
Abstract. In this review the double exchange (DE) model form-
ing a basis for the description of the physics of colossal magne-
toresistance manganites is discussed. For a limiting case of
exchange interaction which is large compared with the band
width, the effective Hamiltonian of the DE model is derived
from that of the sd-exchange model. Since this Hamiltonian is
very complicated, the dynamical mean field approximation,
successful for other strongly correlated systems, is found to be
more suitable for describing the model of interest. Two simpli-
fied versions of the DE model, both capable of accounting for a
wide range of physical properties, are proposed Ð one using
classical localized spins and the other involving quantum spins
but no transverse spin fluctuations. A temperature ± electron
concentration phase diagram for a system with consideration
for the domain of phase separation is constructed, whose basic
features are shown to be in qualitative agreement with experi-
mental data for the manganites, as also are the temperature and
electron concentration dependences of their electrical resistiv-

ity, magnetization, and spectral characteristics. At the quanti-
tative level, introducing additional electron ± lattice interaction
yields a good agreement. A number of yet unresolved problems
in the physics of manganites, including the mechanism of tem-
perature- or doping-induced metal ± insulator phase transition
and the nature of charge ordering, are also discussed. By
comparing predictions made by computing approach with the
experimental data, the adequacy of the DE model is assessed
and its drawbacks are analyzed. Numerous recent theoretical
studies of the unique properties of this broad class of strongly
correlated systems are summarized in this review.

1. Introduction

1.1 Basic physical properties of the manganites
Following the high-Tc copper oxide superconductors,
another class of transition metal oxides, the manganites,
have prompted an explosion of research activity in the last
decade. Of most interest among these are compounds of the
type La1ÿxAxMnO3, where A denotes a bivalent atom in the
sequence Ca, Sr, Ba, etc., and x is its concentration varying
over a wide range 04 x4 1. Changing x affects the proper-
ties of the manganites dramatically, causing a chain of phase
transitions and producing various types of ordering in the
system, such as magnetic, structural, and electronic ordering.

Among the unique properties discovered in the manga-
nites about 50 years ago (see Ref. [1] for a review), the colossal
magnetoresistance (CMR) is particularly noteworthy. This
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effect is seenwithin the x range where themetal ferromagnetic
phase exists, and manifests itself in that the resistivity r of the
material changes (decreases) when a magnetic field is applied.
The size of the effect, Dr=r, may be as high as tens of percent
in fields of order 1 T and has a maximum around the Curie
temperature TC (Fig. 1). It is just this effect which Ð because
of its potential for engineering applications Ð attracted the
attention of investigators in the early 1990s, but on the other
hand the physical properties exhibited by the manganites are
so rich and diverse that this fact alone is attracting intense
experimental and theoretical interest.

Another remarkable property of the manganites is the
appearance of a metal ferromagnetic phase in a certain
concentration range around x � 0:3. (Fig. 2) The parent
compound LaMnO3 constitutes an antiferromagnetic insula-
tor with a magnetic structure of type A (Fig. 3). Substituting
calcium for lanthanum turns the system into a ferromagnetic
metal and for x > 0:5 it again becomes an antiferromagnetic
insulator with a magnetic structure of type G in the final
compound CaMnO3, and of type C in the intermediate
concentration region. The magnetic structures of the A, C,
and G types make up two-sublattice antiferromagnets. From
Fig. 3 it is seen that the A, C, and G structures are arrays of
ferromagnetic f100g, f110g, and f111g planes alternating in
their mutual spin orientations in neighboring planes. Note,
though, that this magnetic scheme is a simplified one which
will be revised and improved later in this paper.

As the temperature increases, the ferromagnetic phase is
replaced by the paramagnetic phase, with the conductivity of
the latter being sharply decreased. The temperature behavior
of electrical resistivity depends strongly on the concentration
of the dopant (Fig. 4). A characteristic feature of these curves
is the point T0, where CMR has a maximum (point T0 lies in
the neighborhood of TC). As the temperature decreases from
T0, dr=dT > 0 is observed, corresponding to the metal phase,
whereas above T0 we have dr=dT < 0. This behavior of r�T�
is typical of the manganites, indicating that the appearance of
ametallic state due to the transition through the Curie point is
closely related to the CMR effect.

A comprehensive recent review of the experimental work
on manganites is presented in Ref. [1], which acquaints the
reader with all the physical properties of these compounds
and how they depend on the chemical composition. As to the
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Figure 1. Typical resistivity and magnetoresistance curves for manganites.

The data are taken from Ref. [1].
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theoretical studies, although their number is growing at an
ever increasing rate, no exhaustive review of the existing
approaches has yet been attempted. In the next section, the
available theories and results are briefly surveyed, and in the
remaining sections a detailed discussion is given.

1.2 Electron models
The La1ÿxCaxMnO3 type oxides can be considered as mixed-
valence solid-solution compounds formed by LaMnO3 and
CaMnO3 with La

3�Mn3�O2ÿ
3 and Ca2�Mn4�O2ÿ

3 ion valence
states, respectively. The intermediate state has a valence
structure (La3�1ÿxCa

2�
x )(Mn3�1ÿxMn4�x )O3 containing trivalent

(3d4) and tetravalent (3d3) manganese ions. Thus, doping a
parent compound LaMnO3 with a bivalent element at
concentration x produces an equal amount of holes in the 3d
band of thematerial (for x < 0:5). For x > 0:5, the compound
can be treated as the parent compound CaMnO3 doped with
electrons of concentration 1ÿ x. Thus we see that 3d-band
holes or electrons compose charge carriers in mixed valence
manganites.

The occurrence of the metal ferromagnetic phase in
manganites was explained back in 1951 by Zener [4] based
on the assumption of a strong intraatomic exchange
interaction between a localized spin and a delocalized
electron. Because of this coupling, the electron spin always
aligns parallel to that of the ion. If ion spins are all aligned in
a single direction, an electron can move freely from one
lattice site to another, thus reducing the total energy of the
system. By this means the ferromagnetic state in this case
does not result from the usual ion ± ion exchange interaction
but rather is due to a kinetic effect. This mechanism of
ferromagnetic ordering was called the double exchange Ð a
well established, if not entirely satisfactory term reflecting
the fact that the ferromagnetic coupling between the spins of
two neighboring Mn ions has its origin in the double
transition Mn!O!Mn an electron performs via an
intermediate O ion. Double exchange is a correlation type
effect, and the manganites therefore belong to the class of
highly correlated electron systems. We will mainly rely on
the double exchange concept in briefly outlining the theory
of the manganites below.

The double exchange (DE) model is characterized by the
Hamiltonian

H � ÿ
X
ijs

tij a
y
isajs ÿ JH

X
i

Si � si ; �1:1�

where the first term describes the motion of an electron over
the lattice sites i, j with spin s, and the second term accounts
for the Hund exchange coupling, it being assumed that
JH 4 zt, where z is the number of the nearest neighbors.
Here, Si is the localized ion spin, and si is the conduction
electron spin which, in terms of the electron creation and
annihilation operators, can be written in the following way

si � 1

2

X
ss 0

a
y
isrss 0ais 0 ; �1:2�

where the vector r is composed of Pauli matrices.
Thus, the DE model constitutes an sd-exchange model

valid under the strong coupling condition: JH 4 zt. In this
situation one should employ the small parameter zt=JH and
go over to an effective Hamiltonian. In the limit JH !1, the
low-energy physics of the system is described by the

Hamiltonian [5, 6]

H � ÿ
X
ijs

tij�yij�~c yi ~cj : �1:3�

Here, ~ci and ~c yi are spinless fermion operators (see below),
and tij�yij� is the effective matrix element for the electron
hopping (jump) between nearest-neighbor lattice sites, whose
value depends on the angle yij between ion spins at the two
sites involved. As Anderson and Hasegawa [5] have shown
for the problem of two classical spins, the following relation
holds:

t�y� � t cos
y
2
: �1:4�

An extension of this result to a spin lattice was given by de
Gennes [6].

To describe real manganites, a term must be added to the
Hamiltonian (1.3) accounting for the indirect Ð via oxygen
ions Ð antiferromagnetic exchange interaction between the
localized spins of the Mn ions. The Hamiltonian then
describes the competition between the ferromagnetic and
antiferromagnetic trends in the system. De Gennes [6], using
the mean field approximation, charted a magnetic phase
diagram for the model at �T; n� surface (n being the electron
concentration) and showed that in different parts of the
pattern there exist four phases Ð the paramagnetic, ferro-
magnetic, antiferromagnetic, and canted Ð of which the
latter is a two-sublattice magnetic structure with an uncom-
pensated spontaneous moment.

The above result came under criticism long ago [7, 8],
however. Essentially, it was realized that de Gennes spatially
homogeneous phases can, under certain conditions, be less
favorable energetically than inhomogeneous phases present-
ing, for example, an antiferromagnetic matrix containing
finely divided antiferromagnetic domains. The energy gain
in this case results from the redistribution of charge carriers:
antiferromagnetic regions are depleted of charges which
instead move to ferromagnetic regions and serve to reduce
the kinetic energy of the carriers there. This `phase separation'
phenomenon appears to be inherent in the theory of strongly
correlated systems: it has already been studied within the
Hubbard and tJ models and, experimentally, in cuprates. It
should be noted that in structural experiments the inhomo-
geneous phase we have described above (i.e. the antiferro-
magnetic structure with ferromagnetic inclusions) may
behave as a canted structure, so that interpreting experi-
mental data requires a detailed knowledge of the phase
separation phenomenon, which is a key problem in the
theory of manganites.

Since one of the possible varieties of the inhomogeneous
phase in a manganite presents an antiferromagnetic dielec-
tric matrix with ferromagnetic inclusions containing charge
carriers, it follows that increasing the carrier concentration
enhances the density of these inclusions, and the system may
transform into a metal state in the percolation limit. Thus,
the insulator ±metal phase transition and the phase separa-
tion phenomenon are closely related effects in the manga-
nites [9].

The DE model became the key operative model for
studying the properties of the manganites. To be able to
compare in quantitative terms the theory and experiment,
methods for working with the Hamiltonian (1.1) not only
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under strong coupling, but also under intermediate, JH ' zt,
conditions had to be developed. Because in the latter case no
small parameter is available, the dynamical mean field
(DMF) approximation, which is effective in the theory of
strongly correlated systems [10], had to be employed.
Furukawa [11] developed this approach for the Hamiltonian
(1.1) in the classical spin approximation for ions. The
variation of the Curie temperature with the electron concen-
tration and the dependence of electrical resistivity and
magnetoresistivity on temperature and other model para-
meters were computed numerically and found to compare
well with the observed properties of the manganites [12].

Millis et al. [13] argued against the DE model as the basic
theory for the manganites, having shown, in particular, that
its predictions forTC and resistivity are an order ofmagnitude
too high and too low, respectively. To explain the physical
properties of the manganites it was proposed to include the
lattice degrees of freedom and, in particular, to allow for the
possibility that the cubic lattice may be distorted locally due
to the Jahn ±Teller effect on manganese ions. Paper [13]
stimulated intense research activity along these lines. The
shortcoming of the DE model has also been recently pointed
out in Ref. [14]. On the other hand, Narimanov and Varma
[15], combining the mean field approximation with a
variational approach developed by themselves, argue that
the DE model alone can quantitatively account for the
observed properties of the manganites. Considering the
controversy over what the DE model can and cannot do,
Monte Carlo studies of the Hamiltonian (1.1) using the exact
small cluster diagonalization procedure have become critical.
The temperature ± concentration phase diagram obtained in
this way for the DE model agrees reasonably well with the
experimental data [16].

There is, however, one important aspect which is left out
of account in theHamiltonian (1.1) as a tool for describing the
manganites Ð the degeneracy of electronic states. In the
cubically symmetric field of its oxygen environment, the five-
fold degenerate 3d-level of the Mn ion splits into two levels:
the three-fold degenerate tg level and the two-fold degenerate
eg level. Owing to the Hund coupling, the three electrons at
the tg level form a localized ion spin S � 3=2, whereas the eg
electron is itinerant. It is these eg states which should be
treated as itinerant in the model (1.1). A new approach to the
theory of the manganites, one allowing for the orbital
degeneracy, was pioneered in Refs [17, 19].

While experimental data on the manganites have been
reviewed in considerable detail in Ref. [1] (and earlier in Ref.
[18]), no monograph has yet been devoted to theoretical work
on these materials. To the authors' knowledge, only four
theoretical reviews are currently available, each of which
briefly discusses only one particular aspect of the theory of
the manganites: the semiconductor aspect [8], the dynamical
mean field approximation [12], the transport properties and
the metal ± insulator phase transition from the percolation
theory viewpoint [9], and charge ordering and the structure of
inhomogeneous phases [20].

The purpose of the present paper is to discuss as fully as
possible the theory of the physical properties concerning
manganites. The basic aspect of this theory is the double
exchange model, and because its Hamiltonian is very
complicated, it is essential that all possible approaches to its
treatment be tried and the results of their application
compared.

