
Abstract. Themechanism of diffusion-free (thermoelastic) mar-
tensitic transitions in solids is theoretically examined using a
thermodynamic approach together with a self-consistent-field
order parameter model. Based on the resulting equations, a
theory of smeared martensitic transitions is constructed as a
kinetic equilibrium theory of heterophase structures which
takes into account heterogeneous martensite nucleation and
the interaction of interphase boundaries with various types of
structural defects in real materials. An extensive comparison is
made between the theoretical predictions and the experimental
data on thermoelastic martensitic transformations in alloys
with shape memory. The universal nature of the theory of
diffuse first-order phase transitions is illustrated by applying it
to ferroelectric and ferroelastic transitions in some classical
ferroelectric and high-temperature superconductors.

1. Introduction

During the last few decades thermoelastic martensitic
transformations in metal alloys have attracted much atten-
tion of researchers in view of the discovered potential of these
materials in practical applications in many areas of science,
technology, medicine, and industry. This potential is based on
the characteristic property of alloys undergoing a thermo-
elastic martensitic transition to change their shape both
reversibly and plastically and to restore the shape that existed
before deformation. This phenomenon became known as the
shape memory effect and found applications in space
technology (the Sophor project [1]), in medicine [2, 3], and in
the construction of technical devices [4, 5]. Alloys with shape
memory belong to the class of what is known as `smart'
functional materials, since it is possible to control their
behavior and, to a certain extent, program it.

From the physical viewpoint there are two reasons for
the interest in thermoelastic martensitic transformations.
First, a new remarkable mechanism of plastic deformation
of crystals (in addition to the ordinary dislocation mechan-
ism) operates in such materials. Second, martensitic-shear
structural transformations constitute one more type of
phase transformation in solids. Hence it would be interest-
ing to establish to what extent martensitic-shear structural
transformations obey the general thermodynamic phenom-
enology of phase transitions and to what extent their
mechanism is close to, say, the well-known ferromagnetic
and ferroelectric transitions. The present review is an
attempt to answer these and other questions concerning
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thermoelastic martensitic transformations in crystals with
the shape memory effect.

1.1 The results and history of investigations
For a long time, after the discovery of thermoelastic
martensitic transformations [6 ± 10] and the recognition of
their specific features as those of diffusion-free structural
transitions involving an athermal shear mechanism of atomic
motion [11 ± 17], such transformations have been studied by
metal scientists and material scientists mainly from crystal-
lographic and crystal-geometric viewpoints. This resulted in
determining the crystal structures of martensitic crystals that
form in austenitic matrices in such crystal alloys as CuAlNi,
CuZnAl, AuCd, NiTi, etc. [4 ± 10], which have become
classical examples of alloys with shape memory. The results
of these studies are summarized in various reviews (see, e.g.,
Refs [17 ± 21]). By martensite, we imply here any low-
temperature phase that emerges because of a structural
transition; by austenite, the original high-temperature phase
with a higher symmetry lattice. In most alloys the high-
temperature phase is a variant of a body-centered cubic
(bcc) lattice and the low-temperature phase, of an orthor-
hombic lattice (9R, 18R, 2H).

In view of the sharp increase in the number of studies of
deformation properties of alloys with the shape memory
effect at the beginning of the 1970s [4, 23 ± 34], much
attention of physicists and mechanists has been attracted by
diffusion-free martensitic transformations and related defor-
mation effects.

The mechanists studied the new, martensitic channel of
inelastic strain, modeled it mathematically, and incorporated
themodel into the system ofmacroscopic-plasticity equations
[35, 36]. As for the physicists, they analyzed the formation
mechanism for the nucleation centers of the martensitic phase
in the austenitic matrix and the subsequent growth of
martensitic lamellas (plates), since many experimenters (see,
e.g., Refs [6 ± 12]) found that the structural transformation of
the lattice proceeds nonuniformly throughout the crystal and
that interphase boundaries are formed, which is a character-
istic feature of first-order phase transitions.

Two approaches have emerged. The thermodynamic
approach is based on the classical energy balance between
the free energy of the transition, the surface (interphase)
energy, and the bulk (striction) energy, which makes it
possible to estimate the critical size of the martensitic
nucleation centers [37 ± 41]. Further developments of the
thermodynamic approach were based on analyses of pre-
martensitic [42, 43] and martensitic [44 ± 47] states using the
Ginzburg ±Landau theory of phase transitions. The results of
this approach are discussed in Section 3.

The other approach to experimental and theoretical
studies, which has been intensely developed over the last few
decades, is the analysis of the formation and growth of
nucleation centers of the martensitic phase on a microscopic
level. The point is that the classical mechanism of nucleation
of the new phase via heterophase fluctuations does not
operate in thermoelastic martensitic transformations [48 ±
50]. For instance, according to this mechanism, the volume
density of martensitic nucleation centers should be of order
1020 ± 1023 centers per cubic centimeter, while the actual
volume density is usually 106 ± 1010 centers per cubic
centimeter [50]. This indicates that the mechanism of
nucleation is heterogeneous (which is confirmed by experi-
ments). Optical and electron-microscope studies evidence

that the places where martensitic nucleation centers form are
the crystal's surface [7 ± 10], grain boundaries [51], separate
dislocations [52], dislocation clusters [53], and other crystal
defects [50].

Even at the `optical' stage of studying thermoelastic
martensitic transformations researchers noted [11, 12, 54]
certain similarities between the shear mechanism of structural
reorganization of the lattice under thermoelastic martensitic
transformations and the mechanism of lattice reorientation
related to the formation of elastic twins in the crystal. At that
same time a dislocation mechanism was proposed [55, 56] for
a lattice transformation due to the motion of dislocations
(steps of transformation) along the interphase boundary,
similar to the motion of twinning dislocations along the twin
boundaries [57, 58]. Later the dislocation mechanism was
thoroughly studied by the transmission electron spectroscopy
method [59 ± 70] and theoretically developed and refined by
various researchers (see, e.g., Refs [14, 15, 71 ± 83].

This research established that atomic-sized steps exist at
the interphase boundaries [59, 67 ± 69] and that lattice
dislocations (partial Shockley dislocations) [59, 65 ± 70], the
pole mechanism [84], and in some cases the cross-slip of
dislocations [60, 61] directly participate in the formation of
the martensitic phase. According to these observations, the
microscopic mechanism of the growth of martensitic lamellas
consists in the movement of transformation dislocations
along the interphase boundary (Fig. 1a), which causes a
local transformation of the lattice from the high-temperature
phase to the low-temperature phase (sometimes this occurs
inside lamellas with the density of partial transformation
dislocations gradually increasing [66]). In the reverse marten-
sitic transition the dislocations move in the opposite direction
(Fig. 1b), causing a transition from martensite to austenite.

At present, thermoelastic martensitic transformations are
studied on three scales: a microscopic (Fig. 1), a mesoscopic
(Fig. 2), and a macroscopic (Fig. 3) one. Studies on the
microscopic scale were pointed out above. On the meso-
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Figure 1. Motion of steps along the interphase boundary in direct (a) and

reverse (b) martensitic transformations.
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Figure 2. Transition of austenite A (a) to martensite as a result of the

formation of martensitic (M) and martensitic±twinned (MT) lamellas

(b, c).
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scopic scale, a heterophase martensite-austenite structure is a
system of martensitic plates with a width (thickness) of 0.1 to
100 mm (Fig. 2b) of one or several orientations (variants of
martensite) [6 ± 10, 85]. Usually the plates are in a twinned
state [10], which lowers the inner stresses and the deforma-
tions related to transformations of the lattice into a lower
symmetry form (Fig. 2c). In the process of a martensitic
transformation, the number and width of lamellas increase
until the entire crystal is transformed into a martensitic state
[28]. The same happens with austenite lamellas in the
martensitic matrix in a reverse transition.

By themacroscopic scale, in such cases, one usuallymeans
the macroscopic manifestations of a thermoelastic martensi-
tic transformation in a material, such as the plasticity of the
transformation (Fig. 3a), the effects of superelastic deforma-
tion (Fig. 3b) and shape memory, and some effects related to
the martensitic transition, such as internal friction [86 ± 90],
acoustic emission [91 ± 94], and the resistometric [4], dilato-
metric [95], and calorimetric effects [4, 91]. Characteristic
features of the macroscopic scale are (usually) smooth
dependences and their hysteretic character, i.e. the fact that
the curves for the direct and inverse transitions do not
coincide (see Fig. 3).

1.2 The goal and plan of the review
Although numerous thorough investigations have been
devoted to individual aspects and features of thermoelastic
martensitic transformations, a well-substantiated physical
theory of martensitic transitions, capable of quantitatively
describing the laws that govern such transformations
observed on mesoscopic and macroscopic scales, is not yet
available (as was noted by Tanner andWuttig [96]). The need
to develop such a theory also follows from the experimental
fact that, in real materials, thermoelastic martensitic trans-
formations, their parameters (the transformation tempera-
ture and hysteresis), and macroscopic manifestations are
extremely sensitive to the structure of the material, i.e. to the
presence of impurities [18], disperse particles and precipita-
tions [90], dislocations [97, 98], and radiation-induced and
quenching defects [99, 100].

The character of the observed dependences is influenced
by the sizes of the grains (in polycrystallinematerials) [51, 101]
and of the sizes of the samples under investigation [102]. It
should also be added that thermoelastic martensitic transi-
tions are sensitive not only to temperature and mechanical
stress, but also to other external factors, such as hydrostatic
pressure [103 ± 105], magnetic field [104], and sound [106,
107].

Obviously, without having a proper theory available, one
is forced to develop a separate theoretical model for each of
the above factors. However, there is a more general reason
why there is no quantitative theory of thermoelastic marten-
sitic transformations at present, and that is the absence of a
theory of first-order nonequilibrium phase transitions, or,
specifically, the fact that the theory of the heterophase state
(the theory of phase equilibrium), describing the evolution of
this state in such transitions, is not adequately developed.
Recently, this was pointed out inMartynov's review [108]. As
shown in Sections 2.4 and 2.5, the effect of the above factors
on phase equilibrium renders martensitic transformations
highly sensitivity to them.

In addition to the above reasons, there was one more fact
[46] that hindered the development of a quantitative theory of
thermoelastic martensitic transformations: for a long time
such transitions were considered in isolation from the general
theory of phase transitions, being regarded as a particular
phenomenon (similar to twinning), and the emphasis was on
the leading role of elastic stresses and bulk forces in the origin
and development of the structural transformation of a lattice.
Hence it was assumed, for instance, that the entropy
contribution to the thermodynamic (chemical) force, the
cause of the structural transformation, plays no important
role in martensitic transformations, in contrast to, say,
second-order phase (orientational) transitions in ferromag-
netic and ferroelectric substances [109 ± 111].

The goal of the present review is to demonstrate that
thermoelastic martensitic transformations and the related
diffusion-free shear transformation of the lattice belong to
the same class of phenomena as orientational transitions do.
According to this general approach, the first part of the
review (Sections 2 and 3) develops a phenomenological
theory of first-order diffuse phase transitions [112, 113],
analyzes its corollaries, and quantitatively compares the
theory and experiment using thermoelastic martensitic
transformations as an example [111 ± 113]. This last fact is
important since so far nobody has carried out such a
comparison.

The theory of diffuse phase transitions focuses not on the
process of nucleation of martensite, since this process is
heterogeneous in real materials, but on the expansion and
shrinkage of martensitic lamellas due to various factors, i.e.
the process of phase equilibrium and its evolution. By a
diffuse phase transition, we mean a first-order transition
that requires a finite variation in a parameter (e.g. tempera-
ture, mechanical stress, hydrostatic pressure, etc.) for its
completion. The curves in Fig. 3a provide an example of a
diffuse martensitic transition. The theory does not claim to be
complete and to encompass all aspects of the problem; it is of
a demonstrative nature and reflects only the main laws
governing thermoelastic martensitic transitions in real mate-
rials on mesoscopic and macroscopic scales.

Since the use of the Ginzburg ±Landau theory of phase
transitions in analyzing the mechanism of formation of
inhomogeneous (heterophase) martensitic structures was not
successful, in Section 3 a kinetic theory of the formation of
such structures is developed. From a kinetic (or synergetic)
viewpoint, the formation of such structures is the result of
self-organization in elementary volumes of transformation.

