; �4:4�

in accordance with the general principles of thermodynamics.
Here s�d are the generalized thermodynamic forces which are
determined by the scenario of the ridging process.

The following scenario of the ridging process is quite well-
known [1]. The ice cover from the region with x > x� pushes
against the right-hand edge side of the hummock sail. In the
process the flat ice sheet is broken into pieces of rubble which
fall on both sides of the sail. The edge of the ice sheet pushing
into the hummock from the region with x < xÿ is broken
under the weight of the hummock sail. The hummock keel is
formed of the ice rubble pushed down into the water by the
weight of the hummock sail.

The energy dissipation is determined primarily by the
friction of the ice sheet slipping over the hummock sail on the
right-hand side of the hummock sail. It is assumed, therefore,
that sÿd � 0 while s�d is given by the law of dry friction
according to the equation

s�d � mrighhs ctgj ; �4:5�

where m is the friction coefficient. According to equations
(4.2), the generalized force s�d is a function of the hummock
volume.

In the process of rafting the mechanical energy is
dissipated by means of friction between the ice floes. Assume
that the ice sheet from the region with x > x� is under the ice
sheet from the region with x > xÿ (see Fig. 2). Assuming that
the interaction between the ice sheets is described by the law
of dry friction we obtain the equation

dDr � mrighÿ Lr dLr ; �4:6�
where m is the friction coefficient.

Equations (4.4) and (4.6) yield

s�d � mrigh
ÿx� : �4:7�

Equations (4.4) imply that dDr is a function of the volume
variation dUr.

5. Ridging stress

Let us analyze several simple mathematical models of ridging
in which the stresses required for the ice ridging process are
found from the system of equations (2.6) ± (2.8) as functions
of the hummock volume and the thickness of the ice making
up the hummock.

xÿhÿ h�x�

z

x

Figure 2.
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5.1 Rafting
It can be readily seen that the following equations are satisfied
in the rafting process:

dx�
dt
� v� ; Q� � ÿQÿ � ÿ�v� : �5:1�

The volume and the potential energy of the ice in the rafting
region are given by equations (4.3). Equation (4.6) determines
the dissipation of the mechanical energy. Using equations
(3.1), (3.2), (3.4), and (5.1) we can rewrite equations (2.6) and
(2.8) as

dUr

dt
� ÿ�h� � hÿ��v� ; �5:2�

dPr

dt
� dDr

dt
� sr�v� ÿ �P�f � Pÿf ��v� :

Hence we obtain the following expression for the stress
sr � s� � ÿsÿ:

sr � ÿ�h� � hÿ�
�

dPr

dUr
� dDr

dUr

�
� P�f � Pÿf : �5:3�

5.2 Ice ridging at a stationary wall
Assume that the ridge is at x � 0. The left-hand side of the
hummock coincides with the wall while the right-hand side
is at x � x�. As the hummock shape is self-similar we
obtain

dx� � dx�
dUr

dUr : �5:4�

As Qÿ � 0 we can rewrite equations (2.6) and (2.8) in the
following form:

dUr

dt
� h

�
dx�
dt
ÿ v�

�
; �5:5�

dPr

dUr

dUr

dt
� �s�d ÿ P�f �

�
dx�
dt
ÿ v�

�
� s�v� :

Equations (5.4) and (5.5) yield the stress sr required for ice
ridging at the wall:

s� � ÿ
�
h
dPr

dUr
� s�d ÿ P�f

��
1ÿ h

dx�
dUr

�ÿ1
: �5:6�

The friction stress s�d is a function of the hummock volume
with the thickness h equal to the flat ice sheet thickness and
depends on the scenario of hummock development. If a
hummock is triangular in shape then the stress s�d is given
by equation (4.5).

5.3 Development of a triangular hummock
in the uniform ice cover
Assume that the ice cover has the same properties on both
sides of the hummock and that h� � hÿ � h. Under these
circumstances we can assume that the flows of ice into the
hummock are identical at both sides:

Q� � ÿQÿ � Q : �5:7�

According to equation (5.7), the midpoint of the hummock
moves at the mean velocity of the ice floes making up the

hummock and we have

2Q � dLr

dt
ÿ �v� : �5:8�

Using equation (5.7) we can rewrite equations (2.6) and (2.8)
as

dUr

dt
� 2hQ ; �5:9�

dPr

dUr

dUr

dt
� �s�d � sÿd ÿ 2Pf�Q � sr�v� :

Using equation (5.8) we can find the ridging stress

sr �ÿ
�
h
dPr

dUr
� s�d � sÿd

2
ÿ Pf

��
1ÿ h

dLr

dUr

�ÿ1
: �5:10�

If the ridging process proceeds via the scenario described in
Section 4 then the stress sÿd � 0 and s�d is given by equation
(4.5).

6. Self-sustained oscillations of the ice cover
caused by ridging

Let us consider the development of triangular hummocks at
the boundaries between three ice floes under the effect of
wind-generated stresses. The wind velocity is directed
towards the sea shore. The hummocks and ice floes are
numbered as shown in Fig. 3. floe 3 is stopped by the shore
and, therefore, is stationary. The drift velocities for floes 1
and 2 are v1 and v2. At the initial moment small hummocks
are assumed to exist between the ice floes.