2. Effective Hamiltonian of the DE model

2.1 Derivation of the Hamiltonian
for a system of classical spins
As indicated above, the DE model presents a limiting case of
the sd-exchange model subject to the conditions of strong
Hund coupling, JH 4 zt. To obtain an effective Hamiltonian
of the DE model, the initial Hamiltonian (1.1) must be
projected onto the lower eigenvalue subspace of the
exchange Hamiltonian

Hex � ÿJH
X
i

Si � si : �2:1�

It is readily seen that this Hamiltonian has two eigenvalues

ÿ JHN

�
ST�ST � 1� ÿ S�S� 1� ÿ 3

4

�

� ÿJHN
S; ST � S� 1

2
;

ÿSÿ 1 ; ST � Sÿ 1

2
:

8>><>>: �2:2�

Here,N is the number of lattice sites and ST is the total spin at
a site, formed by the localized ion spin plus the spin of the
collective electron. Clearly, for JH > 0 each electron in the
ground state has its spin aligned parallel to the localized one.

We carry out the projection procedure for classical spins
first. Let yi and fi be the polar and azimuth angles of the
classical spin vector S defined for each lattice site; then one
obtains

Sx
i � S sin yi cosfi ;

S
y
i � S sin yi sinfi ;

Sz
i � S cos yi :

8<: �2:3�

The scalar product Si � r can now be rewritten in the form of a
two-row matrix defined in electron spin space:

Si � r � Sz
i Sÿi

S�i ÿSz
i

� �
; �2:4�

where S�i � Sx
i � iS

y
i .

The matrix (2.4) has the eigenvalues l1;2 � �S and the
eigenvectors

e1 �
cos

yi
2

sin
yi
2
exp�ifi�

0BB@
1CCA; e2 �

ÿ sin
yi
2
exp�ÿifi�

cos
yi
2

0BB@
1CCA:

�2:5�
From these we can construct the matrix

Ri �
cos

yi
2

ÿ sin
yi
2
exp�ÿifi�

sin
yi
2
exp�ifi� cos

yi
2

0BB@
1CCA �2:6�

determining a rotation in the spin space. In a similar fashion
we define the matrix R�i (R�i Ri � Î, where Î is the identity
matrix). Notice that the matrix (2.4) is diagonalized by letting
the matrices R�i and Ri act on it from the left and from the
right, respectively.
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Let us apply the matrices Ri and R�i to transform the
initial Hamiltonian (1.1). For this purpose we first introduce
the new Fermi operators

di"
di#

� �
� R�i

ai"
ai#

� �

�
cos

yi
2
ai" � sin

yi
2
exp�ÿifi� ai#

ÿ sin
yi
2
exp�ifi� ai" � cos

yi
2
ai#

0BB@
1CCA; �2:7�

�
d
y
i" d

y
i#
�
�
�
a
y
i" a
y
i#
�
Ri �

�
a
y
i" cos

yi
2
� a

y
i# sin

yi
2
exp�ifi�;

ÿ a
y
i" sin

yi
2
exp�ÿifi� � a

y
i# cos

yi
2

�
: �2:8�

The exchangeHamiltonian (2.1) then takes the diagonal form

H0 � JHS
X
is

sd yisdis �s � �1� : �2:9�

In terms of the new operators, the hopping part of the
Hamiltonian may be rewritten as

Ht � ÿ
X
ijs

tija
y
isajs � ÿ

X
ijss 0

tijd
y
is�R�i Rj�ss 0djs 0 : �2:10�

Now since we are concerned with the case JH !1, the spin
of the electron must be parallel to the localized spin, implying
that the only term to be retained inHt is the ""matrix element
of the operator �R�i Rj�:

�R�i Rj�"" � cos
yi
2
cos

yj
2
� sin

yi
2
sin

yj
2
exp
�ÿi�fi ÿ fj�

�
:

�2:11�

It is convenient at this point to introduce the `zero-spin'
operators

ci � di" � cos
yi
2
ai" � sin

yi
2
exp�ÿifi� ai# ; �2:12�

in terms of which the hopping part of the Hamiltonian can be
written as

Ht � ÿ
X
ij

~tijc
y
i cj ; �2:13�

where

~tij � tij�R�i Rj�""

� tij

�
cos

yi
2
cos

yj
2
� sin

yi
2
sin

yj
2
exp
�ÿi�fi ÿ fj�

�� �2:14�
is the effective matrix element for electron hopping from one
site to another. Separating the real from the imaginary part in
Eqn (2.14) yields the following two equivalent expressions for
the matrix element of interest:

~tij � tij

�������������������������������
1

2

�
1� Si � Sj

S 2

�s
exp

�
ÿ ioij

2

�

� tij cos
yij
2

exp

�
ÿ ioij

2

�
: �2:15�

Here, the angle yij is formed by two spins localized at sites i
and j, and the functionoij is known as the Berry phase [21, 22].

The Berry phase is usually ignored, giving

~tij � tij cos
yij
2
; �2:16�

which is equivalent to Eqn (1.4). A recently elaborated theory
[23] of the anomalous Hall effect in the manganites showed
that carriers moving in a topologically nontrivial spin environ-
ment acquire a Berry phase which ultimately provides a
qualitative explanation for the observed temperature depen-
dence of the anomalous Hall coefficient.

2.2 Quantum spin
The matrix element for effective hopping between two
neighboring sites was calculated by Anderson and Hasegawa
[5] for both classical and quantum spins. The classical result
has been mentioned earlier. For quantum spins, the exchange
Hamiltonian is diagonalized using the eigenfunctions of the
spin operators and the technique of Clebsch ±Gordan
coefficients, with the eigenvalues of the exchange Hamilto-
nian being of course given by Eqn (2.2). The hopping matrix
element for quantum spins is identical to that for classical
spins if one assumes that the following equality holds:

cos
y
2
� S0 � 1=2

2S� 1
; �2:17�

where S0 � jS1 � S2j � 1=2 is the total spin of the system
consisting of two localized spins and an electron spin. Thus, in
the quantum case the Hamiltonian of the DE model is again
given by Eqn (2.13), but the effective hopping matrix element
is now determined by the eigenvalues of the total spin for a
system of two sites between which electron hopping takes
place.

At this point mention should be made of the original
approach taken in Ref. [24], in which the effective quantum
Hamiltonian was obtained as a sum of polynomials evolved
from the scalar product of localized spins located at two sites
and which yielded the same Ð up to a sign Ð eigenvalues
(2.17) of the hopping matrix element.

An alternative approach to the derivation of an effective
Hamiltonian for quantum spins, one involving the use of the
projection operator technique, was proposed for the DE
model by Kubo and Ohata [25] and then extended in Ref.
[26]. Essentially, what was proposed is to apply the canonical
transformation Ð in order, first, to exclude the doubly
occupied electron states at the site, and second, by consider-
ing a strong Hund coupling, to retain only those electron
states which have their spins parallel to the localized spin. The
idea, in other words, was to create an electron hopping
friendly situation at a site. Such a canonical transformation
is carried out conveniently by the use of projection operators.

Employing the projection operators P andQ � 1ÿ P, the
space of the eigenstates jci of the initial Hamiltonian H can
be divided into two subspaces, Pjci and Qjci, the former
containing empty and singly occupied states with spin parallel
to the localized one, and the latter containing doubly or singly
occupied states with spin antiparallel to the localized one.
Then in either subspace the SchroÈ dinger equation
Hjci � Egjci for the degenerate ground state can be written
as the following pair of equations:

PHPjci � PHQjci � EgPjci ;

QHPjci �QHQjci � EgQjci : �2:18�
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Because here we are concerned with the subspace of Pjci, it is
necessary to eliminate states belonging to the other subspace,
Qjci. Using the definition of the projection operator
(P 2 � P, Q 2 � Q) and eliminating Qjci by application of
the second of Eqns (2.18), we arrive at

�Heff ÿ Eg�Pjci � 0 ; �2:19�
where

Heff � PHPÿ PHQ
1

QHQÿ Eg
QHP �2:20�

is the effective Hamiltonian for the lowest eigenvalue sub-
space. Taking the limit JH !1 leaves us with only one term
in the Hamiltonian (2.20). It follows then that in order to
obtain an explicit form of the quantum Hamiltonian for the
DE model, the form of the projection operator P must be
specified. Since, as already pointed out, the subspace Pjci
must only contain empty or singly occupied states with spin
parallel to the localized spin, it is easily verified that the
following projection operator possesses such properties [26]:

P �
Y
i

Pi �
Y
i

�Phi � P�si � ; �2:21�

where the operator

Phi � �1ÿ ni"��1ÿ ni#� �2:22�
removes doubly occupied states, and the operator

P�si �
X
ss 0

�
Si � r� �S� 1�Î

2S� 1

�
ss 0

~c yis~cis 0 �2:23�

ensures that the electron spin is parallel to that of the ion.
Here, the operator ~c yis � �1ÿ ni;ÿs�cyis accounts for the
absence of doubly occupied states at a given site.

Now, using the explicit form of the projection operator
given by Eqns (2.21) ± (2.23), the effective quantum Hamilto-
nian of the DE model is

Heff � PHP

� ÿ
X
ijss 0

tij�1ÿ ni;ÿs�cyis�P�i P�j �ss 0 �1ÿ nj;ÿs 0 �cjs 0 ; �2:24�

where

P�i �
Si � r� �S� 1�Î

2S� 1
: �2:25�

The Hamiltonian (2.24) has been first proposed in Ref. [25]
and since that time it was the subject of intense studies. It
should be remembered that this Hamiltonian corresponds to
the limiting case of strong Hund coupling. If this condition
needs to be relaxed and the parameters zt and JH need to be
considered as comparable in magnitude, one should use the
original sd-model Hamiltonian (1.1) and employ nonpertur-
bative methods of analysis. One such approach is the
dynamical mean field method.

3. Properties of the DE model
in the dynamical mean field approximation

3.1 Dynamical mean field approximation
in the classical spin model
A method that is widely used in the theory of strongly
correlated systems is that of considering systems in spaces of

high dimensionality d. The limit d � 1 corresponds to the
true mean field approximation for such systems [10, 27].
Because mean field type approximations do not require that
the interactions be weak, the behavior of the systems can be
studied over a wide range of the values taken by the
Hamiltonian parameters. Unlike the conventional mean
field approximation, in which the field is always static, the
approximation based on the limit d � 1 involves a dynami-
cal mean field, so that analyzing systems in the d � 1 limit
corresponds to the dynamical mean field (DMF) approxima-
tion. In the past decade, the DMF method has been applied
quite successfully to a number of basic models in the many-
body theory, including the Hubbard model [28, 29], the tJ
model [30, 31], and the Falicov ±Kimball model [32 ± 34], so
that the quasi-particle spectra, phase transitions, and quite a
few transport properties exhibited by these models have been
studied in considerable detail. Importantly, small-cluster
numerical calculations using exact diagonalization or Monte
Carlo methods lend support to the DMF results.

The DE model has been studied in a series of papers by
Furukawa [11, 12, 35 ± 40]. Central to DMF approach is the
fact that at d � 1 in any lattice model the electron self-energy
S is a local quantity, i.e. it does not depend on the quasi-
momentum and is a function of the frequency alone [41, 42].
The k dependence of the electron Green's function on the
lattice appears only through the bare spectrum ek:

G�k; ion� � 1

ion ÿ ek � mÿ S�ion� : �3:1�

Let us introduce the local (single-site) Green's function

GL�ion� � 1

N

X
k

G�k; ion�

�
�
deN0�e� 1

ion ÿ e� mÿ S�ion� : �3:2�

In the last expression in Eqn (3.2) we have introduced the
quantity N0�e�, the density of states in the bare spectrum of
the original (finite d ) lattice, so that information about the
real lattice is contained in this function only. Now the local
Green's function GL�ion� can be considered as the Green
function of a single-site problem with a certain effective bare
Green's function G0�ion� and with the same self-energy
S�ion�, so that we can write

GL�ion� � 1

Gÿ10 �ion� ÿ S�ion� : �3:3�

On the other hand, GL�ion� may be treated as the Green
function of a single-site problem in which the influence of all
the rest of the lattice on a given site reduces to an effective
mean field of the quantity Gÿ10 �ion�, which defines the action
[11, 35 ± 37]

S � ÿ
�b
0

dt1

�b
0

dt2 C y�t1�Gÿ10 �t1 ÿ t2�C�t2�

ÿ JH

�b
0

dtm �C y�t� rC�t� : �3:4�

Here, G0�t1 ÿ t2� is the function G0�ion� in the time
representation, and C y � �ay"; ay#� is the two-component
spinor. The single-site Green's function GL is defined as a
path integral over the Grassmann variables c� and c, both
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the spinors:

GL�t1 ÿ t2� � 1

Z

�
dOmdc

�dc exp
ÿÿS�c�;c��c�t1�c��t2� ;

�3:5�
Z �

�
dOmdc

�dc exp
ÿÿS�c�;c�� : �3:6�

The symbol
�
dOm stands for path integration over the

directions of the classical spin vector m. The integrals with
respect to the Grassmann variables are easily evaluated, and
Eqns (3.5) and (3.6) can be written in the following form

GL�ion� � 1

Z

�
dOm exp

�ÿSeff�m�
� 1

Gÿ10 �ion� � JHmr
; �3:7�

Z �
�
dOm exp

�ÿSeff�m�
�
;

where the effective action Seff�m� is defined by�
dc�dc exp

ÿÿS�c�;c�� � exp
�ÿSeff�m�

�
;

Seff�m� � ÿ
X
n

ln det

�
1

ion

ÿ
Gÿ10 �ion� � JHmr

��
: �3:8�

Numerical evaluation of the integral in Eqn (3.7) yields the
explicit form of GL�ion;G

ÿ1
0 �, whereas Eqns (3.2) and (3.3)

jointly determine the relationship between Gÿ10 and S. Thus,
the set of equations (3.2), (3.3), and (3.7) yield the quantities
Gÿ10 �ion� and S�ion� and the Green function G�k; ion�. The
average value of the local spin is given by the integration over
the directions of the vector m:

hmi �
�
dOm exp

�ÿSeff�m�
�
m : �3:9�

Let us first consider several special cases which allow
analytical solutions to the above equations [12]. For the
paramagnetic phase, the rotational invariance gives
G0�ion� � g0�ion�I, where I is the unitary two-row matrix,
and g0 is a scalar. Noting further that hmi � 0 and hm2i � 1,
Eqn (3.7) yields the following expressions for the local
Green's function GL and the self-energy S:

GL�ion� � 1

2

�
1

gÿ10 �ion� � JH
� 1

gÿ10 �ion� ÿ JH

�
I ; �3:10�

S�ion� � Gÿ10 �ion� ÿ Gÿ1L �ion� � J 2
HG0�ion� : �3:11�

The spectral density of single-particles states

A�o� � ÿ 1

p
ImGL�ion ! o� id� �3:12�

has two peaks in this case, each centered at energy o � �JH
and having width Im gÿ10 �o� � t, where t is the hopping
matrix element. The peak intensities are the same for either
spin projection.