In the second part of the review (Sections 4 ± 6), the theory
of diffuse phase transitions is used to analyze various
deformation phenomena characteristic of thermoelastic
martensitic transformations in alloys with shape memory,
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Figure 3. Deformation of the transformation in direct (1) and reverse (2)
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such as superelastic deformation and the shapememory effect
(Section 4). Section 5 discusses the mechanisms of low- and
high-frequency internal friction in alloys with shape memory,
related to thermoelastic martensitic transitions.

Section 6 demonstrates the universal nature of the theory
of diffuse phase transitions in real materials, using the
example of ferroelastic transitions in classical ferroelectric
and ferroelastic materials and high-temperature supercon-
ductors (YBa2Cu3O6�d). The concluding Section 7 sum-
marizes the review and discusses unresolved problems.

The review contains illustrative material consisting
basically of theoretically revealed regularities (both pre-
viously published and obtained in the present analysis) and
experimental data from the literature where needed for
comparisons. The literature cited contains the main papers
that provide a complete exposition of the history of the
problem and of the current state of investigations.

2. Phenomenology of phase transitions

As noted in Section 1, there are reasons to believe that,
phenomenologically, the structural transformation of a
lattice in a thermoelastic martensitic transformation does
not much differ from the well-known phase transitions in
ferromagnetic and ferroelectric materials. What speaks in
favor of this is the fact that, on mesoscopic and macroscopic
scales, martensitic±shear and orientational transitions in
crystals exhibit some common features, such as the existence
of precursor effects (in particular, premartensitic transforma-
tions [114 ± 117]) above the transition point, the formation of
mesoscopic (domain, twinned, and martensitic) structures,
and the transformation of these structures due to changes in
the temperature or in the mechanical, electric, and/or
magnetic fields applied to the crystal.

On a macroscopic scale, the general features of such
transformations also include hysteresis phenomena (char-
acteristic of all types of transitions) and the similarity in the
hysteresis loops. This correspondence holds also on a
microscopic scale. For instance, the growth or shrinkage of
electric domains in ferroelectric materials is associated with
the motion of steps along the domain boundaries [118 ± 120].

The goal of the quantitative theory of structural phase
transformations is to establish a relationship between the
relative volume fraction j of the new phase and various
factors affecting the formation and evolution of this phase.
Among such factors are temperature T, external fields fIg
(mechanical sik, hydrostatic P, electric E, and magnetic H),
and different structural factors and lattice defects fsg, which,
as experiments show, strongly affect the kinetics and para-
meters of the transition in a real material. These factors
determine the phase state of the material:

j � j
ÿ
T; fI g; fsg� : �2:1�

If the phase state is known, one can establish how various
properties of thematerial (mechanical, acoustic, dilatometric,
etc.) change in the transition process.

2.1 The self-consistent field equation
Within the scope of the thermodynamic approach, a change
in the phase state of a system of interacting particles is
determined by the change in the free energy of the system
DF � DUÿ TDS, where U is the internal energy, S is the
entropy, and T is the temperature of the system. For a two-
phase system consisting of particles of concentrations

(relative fractions) j1 and j2, the expression for DF can be
written in the fairly general form

DF � U1j1 �U2j2 �U12�j1;j2� ÿ TDS�j1;j2� ; �2:2�
where U1 and U2 are the energies of the particles in states 1
and 2, respectively, and U12 is the interaction energy of the
particles in these states. In the models of the self-consistent
field described by equation (2.2) it is usually assumed [109,
121] that the interaction energy can be written in the form
U12�j1;j2� � U0j1j2, where U0 is a constant. This energy
ensures spatial ordering of the particles, i.e. a second-order
phase transition.

The inclusion of additional (nonlinear in the concentra-
tions) terms in the energy U12, e.g. in the form
U12�j1;j2� � U0j1j2�1ÿ gj1j2�, leads to the formation of
local deformations in the lattice, which triggers (if the
parameter g is large) a first-order phase transition. Assuming
that, in (2.2), the variation of the entropy of the crystal in a
transition is primarily related to the energy of mixing of the
states and allowing for the fact that j1 � j and j1 � j2 � 1
yield

DF�j;T � � DU12j�U0j�1ÿ j��1ÿ gj�1ÿ j��
� kT

�
j lnj� �1ÿ j� ln�1ÿ j�� ; �2:3�

where DU12 � U1 ÿU2, and k is the Boltzmann constant.
Upon introducing the notation

Z � j1 ÿ j2

j1 � j2

� 2jÿ 1 ; T0 � U0

2k
; f � 4DF

U0
; �2:4a�

we canwrite the variation (2.3) of the free energy as a function
of the order parameter Z:

f �Z;T � � f0 � 2DU12

U0
Zÿ

�
1ÿ 1

2
g

�
Z2 ÿ 1

4
gZ4

� T

T0

��1� Z� ln�1� Z� � �1ÿ Z� ln�1ÿ Z�� : �2:4b�
For small values of Z the variation of the free energy has the
standard form of a Landau expansion:

f �Z;T � � f0 � f1Z� f2Z2 � f4Z4 � f6Z6 � . . . ; �2:5a�

where f0 is the value of f at Z � 0, and

f1 � 2DU12

U0
; f2 � Tÿ Tc

T0
;

f4 � Tÿ T1

6T0
; f6 � T

15T0
; �2:5b�

Tc �
�
1ÿ 1

2
g

�
T0 ; T1 � 3

2
gT0 :

2.2 First- and second-order phase transitions
Figure 4a depicts the function Df �Z� � f �Z� ÿ f0 at
DU12 � g � 0 for different temperatures. At temperatures
below Tc the initial state of the system Z � 0, f � f0 proves
to be unstable and the system undergoes a second-order phase
transition. The new (equilibrium) state of the system is
determined by the conditions

qDf
qZ
� 0 ;

q2Df
qZ2

5 0 ; �2:6�
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from which follow the well-known relationships for the order
parameter [109, 122]:

Z � tanh

�
T

T0
Z
�
; Tc � T0 : �2:7a�

The first relationship in (2.7a) determines the temperature
dependence of Z (Fig. 5a),

T

T0
� 2Z lnÿ1

1� Z
1ÿ Z

; �2:7b�

and the second one determines the critical temperature of the
phase transition, Tc. At temperatures above Tc, due to
thermal disordering, the relative number of particles (atoms)
in state 1 is equal to their number in state 2: j1 � j2 � 0:5,
Z � 0. At temperatures below Tc one of the states dominates:
Z < 0 or Z > 0. The choice of the state is determined by the
absolute value and sign of the thermodynamic force
�qDf=qZ�Z�0 / DU12.

The inclusion of additional nonlinear higher order terms
�g 6� 0� in the interaction energy gives rise to a peak in the
dependenceDf �Z� (curves 5 and 6 in Fig. 4b, g � 1), which is a
barrier that hinders the transition of the system to an
equilibrium state. According to (2.6), the temperature
dependence of the order parameter and the transition
temperature are given by the following formulas [112]:

T

Tc
� 2Z�1� cZ2� lnÿ1 1� Z

1ÿ Z
;

Tc �
�
1ÿ 1

2
g

�
T0 ; c � g

2ÿ g
: �2:8�

Figure 5b depicts the temperature dependence of Z
according to (2.8) at different values of the parameter g. As
g increases, the transition temperature lowers, and at g > 0:5
the curves acquire a transformation hysteresis loop abcd
(Fig. 5c). The condition g > 0:5 indicates the change from a
second-order to a first-order transition.

The thermodynamic equilibrium transition temperature
T 0c is determined in this case by (2.8) and by the condition
Df �Zc;T 0c � � 0, where Zc is the jump in the order parameter at
the temperature T 0c , which determines the jump in entropy,
DS�Zc�, and the heat of transition, q � T 0c DS�Zc�. This
temperature lies within the interval Tc < T 0c < T 00c , where T

00
c

is the critical overheating temperature in the reverse phase
transition and corresponds to point c on the hysteresis curve
(Fig. 5c).

At sufficiently large values of the parameter g the phase
transition may be completely blocked (curve 5 in Fig. 5b) due
to the elastic deformations accompanying the transition. This
parameter, determining the nonlinearity of the interaction
between atoms in states 1 and 2, was introduced somewhat
formally into expressions (2.3) and (2.4) for the free energy. It
can be shown that it determines the striction deformations
accompanying the transition.

Indeed, in the presence of elastic deformations eik the
expression for the variation in the free energy of the transition
becomes [41, 42]

DF�T; Z; eik� � DF�T; Z; 0� � lZ2eii � 1

2

�
Kÿ 2

3
G

�
e2ii � Ge2ik ;

�2:9�

where l is the striction constant relating the order parameter
to the lattice deformations, G is the shear modulus, and K is
the bulk modulus. Minimizing DF�T; Z; eik� with respect to
deformations and using the equation of equilibrium of elastic
stresses yield formulas for the equilibrium deformations [41]:

eii � ÿ l
K� 4G=3

Z2 ; e2ik � e2ii : �2:10�

By substituting (2.10) into (2.9), we obtain

DF�T; Z� � DF�T; Z; 0� ÿ 1

2

l2

K� 4G=3
Z4 : �2:11�

A comparison of (2.4b) and (2.11) yields

g � 8l2

U0�K� 4G=3� ; �2:12�
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i.e. the parameter g is related to the striction constant l and,
hence, according to (2.1), to elastic deformations.

2.3 Diffuse phase transitions
The classical second-order phase transition (in the case of
ferromagnetic and ferroelectric materials) depicted in Fig. 5a
occurs only in fairly pure, specially prepared crystals. The
temperature dependence (characteristic of such a transition)
of the order parameter near the transition temperature, of the
form Z�T � / �Tc ÿ T �1=2, determines the Curie ±Weiss law
for the temperature dependence of the dielectric constant e�T�
and the magnetic permeability m�T� at temperatures close to
Tc [110, 111]:

e�T � / m�T � / jTc ÿ T jÿm ; m � 1 : �2:13�

In real materials, which contain impurities and other
defects (dislocations and grain boundaries), the Curie ±
Weiss law breaks down: the peak in the temperature
dependence (2.13) becomes bell-shaped and smeared. The
approximation of e�T� and m�T� by (2.13) yields values of m
lying in the interval from 1 to 2 [123 ± 125]. The fact that the
transition becomes diffuse means that the variation of the
phase state of the system is not sudden but smooth and occurs
within a certain temperature interval (the smearing of the
transition) depending, as shown by experiments, on the defect
concentration in the crystal [123, 125].

As for the thermoelastic martensitic transformation in
alloys with shape memory, in view of their inhomogeneous
structure their properties change (in most cases) smoothly
near the transition temperature (Fig. 3a), which suggests that
the phase transitions are diffuse in such materials. Thus, the
smearing of the transition over temperature is independent of
the type of transition (ferromagnetic, ferroelectric, or mar-
tensitic-shear), whichmeans there is a common cause for such
smearing.

In the case of ferroelectric transitions the smearing is
usually assumed to be due to the influence of defects
(dislocations [126]) and composition fluctuations [127] on
the transition temperature Tc. According to this mechanism,
because of the composition fluctuations and the presence of
defects, the formation of critical nucleation centers of the new
phase occurs at different local transition temperatures, i.e.
above or below the nominal transition temperature. It is
assumed that the local temperatures are distributed according
to the Gauss law f �Tc� / exp

�ÿ�Tc ÿ Tm�2=2s 2
�
(here Tm is

the peak temperature in the e�T� dependence, and s is the
standard deviation of the transition temperatures) [123 ± 127];
this specifies an approximately quadratic temperature depen-
dence of the dielectric constant in the case of a diffuse phase
transition [m � 2 in (2.13)].

Another mechanism of formation of diffuse phase
transitions in ferroelectric materials, thermodynamically
more substantiated, was developed in Refs [128 ± 133]. The
main idea here is that the volume of the low-temperature
(ferroelectric) phase increases in the process of the transition
by portions, amounting to 10ÿ18ÿ10ÿ17 cm3 (KaÈ nzig regions
[128, 132]), added to the new phase at the interphase
boundaries. The formation of a KaÈ nzig region requires the
temperature change by a finite value (supercooling, DT).