The complete system of equations describing the process
under consideration is

dL1

dt
� ÿQ1 ;

dL2

dt
� ÿQ1 ÿQ2 ; �6:1�

ri hL1
dv1
dt
� f1 � sr;1�Ur;1� ; �6:2�

ri hL2
dv2
dt
� f2 ÿ sr;1�Ur;1� � sr; 2�Ur; 2� ; �6:3�

dUr;1

dt
� 2hQ1 ;

dUr; 2

dt
� 2hQ2 : �6:4�

Equations (6.1) describe the variation of the ice flow size with
the consumption of ice for building up the hummocks.
According to the definitions (5.8), the flows Q1 and Q2 are
given by

2Q1 � dLr;1

dUr;1

dUr;1

dt
ÿ v2 � v1 ;

2Q2 � dLr; 2

dUr; 2

dUr; 2

dt
� v2 : �6:5�

Va

L1 L2

hk;1 hk;2

1 2

Figure 3.
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Equations (6.2) and (6.3) describe the momentum balance for
the ice floes 1 and 2. Equation (5.10) determines the ridging
stresses sr;1�Ur;1� and sr; 2�Ur; 2� as functions of the hummock
volumesUr;1 andUr;2. The stresses generated by the friction of
wind and water at the surfaces of floes 1 and 2 are denoted as
f1 and f2 and given by

f1; 2 � �raCaV
2
a ÿ rwCwv

2
1; 2�L1; 2 ; �6:6�

where ra is the air density, Ca and Cw are the respective
friction coefficients, and Va is the wind velocity.

Equations (5.9) for the ice mass balance yield equations
(6.4). The system of six equations (6.1) ± (6.4) includes six
unknown functions of time L1, L2,Ur;1,Ur; 2, v1, and v2 and is
closed. Equations (4.2) relate the hummock volumesUr;1 and
Ur;2 to the sail heights hs;1 and hs; 2 and the keel drafts hk;1 and
hk; 2.

In numerical simulations we assumed that h � 1 m,
Va � 15 m sÿ1, Ca � 0:003 (see [15]), Cw � 0:005 (see [16]),
and m � 0:3 (see [17]). At the initial moment t � 0 we took
L1�0� � 20 km, hk;1�0� � 0:5 m, hk; 2�0� � 0:1 m, v1�0� �
0:3m sÿ1, v2�0� � 0. Figure 4 presents the numerical simula-
tion results for L2�0� � 500 m (a, b), L2�0� � 1 km (c, d), and
L2�0� � 3 km (e, f).

The initial conditions indicate that the hummock size is
small at the initial moment. The small hummocks can
withstand low compression stresses. This is why in the

model under consideration they are regarded simply as the
zones where the ice cover is weakened and where ridging
occurs.

It can be seen that the ridging process goes on for
approximately 1.3 hours. In this period the hummock keels
grow to approximately 13m.The hummock sail size is close to
4 m. The final dimensions of the hummock produced on the
right-hand side of ice floe 2 are somewhat larger than the
dimensions of the left-hand hummock. The motion of the
large floe 1 is practically monotonic. The motion of floe 2
exhibits oscillations whose period depends on the floe size.
The oscillation periods are approximately 5, 10, and 20 min
for L2�0� � 500 m, L2�0� � 1 km, and L2�0� � 3 km,
respectively. These oscillations can be regarded as self-
sustained oscillations as they are generated only under a
steady-state wind load and are determined only by the
internal structure of the ice cover which depends on the
dimensions of the floes and hummocks. The period of the
self-sustained oscillations decreases as the floe size diminishes.

The self-sustained oscillations are generated owing to the
non-uniform dissipation of the mechanical energy at the floe
edges which is caused by the process of ridging. If at the initial
moment both hummocks have identical dimensions, the
motion of ice floe 2 does not exhibit oscillations. At the
moment when the ridging process is discontinued the
hummocks have similar dimensions irrespective of their
original sizes.
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7. Conclusion

The paper presents a new approach to the modeling of the
ridging process in a drifting ice cover based on the representa-
tion of a hummock by a discontinuity line in the equations of
the ice cover dynamics. The conservation of mass, momen-
tum, and energy yield the relations at the discontinuity line.
The stresses required for hummock formation can be
calculated from the relations at the discontinuity line as
functions of the hummock volume if the hypotheses on the
self-similarity of the hummock shape and the energy dissipa-
tion are satisfied.

The modeling approach was implemented for the case of
flat ice cover when the discontinuity line was straight and the
velocities of the floes making up the hummock were
perpendicular to the discontinuity line. Equations have been
derived for the stresses generated in the process of rafting, in
the case of hummock formation at a solid wall, and in the case
of compression of a uniform ice cover.

Numerical simulations were conducted for the case of two
hummocks formed at the line of contact of three floes of
identical thickness and different lengths. The left-hand side of
the left-hand floe was assumed to be free, the right-hand floe
was stationary and the length of the middle floe was smaller
than the length of the left-hand floe. The wind acting on the
ice surface causes compression of the ice cover. The computer
simulation results demonstrate that after the termination of
the ridging process both hummocks have approximately
identical dimensions. During the ridging process the velocity
of the middle floe exhibits oscillations determined by non-
uniform dissipation of the mechanical energy in the hum-
mocks. The oscillation period decreases with a decrease in the
length of the middle floe. The calculated period varied from
5 min to 20 min. Observations of drifting ice cover under
natural conditions exhibited self-sustained oscillations with
such periods [7].

The equations derived for the ridging stresses can be used
for developing large-scale rheological ice cover models for
appropriate climatic conditions in which the ice cover is
treated as a continuous medium with plastic properties. The
ridging stresses determine the limiting compression stresses
describing the plastic properties of the ice cover.

It is important to calculate the frequencies of the
oscillatory motion of the ice cover accompanying ridging
near the hydrotechnical structures as they should be known
for assessing the effects of ice dynamics on these structures. In
particular, it would be useful to analyze a possible resonance
between the ice oscillations and the natural frequencies of the
structures. Any resonance will enhance the danger of a
catastrophic failure of the structure.

The study was supported by the Russian Fund for
Fundamental Research (projects 99-01-01150 and 99-02-
17005) and by the Norwegian Science Consulate (project
128087/730).
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