In the case of the ferromagnetic state with a spontaneous
moment M � hmzi, a redistribution of intensity over elec-
trons with different spin orientations takes place. In the limit
JH !1, for the bare densityN0�o� of Lorentzian shape with
the width W, the following analytical expressions for the
propagator Green's function (3.1) are obtained following the

analytical continuation ion ! o� id:

Gs�k;o� � P�s
o� JH � mÿ P�s ek � iPÿs W

� Pÿs
oÿ JH � mÿ Pÿs ek � iP�s W

: �3:13�

Here, the P�s are the statistical weights of the electron states
for various values of the spin projection onto the spontaneous
moment vector:

P�s �
1�Ms

2
: �3:14�

Thus, there are two bands of single-particle states, which are
centered at the energies o� m � �JH and have the width W.
The intensities of the upper and lower band interchange as
spin orientations are varied. In the ground �M � 1� state,
electrons with spin s�" fill the lower band, and those with
s�# fill the upper band. Electron systems with such proper-
ties are usually called ferromagnetic semimetals. As the
temperature increases, opposite spin states appear in either
band. In the paramagnetic phase, states with opposite spins
are of the same intensity in both bands, consistent with
expression (3.10) for the local Green's function.

3.2 Analysis of Furukawa's numerical solutions
For finite JH, Eqns (3.2), (3.3), and (3.7) are solved
numerically. An important result which was established in
the numerical computation of the density of statesAs�o� for a
cubic lattice is that the band gap decreases with increasing
temperature [12].

Qualitatively, this can be understood by considering the
form of the Anderson ±Hasegawa hopping matrix element.
This is proportional to cos�y=2�, where y is the angle between
two spins at the sites between which the hopping takes place.
As the temperature increases, y deviates from 0 due to spin
fluctuations, and the average of cos�y=2�, and hence the
average of the hopping matrix element, decreases in magni-
tude. The single-particle states decay due to spin fluctuations
as can be seen from Eqn (3.13). For spin s�" at T � 0, the
factor Pÿs � 0, so that such electrons behave like free
particles. The opposite spin electrons, on the contrary, offer
a maximum attenuation of �W (bare band width) and
correspond to incoherent states. This behavior is also
characteristic of other models of collectivized ferromagnets
with strong correlation [43, 44].

The DEmodel thus describes a semimetallic ground state,
i.e. the Fermi surface exists only for electrons with the
majority spin orientation, the state of the system correspond-
ing to a saturated ferromagnet. Experiments on spin resolu-
tion photoemission show that doped manganites constitute
semimetals [45, 46].

The Curie temperature TC can be found by solving the
simplified equations (3.2), (3.3), and (3.7) numerically under
the conditionM < 1. In the limit JH 4W, the curve TC�x� so
obtained turns out to be close in form to the curve
TC�x� � x�1ÿ x�. For x! 0 and x! 1, TC ! 0 because of
the fact that the ferromagnetism in the system is due to the
kinetic energy of the carriers. The particle ± hole symmetry
also remains to be valid for finite JH [12]. Also, the tendency
towards TC increasing with W continues in this case.
Experimental data on TC for the La1ÿxSrxMnO3 system [47]
are fitted accurately by the curves calculated for W � 1 eV,
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JH � 4, values which are typical of 3d-metal oxides and
consistent with manganite band calculations [12].

The transport properties of the model are calculated from
the Kubo formula. The conductivity in the limit d � 1 is
given by [48]

s�o� � s0
X
s

�
do 0 Is�o 0;o 0 � o� f �o

0� ÿ f �o 0 � o�
o

;

�3:15�

where

Is�o1;o2� �
�
N0�e� deW 2As�e;o1�As�e;o2� ;

andAs�e;o� is the spectral density of states of the propagator
Green's function:

As�e;o� � ÿ 1

p
ImGs�e;o� id� :

In Eqn (3.15), f �o� is the Fermi distribution function, and the
constant s0 has the dimension of conductivity. Figure 5 shows
the temperature dependences of electrical resistivity and
magnetization calculated from s�o� with o � 0 and from
Eqn (3.9), respectively. Here r0 is a constant corresponding to
Mott's minimum conductivity value at d � 3. Above TC, the
resistivity has a value of the order of Mott's limit r0 � 1=s0
with a very weak temperature dependence. Below TC, it falls
off rapidly as the magnetization increases. Detailed DMF
calculations show [11, 35 ± 37] that the resistivity varies with
magnetization as

r�M�
r�M � 0� � 1ÿ CM 2 ; �3:16�

where C is a numerical constant independent of the
temperature and magnetic field. Thus, the dependence of r
on T andH enters through the magnetizationM �M�T;H�.
This means that the electrical resistivity in the DE model is
entirely due to the scattering of carriers by magnetic order
fluctuations. In the weak coupling limit JH 5W (in the Born
approximation) one finds C � 1 [49], however in the strong
coupling limit JH 4W DMF calculations yield C > 1. From
the experiments on the La1ÿxSrxMnO3 systemwith x � 0:175
it follows thatC � 4 [47], and the relation (3.16) is found to be

followed closely by theoretical results for the same electron
concentration and JH=W � 4 [12]. Measurements show that
the resistivity of La1ÿxSrxMnO3 varies from about 102 mO cm
at low temperatures to r�TC� � 2 mO cm, which is of order of
the Mott limit. We thus see that La1ÿxSrxMnO3 constitutes a
good metal for T5TC, and a poor one for T5TC. The
theoretical DE-model results of Fig. 5 cover the full range of
the property variation.

A comparison of calculated and experimental findings on
optical conductivity in La1ÿxSrxMnO3 also supports the DE
model (Fig. 6). The conductivity peak is due to interband
transitions, at which the electron energy changes by about
2JH � 3 eV Ð consistent with the observed peak's position
near o � 3 eV. The temperature dependence of the peak
intensity is also in good agreement with theory.

We now treat collective excitations in a ferromagnetic
semimetal. In the discussion above we used the classical spin
model, corresponding to the limiting case where quantum
spin S4 1. A linear spin wave theory is now constructible by
using a small parameter 1=S and assuming an arbitrarily
strong interaction. For this purpose, the spin operators in the
DE-model Hamiltonian should be replaced by the Bose
operators of spin deflections by means of the Holstein ±
Primakoff formulas S�i �

������
2S
p

bi, Sz
i � Sÿ b

y
i bi. Then to

lowest order in 1=S the spin wave energyoq is given by [38,51]

oq � 1

SN

X
k

fk"

�
JH ÿ 2J 2

H

2JH ÿ ek � ek�q

�
; �3:17�

where fk" is the Fermi function for the electrons with the
dominant spin orientation.
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calculated using the DMF method [12].
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In the limit of large JH, the t=JH expansion in Eqn (3.17) yields
an expression that does not depend on JH. For a simple cubic
lattice, restricting electron hoppings to nearest neighbors
only, the bare energy spectrum takes the form

ek � ÿ2t�cos kx � cos ky � cos kz� :

Equation (3.17) in this case leads to the following expression
for the spin wave energy:

oq � 1

z
ESW�3ÿ cos qx ÿ cos qy ÿ cos qz� ; �3:18�

where

ESW � zt

SN

X
k

fk" cos kx : �3:19�

Result (3.18) agrees with that of Kubo and Ohata [25]. In the
limit JH !1, the spin wave spectrum of the DE model is
identical in form to that of a Heisenberg ferromagnet. This
implies that the effective spin ± spin interaction is short-range,
the reason being that the electron level is spin-split by 2JH as
seen from the denominator in Eqn (3.17). For intermediate
values of JH, the spin wave dispersion departs from law (3.18)
[51]. From Eqn (3.19) it follows that to an order of magnitude
ESW � xzt=S. Assuming that the scale of the Curie tempera-
ture is the width of the spin wave spectrum, we obtain that
TC � xzt=S, which for the manganites gives about 2000 KÐ
an order of magnitude higher than the observed values.

The question which remains to be answered is the role of
the vertex corrections for the electron ±magnon interaction.
A spin wave spectrum was examined numerically for S � 1=2
in the limit JH !1 [52] and exhibited a dispersion relation of
the type (3.18) which, however, departed from this behavior
in the limits n! 0 and n! 1Ð presumably due to the vertex
renormalization. These renormalizations are important
where the electron kinetic energy is less than the character-
istic spin wave frequencies �Ekin 4 hoqi�. In the opposite
limiting case they are weak. In the manganites, where
ferromagnetism occurs for 0:24 x4 0:4, these renormaliza-
tions may apparently be considered small. This brings the
theoretical predictions for the spin wave spectrum we have
discussed above into agreement with experiment (Fig. 7), but
why TC is that high still remains unclear.

The DMF approximation has also been used to construct
the phase diagram of the DE model [54]. It should be noted
here that, along with the ferromagnetic phase existing over
the entire range of concentrations n for infinite JH=W, in the
case of finite JH=W an indirect antiferromagnetic exchange
interaction of magnitude t 2=JH arises in the system,
producing an antiferromagnetic phase near half-filled band
�n � 1�. On the other hand, the DE model yields an
inhomogeneous phase Ð an electron-rich finely divided
phase embedded in an antiferromagnetic matrix. The
islands of the electron-rich phase are either ferro- or
parasinglet regions (phase separation). The occurrence of
phase separation in the DMF approximation has been
demonstrated in Ref. [54]. A manifestation of phase
separation are the jumps in n�m�, the electron concentration
as a function of the chemical potential. An example is
demonstrated in Fig. 8b, where the electron concentration
jumps from n � 0:88 to n � 1. This shows that the homo-
geneous state is unstable within this interval. Were such a
state realized in one way or another, it would inevitably
break up into two phases with electron concentrations
corresponding to the ends of this interval, i.e. a ferro- or
para-phase with n � 0:88, and an antiferromagnetic insulat-
ing phase with n � 1. The phase diagram for the DE model
in the limit d � 1 is displayed in Fig. 8a [54].

Here, unlike Furukawa's earlier papers which we cited
above, a more realistic expression for the bare electron
density of states, viz.

N�e� � 2

pW

����������������������
1ÿ

�
e
W

�2
s

; ÿW < e <W ; �3:20�
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with W the band half-width, was used in phase diagram
calculations. In other cases, a Lorentzian shape N0�e� was
employed.

3.3 Relation between TC and the average kinetic energy
The authors of Ref. [55] undertook the task of revising the
DMF approximation to DE model in terms of fitting the
experimental data on manganites with high TC, for which
double exchange is believed to be the dominant mechanism.
To approach real materials as closely as possible, the DE
model was extended somewhat by including the orbital states
of the charge carriers. The Hamiltonian used was the general-
ized Hamiltonian of the sd-model:

H � ÿ
X
ijabs

t abij a
y
iasajbs ÿ JH

X
iass 0

Si � ayiasrss 0aias 0 : �3:21�

Here, the a, b label the orbital-moment-degenerate states (i.e.
two-fold degenerate eg states in the case of themanganites), so
that the parameter t abij is amatrix in orbital indices in this case.

The key physical characteristic discussed in the analysis is
K, the average kinetic energy of an electron:

K � ÿ 2

zN

X
ijabs

ht abij a
y
iasajbsi : �3:22�

In the simplest case of no orbital degeneracy, this quantity is
expressed in terms of the electron Green's function:

K �
�
de eN0�e� 1p

�
do f �o� ImG�e;o� : �3:23�

Although the ferromagnetic ordering temperature TC

depends strongly on the system's major parameters such as
the electron concentration n and the exchange parameter JH,
in fact it is determined byK, a quantity which itself is strongly
dependent on n and JH. Indeed, referring to Fig. 9 [55] which
shows the classical-spin DMF calculated results of the
preceding section, the proportionality between DK and TC

indicates the average total energy of electrons as a funda-
mental energy parameter of the system and one which
determines its ferromagnetic ordering temperature. This
conclusion drawn from numerical work is fully consistent
with Zener's early idea that electron motion through the
lattice causes ferromagnetism in the framework of the DE
model.