As the temperature is lowered, the low-temperature phase
increases its volume, and at each temperature there is a phase
equilibrium between the low-temperature and the high-
temperature (paraelectric) phase, determined by the energy

spent for the creation of a KaÈ nzig region. Experiments show
that the volume occupied by this region depends on the
amount of impurities and other defects in the material, i.e. a
KaÈ nzig region is a structurally sensitive parameter that
determines the smearing of the transition over temperature.
Section 6 describes the results of a quantitative analysis of the
temperature curves e�T� determined by this mechanism.

A generalization of the mechanism of diffuse ferroelectric
transitions [128 ± 133] to thermoelastic martensitic transfor-
mations is carried out in Refs [112, 113], and a quantitative
comparison of this mechanism to the results of experiments
involving alloys with shape memory and some ferroelectric
materials is made in Refs [134, 135]. This comparison shows
that themechanism of diffuse phase transitions [112, 113, 129,
131] is fairly universal. Section 2.4 deals with the basic
formulas related to such transitions.

2.4 Theory of diffuse phase transitions
In a point second-order phase transition, the phase transfor-
mation uniformly encompasses the entire volume of the
crystal. As the temperature is lowered, the number of
particles in the new state increases in accordance with the
curve depicted in Fig. 5a. If changes in the state of the system
are accompanied by inelastic deformations, they occur
abruptly (Fig. 5c), but the transformation still encompasses
the entire volume. In a reverse transition, a thermodynamic
hysteresis manifests itself in the transformation.

According to the mechanism described in Refs [112, 131],
the situation is quite different in the case of a diffuse phase
transition. Due to the spatial instability of the transformation
(see Section 3.2) and the formation of nucleation centers of
the new phase with an order parameter Z � 1 near defects, the
lowering of the temperature leads to an increase in the volume
of the embryos and to the formation of a heterophase domain
structure in the crystal. Changes in the relative volume of the
phases occur as a result of the motion of interphase
boundaries via the formation of nucleation centers on these
boundaries (KaÈ nzig regions in the case of ferroelectric
materials) whose volumes are larger than the critical
volume. The interaction between interphase boundaries and
defects leads to two consequences Ð the smearing of the
transition over temperature and the formation of force
hysteresis in the transformation, due to the pinning of the
boundaries by defects.

2.4.1 Basic relations. In view of the fact that in a diffuse
transition the elementary volume of a nucleation center of the
new phase o exceeds the critical value, in equations (2.2) and
(2.3) for the free energy variation we can drop the term U12

describing the interaction between the particles in states 1 and
2 at the interphase boundary, since this term is much smaller
than the bulk energy variation DU12 associated with the
formation of such a nucleation center. The result is the
following expression:

DF�j;T � � DU12j� kT
�
j lnj� �1ÿ j� ln�1ÿ j�� : �2:14�

Minimizing the energy (2.14) according to the first condition
in (2.6), we find that the volume fraction of the new phase
varies with DU12 and temperature as follows [112, 129 ± 133]:

j�T � �
�
1� exp

DU12

kT

�ÿ1
: �2:15�
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Since the change in the relative fraction of the new phase
occurs by volume portions o, the change in the bulk energy is
DU12 � oDu, where Du is the change in the volume density of
internal energy associated with the transition. Thus, phase
equilibrium in a heterophase system is determined by the
difference between the phases in internal energy, Du. At
DU12 � Du � 0 we have j1 � j2 � j � 0:5 and Z � 0.
When Du > 0, phase 2 prevails �j2 > 0:5�, and when
Du < 0, it is phase 1 that prevails �j1 > 0:5�.

Obviously, in the case of the heterophase state (2.15), the
second condition in (2.6) (the phase-state stability condition)
does not hold. Indeed, if the bulk energy of a nucleation
center exceeds the center's surface energy, one embryo can, by
increasing its volume, transform the entire volume V of the
crystal into the new phase state. In a real crystal this does not
happen only because the interphase boundary encounters, in
its motion, an obstacle in the form of various defects present
in the crystal. This stabilizes the heterophase state, since the
volume of the new phase increases in small portions o5V,
which depend on the defect concentration in the crystal (see
below), and requires additional supercooling (superheating)
of the crystal.

Near the temperature of a first-order phase transition the
change in the density of the internal energy can be approxi-
mated by the expression

Du � q
Tÿ Tc

Tc
; �2:16�

where q � DScTc is the heat of transition, withDSc the change
in the entropy due to the transition. Substituting (2.16) into
(2.15), we arrive at an expression for the temperature
dependence of the volume fraction of the new phase:

j�T � �
�
1� exp

�
B

Tÿ Tc

T

��ÿ1
; B � oq

kTc
: �2:17�

Here B is a parameter determining the smearing of the
transition over temperature [112]:

DTM � 4Bÿ1Tc � 4kTc

oq
Tc : �2:18�

Figure 5d depicts the dependence (2.17) at B � 10.
A comparison of the curves depicted in Figs 5a and 5d

shows that a diffuse phase transition differs substantially
from a point phase transition. In a point transition the
temperature derivative of the order parameter near the
transition temperature has, according to (2.7), the form

qZ
qT
/ �Tc ÿ T �ÿ1=2 ; �2:19�

i.e. the derivative tends to infinity as T! Tc. In the case of a
diffuse transition, the temperature derivative of the order
parameter is, according to (2.17), given by the expression
[112, 129]

qZ
qT
� 2

qj
qT
� ÿ B

2Tc
coshÿ2

�
1

2
B
Tÿ Tc

T

��
Tc

T

�2

� ÿ B

2Tc
coshÿ2

�
1

2
B
Tÿ Tc

Tc

�
: �2:20�

At T � Tc the derivative (2.20) is finite: �qj=qT �T�Tc
�

B=4Tc. The second relationship in (2.20) is written on the

assumption that the smearing of the transition over tempera-
ture is small: DTM=Tc � 4=B5 1.

Using (2.14) and the condition q2DF=qj qT � 0, we can
write the expression for the derivative qj=qT as follows:

ÿ qj
qT
� B

Tc

T 2
j�1ÿ j� � BT ÿ1c j�1ÿ j� : �2:21�

This relationship has a clear physical meaning: If j5 1, we
have ÿDj=DT � BT ÿ1c j / oj, i.e. a change in the tempera-
ture byDT brings about a change in the volume fraction of the
low-temperature phase by Dj, which is proportional to the
elementary transformation volumeo and the volume fraction
j of the phase that has already formed. Since, as the
transformation proceeds, the volume fraction of the high-
temperature phase, 1ÿ j, decreases, the transformation rate
also decreases as j! 1, i.e. Dj=DT / oj�1ÿ j�.

To see how the elementary transformation volume o is
related to the concentration C of defects in a crystal, which
hinder the motion of interphase boundaries, we consider a
diagram that illustrates the expansion and elongation of a
martensitic lamella of current width W and length L in the
crystal (Fig. 6). The dark circles indicate point obstacles of
size h � 2r, where r is the radius of an obstacle. Because of the
presence of obstacles, the lamella volume increases by layers
abcd of thickness h, as the boundary surmounts an obstacle.
This requires a finite change DT in the temperature of the
crystal (supercooling or superheating).

Let the average distance between obstacles in the plane of
a boundary be ab � bc � cd � l. Then the elementary
transformation volume is o � hl2, the volume concentration
of obstacles is n � �hl2�ÿ1, and the relative obstacle concen-
tration is C � 4pr3n=3. Hence the elementary transformation
volume o � 4pr3=3C is greater, the larger the effective
volume of the obstacles and the lower the obstacle concentra-
tion. Correspondingly, for the smearing of the transition over
temperature, (2.18), we have

DTM � 3kT 2
c

pqr3
C ; �2:22�

i.e. the smearing is larger, the higher the obstacle concentra-
tion and the smaller the obstacle's radius. Obviously, in the

b c

d
a

L

W

Figure 6. Expansion and elongation of a martensitic lamella in a crystal

containing defects (dark circles) that hinder the motion of interphase

boundaries.
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absence of obstacles �C � 0� the elementary transformation
volume o tends to V, where V is the volume of the crystal, as
DTM ! 0. This means that instead of a diffuse transition we
have a point transition.

2.4.2 Influence of defects and external fields. If there are
external fields fIg acting on the crystal, the change in internal
energy caused by a phase transition is [113]

Du�T; I � � q
Tÿ Tc

Tc
ÿ � i �fIg ; �2:23�

where � i � is the jump in the parameter conjugate to the field,
related to the phase transition. If a mechanical stress sik or a
hydrostatic pressure P or an electric field Ei (for ferroelastic
materials) or a magnetic field Hi (for magnetoelastic materi-
als) acts on the crystal, we have

Du � q
Tÿ Tc

Tc
ÿ xiksik ÿ d0Pÿ piEi ÿmiHi : �2:24�

Here xik and d0 are the shear deformation and dilatation of
the lattice associated with its structural transformation, and
pi and mi are the electric and magnetic moments induced by
the lattice transformation.

At Du � 0 equation (2.24) coincides with the equation for
the balance of forces applied to the interphase (interdomain)
boundary [136, 137]. According to (2.15), a departure from
this balance in one or the opposite direction (Du > 0 or
Du < 0) increases or decreases the fraction of the new phase
in the crystal. The condition Du � 0 at which
j1 � j2 � j � 0:5 determines the characteristic transition
temperature. External fields applied to the crystal shift the
characteristic temperature in accordance with the generalized
Clausius ±Clapeyron equation as follows:

Tc�I � � Tc�0� � Tc�0�
q
�xiksik � d0P� piEi �miHi� ; �2:25�

whereTc�0� is the characteristic temperature in the absence of
fields.

The rate of variation in the volume of the new phase in the
case where an external field is applied to the crystal is
determined by the condition q2DF=qj qI � 0, from which an
expression similar to (2.21) follows:

qj
qI
� BIj�1ÿ j� ; BI � o� i �

kTc
: �2:26�

HereBI is the smearing of the phase transition initiated by the
external field. In the case of a mechanical field, B

�s�
ik �

oxik=kTc.
The influence of defects (impurities, dislocations, and

precipitation particles) on the variation in the internal
energy, Du, and hence on the characteristic transition
temperature can be related to a number of factors. For
instance, if the transformation of the lattice into the low-
temperature phase is accompanied by a change in the elastic
constants and parameters of the lattice, this transformation
will be accompanied by the following change in the intrinsic
energy of defects �ud� [113]:

Du�T; I; nd� � q
Tÿ Tc

Tc
ÿ � i �fIg � �ud� nd ; �2:27�

where nd is the number density of defects in the crystal.

If the defects generate long-range fields (elastic, electric,
or magnetic), their effect on the characteristic transition
temperature can be found by solving a boundary-value
problem for the order parameter determining the size of the
region around the defect (the correlation range) where the
transformation occurs locally [138]. If this range does not
exceed the average distance between defects, the characteristic
temperature is, according to (2.27), a linear function of the
number density of defects. Obviously, a short-range interac-
tion between the interphase boundaries and the defect can pin
the boundaries and lead to a force hysteresis in the
transformation.

Thus, the above phenomenological theory of diffuse
phase transitions (and martensitic transitions, in particular)
allows for the results of the experimental investigations of
thermoelastic martensitic transformations in alloys with
shape memory (Section 1.1). On a microscopic scale this
theory takes into account the presence, at the interphase
boundaries, of transformation dislocations and steps inter-
acting with defects in the crystal, while on a mesoscopic scale
the theory allows for the presence of a heterophase state in the
crystal. In accordance with numerous observations, the
theory allows for the influence of defects and external fields
on the parameters of the transitions. In the next section we
compare the results of the theory with those of macroscopic
experiments on alloys with shape memory.

2.5 Comparison with experimental data
Figure 3a depicts the temperature curves of the deflection of a
crystal of CuAlNi alloy [24] for three-point bending in direct
(curve 1) and reverse (curve 2) thermoelastic martensitic
transformations. Since the deflection is Dl / j, these curves
demonstrate the temperature dependence of the volume
fraction of martensite in the crystal, as it undergoes a
martensitic transition, j�T � � Dl�T �=Dlm, where Dlm is the
maximum deflection after the completion of the transforma-
tion.