An important observation in Ref. [55] is that the value of
K can be extracted bymeasuring the frequency dependence of
conductivity, because K appears as a measure of spectral
weight in this dependence. The DMF electron self-energy is
independent of k so that the vertex corrections may be
neglected giving a conductivity of the form

sab�ion� � e2

ion

�
S�1�

ÿ
X
ks

T
X
m

Tr
�
gakGs�k; iom�gbkGs�k; ion � iom�

��
: �3:24�

Here g ak is a current component. Since we are concerned with
materials of cubic symmetry, one has sab � sdab. From Eqn
(3.24), the conductivity expression can be reproduced.

Since the conductivity obeys the sum rule [56, 57], we can
write down that

S�1� � adÿ2

e2

�1
0

2

p
dos�o� �

X
idabs

t abd d2hayiasai�das �H:c:i:
�3:25�

Here d is the vector connecting the two sites between which
hopping takes place. If electron hopping between nearest
neighbors is dominant, it follows from Eqn (3.25) that�1

0

2

p
dos�o� � e2

adÿ2 K ; �3:26�

i.e. S�1� � K.
Now from Eqn (3.24) there follows an operative formula

for calculating the optical conductivity in the framework of
the DE model:

s�o� � e2
X
s

�
deN0�e�j�e�

�
�
do 0

p
f �o 0� ÿ f �o 0 � o�

o 0
As�e;o 0�As�e;o 0 � o�; �3:27�

which is in fact identical to Eqn (3.15) given earlier. The only
difference is in the matrix elements for the vertex parts of the
currents. In Eqn (3.27), j�e� � �1=3��4t 2 ÿ e2� corresponds
to the Bethe lattice, whereas in Eqn (3.15) we have the
quantity W 2, which corresponds to a cubic lattice.

Thus, there are two ways in which the average kinetic
energyK can be evaluated: from Eqn (3.23) using the electron
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Green's function or from the experimentally found conduc-
tivity, by integrating it with respect to frequencies. By
comparing these quantities, the adequacy of the DE model
in describing real manganites can be checked.

Numerical calculations of TC and K were done for
La0:7Sr0:3MnO3, a compound whose ground state is ferro-
magnetic and which is believed to be described adequately by
the DE model (see Fig. 9). It was found that K�T � 0�
depends only weakly on JH over an extended region of JH
and that K�T � 0� � 0:84 eV for this compound. In the limit
JH ! 0, the calculations yield TC=K�T � 0� � 0:16 that is
almost independent of the model details. For finite JH (for
electron concentrations n corresponding to the ferromagnetic
ground state) it was found that TC � DK (the difference in K
at T � 0 and T > TC) (Fig. 9b). It turned out also that for
JH ! 0, DK=K! 1=3 but as JH decreases, so does DK. At a
certain critical value of JH,DK � 0, and below this value of JH
the ferromagnetic ground state is not possible.

3.4 A simplified double exchange model
Abandoning the idea of a quantized localized spin in
Furukawa's approach makes the theory highly questionable
in terms of the physical adequacy of the approximation
employed. A series of papers on the subject [58 ± 61]
produced a theory of double exchange in the z!1 limit, in
which the localized spin was viewed as a quantum one with
S � 1=2. To make the problem practically solvable, however,
the double exchange model itself was simplified by ignoring
the transverse-spin-fluctuation contribution, thus replacing
the initial Hamiltonian for the sd interaction by an Ising-type
Hamiltonian of the form

Hint ! ÿ 1

2
JH
X
i

S z
i �ayi"ai" ÿ a

y
i#ai#� ; �3:28�

where Sz
i is the operator for the z component of the localized

spin at the site i, and Sz
i S

z
i � 1.

In second-order perturbation theory in the parameter
W=JH one can go over from the initial Hamiltonian
H � Hkin �Hint with the simplification (3.28) to an effective
Hamiltonian H which is conveniently written down as

H � ÿt
X
ijs

c
y
iscjs ÿ

X
ij

Jijni"nj# : �3:29�

Here the cis�cyis� are annihilation (creation) Fermi-like
operators of the complex consisting of a localized spin at the
site i and an electron with a parallel spin residing at the same
site, so that

cis � 1

2
�1� sSz

i �ais ; �3:30�

and in addition nis � c
y
iscis. Site states with antiparallel spins

in the complexes are described by the operators
�1=2��1ÿ sSz

i �ais and are omitted as lying higher by an
amount of order JH. The finite values of W=JH give rise to
an additional intersite term in the Hamiltonian (3.29),
accounting for the exchange antiferromagnetic interaction
between electrons, of order J � t 2=JH for nearest neighbors.

In the limit z!1, the quantities t and J scale in the usual
way like t! t �=

���
z
p
; J! J �=z, where t � and J � are the

constants of the theory. TheHartree ± Fock approximation of
intersite interaction becomes exact in this limit, so that the

exchange term in Eqn (3.29) can be linearized, and the
Hamiltonian of the simplified DE model finally becomes

H � ÿ 1

2

X
i

hiS
z
i �

X
is

esc
y
iscis ÿ t

X
ijs

c
y
iscjs : �3:31�

Here we have included the local magnetic field hi acting on the
localized spin, and introduced the chemical potential m such
that

es � ÿmÿ
X
j

Jijhnjÿsi :

Let us consider now the single-particle Green's function
for correlated electrons, viz.

G ii 0
s �tÿ t 0� � ÿ
Tt~cis�t�~c yi 0s�t 0�

�
: �3:32�

Since the operators cis and c
y
is obey rather complicated

permutation relations between themselves and with Sz
i ,

treating them perturbationally requires a special diagram
technique [58] of the kind used for the Hubbard operators
[62]. Using the technique of Ref. [58] one obtains the Dyson
equation which, when Fourier transformed with respect to
the time variable tÿ t 0, takes the formX

i1

�
G 0

s

ÿ1�ios�dii1 ÿ S ii1
s �ios� ÿ tii1

	G i1i
0

s �ios� � dii 0 ; �3:33�

where G 0
s �ios� � �ios ÿ es�ÿ1 is the bare Green's function.

Since in the limit d!1 the electron self-energy is momen-
tum independent and depends only on the frequency, as
mentioned before, it is diagonal in site indices, S ii 0

s � S ii
s dii 0 ,

and its form for the Hamiltonian (3.31) is given by [59]

S ii
s �ios� � ÿ 1ÿ smd

i

2G ii
s �ios�

; �3:34�

where md
i � hSz

i i is the average value of the localized spin.
The derivation of Eqns (3.33) and (3.34) is not simple and yet
is analogous to the one Brandt and Mielsch [63] carried out
for the Falicov ±Kimball model.

From Eqn (3.33) the one-site Green's function is followed
immediately:

G ii
s �ios� �

�
N0�e�

�
ios ÿ es ÿ S ii�ios� ÿ e

�ÿ1
; �3:35�

where N0�e� is the density of states for the bare electron
spectrum ek.

Equations (3.34) and (3.35) exhibit a closed system of
equations for determining the self-energy part of the function
and the one-site Green's function proper. The equations for
hSz

i i can also be obtained by a diagram technique of the type
used for c-operators and can be written as [60, 61]

md
i � tanh

1

2
li ; �3:36�

li � l0i � Zi ; l0i � yi � ln
1� exp�bmr ÿ y s

i �
1� exp�bmr � y s

i �
;

Zi �
X
os

�
ln
�1�md

i �G 0
" �ios�

2G ii
" �ios�

ÿ ln
�1ÿmd

i �G 0
# �ios�

2G ii
# �ios�

�
:
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Here we introduced the notion

yi � bhi ; y s
i �

1

2
b
X
j

Jij m
s
j ;

mr � m� J �
n

2
; b � 1

T
;

andms
i is the magnetization the itinerant electrons create at a

given site. The quantities ms
i and m are determined from the

equations

ms
i � hni"i ÿ hni#i ; n � hni"i � hni#i : �3:37�

The proper averages hnisi are expressed in terms of the
diagonal Green's function G ii

s �ios� via summation with
respect to frequency.

Since the quantities hnisi are functions ofmd
i , som

s
i are the

functions ofmd
i , and Eqn (3.36) written in a very nearlymean-

field form is a closed equation formd
i . In the general case, the

system of equations (3.34), (3.35) for the electron Green's
function and Eqn (3.36) for md

i can only be solved
numerically. There is one special case, however, the Bethe
lattice, which admits an analytical solution for the electron
Green's function, thus significantly simplifying the study of
the magnetic properties of the system.

In the limit z!1, the itinerant-electron density of states
on the Bethe lattice has the form of Eqn (3.20), with W � 4t
being the width of the bare band. From Eqns (3.34) and
(3.35), with hi � mi � ms

i � 0 (paramagnetic phase), the one-
site Green's function G ii

s � Gs is found as

Gs�ios� � 8

W 2

(
Os ÿ

��������������������
O 2

s ÿ
W 2

8

r )
; �3:38�

where Os � ios � mr. It is seen that the correlation narrowing
of the band is determined by the quantity W=

���
2
p

.
Differentiating Eqn (3.36) with respect to the field hi yields

the equation for the static susceptibility

w�i; i 0� � dmi

dhi 0
:

The divergences of w�q� at q � 0 and q � �p; p; p� determine
the regions of instability of the paramagnetic phase against
ferro- and antiferromagnetic ordering. Variation of TC and
TN with the electron number density n is shown in Fig. 10. In
the region where the TC and TN curves intersect, one needs to
compare the energies of the ferromagnetic and antiferromag-
netic phases to resolve the phase issue.

Let us consider the state of the system within the
ferromagnetic phase. In this case local characteristics are
independent of the site index, while retaining their depen-
dence on the spin. The one-electron Green's function is given
then by

Gs�ios� � 8

W 2

�
Os ÿ snÿ

�����������������������������
O 2

s ÿ sn
2 ÿ a2s

q �
; �3:39�

where

a2s �
1

8
W 2�1� smd� ; n � 1

2
J �ms :

The magnetizations md and ms and the chemical potential m
are obtained from Eqns (3.35) ± (3.37) after the summation

with respect to the discrete frequency os. The equations then
take the form

md � tanh
1

2
lF ; �3:40�

lF � 1

p

�1
0

dt ln
1� exp b �mr ÿ nÿ a" cos t�
1� exp b �mr � nÿ a# cos t� ;

ms � nm� �1ÿm2�
X
s

1

p

�p
0

dt sin2 t f �as cos t� sn� ; �3:41�

n �
X
s

�1� sm� 1
p

�p
0

dt sin2 t f �as cos t� sn� ; �3:42�

where the integration with respect to t arises from the
summation of frequencies.

As seen from Eqn (3.39), the band structure of the system
is determined by the parameter as, the half-width of the
correlated band for spin s. The dependence of as on spin is
responsible for a number of phenomena in the ferromagnetic
phase, in particular, for the negative shift of the chemical
potential. Analysis of Eqns (3.40) ± (3.42) shows that dm=dT
changes sign at the Curie point.

Figure 11 depicts the temperature dependence of md. It is
seen that as the electron concentration decreases from n � 0:5
to n � 1, the curves gradually change their shape, acquiring
two points of inflection near n � 1. The dashed curve in the
figure demonstrates the temperature dependence of a Heisen-
berg ferromagnet in the mean-field approximation, when the
magnetization m is given by

m � tanh
TC

T
m :

Near n � 1, the md�T� curves are reminiscent of the behavior
of the magnetization for a Heisenberg ferromagnet with a low
concentration of paramagnetic impurities. Due to the strong
sd exchange interaction, the localized spin is bound toÐ and
forms a complex with Ð a conduction electron residing at a
given site. Consequently, the spin of the complex is S� 1=2,
and that of a free site is S, so that these sites behave as
impurity spins with concentration 1ÿ n5 1.
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Figure 10. Curie and NeÂ el temperatures versus electron number density in

the simplified DE model [60]: 1, J � � 0:1; 2, J � � 0:2; 3, J � � 0:3; 4,
J � � 0:4.
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At this stage we present the expression for the total
internal energy of the ferromagnetic phase as obtained by
averaging the Hamiltonian (3.31):

EF�T�
N
� ÿ 1

4
J �
�
n2 ÿ �ms�2��W

X
s

�
1� sm

2

�3=2

� 1

p

�p
0

dt sin2 t cos t f �as cos t� sn�: �3:43�

In the case of a two-sublattice antiferromagnetic structure
with wave vectorQ � �p; p; p�we havemi � pi m,ms

i � pi m
s,

where pi � exp�iQRi� � �1 (for sites in the first and second
sublattices). In this situation we look for a solution of Eqn
(3.33) in the form

G ii
s �ios� � G�1�s �ios� � pi G�2�s �ios� :

For the Bethe lattice, this yields separate equations for G�1�s
and G�2�s , and for the quantities md, ms and m equations
similar to Eqns (3.40) ± (3.42) result. The internal energy of
the antiferromagnetic phase is given then by

EA�T�
N

� ÿ 1

4
J ��n2 �m2�

� 1

4
W 2�1ÿm2� 1

p

�p=2
0

dt sin2 t cos2 t
f
�
E�t��ÿ f

�ÿE�t��
E�t� ;

�3:44�

where

E�t� �
��������������������������������������������������������������
1

8
W 2�a21 sin2 t� a22 cos

2 t� � n2
r

;

a21 �
1

2
ÿ 1

2

��������������
1ÿm2
p

; a22 �
1

2
� 1

2

��������������
1ÿm2
p

:

The quantities �E�t� determine two energy bands for
correlated electrons residing in an antiferromagnetic phase,
the parameter t replacing the unperturbed electron spectrum
ek of the usual periodic lattice. By comparing the energies, the

lines of the first-order transitions between the ferro- and
antiferromagnetic phases can be determined. It is easy to see,
however, that the simplified DE model shows signs of phase
separation in that the compressibility dn=dm becomes
negative in a certain range of electron concentrations. An
analysis of the negative compressibility results suggests that
the phase separation between the ferromagnetic and the
paramagnetic phases is only possible for J � > J �c � 0:318.
Of practical interest in this context are lower values of J �, for
which separation between the ferro- and antiferromagnetic
phases should be sought. At a fixed J � there is a number
density point n �, obtained from the relation
EF�n �� � EA�n ��, such that in the interval 0 < n < n � the
ground state is ferromagnetic, whereas in the interval
n � < n < 1 it is antiferromagnetic. In this situation the
ground state energy viewed as a function of n is not convex
throughout the entire range of its argument, 0 < n < 1, thus
necessitating the use of the Maxwell procedure; this gives us
two electron concentration points, n � nPS and n � 1. For
values in-between, the system exists as a combination of
ferromagnetic regions with electron concentration n � nPS
and antiferromagnetic regions with n � 1.