According to the model of diffuse phase transitions, the
temperature curves are straight lines in the ln

ÿ�1ÿ j�=j�;T
plane. It follows from (2.17) that

ln
1ÿ j
j
� B

Tÿ Tc � DTf

Tc
; �2:28�

where 2DTf is the transformation hysteresis in temperature.
Curves 1 and 2 (Fig. 7) redrawn in accordance with (2.28) are
indeed straight lines, which makes it possible to determine the
phenomenological parameters of the transformation, i.e.
Tc � 307:5 K, DTf � 7:5 K, B � 118, and DTM � 10:5 K, as
well as the elementary transformation volumeo � �kTc=q�B,
provided that the heat of transition q is known.

In deriving Eqn (2.17) we assumed that this expression
should describe the formation ofmartensite on amacroscopic
scale, i.e. on a scale comparable to the size of the crystal.
Figure 8 depicts data demonstrating that (2.17) and (2.28)
describe the martensitic transformation on a mesoscopic
scale, i.e. on the scale of an individual martensitic lamella.

Curves 1 and 2 in Fig. 8a display the increases and
decreases, respectively, in the width (thickness) W of a
martensitic lamella in a crystal of CuZnAl alloy [100] as the
lamella is cooled and heated. In this case j�T ��W�T �=Wm,
where Wm � 77:5 mm is the equilibrium thickness of the
lamella. Figure 8b shows that, in accordance with (2.28), the
experimental points fit onto a straight line when the lamella is
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cooled. In the reverse transition the points do not fit onto the
straight line given by (2.28) because of the nonuniform (jerky)
motion of the interphase boundary in the reverse transforma-
tion (the arrow in Fig. 8a), due to the pinning of the boundary
by a strong obstacle. The jerky movement of the boundary is
accompanied by acoustic emission [100]. The dashed curves in
Fig. 8a describe the smooth motion of the boundaries in
accordance with (2.17) at Tc � 284 K, 2DTf � 0:45 K,
B � 3:9� 103, and DTM � 0:29 K.

The influence of defects on the parameters of a thermo-
elastic martensitic transformation is demonstrated by Fig. 9.
Curves 1 and 2 schematically illustrate the results of
experiments on a CuZnAl alloy [100], similar to the results
depicted in Fig. 8a. The difference between curves 1 and 2 is
that in the case of curve 2 the expansion and shrinkage of a
martensitic lamella take place not in an annealed crystal
(curve 1) but in a quenched crystal, which contains quench-
ing vacancy loops with a number density of 1015 ± 1016 cmÿ3

and a size of 10 ± 15 nm. Figure 9 shows that the presence of
obstacles Ð dislocation loops Ð in the crystal substantially
changes the parameters of the transition: the characteristic
transition temperature reduces by 10K, while the smearing of

the transition and its hysteresis increase by a factor of five to
six.

The effect of vacancy loops on the smearing of the
transition can be estimated in the following way. The overall
number density of dislocations within the loops is r � 2pRnl,
where R is the loop radius, and nl is the volumetric number
density of loops. The loops intersecting an interphase
boundary serve as an obstacle of height h � 2R for this
boundary. In this case the elementary transformation
volume is o � h=r, and the smearing of the transition in
temperature

DTM � kT 2
c

qh
r � p

kT 2
c

q
nl �2:29�

is greater, the higher the number density of loops.
The evolution of a heterophase system caused by changes

in some factors, such as temperature, mechanical stresses,
pressure, etc., may result from an increase in the number of
martensitic lamellas with their size remaining constant, from
a variation in the size of lamellas with their number remaining
constant, or from variations in both the size and number of
lamellas. In this situation a convenient quantitative indicator
of the martensitic transformation process on a mesoscopic
scale is the number of interphase boundaries at some moment
during the transformation.At the crystal's surface (if only one
form of martensite in present), the interphase boundaries
constitute a system of parallel lines, with the total number of
these lines in the crystal depending on the degree of
transformation.

The pattern of experimental points depicted in Fig. 10
shows how the number of interphase boundaries in a crystal
of CuZnAl alloy [139] changes with the volume fraction of
martensite in the process of a thermoelastic martensitic
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Figure 7. Temperature dependence (in the coordinates of (2.28)) of the

volume fraction j of the martensitic phase in direct (1) and reverse (2)

martensitic transitions in CuAlNi alloy [24].
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transformation. Clearly, as the volume fraction of martensite
increases, the number of interphase boundaries increases,
reaches a maximum when half the crystal transforms into the
martensitic state, and then, as the martensitic state becomes
predominant, diminishes, and approaches zero after the
completion of the transformation.

The evolution of the number of interphase boundaries
depicted in Fig. 10 can be understood if we allow for the fact
that an interphase boundary is a place where the amount of
martensite in the crystal changes. The total area of the
interphase boundaries in the crystal depends on the volume
fraction of particles in phase states 1 and 2, orA � aj1j2 (a is
a proportionality coefficient), since there are no interphase
boundaries without such particles (at j1 � 0 or j2 � 0).

The area of the boundaries reaches its maximum value
Amax at j1 � j2 � 0:5. Bearing in mind that j1 � j,
j2 � 1ÿ j, and a � 4Amax, we can find the dependence of
the area of the interphase boundaries on the volume fraction
of martensite:

A � 4Amaxj �1ÿ j� : �2:30a�

A comparison of (2.30a) and (2.21) shows that in a
heterophase system the variation rate of the volume of the
new phase (determined, for example, by temperature varia-
tions) is proportional to the area of the interphase bound-
aries: qj=qT / A�T �.

The number of interphase boundaries in the crystal,
N � A=A0, is

N � 4Nmaxj �1ÿ j� : �2:30b�

Here Nmax � Amax=A0, with A0 the one-side area of a
martensitic lamella. The curve in Fig. 10 represents the
dependence (2.30b) in the �NÿN0�=�Nmax ÿN0�;j plane,
where Nmax � 1600, and N0 � 380 is the number of bound-
aries remaining after the completion of the transition. At
j � 0:5 the width of the martensitic lamellas reaches a
minimum value of about 5 mm [139].

Thus, our comparison of the results of the theory of
diffuse phase transitions with experimental data on thermo-

elastic martensitic transformations in alloys with shape
memory reveals satisfactory agreement between theory and
experiment.

3. A mesoscopic scale
of martensitic transformations

The results of Fu, Miller, and Xu [139] depicted in Fig. 10
show that in the process of a structural transition a regular
spatially periodic martensitic structure forms in the crystal. In
the course of the transition the structure evolves in the relative
number and size of domains (martensitic lamellas), with the
result that finally the entire volume of the crystal is
transformed into the martensitic state.

There have been several attempts to describe, more or less
extensively, the formation of spatial martensitic structures on
the basis of the Ginzburg ±Landau theory of phase transi-
tions [42 ± 47, 140, 141]. For instance, Barsch and Krumhansl
[43] examined the formation of premartensitic (tweed)
structures. Falk [45, 46] studied the formation of martensitic
structures. The results of these studies will be discussed in
Section 3.1.

In view of the limitations of the results based on the
Ginzburg ±Landau theory, in Section 3.2 we will develop a
kinetic theory describing the formation of martensitic
structures in real crystals. Our consideration does not claim
to answer all questions concerning the formation of such
structures. Its goal is to formulate the existing problems and
indicate possible approaches to solving them. The nonclassic
mechanism of formation of martensitic structures was
discussed by Olson and Cohen [48].

3.1 The premartensitic state
The literature contains several discussions of the reasons for
the formation of a deformation relief with a tweed structure
[114 ± 116] or an `orange-peel' structure [142] on the crystal
surface at temperatures preceding the formation of a full-
scale martensitic structure in the crystal. Tanner [143] and
Wen, Khachaturyan, and Morris [144] assumed that the
formation of this type of structure is the result of deforma-
tions related to fluctuations in the alloy composition and,
hence, are not directly related to the subsequent martensitic
transition.

Noda et al. [145] interpreted the premartensitic state as a
state in which the nucleation centers of the new phase formed
due to fluctuations are unable to combine, because the elastic-
stress relaxation time is longer than the nucleation-center
formation time. As the temperature lowers, this time ratio
changes to an opposite one and the nucleation centers begin
to elastically interact, thus forming martensitic lamellas.

Indeed, the size of deformation domains (1 ± 10 nm)
characteristic of the premartensitic state [43, 142] and the
larger number density of these domains suggest that their
formation may be due to the classic mechanism of hetero-
phase fluctuations. Another factor that speaks in favor of this
is that such pretransitional tweed patterns are characteristic
of other types of phase transitions, e.g. ferroelectric phase
transitions [146].

According to Barsch and Krumhansl [43] and Kartha et
al. [147], a tweed structure on the surface of a crystal is the
result of the formation of nucleation centers of themartensitic
phase at temperatures above Tc, when a full-scale (hetero-
phase) martensitic structure begins to form in the crystal.
Figure 11a depicts the function D f �Z� (curve 1) with a
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Figure 10. Number of interphase boundaries as a function of the volume

fraction of martensite in the CuZnAl crystal [139].
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characteristic maximum related to the striction blocking of
nucleation (see curve 5 in Fig. 4b). The dashed curve in
Fig. 11a represents the first two terms in the Landau
expansion (2.5a):

Df �Z� � f2Z2 � f4Z4 : �3:1�

We see that for 0 < Z < 0:5 this expansion does not differ
markedly from the full function D f �Z�.

The Ginzburg ±Landau equation for the evolution of the
order parameter has the form

g
qZ
qt
� dH2Zÿ dDf

dZ
: �3:2�

Here g and d are parameters determined from microscopic
considerations and t is time. There are different solutions of
equation (3.2) [43, 46] in the case where the potentials D f �Z�
are of the type depicted in Fig. 4. Below we discuss the
stationary �qZ=qt � 0� solutions of this equation in a one-
dimensional case. Integrating (3.2) once, we obtain

d
2

�
dZ
dx

�2

� Df �Z� � f0 ; �3:3�

where f0 is a constant of integration and x is the coordinate.
The horizontal straight line 2 in Fig. 11a represents the
constant of integration f0 < 0.

The phase portrait of equation (3.3) for Df�Z� in the form
(3.1) is depicted in Fig. 11b:�

d
2

�1=2
dZ
dx
� ��Df �Z� ÿ j f0j�1=2 : �3:4�

If the conditions

f2 > 0 ; f4 � ÿj f4j < 0 ; a � 4
j f4j
f 22
j f0j < 1 �3:5�

are met, the equation Df �Z� ÿ j f0j � 0 has two roots:

Z21; 2 �
f2

2j f4j
�
1� �1ÿ a1=2�� : �3:6�

In the general case the equation has three roots, Z3 > Z2 > Z1;
however, since usually Z3 4 Z1, the effect of the third root on
the solution of this equation can be ignored to a first
approximation.

We integrate (3.4) with the following boundary conditions
at the edges of the crystal 0;L:

dZ
dx

����
x�0
� dZ

dx

����
L

� 0 ; j f0j � Df
ÿ
Z�0�� � Df

ÿ
Z�L�� : �3:7�

This yields [43]

Z�X� � � Z1�
1ÿ k2 sn2�X; k��1=2 ; �3:8a�

X � x� x0
L0

; k �
�
1ÿ Z21

Z22

�1=2

:

Here sn �x; k� is the Jacobi elliptic function (sinus amplitudi-
nis),

L0 �
�
d
2

�1=2 �Z2
Z1

dZ�
Df �Z� ÿ j f0j

�1=2
�
�
d
2

�1=2ÿj f4jZ2�ÿ1F �p=2; k� �3:8b�

is the spatial period of the structure [F�p=2; k� is the Legendre
complete first-kind elliptic integral], and x0 is a constant of
integration. The plus and minus signs in (3.8a) correspond to
the two variants of martensite which form a twinning pair.

The deformation of the crystal related to the formation of
the structure (3.8) is

e�x� � xZ��x� x0� � xZÿ�x� ; �3:9a�
where x is the lattice distortion acquired in its structural
transformation. The constant of integration x0 can be found
from the condition of equilibrium of stresses (elastic deforma-
tions) in the crystal,

e�x� � Lÿ1
�L
0

e�x� dx � 0 : �3:9b�

The displacement relief on the crystal surface, related to the
formation of a spatially periodic martensitic structure (3.8) in
the crystal, has the form

u�x� �
�x
0

e�x� dx : �3:10�
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Figure 11. (a) Free energy as a function of the order parameter and (b) the

phase portrait of equation (3.3).
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Figure 12 depicts the dependences on the coordinate x for
the order parameter given by (3.8a) (k2 � 0:2, x0 � L=2), the
deformation relief (3.9a) �em � xZ1�, and the surface relief
(3.10) �um � emL� at small values of the coefficient k in (3.8a)
(at close values of the roots Z1 and Z2). Since
sn �x; k���

k!0
! sin �px=L�, where L � pL0 is the period of

the tweed premartensitic structure, we have, for k2 5 1, the
following approximate expression for the order parameter
(Fig. 12a):

Z�x� � Z1

�
1� 1

2
k2 sin2

�
p
x

L

��
: �3:11�

By combining the conditions (3.5) and the notation (2.5b)
we can conclude that the premartensitic structures form
within the temperature interval

Tc < T <
3g

2ÿ g
Tc ; �3:12�

provided that the parameter of nonlinearity for the interac-
tion of atoms in states 1 and 2 obeys the condition
0:5 < g < 2. At Z1 � 0:35, Z2 � 0:62 (Fig. 11a), and
k2 � 0:68 an estimate of the period of the tweed structure,
L � pL0, based on (3.8b) yields, for d � 10ÿ16ÿ10ÿ15 cm2

and j f4j � 0:15, a value of 5 to 10 nm, which is close to
experimental values.

3.2 Synergetics of martensitic structures
As shown in Section 3.1, a thermodynamic approach based
on the Ginzburg ±Landau theory leads to reasonable results
when analyzing a martensitic state at temperatures above Tc.
If the same approach is used at temperatures below Tc, the
results are not so good and do not describe martensitic
structures observed in real crystals and the evolution of such
structures with the temperature decreasing. The only result
obtained from this theory concerns the formation of
martensitic domain walls [45, 46].

The reason for the ineffectiveness of the thermodynamic
approach in analyzing martensitic structures lies in the fact
that such structures are nonequilibrium heterophase entities
Ð the product of the transition of the crystal lattice from one
structural state into another. The transition proceeds non-
uniformly over the volume of the crystal and is accompanied
by the formation of a large number of interphase boundaries
interacting with various defects in the lattice, which limit the
mobility of the boundaries and smear the transition in
temperature. The martensitic structures that form as a result
of such a transition are kinetic entities, which are in a
quasistatic equilibrium with the thermodynamic force acting
on the interphase boundaries and the force of interaction
between the boundaries and lattice defects.

This raises the question as to how important the critical
fluctuations of the order parameter are in the formation of
martensitic structures. As shown in Section 3.1, such
fluctuations can be related to the onset of a premartensitic
state in the form of martensitic nucleation centers with an
order parameter Z < 1. In a defect-containing material there
should be the clusterization of martensitic nucleation centers
and the formation of elementary transformation volumes
with an order parameter Z � 1 near the defects. The further
growth of these entities is determined by the motion of
interphase boundaries in accordance with equations (2.14)
and (2.15).

According to the kinetic (synergetic) approach, the
formation of martensitic structures is a process of self-
organization of elementary transformation volumes. Since
the transformation occurs through the motion of transforma-
tion dislocations (see Fig. 1), we can write the following
expression for the relative fraction of the martensitic phase:
j � hrl, where r is the number density of the transformation
dislocations (steps) crossing a unit surface area, h is the height
of a step, and l is the mean free path of a transformation
dislocation from obstacle to obstacle. Thus, the elementary
transformation volume per unit dislocation length is ahl,
where a is the lattice constant.

Transformation dislocations, just as ordinary lattice
dislocations [148, 149], may be generated by sources in the
bulk of the crystal or at the crystal's surface and are capable of
multiplicating, annihilating, and diffusing. Without studying
these processes on a microscopic scale we can write an
evolution equation for the number density of transformation
dislocations in the following phenomenological form:

qr1
qt
� n0wv� v

lm
r1 ÿ havr1r2 � lDv

q2r1
qx 2

: �3:13a�

Here v is the velocity of dislocations, n0 is the volumetric
number density of the sources (sinks) of transformation
dislocations, lm and ha are the characteristic multiplication
and annihilation distances of martensitic and austenitic steps
on the interphase boundaries, lD is a characteristic length of

Z �
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Figure 12. (a) Coordinate dependence of the order parameter and (b) the

deformation and (c) surface reliefs of the crystal in the premartensitic

state.
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diffusion of transformation dislocations interacting with
lattice defects, t is the time, x is the coordinate in the direction
perpendicular to the habit plane of martensite, and r1 and r2
are the number densities of martensitic and austenitic
transformation dislocations (steps) at interphase boundaries.

The thermodynamic probability (intensity) of generation
of dislocations �n0 > 0� or of their disappearance in sinks
�n0 < 0�,

w�T � �
�
1� exp

DU12

kT

�ÿ1
; �3:13b�

is determined by expression (2.15a), according to which the
probability w�T � is exponentially small at high temperatures
�T > Tc� and tends to unity when T < Tc.

By substituting j1 � j � hr1l and j2 � 1ÿ j � hr2l
into (3.13) and performing the necessary rearrangements, we
arrive at a kinetic equation for the volume density of the
martensitic phase:

t
qj
qt
� k0w� kmjÿ kaj�1ÿ j� � l2d

q2j
qx 2

; �3:14�

where k 0 � hl2n0, km � l=lm, ka � ha=h, and ld � �llD�1=2
are coefficients that determine the intensity of the corre-
sponding processes, and t � l=v is the characteristic time.

It is interesting to analyze the stationary �qj=qt � 0�
solutions of equation (3.14). To this end it is more convenient
to write this equation in the dimensionless form

2
d2j
dX 2

� ÿ�c0 � 2cmj� 3j2� ; �3:15a�

where we have introduced the following notation:

X � x

L0
; L0 �

�
3l2d
2ka

�1=2

;

c0�T � �
3k0
ka

w�T � ; cm �
3

2

�
km
ka
ÿ 1

�
: �3:15b�

Integrating (3.15a) with allowance for the boundary
condition for an extended crystal,

dj
dX

����
j�1
� 0 ; �3:16�

which implies the presence of a homogeneous martensitic
structure after the completion of the transition, we arrive at
the equation�
dj
dX

�2

� F�j�

� �1ÿ j���1� c0 � cm� � �1� cm�j� j2
�
: �3:17�

The general solution of this equation is a first-kind elliptic
integral

mÿ1 F�y; k� �
�jn

j

dj�����������
F�j�p � x

L0
: �3:18�

The form of particular solutions of equation (3.17)
depends on the values and ratio of the parameters c0 and
cm (3.15b), which determine the coefficient m and the

modulus k of the elliptic integral and the absolute values
and signs of the roots jn of the cubic equation F�j� � 0:

j1 � 1 ;

j2; 3 �
1

2

�
ÿ�1� cm� �

����������������������������������������������
�1ÿ cm�2 ÿ 4�1� c0�

q �
: �3:19�

In turn, according to the notation (3.15b), the parameters c0

and cm depend on the coefficients k0, km, and ka and the
temperature.

An analysis shows that for �1ÿ cm�2 < 4�1� c0� (curve 1
in Fig. 13) the equationF�j� � 0 has a single root, j1 � 1. In
this case the solution (3.18) describes a spatially periodic
structure,

x

L
� 1

4

F �y; k�
F �p=2; k� ; L � 4mÿ1F �p=2; k�L0 ; �3:20a�

with the period L and the width of martensitic lamellas
(Fig. 14a)

DLM � L
2

F �yM; k�
F �p=2; k� ; �3:20b�

where

cos yM � cos y
���
j�0

; cos y � m2 ÿ 1� j
m2 � 1ÿ j

;

k 2 � 1

2
� 1

4

3� cm

m 2
; m 2 � �3� 2cm � c0�1=2 : �3:20c�

In the parameter region A (see Fig. 13) the width of
martensitic lamellas varies from 0 to L=2.

Outside region A the equation F�j� � 0 has three real
roots: c3 < c2 < c1. The solution (3.18) determines in this
case a martensitic structure:

x

L
� 1

2

F �y; k�
F �p=2; k� ; L � 4L0��������������

1ÿ j3

p F �p=2; k� ;

sin y �
�
1ÿ j
1ÿ j2

�1=2

; k �
�
1ÿ j2

1ÿ j3

�1=2

: �3:21a�
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Figure 13.RegionsA,B, andC of the parametersc0 andcm that determine

the existence of the different types of martensitic structures.
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If cm > ÿ�1� c0� (straight line 2 in Fig. 13) the two roots j2

and j3 are negative. Straight line 2 is the boundary of the
parameter region B, where the width of martensitic plates,

DLM � L
F �yM; k�
F �p=2; k� ; sin yM � 1��������������

1ÿ j2

p ; �3:21b�

varies from L=2 to L (Fig. 14b).
The point c at which the dashed horizontal line (see

below) intersects the straight line 2 represents a heterophase
structure that is half martensite and half austenite (Fig. 14c).
Finally, if cm > ÿ�3� c0�=2 (straight line 3 in Fig. 13),
there is a region C where the martensitic structure is almost
homogeneous (Fig. 14d). For the parameter values corre-
sponding to the intersection of the dashed line with the
straight line 3 the martensitic structure becomes homoge-
neous (Fig. 14e).

The dashed straight line in Fig. 13 represents the path
of variation of the parameters c0 and cm specified in
(3.15b) at k0=ka � ÿ5=3 and km=ka � 5=3. The arrow
indicates the direction of their variation as the temperature
lowers. The points a, b, c, d, and e in Fig. 13 correspond to
the martensitic structures in Figs 14a ± e. The volume
fraction j�T � of martensite in each structure is equal to
the ratio of the hatched area to the total area of one
structure period: j�T � � DLM�T �=2L�T �. The curve in
Fig. 14f demonstrates the temperature dependence
w�T � � j�T � according to the theory of diffuse martensi-
tic transitions [see equations (2.15b) and (3.13b)], with the
four dots representing the values of j�T � for the
martensitic structures in Figs 14a ± e. Clearly, these dots
fit well in the curve.

Let us estimate the size of the martensitic lamellas, DLM,
and the average distance L between them. According to the
notation (3.15b), the size is determined by the characteristic
scale L0 � ld � �llD�1=2, where lD� �hl�1=2 is the average
diffusion length for martensitic steps of height h, with l being
their range between obstacles along the interphase boundary.

At h � 1ÿ10 nm and l � 10ÿ100 mm we have
lD � 0:1ÿ1 mm and DLM � L � 1ÿ10 mm, i.e. values close
to those observed in experiments.

Obviously, for a diffuse martensitic transition the char-
acteristic temperature corresponds to that moment of transi-
tion when the heterophase structure is half martensite and
half austenite. This is the case when the second root of the
equation F�j� � 0 vanishes, i.e. straight line 2 in Fig. 13
intersects the dashed line. The intersection point corresponds
to the equality

��c0

ÿ
Tc�s�

��� � 1� cm�s�, where Tc�s� is the
characteristic transition temperature dependent on the
structural factor s. Taking into account the notation (3.15b)
and expression (3.13b) for the thermodynamic probability
w�T � at U12 � oq �Tÿ Tc 0�=Tc 0, where Tc 0 is the transition
temperature with the effect of the structural factor ignored,
we arrive at the following expression for the characteristic
temperature:

Tc�s� � Tc 0

�
1� B ÿ1 ln

�
3jk0jÿ

1� cm�s�
�
ka
ÿ 1

��
: �3:22a�

As a structural factor, we examine the effect of the size of
grain in polycrystalline samples on the characteristic transi-
tion temperature. A number of researchers found [150 ± 152]
that if the grains are small, the characteristic temperature
increases logarithmically with the grain size. For sufficiently
large grains, the dependence reaches a plateau.