In the Tÿn phase diagram for J � � 0:1 shown in Fig. 12,
the phase separation region is bounded by the horizontal axis
and by the dashed lines emanating from the point of
intersection of the TC�n� and TN�n� curves. The points a and
b are calculated from the equations of the theory, whereas the
dashed lines are drawn schematically in order to obtain the
phase separation sector qualitatively in the diagram. The
phase diagram for the simplified DE model is generally
consistent with that obtained from the Furukawa model
with JH=W � 4 (see Fig. 8). The difference is that the latter
model exhibits a region of separation between the para- and
antiferromagnetic phases, so that a purely antiferromagnetic
phase exists only on the n � 1 axis (at any temperatures). It
should be noted, though, that the authors of Ref. [55] did not
study the region of large JH=W corresponding to the value
J � � 0:1 in Fig. 10, which excludes a detailed comparison of
the phase diagrams under study.

Efforts have also been made to study other properties of
the simplified DE model [59 ± 61]. In particular, the inverse
static magnetic susceptibility of the paramagnetic phase was
found to be linear Ð and thus to obey the Curie ±Weiss law
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Ð over a wide temperature range up to the close vicinity of
TC; in that latter area deviations appear in the opposite
direction to those seen in the Heisenberg model. Calculations
of the temperature dependence of electrical resistivity showed
a dramatic increase of r on approaching TC.

Thus, despite different approximations underlying the
Furukawa and simplified DE models, both yield very much
the same physics. The simplified DE model, however, has the
advantage of being more powerful analytically, providing
reasonably simple transcendent equations for such local
quantities as the magnetization of an individual site. The
model does not require much computer work and provides a
number of analytical results.

3.5 The coherent potential method
Since the inclusion of the quantum dynamics of localized
spins (i.e. of the finite values of the atomic spin S) is quite
problematic within the DMF approach, alternative
approaches are being applied to the DE model in the tight-
binding regime. Among them is the CPA (coherent potential
approximation). As is well known, the CPA (in the absence of
the electron ± electron interaction) is exact in the limit d � 1
and is widely used to describe electronic states in binary alloys
with chaotically distributed components [64]. An extension of
the standard CPA of Ref. [64] to systems with localized spins
(such as the DE model) was given by Kubo [65]. Kubo
succeeded in calculating the electron Green's function and
density of states in the framework of theDEmodel in the limit
of low electron concentration n! 0 (i.e. in the case of a
ferromagnetic semiconductor). He found that in the tight-
binding case the electron band splits into two subbands
centered on the atomic levels ÿSJH and �S� 1�JH, corre-
sponding to the electron spin being aligned parallel and
antiparallel to the localized spin.

An extension of the Kubo method to metals with electron
number densities covering the broad range 0 < n < 1 has
been given recently by Edwards et al. [14, 66] using the
approach which Hubbard [67] applied to the model now
carrying his name. The approach is based on an alloy analogy
and assumes the electrons with a given spin projection to be
frozen in calculating Green's function for the opposite spin
electron. For the DE model with a finite spin the situation is
complicated by the presence of an additional scattering
mechanism which involves the interchange of the electron
spin with the localized atomic spin. In the limit n! 0, the
computed Green's functions go over into Kubo's ones [65]. A
method developed in Refs [14, 16] accounts for uncoupling of
the Green's function equations of motion in the spirit of
Hubbard's approximation [67], which considers only the
`correction for scattering' while neglecting the `resonant
term'.

An elegant Green's function uncoupling technique devel-
oped in Ref. [66] for finite S extends the original Hubbard
approach to the DE system and corresponds to the CPA for a
DE model with an arbitrary electron concentration. Using
Green's functions so obtained, the electrical resistivity owing
to spin fluctuation scattering in the paramagnetic phase is
calculated for two models, elliptical and Lorentzian, of the
electron-band density of states. Calculations are performed
for the entire electron concentration range 0 < n < 1, at the
ends of which the resistivity goes to infinity and somewhere in
the middle of which it has a minimum. For the case of an
elliptical density of states, rmin is of order 1mO cm,more than
an order of magnitude below the values observed in the

manganites. For the Lorentzian density of states, on the
other hand, the resistivity is an order of magnitude higher. It
is with this density of states that Furukawa's numerical
calculations yielded r values of the same order as in
experiment. It turns out that the paramagnetic Lorentzian
density of states strongly overpredicts r Ð whence Furuka-
wa's claim that the DE model in its pure form is adequate in
describing the physics of the manganites.

Also calculated inRef. [66] was themagnetic susceptibility
of the paramagnetic phase for JH !1 within the same CPA
framework. The physical results are discouraging however,
because whatever the finite values of S and n, theDEmodel in
this approximation does not show the paramagnetic phase to
be unstable against ferromagnetism. At the same time, for
S!1 the CPA equations for Green's function are consis-
tent with DMF equations for the classical spin. An attempt is
made to see exactly where in the analysis the authors'
uncoupling procedure [66] makes the magnetic properties of
the DE model unphysical.

3.6 Variational approach
in the mean field approximation
We consider now another possible way of introducing the
mean field concept into the DE model which, even though
different from the DMF approach, represents an attempt to
take account of the local disorder present in the system.
Substituting a bivalent atom for a lanthanum atom in a
manganite creates a random local potential vi which may
exert considerable influence on the behavior of charge carriers
and, ultimately, on virtually all the physical properties of
these materials. Together with spin disorder, this atomic
disorder may lead to the localization of carriers in the
paramagnetic phase. The simplest model which includes
both these disorder types in the presence of a magnetic field
is described by the Hamiltonian

H � ÿ
X
ij

t cos
yij
2

a
y
i aj �

X
i

�vi ayi ai ÿ mBSH cos yi� : �3:45�

An original way of including a variational mean field acting
on a local spin was proposed by Varma [68]. Let P�y� be the
distribution function of the mean field acting on the spin.
Assuming that the spin makes an angle y with the magnetic
field, and neglecting the orientational correlation of neigh-
boring spins, the entropy of the spin system can be written in
the form

S � ÿ
�
dy sin yP�y� lnP�y� � S 0

spin�S� ; �3:46�

where the term S 0
spin�S� is independent of P�y�. In a similar

way we write down the electron energy Ee and the spin energy
Es in the presence of amagnetic field, and in addition the total
free energy F � Ee � Es ÿ TS. Denoting the polar and
azimuth angle of the local spin vector by yi and fi,
respectively, we have

Ee �
�2p
0

df1

2p

�2p
0

df2

2p

�p
0

dy1 sin y1

�p
0

dy2 sin y2P�y1�P�y2�

�
�m
ÿ1

de er
�
t cos

y
2
; e
�
; �3:47�

Es � ÿH
�2p
0

df1

2p

�p
0

dy1 sin y1 cos y1P�y1� : �3:48�
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Here the electron density of states r�t; e� corresponds to the
Hamiltonian (3.45) with diagonal disorder and is expressed in
terms of the density of states in the absence of disorder by
averaging it over the random potential vi:

r�t; e� � 
r0�t; eÿ v��v : �3:49�

Minimizing further the free energy functional F with respect
to the distribution P�y� we obtain the equilibrium value of
this function, viz.

P�y� � exp

�
ÿ�Z�y� � xÿH cos y

� 1
T

�
; �3:50�

where

Z�y� � 2

�2p
0

df1

2p

�2p
0

df2

2p

�p
0

dy1 sin y1P�y1�

�
�m
ÿ1

de �eÿ m�r
�
t cos

y
2
; e
�
: �3:51�

This expression depends on the angle y through the angle
y�f1; y1;f; y� between two oriented spins. The quantity x in
the exponential is a Lagrangian multiplier and is determined
by normalizing the distribution function P�y�, Eqn (3.50), to
unity.

Thus, minimization of the free energy functional leads to
an expression for P�y� of the form (3.50), in which the
exponential is again a functional of the same function, thus
implying that Eqn (3.50) sets up a nonlinear integral equation
for the distribution function P�y�. The kernel of this equation
is determined by the density of states in the bare spectrum,
and this is the only characteristic of the model.

Equation (3.50) has to be solved numerically, although for
the paramagnetic phase, when P�y� is a very nearly uniform
function in a weak magnetic field, one can apply an iteration
procedure and obtain an expression for the static magnetic
susceptibility, with the Curie temperature defined by the
relation

TC �
�p
0

dy sin y cos y
�m
ÿ1

de �mÿ e�r
�
t cos

y
2
; e
�
: �3:52�

Calculations show that TC is rather insensitive to the form of
the density of states in the bare spectrum for a fixed width r0
of the distribution. The TC�x� curve calculated for the case of
no local disorder is fitted well by the function x�1ÿ x�, while
the quantity TC lies in the range 100 ± 300 K and is consistent
with the experimental data [47]. The band width used in the
calculation of TC wasW � 1:8 eV.

The influence of disorder on TC has been examined by
means of Eqn (3.52) for a Gaussian random potential vi. In
this case t cos�y=2� is replaced by the quantity teff which can be
found from the relation

1

t 2eff
� 1

t 2 cos2�y=2� �
3

V 2
0

;

whereV0 is the width of theGaussian distribution used. From
Eqn (3.52) it follows that TC decreases with increasing V0.

Paper [15] also presents the temperature dependences of
the magnetization and electrical resistivity and calculates the
magnetoresistance as a function of the temperature and
magnetic field, all for the DE model with no disorder. The

sum total of the theoretical results are in good agreement with
the experimental data for manganites with high TC. At the
same time, the inclusion of diagonal disorder effects in the
model (3.45) makes it possible, in principle, to obtain results
which may be compared with data on low-TC manganites, in
which the role of atomic ordering is a priori large.

4. Phase diagram of the model

4.1 Monte Carlo calculations
Because the DE model works properly for large and
intermediate values of the parameter JH=W, any approx-
imate scheme aimed at calculating physical propertiesmust be
checked by numerical computations, which are exact in a
sense. For calculating the phase diagram of theDEmodel, the
Monte Carlo method has been found to be very effective [16,
54, 69, 70].

We have to calculate the partition functionZ. For the DE
model with classical spins we can write that

Z �
Y
i

��p
0

dyi sin yi

�2p
0

dji

�
Trc

�
exp

�
ÿH

T

��
; �4:1�

where the integration goes over the two angles specifying the
spin orientation at each site i, and Trc denotes the trace over
the electronic degrees of freedom. The Hamiltonian H
describes electron motion in the field of fixed classical spins.
If the concentration of electrons is low, their interaction can
be neglected, and H is then a quadratic form in Fermi
operators, which can always be diagonalized. Let its eigenva-
lues be el (note that they are the functionals of the set of
specified angles fyi;jig). If the el's are found numerically for
a certain cluster of lattice atoms, thenZ for this cluster can be
calculated with the formula

Z �
Y
i

��p
0

dyi sin yi

�2p
0

dji

�Y
l

�
1� exp

�
ÿ el
T

��
: �4:2�

Thus, Z should be calculated in two stages: firstly, one
diagonalizes the Hamiltonian of the cluster for a given spin
configuration, and then integrates the result over all the
possible spin configurations. The difficult problem of
`accounting for sign' is avoided here, unlike in the quantum
Monte Carlo method.

In Refs [16, 54, 69, 70], Z and spin pair correlation
functions were calculated for clusters of various dimension-
ality. In the case d � 1, numerical workwas done for chains of
up to 40 atoms for JH=t � 1, 2, 3, 4, 8, 12, and 18. In the case
d � 2, calculations were carried out for a 6� 6 cluster and
occasionally for a larger, 10� 10, one. Finally, for d � 3,
clusters of 43 and 63 atoms were used. For each set of
parameters JH=t, n, and T, spin pair correlation functions
were calculated, from which the thermodynamic state of the
system Ð i.e. the presence or absence of a long-range
magnetic order Ð was determined. The results of these
computer studies are summarized in Fig. 13.

There are three phases in the �JH=t; n� plane in the figure:
the ferromagnetic (F) phase, the modulated phase (IC stands
for incommensurate), and the phase separation region (PS).
In the case d � 2, PS and IC have no clearly defined boundary
between them Ð but rather a crossover region (shown as
shaded area). The phase separation region was determined
from the behavior of the compressibility k defined as the
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second derivative of energy:

1

k
� q2E

qn2
�
�
qn
qm

�ÿ1
: �4:3�

Those values of electron number density, where n�m� has a
jump (the compressibility goes to infinity), determine the
stability boundary for the homogeneous phase (see Fig. 8).