The effect of grains on the characteristic transition
temperature may be related to the fact that grain boundaries
serve as barriers for transformation dislocations, limiting
their free path, with the result that the parameter cm (3.15b)
becomes dependent on the grain size d:

cm�d � �
3

2

�
l
lm
� l
d
ÿ 1

3
ka

�
: �3:22b�

The substitution of this expression into formula (3.22a)
yields the dependence of the characteristic temperature on
the grain size, similar to the dependence observed in
experiments [150]:

Tc�d � � Tc 0

�
1� B ÿ1 ln

�
A

1� dm=d
ÿ 1

��

� Tc 0

�
1� B ÿ1 ln

�
A

d

dm

��
; �3:22c�

A � 6jk0j
3l=lm ÿ ka

; dm � 3l
3l=lm ÿ ka

:

From (3.22c) it follows that as the grain size d increases, the
characteristic temperature Tc increases and, for d5 dm,
becomes equal to the characteristic temperature for a single
crystal, Tc 0.

Thus, the unconventional kinetic approach to the problem
of formation of martensitic structures makes it possible to
understand their morphological features, to correctly esti-
mate the physical scale of the phenomenon, and to explain
such unusual (from the viewpoint of thermodynamics) facts
as the effect of the grain size on the characteristic transition
temperature. The kinetic approach is based on the results of
active electronic-microscope investigations of the mechanism
of formation ofmartensitic structures done in the last decades
[59 ± 70].
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4. Deformation of crystals
with a shape memory effect

As a crystal lattice undergoes a thermoelastic martensitic
transition, its transformation to a less symmetric form is
accompanied by shear deformations xik and dilatations
x0 � xii of the lattice. If the transformation encompasses
volumes of the crystal comparable to the crystal's size, the
shape of the crystal changes. The deformation of the crystal is
directly proportional to the relative transformation volume
(2.1):

eik � milxlk j
ÿ
T; fIg; fsg� ; �4:1�

where mil are the coefficients determining the orientation of
the habit plane and the direction of shearing with respect to
the crystallographic axes, and fIg and fsg are, respectively,
the sets of external fields applied to the crystal and the
structural factors influencing the kinetics of the martensitic
transition.

4.1 Superelastic deformation
Formula (4.1) determines the pseudoelastic, or superelastic,
deformation of a crystal due to the martensitic transforma-
tion occurring in the crystal. In the absence of external
stresses, the formation of martensite is not accompanied by
changes in the shape and size of the crystal, since the action of
the thermodynamic forces causing the transformation is
isotropic and produces self-accommodated (twinned) layers
of the martensitic phase [14, 76]. In the case of cubic lattices,
the full accommodation of a layer generally requires four
types of martensite, and altogether the crystal may contain 24
nonequivalent variants of martensite, with the orientational
factor differing in absolute value and sign.

If, for example, a uniaxial stress s is applied to the crystal,
all variants that are unfavorably oriented in relation to the
stress degenerate, which causes the size of the crystal to
change. The contribution of each variant to the deformation
e depends on the absolute value and sign of the orientational
factor mk and the volume fraction of this variant in the
crystal, j�mk�:

e �
XN
k�1

ek ; ek � mkxk j�mk� ; �4:2�

where N is the total number of variants of martensite.
Let us suppose, for instance, that there are two self-

accommodated variants with orientational factors m1 and
ÿm1. Then, for a diffuse martensitic transition, with allow-
ance for (2.15a), (2.24), and (4.2), we obtain

e�T; s� � m1x1

(�
1� expB

�
Tÿ Tc

Tc
ÿm1s

sM
� sf
sM

��ÿ1
ÿ
�
1� expB

�
Tÿ Tc

Tc
�m1s

sM
� sf
sM

��ÿ1)
: �4:3�

Here x1 is the shear deformation of the lattice under structural
transformation, sM � q=x1, and sf is the stress due to the
pinning of interphase boundaries by obstacles, which deter-
mines the force hysteresis of the transformation. Equation
(4.3) implies that at zero stress the crystal is not deformed.

The dependence of the stress s on the superelastic
deformation (strain) e can be found by inverting (4.3);
however, in view of the cumbersome structure of the

expression and the strong dependence of the volume fraction
of martensite on the orientational factor, it is sufficient, to
illustrate the curve s�e�, to leave only the first term in (4.3).
Then [134]

s
sm
� � sf

sM
� Tÿ Tc

Tc
� B ÿ1 ln

e=em
1ÿ e=em

; �4:4�

sm � sM
m1

; em � m1x1 :

Figure 15 depicts the shape of this dependence in the
process of loading (curve 1) and unloading (curve 1 0) the
crystal (T=Tc � 1:15, sf=sM � 10ÿ2, and B � 40). The
dashed curve represents the dependence (4.4) in the absence
of force hysteresis of transformation. A drop in the deforma-
tion temperature to T=Tc � 1:08 leads to a decrease in the
martensitic yield stress, while a rise in the friction stress to
sf=sM � 2� 10ÿ2 leads to a widening of the hysteresis loop
(curves 2 and 2 0). At temperatures below the transition
temperature (e.g. T=Tc � 0:98) superelastic deformation
becomes irreversible (curves 3 and 3 0). The deformation can
be fully restored if the unloaded crystal is heated to a
temperature above the transition point (see Section 4.2).

The current slope of the superelastic deformation curve in
Fig. 15 is determined by the deformation (martensitic)
hardening coefficient y � ds=de. According to (4.4),

y � 1

4
ym

�
e
em

�
1ÿ e

em

��ÿ1
; ym � sm

Bem
; �4:5a�

where ym is the minimum value of this coefficient at
e=em � 0:5. In Ref. [134] it is shown that the parabolic
dependence of y on superelastic deformation is corroborated
by experiments. Allowing for the fact that e=em � j, we can
write the following expression for the martensitic hardening
coefficient (more precisely, its inverse):

ym
y
� 4j�1ÿ j� : �4:5b�

This formula clearly demonstrates the link between the
coefficient y and the kinetics of the martensitic transition.

In conclusion of this section two remarks are in order. The
first one concerns the physical meaning of formula (4.4). The
left-hand side of this formula contains the deforming stress s.
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Figure 15. Superelastic deformation curves at T=Tc equal to 1.15 (1), 1.08

(2), and 0.98 (3).
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The right-hand side contains three terms, which describe the
resistance to deformation. The first term is the `dry friction'
stress, determined by the pinning of the interphase bound-
aries by lattice defects. The second one is the thermal stress
sT � sm�T=Tc ÿ 1� due to the changes in the internal energy
of the crystal in its structural transformation. Finally, the
third term represents the contribution to the resistance to
deformation from the changes in the crystal's entropy in such
a transformation: sS � �sm=B� ln

ÿ
j=�1ÿ j��. This stress sS

ensures the `rubber-like' nature of the superelastic deforma-
tion of the alloy, while the thermal stress sT at T > Tc and
s � 0 makes the transformation reversible.

The second remark concerns the deformation of poly-
crystalline materials. It is obvious that a superelastic
deformation in a polycrystalline material is equal to the sum
of deformations of individual crystallites and depends on the
texture of the material, i.e. on the distribution of grains over
different orientations. Bearing in mind that each crystallite
with a cubic lattice may contain up to 24 different variants of
martensite, we can write, to a first approximation, the
following expression for the deformation of a polycrystal
under uniaxial loading:

e�T; s� � x1

�mmax

ÿmmax

j�T; s;m� f �m� dm ; �4:6�

where f �m� is the distribution of grains over orientations.

4.2 The shape memory effect
Figure 15 shows (curves 3 and 3 0) that, as the crystal is
unloaded, the irreversible deformation can be of order
em � m1x1. At values x1 � 0:05 ± 0.15, characteristic of metal
alloys, and m1 � mmax � 0:5, the `frozen' superelastic defor-
mation may be of order 5 ± 10%. The most surprising
property of such alloys is that their deformation can be
entirely restored (`defrosted') simply by heating the alloy to
a temperature above the transition temperature. The thermal
reversibility of superelastic deformations is precisely the
essence of the shape memory effect (SME) [4, 25, 30], which
plays an important role in applications.

Figure 16a illustrates the observation of the shape
memory effect in an alloy, i.e. the deformation of the alloy
at temperatures below Tc to, say, the magnitude em (indicated
by the vertical arrow) with the subsequent heating of the the
loaded alloy to a temperature above Tc. The curve in Fig. 16a
demonstrates the temperature dependence of the recoverable
deformation [134]

e � em

�
1� expB

�
Tÿ Tc

Tc
ÿ sf
sM

��ÿ1
�4:7�

at B � 102 and sf=sM � 5� 10ÿ2. If the stress sf contains a
fraction of internal elastic microstresses, which break down
the thermal isotropy of the transformation, a new decrease in
temperature can restore the previous deformation of the alloy
that was deformed at a low temperature. This procedure can
be repeated many times, as shown in Fig. 16b, which
illustrates the multiple shape memory effect.

For a different sequence of deformations and temperature
variations a reversible shape memory effect is possible. The
sequence is as follows: the cooling of the loaded alloy to a
temperature below Tc (curve 1 in Fig. 16c), followed by the
unloading of the alloy (the vertical arrow), the deformation of
the crystal by a stress opposite in sign to the state in which the
initial deformation is fully balanced, and the heating of the

crystal to a temperature above Tc. This heating leads to a
partial restoration of both the primary and secondary
(opposite in sign) deformations, which is illustrated by curve
2 obtained through adding the primary and secondary shape-
memory deformations. As seen from Fig. 16c, because of the
partial balance of these deformations, the total deformation
De proves to be smaller than the primary and secondary
deformations taken separately.

Likhachev, Kuz'min, and Kamentseva [30] and Malygin
[134] describe other sequences of deformation and heating ±
the cooling of a crystal with shape memory which is loaded,
for instance, in the austenitic state and whose shape is
recovered by increasing the temperature. An example of a
complex martensitic-austenitic shape memory effect is given
by curves 1 and 2 in Fig. 16d. The flexibility, workability, and
programmability, all of which are inherent in the shape
memory effect, are basic to numerous applications of this
effect.

4.3 Hysteresis of the stress ± strain curves
The stress ± strain curve is one of the main characteristics of
crystals with shape memory. It reflects, on a macroscopic
scale, the thermoelastic martensitic transformation that takes
place in the crystal. If the loading is cyclic, then the curve
acquires a characteristic loop shape because of transforma-
tion hysteresis. Below we analyze how the smearing of the
phase transition affects the change in the character of the
hysteresis loops.

In the case of a point phase transition, in view of (2.4b),
(2.24) �q � 0�, and the condition of phase equilibrium (2.6),
have at the following stress ± strain dependence:

s
s0
� ÿ

�
1ÿ 1

2
g

�
e
e0
ÿ 1

2
g

�
e
e0

�3

� 1

2

T

T0
ln

1� e=e0
1ÿ e=e0

; �4:8�

where s0 � U0=e0 and e0 � x1.
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Figure 16. Types of shape memory effect: (a) single, (b) multiple, (c)

reversible, and (d) martensitic-austenitic.
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Figure 17a depicts the stress ± strain curves corresponding
to (4.8) for a crystal undergoing a second-order phase
transition �g � 0� under cyclic loading. When g > 0:5, i.e. in
a first-order phase transition, the picture remains basically
the same. We see that at temperatures above the transition
temperature �Tc � T0� the dependence s�e� (curves 1 and 2) is
nonlinear, but hysteresis is absent. Hysteresis appears at
temperatures below the transition temperature (curves 3 and
4) due to the existence of a range of unstable deformations
(dashed curves), when the deformation hardening coefficient
ds=de becomes negative.

The character of the hysteresis loop is quite different in a
smeared martensitic transition. If we take into account (4.4)
and the cyclic nature of loading, we have in this case

s
sm
� � sf

sM
� Tÿ Tc

Tc
� B ÿ1 ln

1� e=em
1ÿ e=em

: �4:9�

Figure 17b shows the function s�e� for different temperatures
according to this equation at B � 102 and sf=sM � 2� 10ÿ2.
We see that as the temperature is decreased, the deforming
stresses diminish, while in a point transition they increase.