Reference to Fig. 13a, b shows that the main features of
the phase diagram are retained with any dimensionality: a
vast region of ferromagnetic state and a phase separation
region near half-filled band. Both phases are inalienable
features of the DE model. The situation with saturated
ferromagnetism in this model is reminiscent of Nagaoka's
theorem [71], according to which a hole in a half-filled
Hubbard model with a large on-site Coulomb repulsion
produces ferromagnetic ordering in the system. Thus,
saturated ferromagnetism has the same origin in the Hub-
bard and DE models. As for the phase separation effect, it
appears to be quite general for strongly correlated systems. At
any rate, it has been well established theoretically in the half-
filled Hubbard model and experimentally in HTSC cuprates.

The PS phase that appears in the phase diagrams of
Fig. 13 represents an antiferromagnetic matrix which has no

conduction electrons and contains inclusions in the form of
ferromagnetic phase islands with elevated electron concen-
tration. Electrons in these regions make gain in kinetic
energy owing to the ferromagnetic ordering, but this gain
is accompanied by a rise in Coulomb repulsion energy. This
energy can be minimized by the spatial expansion of the
electron-rich regions, in which case a stripe structure with
alternating regions of insulating and metallic phases may
arise.

Calculations for 3d clusters are rather difficult but, this
being an intermediate case between 1d and 2d on the one hand
and d � 1 on the other, the general properties of the phase
diagram for the 3-dimensional system should remain
unchanged. Direct 3d-cluster calculations showed the ferro-
magnetic phase to be stable over a wide range of n (Fig. 14).
These data are extracted from the analysis of the calculated
spin pair correlations, which have a positive sign in the
ferromagnetic region. To obtain TC in the units of degrees,
an estimate of t is needed. For themanganites, the band width
lies in the range 1 ± 4 eV. Given the band width of 12t from
tight-binding calculations of the energy spectrum for a cubic
crystal, one finds that t lies in the range 0.08 ± 0.33 eV. A
rough estimate based on the results in Fig. 14 puts the
maximum TC within the interval 100 ± 400 K. This range is
consistent with experiment, suggesting that ferromagnetic
states in manganites can be described adequately only by
means of the electron DE model [54].

Another question is whether it is adequate to use classical
spins in describing manganites with the localized spin
S � 3=2. Specialized quantum calculations for cluster chains
of atoms with S � 3=2 were performed in Ref. [54] using a
Lanczos scheme to numerically diagonalize the cluster
Hamiltonian and to calculate the energy of the ground state
for a specific total spin. The boundary of the ferromagnetic
phase obtained in this way changed only slightly from the
classical spin results shown in Fig. 13a. Near half-filled band
�n � 0:85�, negative values of compressibility, indicating the
onset of phase separation, were observed. In the quantum
case, the F, IC, and PS phases are, all three of them, present in
the phase diagrams of 1d systems Ð exactly as they are in the
classical spin case. The distinction lies in the fact that the
transition from the PS to F phase proceeds smoothly.
Calculations for S � 1=2 retain the essential features of the
phase diagram for a 1d system. We can therefore be more or
less confident that in the 3d case replacing the atomic spin by
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Figure 13. Phase diagrams for the classical spin DEmodel obtained by the

Monte Carlo method (a) in one dimension, and (b) in two dimensions.

0.81.0 0.6 0.4 0.2 0
0

0.05

0.10

0.15

F

P

n

TC=t
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the classical one also does not alter the phase diagram of the
DE model qualitatively.

4.2 Inclusion of direct antiferromagnetic exchange
In the DE model, the indirect antiferromagnetic exchange
interaction arises near the half-filled band. For n � 1 and
JH=W4 1, the effective Hamiltonian goes over into that of
the Heisenberg model with a nearest-neighbor exchange
interaction I �W 2=JH. In the manganites, there can also be
direct exchange between localized manganese spins, via
oxygen ions. Thus, in the general case we have to introduce
an additional term J 0

P
ij SiSj into theHamiltonian (1. 1). The

presence of such an electron-concentration-independent
exchange will dramatically reconstruct the phase diagram of
the system.

The role of direct exchange interaction has been analyzed
in a Monte Carlo study [70] of spin correlations in cluster
chains based on the previous result [16] indicating that the
DE-model phase diagram weakly depends on the dimension-
ality of the system and therefore the behavior of a three-
dimensional system can be understood from one-dimen-
sional results. The resulting J 0ÿn phase diagram is shown
in Fig. 15. For intermediate values of n and J 0=t < 0:11, the
ferromagnetic metal phase (FM) is seen to exist. When J 0=t
increases above 0.11, a phase transition occurs to an
insulating phase with a modulated magnetic structure (IC).
In particular, at n � 1=4 a spiral phase with a wave vector
q � p=2 appears. For J 0=t � 0:25, this is the only phase
stable at this value of electron number density, whereas in
the range 0:35 < n < 0:6 the antiferromagnetic phase
becomes stable. Also, antiferromagnetic phases occur for
the half-filled band �n � 1� and for an empty band �n � 0�
(in the latter case, due to the direct exchange being switched
on). In the vast regions between the ferro- and antiferro-
magnetic phases, phase separation takes place. The occur-
rence of such states is signaled by jumps in dn=dm. Unlike the
pure DE model results discussed above, the inclusion of
direct exchange causes phase separation to occur even in the
small-n region. A similar result was obtained analytically in
Ref. [73]. At the same time, the authors of Ref. [70] argue
that their scenario of an antiferromagnet undergoing phase
separation into ferromagnetic regions is more accurate
physically than that of a magnetic polaron moving in an
antiferromagnetic matrix [74]. We note for completeness that
paper [70] also provides a detailed discussion, within the
framework of the present model, of the total and spectral
densities of states for electrons as well as of the optical
conductivity in various regions of the phase diagram.

The phase diagram depicted in Fig. 15a is in a sense
consistent with that of Fig. 15b obtained by the energy
comparison of various phases calculated analytically for the
DE model with added antiferromagnetic exchange between
localized spins. Analytical calculations, which are possible for
the limiting case of low electron number density, n5 1, have
yielded [72] energies for four homogeneous phases with two
sublattices which need not be antiferromagnetic but whose
spins form a certain angle y different from p (the canted AF
structure of de Gennes [6]). It turned out that there are four
electron concentration values that separate the regions of
realization of the magnetic phases as follows: AF, an
antiferromagnetic phase �n < n1�; QC, a quantum canted
structure with two bands �n1 < n < n2� and one band
�n2 < n < n3� filled; CC, a classical canted structure
�n3 < n < n4�, and FR, a ferromagnetic structure �n > n4�.

The energies of the phases indicated are

EAF � ÿ ztn��������������
2S� 1
p ÿ 1

2
zJ 0S 2 ;

EQC � EAF ÿ 3

8

zt 2

J 0�2S� 1�2 �nÿ n1�2 ;

ECC � ÿ zt 2n2

4J 0S 2
ÿ 1

2
zJ 0S 2 ;

EF � ÿztn� 1

2
zJ 0S 2 ; �4:4�

respectively. The critical electron concentrations are given by

n1 � 8p4

3

�
J 0�2S� 1�3=2

zt

�3
; n2 � 27

z
n1 ;

n3 � 8J 0S 3=2

t
; n4 � 2J 0S 2

t
:

From expressions (4.4) it follows that the compressibility
k for the phases QC and CC is negative, indicating that they
are unstable to phase separation. For not small values of n,
the numerical calculations of Ref. [72] lead to the phase
diagram shown in Fig. 15b. For intermediate electron
concentrations, the stable phases are F and CC. At low
concentrations, the CC phase becomes unstable (even in
regions where the compressibility is positive).
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Figure 15. Phase diagrams for the DEmodel with direct antiferromagnetic

exchange J 0: (a) Monte Carlo classical spin results [70], (b) analytical

calculations for a finite spin S [72]. CC denotes the canted phase (see text),

k is the electron gas compressibility.
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The DE model Hamiltonian with additional antiferro-
magnetic exchange is electron ± hole symmetric, therefore the
phase diagram for 0:5 < n < 1 should be similar to that for
0 < n < 0:5. It turns out, however, that the manganites
behave very differently for electron number densities in
these two intervals. This breaking of the electron ± hole
symmetry is due to the orbital degeneracy of electron states
in real manganites (see Section 5).

Thus, numerical [16, 54, 69, 70] and analytical [72, 75 ± 77]
DE-model studies reveal the presence of phase separation
similar to that arising in the Hubbard [78] and tJ [79] models.
Over a wide range of electron number densities and
Hamiltonian parameters, the homogeneous states of these
models are unstable towards a phase separation. These
inhomogeneous states come in a number of varieties:
ferromagnetic (or paramagnetic) islands with elevated elec-
tron concentration in an dielectric antiferromagnetic matrix;
islands of canted ferro- or antiferromagnetic phase, and
magnetic polarons. The latter (if they are low-mobile ones
due to a large effective mass or disorder-induced localization)
exhibit a limiting Ð with one electron per microvolume Ð
case of phase separation with local ferromagnetic order [8,
49].

The observation of phase separation in the DE model
suggests that many experimental data on the manganites
should be reinterpreted in the light of the existence of
magnetically and electronically nonuniform states in these
materials. In particular, transport properties and the metal ±
insulator transition should perhaps be analyzed using
percolation theory rather than in terms of the properties of
uniform states. The importance of percolation for the
manganites has been emphasized by Gor'kov and Kresin [9,
19], and there is some experimental evidence to support this
idea [80, 81]. In particular, the percolation concept provides a
natural way to explain the existence of a critical hole
concentration xc � 0:16 above which a ferromagnetic metal
state occurs in La1ÿxA2�

x MnO3 [19].

4.3 Experimental studies of phase separation
in manganites
Along with the theoretical results on phase separation in the
DE model, there is much experimental evidence for its
existence in the manganites, coming from neutron scatter-
ing, NMR, and from photoconductivity and other transport
properties. The bulk of the data show that along the (electron
concentration or temperature) boundary of the ferromagnetic
region, there exist in actual manganites inhomogeneous
phases in which ferromagnetic clusters with an elevated
electron number density coexist with another phase, possibly
an antiferromagnetic insulator. Experimental evidence for
phase separation in various manganites has been reviewed in
detail elsewhere (see, e.g., Ref. [54]), so that only a few
examples will be given here.

In Ref. [82], the spin dynamics in La1ÿxCaxMnO3 were
examined in the ferromagnetic range of electron concentra-
tions �0 < x < 0:5� using inelastic neutron scattering. For
x � 1=3 (corresponding to a Curie temperature of 250K), it is
found that spin wave dispersion curves at low T are gapless,
characteristic of an isotropic ferromagnet. At large T,
however, a diffusion scattering component was observed at
the center, whose intensity increased toward TC due to the
decreased spin wave scattering intensity. Such a three-peak
spectrum is absent at x � 0:15 and x � 0:175, where a usual
two-peak spin-wave-scattering structure is observed. The

three-peak structure is explained by assuming that the system
constitutes an inhomogeneous phase in which a ferromag-
netic metallic matrix (producing two side peaks) contains
inclusions of a paramagnetic phase (producing the central
diffusive peak).

Small-angle neutron scattering studies on the same
(La, Ca) system showed the existence of metallic ferromag-
netic drops in the dielectric antiferromagnetic matrix at
sufficiently small x � 0:05 and 0.08 [83]. The density of the
drops was 60 times smaller than that of the holes x, and their
diameter was below 10 A

�
. Magnetically, drops are far from a

saturated ferromagnet. The average spin deflection from the
quantization axis is about 70�.

5. Orbital degeneracy
in the double exchange model

5.1 Electronic spectrum and the phase diagram
The DEmodel was from the very first aimed at explaining the
physical properties of the manganites, despite the neglect of
the orbital degeneracy of the itinerant electrons in eg-
symmetric states. At the same time, the orbital degeneracy
of Jahn ±Teller ions has long been recognized as an important
factor for transition metal compounds behaving as magnetic
insulators [84 ± 86]. Anderson [86] was the first to show that
the kinetic exchange between magnetic ions in an insulator
depends on the symmetry of degenerate trivalent orbitals and
the geometry of the crystal lattice. A complete theory of
kinetic exchange in dielectric crystals with Jahn ±Teller ions
was developed by Kugel' and Khomski|̄ [84, 85] based on the
Hubbard model with additional intraatomic exchange inter-
action. It turned out that spin and orbital degrees of freedom
are strongly coupled in such crystals (even in the absence of
the spin-orbit interaction in ions) and that this manifests itself
primarily in orbital ordering. Both types of ordering strongly
affect each other, so that given one type of ordering the theory
is capable of predicting the other.

Because insulators of this type are raw materials for
metallic (doped) manganites, the above ideas were carried
over to the double exchange model applicable (in the general
case) to metallic systems [17, 19, 87]. Orbital degeneracy
radically changes the picture of double exchange and leads
to the formation of anisotropic magnetic structures. We
follow the approach of van den Brink and Khomskii [17] in
the discussion below.

The DE model Hamiltonian in the presence of orbitally
degenerate states can be written as

H � ÿ
X
ijsab

t abij a
y
iasajbs ÿ JH

X
iss 0a

Si � ayiassss 0aias0 � J 0
X
ij

SiSj :

�5:1�

Here a and b indices label the components of the degenerate
electron state. For the manganites, these are the orbitals
dx2ÿy2 and dz2 belonging to the two-fold degenerate level of
eg symmetry; they are labeled by the indices a � 1 and 2,
respectively. Note the term of magnitude J 05 t5 JH, added
to the Hamiltonian to account for the direct (antiferromag-
netic) ion ± ion exchange.

The hopping matrix elements t abij depend on the orbital
number and are related to each other by certain relationships
depending on the overlap of the functions dx2ÿy2 and dz2 [84,
86]. Using these relationships, one obtains expressions for the
Fourier components of the quantities t abij . In the nearest-
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neighbor approximation, we have

t 11�k� � ÿ2txy�cos kx � cos ky� ;

t 12�k� � t 21�k� � ÿ 2���
3
p txy�cos kx ÿ cos ky� ;

t 22�k� � ÿ 2

3
txy�cos kx � cos ky� � 8

3
tz cos kz : �5:2�

In the absence of a magnetic ordering in a cubic crystal, we
find txy � tz � t, but in the presence of such ordering the
hoppingmatrix elements depend on themutual orientation of
the spins at the sites between which the hopping occurs. In
writing the expression for t ab�k� above it is assumed that the
magnetic ordered crystal possesses a tetragonal symmetry.

Consider now the simplest three antiferromagnetic struc-
tures possible in a two-sublattice cubic crystal: the types A, C,
and G (see Fig. 3). These structures are characterized by the
values of angles yxy between the neighboring spins in the xy-
plane and the angle yz made with the z axis:

A�yxy � 0; yz � p� ; C�yxy � p; yz � 0� ;
G�yxy � yz � p� :

We will consider localized spins as classical vectors. Then,
following Ref. [17], we define the quantities txy and tz by the
equations

txy � t cos
yxy
2
; tz � t cos

yz
2
: �5:3�

These expressions suggest that instead of the Hamiltonian
(5.1) we have to deal with an effective Hamiltonian which
does not contain the Hund (sd-exchange) term whose
contribution has already been accounted for in Eqns (5.3).
The average energy of the effective Hamiltonian can be
written in the following form

hHeffi � J 0

2
�cos yz � cos yxy�

�
X
ks

�
e��k� f

ÿ
e��k�

�� eÿ�k� f
ÿ
eÿ�k�

��
; �5:4�

where e��k� is the electron bare spectrum obtained through
the equation

det kt ab�k� ÿ edabk � 0 ; �5:5�

and f �e� is the Fermi distribution function. From Eqn (5.5),
one finds

e��k� � ÿ 4

3
txy�cos kx � cos ky� ÿ 4

3
tz cos kz

�
(�

2

3
txy�cos kx � cos ky� ÿ 4

3
tz cos kz

�2

� 4

3
t 2xy�cos kx ÿ cos ky�2

)1=2

: �5:6�

The first term in Eqn (5.4) supplies the direct exchange
energy, and the second is the contribution to the energy from
the itinerant electrons renormalized by the interaction with
the magnetic structure.

For a fixed electron concentration one calculates the
average energy (5.4) at T � 0 for each pair of angles yxy and

yz corresponding to the magnetic structures A, C, and G and
then picks up theminimum value of this average. This yields a
magnetic phase diagram in the �t=J 0; n� plane (Fig. 16). At
very low electron number density n, the A structure is stable at
all t=J 0. As n increases, the figure indicates that phase C
appears firstly, followed again by A (at high and low t=J 0),
and finally by ferromagnetic phase F. This particular phase
succession is determined by the density of states in the
electronic spectrum for these magnetic structures.

5.2 Comparison with experiment
Let us consider lanthanum manganite, La1ÿxMxMnO3

(M�Ca, Sr), the best studied manganite of all. Two limiting
cases of this system, LaMnO3 and CaMnO3, are both
insulators, but their electronic structures differ in having the
eg states filled and empty, respectively. Thus, doping
LaMnO3 with calcium gives rise to collectivized hole states
for x < 0:5, and to electronic states for x > 0:5. According to
the standardDEmodel, the behavior of themanganites at low
x should be similar to that for x � 1 (electron ± hole
symmetry). Experiments show, however, that hole and
electron compounds behave very differently. For x < 0:5 we
usually have metal ferromagnetic states, whereas for manga-
nites with x > 0:5 a striped insulating phase with a doping-
dependent period is typical.

This difference can be understood in terms of degenerate
eg states. In undoped LaMnO3, eg electrons are localized, the
degeneracy being removed by orbital ordering. If we start
doping this system, we may ignore the orbital degeneracy and
apply the standard DE model. At the opposite extreme Ð if
we are dealing with CaMnO3, for example Ð a different
situation obtains. Here the eg states are empty, forcing us to
take into account the two-fold degeneracy of the eg states
when putting an electron at an eg levelÐ hence the theoretical
problem we have discussed above. From Fig. 16 we see that
anisotropic magnetic structures dependent on the concentra-
tion of doped electrons must occur. Thus, for t=J 0 � 4 the
phases

F�x4 0:5�; A�0:54 x4 0:6�; C�x5 0:6� �5:7�

must be stable. Experimental data [88] show that the system
Nd1ÿxSrxMnO3 (which is ferromagnetic for 0:25 < x < 0:5)
exhibits type A antiferromagnetic ordering in the range
0:5 < x < 0:6 and that type C occurs for 0:6 < x < 0:8. In
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Figure 16. Magnetic phase diagram for the average exchange model with

degenerate eg electrons [17].
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Pr1ÿxSrxMnO3 [89], the type A structure exists for
0:5 < x < 0:7. These data agree with the phase diagram and,
in particular, with the section (5.7) of it. Furthermore, there is
evidence that the unsaturated metal ferromagnetic state
observed in Ca1ÿyRyMnO3 [90, 91] constitutes also a canted
antiferromagnetic state of type C [17].

One furthermanifestation of the degeneracy of the eg state
deservesmention. The calculation of the spectrum (5.6) shows
that dispersion curves for the C phase are very nearly one-
dimensional. As is well known, disorder in 1d structures leads
to localization. This explains why the C phase is insulating for
electron doping y � 0:15. By the same token, since spectra in
the A and ferromagnetic phases are of 2d and 3d nature,
respectively, these structures are less sensitive to disorder and
are therefore expected to be more metallic Ð which is indeed
the fact ascertained in experiment.

6. Effects of electron ± lattice interaction

6.1 Interaction of eg electrons with lattice vibrations
The assumption that electrons interact only with localized
spins set limits on the application of the DE model to the
study of real materials. One possible extension of the model is
to introduce an additional interaction between the electrons
and the lattice Ð an approach necessitated, in particular, by
the lattice distortion studies of Ref. [92], which indicated
strong electron ± lattice coupling to be present in the manga-
nites. The behavior of the electron ± lattice system is deter-
mined by the dimensionless coupling constant, namely, the
ratio of the interaction energy to the kinetic energy of the
electrons. The presence of a strong coupling may create a
situation [13] in which the paramagnetic phase of the system
has its electrons localized in the form of polarons, whereas
lowering the temperature makes them delocalized in the
ferromagnetic phase, where the long-range ferromagnetic
order increases the kinetic energy, thus decreasing the
effective electron ± lattice coupling. This latter coupling
explains the fact that the resistivity of CMR materials above
TC typically exceeds the characteristic Mott limit and indeed
rapidly increases as the temperature is lowered.

Themodeling of the interaction of electrons with localized
spins and with phonons has been discussed in detail in Ref.
[93] under the assumption that the properties of doped
manganites depend to a great extent on the Jahn ±Teller
effect, in which the two-fold degenerate eg-orbital electronic
states are split via the coupling of the electrons to the lattice
degrees of freedom.

For simplicity, the phonons in Ref. [93] are treated as
localized classical oscillators. We will describe by vector r the
displacement of the oscillator from its equilibrium position.
Let us assume that as the oscillator is displaced from its
equilibrium position r � 0, a restoring force appears, char-
acterized by a coefficient k, which is independent of the site
number. The Hamiltonian for the lattice degrees of freedom
then can be written as

Hph �
X
i

1

2
kr 2i : �6:1�

The two-fold orbitally degenerate eg electronic level can be
split by interaction with an appropriate phonon mode. In the
manganites, such a mode is characterized by a two-compo-
nent vector r � �rz; rx�, which is conveniently parameterized

by the magnitude r and angle f by writing r � r�cosf; sinf�.
The interaction in this case can be approximated by

Helÿph � g
X
iabs

a
y
iass

abaibs � ri : �6:2�

Here, g is the electron ± phonon coupling constant, and the
vector s � �tz; tx� is composed of the Pauli matrices and
operates in the space of orbital states.

Thus, we have to add to theDE-modelHamiltonian (3.21)
the energy of interaction between the electrons and phonons
and the energy of the phonons, giving

H � ÿ
X
ijabs

t abij a
y
i asajbs ÿ m

X
ias

a
y
i asaiss

ÿ JH
X
iss 0

Si � ayi asrss 0ai as 0 �Helÿph �Hph ; �6:3�

where a term with the chemical potential m has also been
added.

We next consider this model in the dynamical mean field
approximation in the same manner as was done for the DE
model with no electron ± phonon coupling.

6.2 The dynamical mean field approximation
to the DE model with lattice interaction
Again, we have to calculate the electron Green's function

Ĝ�k; ion� � 1

ion ÿ ê abk � mÿ Ŝ�ion�
; �6:4�

which is now a tensor, G ab
ss 0 , in the orbital and spin spaces. In

Eqn (6.4), êk is the bare spectrum corresponding to the
transition matrix t abij . Recall that in the DMF approximation
the momentum dependence of the electron self-energy S is
ignored, and all the physical properties are determined by the
local Green's function ĜL�ion�, defined as in Eqn (3.2).

We assume that the orbital space exhibits no long-range
order and that the quantities G ab

Lss 0 and Sab
ss 0 are proportional

to the unitary matrix in indices ab in orbital space. Allowing
for the possibility of formation of the ferromagnetic state with
spontaneous magnetization along the z axis, the local Green's
function is written as

ĜL�ion� � g0�ion� � g1�ion�sz ; �6:5�

and for the self-energy, in the same vein, we have

Ŝ�ion� � S0�ion� � S1�ion�sz :

The quantities g0 and g1 are defined by the relationships

g0 � 1

4
Tr �a� Tr �s�

�
dk

�2p�3 ĜL ;

g1 � 1

4
Tr �a� Tr �s�

�
dk

�2p�3 ĜLsz : �6:6�

For each momentum k we introduce the matrix R ab
k which

diagonalizes the bare spectrum êk as follows

êk � Rk
e1k 0

0 e2k

� �
Rÿ1k : �6:7�
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Using the theorem on the cyclic invariance of the trace of a
matrix, Eqn (6.6) can be rewritten as

g0�ion� � 1

4
Tr �a� Tr �s�

�
deN�e� 1

ion ÿ e� mÿ Ŝ�ion�
;

�6:8�

g1�ion� � 1

4
Tr �a� Tr �s�

�
deN�e�s z 1

ion ÿ e� mÿ Ŝ�ion�
;

�6:9�

where the density of states N�e� is taken to be a half-disk of
half-width W � 2t:

N�e� �
�����������������
4t 2 ÿ e2
p

2pt 2
: �6:10�

Now let us derive equations for the basic quantities of the
problem, g0�ion� and g1�ion� [93]. In the spirit of the DMF
approximation, we introduce an effective one-site model
characterized by a partition function of the form

ZL �
�
r dr df

�
dm exp �SL� : �6:11�

Here, r and f are the classical oscillator coordinates as
defined above, m � S=S is the unit vector of the localized
spin, and all the integrals are ordinary Ð not functional Ð
ones. The effective action SL is clearly given by

SL � ÿ 1

2

k

T
r 2 �

X
n

Tr ln
�
a0�ion� � a1�ion�s z

� JHSm � r� gr � s�ÿ h � Sm
T

: �6:12�

Here, the interaction energy between the localized spin and
the external magnetic field h has been added.

For the density of states in the form (6.10), the mean field
parameters a0 and a1 in Eqn (6.12) are determined as follows.
First, from Eqns (6.8) and (6.9) one constructs equations for
the combinations g0 � g1, which in turn depend on the
combinations S0 � S1. Then both of these equations are
integrated with respect to energy using an explicit density-
of-states expression, after which the functions S0 � S1 are
eliminated using the definition

S0 � S1 � a0 � a1 � �g0 � g1�ÿ1 ;

and the resulting equations for g0 � g1 are solved. As a result,
the functions a0 and a1 are given by the equations [93]

a0�ion� � ion � mÿ t 2

4

d lnZL

da0�ion� ; �6:13�

a1�ion� � ÿ t 2

4

d lnZL

da1�ion� : �6:14�

Here, the components of the local Green's function (6.5) have
been expressed in terms of the variational derivatives:
g0;1 � �1=4�d lnZL=da0;1.