Also, in a diffuse transition there is no distinct tempera-
ture at which hysteresis emerges. Finally, the stress ± strain
curves for a diffuse transition are stable for all deformations
�ds=de > 0�, since an increase in the volume of the martensi-
tic phase requires an ever-increasing stress because of the
interaction between the interphase boundaries and obstacles.

4.4 Acoustoplastic effect
As shown by experiments done by Sapozhnikov et al. [106,
107], if in addition to applying a constant stress s to a crystal
undergoing a thermoelastic martensitic transition one applies
an oscillating stress sa cosot of acoustic or ultrasonic
frequency, the result is a change in the deforming stress.
This phenomenon has been observed and widely studied in

the case of ordinary dislocation plasticity and is known as the
acoustoplastic effect (APE) [153 ± 157]. Obviously, acoustic
(or ultrasonic) waves acting on a crystal affect the kinetics of
the phase transition and favor the increase or decrease of
superelastic deformation.

In the conditions of uniaxial deformation at a constant
rate _e0, the total deformation e of the crystal is equal to the
sum of an elastic deformation s=E (E is the elastic modulus)
and a superelastic, or pseudoelastic, deformation ep�T; s�:

e � _e0t � s
E
� ep�s;T � : �4:10�

The superelastic deformation ep is determined by expression
(4.3). If the crystal is loaded by acoustic stresses, the crystal
deformation is given by the formula

e � s�

E
� e�p �T; s; sa� ; �4:11�

where (with allowance made for the superposition of constant
and oscillating stresses)

e�p �T; s; sa� �
�2p
0

ep�T; s� sa cosot� d�ot� : �4:12�

Figure 18a depicts the curves of the loading and unloading of
a crystal in the absence (curves 1 and 2) and presence (curves 3
and 4) of acoustic waves with the amplitude sa � 0:2sM
action on the crystal. The curves were constructed according
to equations (4.10) and (4.11) with T=Tc � 1:3, B � 40,
m1 � 0:5, sf=sM � 0:1, sM=Eem � 0:1, and em � m1x1.

The figure shows that, if an oscillating stress is applied to
the crystal, the average deforming stress changes. This change
may be either a decrease or an increase in the stress.
According to (4.10) and (4.11), the acoustoplastic effect is

Ds�T; s; sa� � s� ÿ s � E
�
ep�T; s� ÿ e�p �T; s; sa�

�
: �4:13�
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It depends on the temperature, the current deforming stress,
and the oscillation amplitude. Figure 18b depicts the
dependence of the acoustoplastic effect on the deforming
stress under the loading (curve 1) and unloading (curve 2) of
the crystal, with Dsm � Eem. In contrast to the ordinary
dislocation acoustoplastic effect, in the case of a martensitic
transformation the effect of an oscillating stress on the crystal
may lead not only to a decrease but also to an increase in the
deforming stress.

The inversion of the sign of the acoustoplastic effect under
high stresses is due to the fact that at low stresses [158]

Ds � Dsmj�T; s�
�
1ÿ I0

�
B
m1sa
sM

��
< 0 ; �4:14a�

while at high stresses

Ds � Dsmjÿ1�T; s�
�
I0

�
B
m1sa
sM

�
ÿ 1

�
> 0 ; �4:14b�

where I0�x� is the zero-order modified Bessel function. These
two formulas show that the acoustoplastic effect increases
with the amplitude of the oscillating stress sa.

4.5 Effect of hydrostatic pressure
Another example of external influences on martensitic
transformations is the effect of hydrostatic pressure on the
superelastic deformation related to this transformation. The
effect of hydrostatic pressure on thermoelastic martensitic
transformations is due to the fact that, according to (2.24), it
affects the phase equilibrium in the crystal if the structural
transformation is accompanied by a lattice dilatation x0.

If we take into account (2.24), the dependence of the
volume fraction of the martensitic phase on pressure P can be
written as

j�T;P� �
�
1� expB

�
Tÿ Tc

Tc
� P

P0

��ÿ1
; �4:15�

where P0 � q=x0. If x0 < 0, applying hydrostatic pressure to
the crystal leads to a decrease in the amount of martensite.

Figure 19a depicts the temperature dependence of the
volume fraction of martensite in the absence (curve 1) and
presence (curve 2) of hydrostatic pressure at B � 40. Apply-
ing a pressure P � 0:08P0 to the crystal at point a leads to a
sudden drop (ab) in the amount (volume fraction) of
martensite by Dj � 0:6. Figure 19b demonstrates the
dependence j�P� according to (4.15) for different tempera-
tures. Such behavior was observed in the experiments of
Ullakko, Sundquist, and Pietikainen [159]. In accordance
with (4.15), the characteristic transition temperature either
linearly increases [104] or linearly decreases [103], depending
on the sign of x0.

Hydrostatic pressure also affects the deformation proper-
ties of crystals with shape memory [103, 105]. Figure 19c
depicts the temperature curves for shape-memory deforma-
tion according to (4.15) in the absence (curve 1) and presence
(curve 2) of hydrostatic pressure. Applying the pressure
P � 0:08P0 to the crystal at point a leads to a lag (ab) in
deformation as a function of temperature in a repeated shape
memory effect. Such steps in the curves representing the shape
memory effect, which appeared as hydrostatic pressure was
applied to the crystal, were observed by Belyaev et al. [103]
and Egorov, Belyaev, and Lobachev [105].

Figure 19d demonstrates the effect of hydrostatic pressure
of the superelastic deformation curve

e�T; s;P� � s
E
� em

(�
1� expB

�
Tÿ Tc

Tc
ÿ s
sm
� P

P0

��ÿ1
ÿ
�
1� expB

�
Tÿ Tc

Tc
� s
sm
� P

P0

��ÿ1)
�4:16�

in the absence (curve 1) and presence (curve 2) of pressure at
sm=Eem � 0:1, B � 40, and T=Tc � 1:2. Clearly, removing
the pressureP � 0:08P0 at point a produces a jump (ab) in the
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value of superelastic deformation. Such jumps in the super-
elastic deformation curves for the TiNi alloy, which appeared
after the hydrostatic pressure was removed and re-applied to
the crystal, were observed by Egorov, Belyaev, and Lobachev
[105].

5. Internal friction in crystals
with shape memory

Numerous experiments have shown that in crystals with
shape memory there is a special mechanism of energy
scattering due to mechanical vibrations. This mechanism is
related to the movement of interphase and twin boundaries.
Themost thoroughly studiedmechanism is the low-frequency
one (1 ± 103 Hz), or the so-called transient internal friction
[89, 160 ± 166]. According to recent reports by Sapozhnikov et
al. [106, 107], some results concerning high-frequency
(102 kHz) internal friction in such crystals have also been
obtained.

5.1 Low-frequency internal friction
Low-frequency internal friction emerges in the process of
variation (increase or decrease) of the temperature in the
martensitic transition temperature range. Such friction is
determined by the energy scattered by the variable stress sa
in the course of one oscillation cycle, DW � saDe, where
De � x1Dj and Dj � �dj=dT �DT are, respectively, the
superelastic deformation and increment of the volume
fraction of martensite caused by a variation DT � _T=o0 in
temperature during one oscillation periodoÿ10 , with _T the rate
of temperature variation.

Bearing in mind that, in the absence of a transformation,
the oscillation energy is W � �2sa�2=E, we arrive at the
following expression for the low-frequency internal friction
[160, 162]:

Qÿ1�T � � DW
W
� 1

2

x1E
sa

_T

o0

dj
dT

: �5:1a�

Next, in view of (2.21) and (2.17), we find that, according to
the theory of diffuse martensitic transitions [135],

Qÿ1�T � � 4Qÿ1m j�T ��1ÿ j�T �� ; Qÿ1m � 1

8

x1E
sa

_T

o0Tc
B :

�5:1b�

Figure 20a depicts the temperature dependence of the low-
frequency internal friction in a crystal as it is heated (curve 1)
and cooled (curve 2), according to (5.1b) �B � 102� with
allowance for (2.17), interphase boundary pinning
�sf=sM � 2� 10ÿ2�, and low-frequency internal friction in
single-phase states of martensite �Qÿ1M � and austenite �Qÿ1A �:

Qÿ1�T � � Qÿ1M j�Qÿ1A �1ÿ j� � 4Qÿ1m j�1ÿ j� : �5:2�

The dashed curve represents the temperature dependence of
Qÿ1 in the absence of low-frequency internal friction
(Qÿ1M =Qÿ1m � 0:2 and Qÿ1A =Qÿ1m � 0:1). Such hysteresis
curves are characteristic of experiments on low-frequency
internal friction in alloys with shape memory [161 ± 163].

Figure 20b depicts the temperature dependence of the
internal friction coefficient for Au ±Cd alloy [161] minus the
background component related to friction in the single-phase
states of martensite and austenite. To establish whether the
temperature dependence of the internal friction coefficient for
this alloy corresponds to (5.1b), it is convenient to write the
latter in the form

ln
1� ��������������������

1ÿ R�T �p
1� ��������������������

1ÿ R�T �p � B
Tÿ Tc

Tc
; R�T � � Qÿ1�T �

Qÿ1m

: �5:3�

The results of processing the data for the Au ±Cd alloy
according to (5.3) are given in Fig. 20c. We see that in the
coordinates (5.3) the temperature dependence of internal
friction in this alloy is indeed a straight line. The slope of the
straight line yields B � 51.

In agreement with equation (5.1b), the experimental data
confirm the dependence of the low-frequency internal friction
on the rate of temperature variation [162, 163], on the
frequency and amplitude of the oscillations [164], and on the
concentration C of disperse particles in the crystal [90]. The
last factor is due to the dependence [see (2.17) and (2.22)] of
the smearing degree of the martensitic transition on the
concentration of obstacles: DTM / B ÿ1 / C [113].

5.2 High-frequency internal friction
High-frequency (102 kHz) internal friction has been observed
in crystals of CuAlNi alloy [165, 166] at constant temperature
and stress s. The damping of a high-frequency oscillation
with the amplitude ea � sa=E is related to hysteretic losses.
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and (5.2); (b) in Au ±Cd alloy [161]; and (c) the results of processing the data (b) for Au ±Cd alloy according to (5.3).
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For the decrement of oscillations with a hysteretic internal
fraction we have the following expression:

dh � DWh

W
:

Here

DWh �
�2sa
0

s� dep � s�ep

����2sa
0

ÿ
�2sa
0

ep ds� ; �5:4�

W � �2sa�2=E, and the pseudoelastic deformation
ep�T; s� s�� is given by (4.3), s� being the oscillatory stress.

The substitution of the explicit expression for the
pseudoelastic deformation into (5.4) and the calculation of
the integral yield the dependence of the decrement on
temperature, stress, and the amplitude of oscillatory stresses
[158]:

dh�T; s; sa� � dm
s 2a

(�
2sa

1� Aÿ exp �ÿ2sa� ÿ
2sa

1� A� exp �2sa�
�

ÿ
�
ln

exp �2sa� � Aÿ
1� Aÿ

� ln
exp �ÿ2sa� � A�

1� A�

�)
; �5:5a�

where

dm � em
2

B
E

sm
; sa � B

sa
sm

;

A��T; s; sa� � expB

�
Tÿ Tc

Tc
� s
sm
� sf
sM

�
: �5:5b�

Figure 21 depicts the amplitude dependence of the
internal friction (B � 40, T=Tc � 1:1, and sf=sM � 10ÿ2) in
the process of loading the crystal, according to (5.5a) for
various reduced stresses s=sm. Clearly, the curves represent-
ing dh�sa� have, in accordance with the results of Hansch and
Torok [165] and Koshimitzu and Benoit [166], sections of
amplitude-independent and amplitude-dependent internal
friction. For the CuAlNi alloy, sm � 40 MPa [28] and
E � 6:7� 104 MPa; therefore, according to the data
depicted in Fig. 21, the deformation ea � sa=E � 6� 10ÿ6

corresponds to the beginning of amplitude-dependent inter-
nal friction [165, 166].

The general expression (5.5a) suggests that as sa ! 0 the
amplitude-independent internal friction is determined by the
expression

dh�T; s; 0� � dm

(�
1� coshB

�
Tÿ Tc

Tc
ÿ s
sm
� sf
sM

��ÿ1
�
�
1� coshB

�
Tÿ Tc

Tc
� s
sm
� sf
sM

��ÿ1)
: �5:6�

We see that the dependence of the decrement on stress is
represented by a curve with a maximum at s ���Tÿ Tc�=Tc

�
sm if T > Tc and at s � ��Tc ÿ T �=Tc

�
sm if

T < Tc.
As for the temperature dependence of amplitude-indepen-

dent internal friction, it has at s � sf � 0, according to (5.6),
a maximum near the transition temperature Tc. As the stress
increases, the temperature dependence ceases to be single-
valued: two maxima of internal friction appear to the right
and left of the transition temperature [158].

6. The universal nature
of diffuse phase transitions

In Sections 4 and 5 we established that the theory of diffuse
phase transitions provides a fairly good description, both
qualitative and quantitative, for the experimental data on
thermoelastic martensitic transformations in crystals with
shape memory. In this section we will see this theory is of a
fairly universal nature and phenomenologically is also
capable of describing other types of transition (such as
ferroelectric and ferroelastic) and of predicting the effect of
these transitions on the properties of the respective crystals.
This universality is caused by the emergence of interphase
boundaries and hence the heterophase state of the crystal in
the transition process.

6.1 Acoustic emission
Acoustic emission accompanying a martensitic transforma-
tion can serve as an indication for the emergence of interphase
boundaries and a heterophase state in the crystal undergoing
this transformation [167, 168]. Experiments show that
acoustic emission is related to the emergence, expansion,
and disappearance of individual martensitic lamellas. To
establish a relationship between the dynamic of acoustic
emission and the dynamics of the martensitic transforma-
tion, it is important to bear in mind that the total acoustic
emission time tA is a constant fraction of the total transition
time, tA=tM � 10ÿ3, irrespective of the composition of the
alloy and the rate of temperature variation [168].

Allowing for the fact that tA=tM � DVA=V (where DVA is
the volume fraction of martensite whose formation is related
to acoustic emission), we arrive at the following relationship
between the number of acoustic pulses, NA / DVA / V / j,
and the volume fraction of the martensitic phase, j�T �:

NA

NS
� j�T � ; �6:1�

where NS is the total number of acoustic pulses during the
transition.

In addition to the number of pulses, their rate of emission
_NA (the number of pulses per unit time) is also determined
in acoustic measurements. Experiments show (see, e.g.,
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Figure 21. Amplitude dependence of the hysteretic internal friction at
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Ref. [167]) that, in the transformation, the pulse emission rate
_NA first grows, reaches amaximum _Nmax, and then diminishes
to zero. Since in a thermoelastic transformation

_NA � dNA

dT
_T / dj

dT
;

we arrive at an equation describing the dynamics of acoustic
emission in the transformation [135]:

_NA

_Nmax

� 4
NA

NS

�
1ÿNA

NS

�
: �6:2�

Thus, having the experimental curves _NA= _Nmax � fA�T � and
NA=NS � fN�T � and using equation (6.2), we can establish
how these curves agree with the dynamics of the transforma-
tion.

Figure 22 depicts the results of processing the data on
acoustic emission in the process of direct and reverse
martensitic transitions in CuAlNi alloy [167]. Clearly, in the
direct transition, good agreement between theory and
experiment is observed at the ascending phase of (6.2), while
in the reverse transition such agreement is observed at the
descending phase. In the direct transition this corresponds to
the initial stage of martensite formation, while in the reverse
transition this corresponds to the final stage of austenite
formation. The discrepancy between theory and experiment
at some stages of the transformation may be due to the
irregularity and strong heterogeneity of the phase transfor-
mation in the CuAlNi alloy.

6.2 Polarization jumps
As phase transitions occur in ferroelectric and ferroelastic
materials, polarization jumps (known as Barkhausen jumps)
are observed [169 ± 172]. The number of jumps, NP, increases
in proportion to the crystal polarizationP [12]. Assuming that
P varies in proportion to the volume of the crystal subjected
to polarization, we find that

NP

NS
� j�s� ; �6:3�

where NS is the total number of jumps on the completion of
the ferroelectric transition and j�s� is the relative fraction of

the crystal's volume polarized by the mechanical stress s.
Now, bearing in mind that dNP=ds / dj=ds / j�1ÿ j�, we
arrive at an expression similar to (6.2):

1

NS

dNP

ds
� BP

NP

NS

�
1ÿNP

NS

�
; �6:4�

where BP is a constant determining the quantitative relation-
ship between the jumps and the transformation kinetics.

Figure 23a depicts the results of processing, according to
(6.4), the dependences dNP=ds � fP�s� and NP=NS � fN�s�
for crystals of Rochelle salt [169]; here �dNP=ds�max �
BPNS=4. Clearly, agreement between theory and experiment
is good.

In terms of crystal polarization, the effect of mechanical
stress on a ferroelectric or ferroelastic crystal is equivalent to
the effect of an electric field. This means that polarization
jumps produced by an electric field of strengthE acting on the
crystal must obey an equation similar to (6.4). Figure 23b
depicts the results of processing the data of Rudyak,
Shuvalov, and Kamaev [171] on polarization jumps observed
in triglycine sulfate crystals according to the equation

1

NS

dNP

dE
� BE

NP

NS

�
1ÿNP

NS

�
: �6:5�

We see qualitative agreement between theory and experiment.

6.3 Dielectric constant
As noted in Section 2.3, ferroelectric transitions in real
materials are diffuse. As an example, Fig. 24a depicts the
temperature dependence of the dielectric constant of lead
zirconate titanate Pb(Zr0,53Ti0,47)O3 to which 11% of lead
magnesium niobate Pb(Mg0,33Nb0,67)O3 is added to increase
the smearing of the transition [125]. In accordance with the
theory of diffuse transitions, the crystal polarization is

P � pj�T;E � ;

where, according to (2.24),

j�T;E � �
(
1� exp

�
o
kT

�
q
Tÿ Tc

Tc
ÿ pE

��)ÿ1
: �6:6�
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For the dielectric constant

e�T;E � � 1� 4p
dP

dE
� 1� 4pp

dj
dE

; �6:7�

if E! 0, we obtain the expression

e�T � � 1� 4em j�T ��1ÿ j�T �� : �6:8�

Here em � pop 2=kTc, with o the size of the KaÈ nzig region
[128 ± 133]). By substitution of (6.6) into (6.8), we finally
arrive at the expression

e�T � � 1� em coshÿ2
Tÿ Tc

DTe
; �6:9�

where DTe � 2Tc=B is the smearing of the transition over
temperature.

Equation (6.9) implies that near T � Tc the inverse of the
dielectric constant e varies with temperature according to the
parabolic law

em
eÿ 1

� cosh2
Tÿ Tc

DTe
� 1�

�
Tÿ Tc

DTe

�2

; �6:10�

in accordance with the experimental data gathered by
Tsotsorin et al. [125] and Kirillov and Isupov [127].

Agreement between theory and experiment also exists far
from the transition temperature. Figure 24b depicts the
results of processing the curve e�T � of Fig. 24a according to
equation (6.8), in the coordinates

ln
1ÿ ��������������������

1ÿ R�T �p
1� ��������������������

1ÿ R�T �p � B
Tÿ Tc

Tc
; R�T � � e�T � ÿ 1

em
:

�6:11�
The temperature dependence of the dielectric constant e in the
coordinates of (6.11) is seen to be a straight line. The slope of
this straight line yields B � 12:5 at DTe � 50 K and
Tc � 314 K.

Thus, as in the case of thermoelastic structural transfor-
mations, the theory of diffuse phase transitions describes the
changes in the crystal properties caused by a ferroelectric
transition. The transition is diffuse because of the presence of

obstacles to the motion of domain boundaries. In particular,
Chattopadhyaya et al. [173] found that in the well-known
ferroelectric material PbTiO3 a decrease in the grain size d
from 81 to 21 nm completely smears the transition, i.e. the
maximum in the curve e�T � disappears. Indeed, since
em / o / d 2 and DTe / oÿ1 / dÿ2, grain size reduction
should facilitate this process.

6.4 Ferroelastic transitions
in high-temperature superconductors
In addition to a high-temperature (920 K) structural transi-
tion related to the change in the type of lattice (from
tetragonal to orthorhombic), yttrium cuprate can undergo a
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the coordinates (6.11).
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number of low-temperature structural transformations. Pre-
sumably, these transformations are due to the high lability of
oxygen atoms and to their ordering in some positions in the
orthorhombic lattice, which occurs as the temperature is
reduced. The presence of such structural transformations is
evidenced by (i) the existence of peaks of internal friction near
the temperatures 70 ± 110, 210 ± 250, and 370 K [174 ± 177],
(ii) acoustic emission accompanying these transitions [178,
179], and (iii) deformation phenomena like the shapememory
effect [174] and an increase in the strain rate [180, 181].

As an example, Fig. 25a depicts the hysteresis in the shear
modulus defect caused by a cyclic variation in the stress s and
related to the motion of martensitic twin boundaries in the
high-temperature superconductor YBa2Cu3O6�d at 295 K
[174]. For the relaxed shear modulus G we have the formula
Gÿ1 � Gÿ10 � yÿ1, where G0 is the unrelaxed shear modulus
and y � y�T; s� is the relaxational addition to the shear
modulus related to the movement of the boundaries. Accord-
ing to the theory of diffuse martensitic transitions, the
relaxation term y is given by formula (4.5b):

yÿ1 � 4yÿ1m j�1ÿ j� ;

where j�T; s� is the volume fraction of the martensitic phase,
dependent on temperature and stress and described by the
formula

j�T; s� �
(
1� exp

�
o
kT

�
q
Tÿ Tc

Tc
� x1�s� sf�

��)ÿ1
:

�6:12�
To compare the theoretical results with the experimental

data, it is convenient to examine the force dependence of the
relaxed shear modulus in the form of the relationship

R�s� � Gÿ1�s� ÿ Gÿ10

Gÿ1min ÿ Gÿ10

� 4j�s��1ÿ j�s�� : �6:13�

Here G0 � 9:5 GPa, Gmin � 9:24 GPa, Gÿ1min � Gÿ10 � yÿ1m ,
and ym � 337:6 MPa. According to (6.12) and (6.13), the

function G�s� in the coordinates

ln
1ÿ �������������������

1ÿ R�s�p
1� �������������������

1ÿ R�s�p � B
Tÿ Tc

Tc
� Bs�s� sf� ; �6:14�

where Bs � ox1=kT, is represented by a straight line. As
Fig. 25b shows, this is indeed the case.

7. Conclusions

The results of the last few decades of electron-microscope
studies of the formation mechanism for martensitic phase
nucleation centers and of the growth (expansion) of marten-
sitic lamellas in thermoelastic martensitic transformations in
metallic alloys, along with the traditional equilibrium-
thermodynamic approach to investigating the mechanism of
phase transformation, have focussed the researchers' atten-
tion on the kinetic aspect of this phenomenon.

An obvious drawback of the purely thermodynamic
approach and of the classical Ginzburg ±Landau theory of
phase transitions is that these theories consider only the
equilibrium initial and final states of the system, while in
real materials, as experiments show, a much greater role is
played by kinetically equilibrated intermediate heterophase
states related to the kinetics of the transition and to such its
manifestations as the heterogeneous formation mechanism
for the nucleation centers of the new phase and the interaction
of interphase boundaries with various structural defects in the
solid.

The above-discussed theory of diffuse phase transitions
takes into account this kinetic aspect of phase transitions in
solids, making it possible to naturally consider the effects of
structural factors on the parameters of the phase transition
and to quantitatively compare the results of theory and
experiment. Such comparisons given in this review, using
martensitic-shear, ferroelectric, and ferroelastic transitions as
examples, suggest that the theory is fairly universal, indepen-
dent of the type of transformation, and provides a phenom-
enologically correct description of the heterophase state of
the material undergoing a phase transition.

Obviously, the theory of diffuse phase transition requires
further development to become an instrument for the analysis
of experimental data, especially the analysis of the effects of
various structural factors on the parameters and kinetics of
the phase transformations and on the properties of the
material undergoing the phase transition.
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