In the limit JH !1, one can simplify Eqns (6.13) and
(6.14). Let us write down the argument of the function
Tr ln in Eqn (6.12) in the form a0 � �a1ẑ� JHSm� � r�
gr � s. It is easy to see that the eigenvalues of this
expression are a0 � ja1ẑ� JHSmj � gr. The eigenvalues

a0 ÿ ja1ẑ� JHSmj � gr, which correspond to high-energy
states for JH 4 t, will be excluded from consideration. As
may be seen from Eqn (6.14), the quantity a1 is of order t, so
that a1 5 JHS and hence ja1ẑ� JHSmj � JHS� a1mz. We
now redefine a0 and m by incorporating the constant JHS into
them, introduce the new variables x � r

�������
k=t

p
, b0;1 � a0;1=t,

l � g2=kt, h0 � hS=t, and take t as the unit of measurement
for the quantities T, on and m. We then define the angle y of a
localized spin by the relation mz � cos y and arrive at the
following expression for the effective action [93]

SL�x; y� � ÿ x2

2T
�
X
n

ln
��b0 � b1 cos y�2 ÿ lx2

�� h0
cos y
T

:

�6:15�

For the mean field parameters we obtain

b0 � ion � mÿ 1

2

�1
0

x dx

�
�ÿ1
1

d cos yP�x; y� b0 � b1 cos y

�b0 � b1 cos y�2 ÿ lx2
; �6:16�

b1 � ÿ 1

2

�1
0

x dx

�
�ÿ1
1

d cos yP�x; y� cos y b0 � b1 cos y

�b0 � b1 cos y�2 ÿ lx2
; �6:17�

where

P�x; y� � 1

ZL
exp
�
SL�x; y�

�
: �6:18�

According to Eqn (6.5), the local Green's function GL has
only diagonal components

GL""�ion� � ion � mÿ b0�ion� ÿ b1�ion� ; �6:19�

GL##�ion� � ion � mÿ b0�ion� � b1�ion� : �6:20�

In terms of this Green's function, the spectral intensity and
the conductivity are given by formulas

A�o� � ÿTr ImGL�o� id�
p

; �6:21�

s�ion� � 2

ion

�
dek NO�ek�T

�
X
iom

Tr �s�
�
G�k; iom�G�k; iom � ion�

�
: �6:22�

The numerical factor 2 in Eqn (6.22) came from the trace over
the orbital states. In writing Eqn (6.21), the convention
e � t � 1 was adopted.

Another quantity of interest is the average kinetic energy
of the electrons K:

K � Tr �s�
X
ab

�
dk

�2p�3 eabk haykasakbs 0 i : �6:23�

We can now express the averages of the Fermi operators in
terms of the electron Green's function in the momentum
representation, Eqn (6.4), and then go over to the local
Green's function, taking into account the integral with
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respect to the momenta. Eventually we find

K � 2T
X
n

��GL""�2 � �GL##�2
	
: �6:24�

The magnetization m and the root-mean-square lattice
displacement hx2i are written as

m �
�1
0

xdx

�1
ÿ1

d cos y cos yP�x; y� ; �6:25�

hx2i �
�1
0

xdx

�1
ÿ1

d cos y x2P�x; y� : �6:26�

We now proceed to investigate the solutions (6.16) and
(6.17) of the basic equations of the problem. In the DMF
approximation, themain contribution to the integrals in these
expressions at T � 0 is made by the region of small angles
�cos y � 1�, hence b1 � b0 ÿ o� m, and from Eqn (6.19) it is
easily seen that the function GL## vanishes. The only nonzero
function, it turns out, is that with components parallel to the
magnetization vector. For T > TC, there is no long-range
order, and therefore b1 � 0. The y-angle dependence disap-
pears in this case.

Consider first the limit l � 0. For T � 0, we have from
Eqns (6.16) and (6.17):

b0 � b1 � 1

2

h
o� mÿ i

��������������������������
4ÿ �o� m�2

q i
: �6:27�

This result corresponds to the event of noninteracting
electrons. The imaginary part of the local Green's function
is different from zero in a semicircular bandwith a total width
4t. The spectral intensity has a maximum value at o � ÿm.
The self-energy S in this case is zero.

For T > TC and l � 0, b1 � 0 and the equation for b0
takes the form

b0 � 1

2

h
o� mÿ i

��������������������������
2ÿ �o� m�2

q i
: �6:28�

Here, the imaginary part of the local Green's function is
nonzero in a semicircular band with a total width 2

���
2
p

t, the
reduction in the band width by a factor of

���
2
p

reflecting the
absence of correlations between localized spins. The self-
energy then takes the form

S�o� � ÿb0 � i

2

��������������������������
2ÿ �o� m�2

q
ÿ 1

2
�o� m� : �6:29�

Notice that the expressions (6.27) and (6.28) are equivalent to
the respective expressions (3.38) and (3.39) derived for the
simplified DE model. For l finite, Eqns (6.16) and (6.17) can
only be solved numerically.

6.3 Comparison of the theory and experiment
Let us discuss the results of the numerical analysis made in
Ref. [93]. We start by considering the Curie temperature, TC,
shown in Fig. 17. As the coupling constant l increases, TC

decreases, the rate of decrease being especially fast for l � 1.
The temperature dependence of the resistivity for n � 1 is

displayed in Fig. 18. The kinks in the curves correspond to the
Curie temperature. Immediately below TC the resistivity
declines with decreasing T, presumably because the magnetic
contribution to scattering is reduced and the effective
electron ± phonon coupling becomes weaker. The `metal'
(dr=dT > 0) and `semiconductor' (dr=dT < 0) regimes can
be recognized in the curves. For T > TC, the value l � 1

determines the boundary between these regimes (dr=dT � 0),
while for T < TC the boundary between them lies at higher
values l � 1:15. Calculations for n � 0:75 and n � 0:5 yield
similar results. Comparison with Fig. 18 shows that in order
for the curve dr=dT to follow a semiconductor-type course
the coupling constant l in the case n � 0:75 must be larger
than for n � 1, and in the case n � 0:5 even more so. Notice
the close analogy between the behavior of r�T� as a function
of l at a given electron concentration (see Fig. 18) and the
behavior of r�T� as a function of x in the manganite
La1ÿxSrxMnO3 (see Fig. 4) [47, 94].

The temperature dependences of the mean square of
lattice distortions calculated in Ref. [93] for the case n � 1
have been confirmed by measurements of the Debye ±Waller
factor in oxygen in Refs [95, 96]. The temperature TC appears
as a point of kink in two straight lines on the experimental
graphs. For T > TC, the straight lines exhibit a smaller slope
than for T < TC, which is attributed to the enhancement in
the electron ± phonon coupling.

0 1.0 2.0

0.05

0.10

0.15

l

TC=t

Figure 17.Curie temperature versus electron ± lattice coupling constant for

n � 1 (heavy solid line), n � 0:75 (thin solid line), and n � 0:5 (thin dashed

line). Analytical results for a zero coupling constant are shown as dots.

Strong-coupling analytical results for n � 1 are shown as the dotted line

[93].
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ln r=r0

Figure 18. Temperature variation of resistivity for n � 1 for a number of l
values: 0.32 (lower curve); 0.71, 1.00, 1.08, 1.12, 1.15, and 1.20 (upper

curve) [93].
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The interplay between the double exchange interaction
and the electron ± phonon coupling also explains other
properties of the manganites, in particular, the behavior of
the resistivity in amagnetic field [93]. The field aligns localized
spins, increases the kinetic energy of the electrons, and
decreases the effective electron ± lattice coupling constant.
As a result, increasing the magnetic field from zero changes
the temperature dependence of the resistivity dramatically,
`smoothing out' the peaks and kinks in the dielectric and the
metal regimes, respectively. The CMR effect is heightened
with increasing coupling constant l. It is worth noting that the
electrical resistivity vs. magnetic field curves of Ref. [93] look
like those for the magnetoresistivity of La1ÿxSrxMnO3

obtained in Ref. [97].
Interesting results have been found for optical conductiv-

ity in the n � 1 case. As the temperature and effective
constant l are increased, the Drude optical conductivity
curve valid for the low temperatures and weak electron ±
lattice coupling goes over into a broad single peak at a
nonzero frequency, which corresponds, ultimately, to elec-
trons being localized by phonons [93]. The optical conductiv-
ity curves s�o� obtained in Ref. [93] are very much like the
experimental ones of Refs [98, 99].

It should be noted that the question of the electron ±
lattice coupling has also been addressed in Ref. [100], using a
variational wave function to study the role of the electron ±
phonon interaction in the DE model. To explain the isotope
effect in the manganites [101], an original method based on
the bipolaron model has been proposed in Refs [102, 103].

7. Open problems in the physics of manganites

7.1 Metal ± insulator transition
One of the most remarkable physical properties of the
manganites is the occurrence of a metal ferromagnetic phase
within a certain region in the �T; n� phase plane. To cross the
boundary of this region, whether by varying T or x, is to
perform a metal ± insulator type phase transition (or cross-
over). The study of such transitions requires an understand-
ing of the nature of the phases adjacent to the metal region.

One of the problems in the physics of the manganites is
how to describe the paramagnetic phase for compositions at
which the ferromagnetic state is realized. In the rangeT > TC;
the manganites usually show a weak decrease in the electrical
resistivity with temperature. This is not in serious disagree-
ment with the DE-model DMF-approximation prediction
that r�T� is virtually constant for T > TC. At the same time,
in the region about the onset of ferromagnetism at small x,
r�T� passes through a maximum near TC and then decreases
exponentially with temperature, as shown in Fig. 4. The same
behavior of r�T� is observed in ferromagnetic semiconduc-
tors [7]. An elegant explanation for this phenomenon has been
given by Kogan and Auslender [104], based on the Anderson
localization mechanism due to nondiagonal spin disordering
in a system described within the framework of the DEmodel.

The effective DE-model Hamiltonian involves hopping
over the lattice, with the matrix elements dependent on how
the site spins are oriented relative to one another. It is
assumed that in the absence of long-range magnetic order or
near TC, where large fluctuations in magnetization occur, this
(nondiagonal) disorder may lead to the localization of the
carriers. The transport properties of the system must then be
determined by the position of the mobility edge Ec relative to

the chemical potential m; in particular, the electrical resistivity
should be given by formula

r�T� � r0 exp
�
Ec ÿ m
kT

�
: �7:1�

The DE-model mobility edge has been calculated in the limit
S4 1 as the radius of convergence of a series for the self-
energy part of the electron Green's function [104]. It was
found that Ec depends on the temperature through two
quantities, the magnetization and the pair correlation func-
tion hS0S1i for spins at nearest-neighbor sites. Substitution of
the resulting expression for Ec into Eqn (7.1) leads to the
following expression for the electrical resistivity

r�T� � r0 exp
�
1ÿ hS0S1i=S 2

1� hSzi=S
W

4kT

�
; �7:2�

whereW � 2zt is the bare band width. The two factors in the
exponential depend on the temperature in an opposite
manner. For T < TC, the first factor is small in the
ferromagnetic region, and hence so also is r�T�. In the
vicinity of TC, this factor very sharply increases and for
T > TC it levels off and remains constant. Thus we see that
formula (7.2) does describe the observed maximum in r�T� in
the vicinity of the Curie point for x near the boundary of the
metal phase.

Another possible mechanism for metal ± insulator phase
transitions was suggested by Gor'kov [9]. When a parent
compound is doped with a bivalent element, the manganite is
known to remain in the dielectric state until a certain doping
level is achieved. Thus for La1ÿxSrxMnO3 the metallization
occurs only at xc � 0:16. It is assumed that an isolated Sr
atom produces a hole in the 3d states of a Mn ion, which
cannot be localized on any particular ion but rather belongs
to all the eight Mn ions (i.e. becomes collectivized) nearest to
the Sr. Coulomb forces keep the hole near the charged
impurity center. At a certain electron concentration xc, the
overlapping of the wave functions of the impurity-center d
states gives rise to an infinite cluster, in which the spins on the
centers are all aligned due to the delocalization of the hole
states. For x > xc, a macroscopic volume of the ferromag-
netic phase appears, sprouting up through the antiferromag-
netic dielectric matrix. Thus we see that themetallicity and the
ferromagnetic state appear in a manganite as a consequence
of a percolation process. For the cubic lattice, the critical
percolation concentration is xc � 0:31, but because of the
delocalization of a hole onMn atoms adjacent to the Sr atom
the percolation limit is expected to be lower. This percolation
concept can be extended to the case in which holes do not
localize near an impurity center but instead a phase separa-
tion to ferromagnetic phase islands occurs within an anti-
ferromagnetic dielectric matrix. The metallization of the
system in this case can also be thought of as a percolation
process in an uncompensated finely divided ferromagnetic
phase. There exists some experimental evidence to back up
this percolation idea. In particular, this concept provides a
natural way to explain the critical concentration xc � 0:16 for
lanthanum± strontium manganite.

A third possible mechanism for the metal ± insulator
transition involves the Jahn ±Teller polaron concept already
discussed in the preceding section. According to the calcula-
tions of Ref. [105], which are based on the Hamiltonian (6.3)
and thus take into account the interaction of degenerate
electrons with local atomic displacements, charge carriers in
the paramagnetic phase are small-radius polarons, whose
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localized nature makes it possible for the paramagnetic phase
to become insulating. Experimentally this idea is supported
by the observation of large Jahn ±Teller distortions [106], and
also by the data of Refs. [107, 108] which show small-radius
polarons to determine the transport properties at high
temperatures.

The essence of the polaron mechanism is as follows [105].
At high enough values of the effective electron ± lattice
coupling l, electrons become localized polarons outside the
region of the metal ferromagnetic phase, i.e. for T > TC�x�
and x < xc. In the ferromagnetic phase, charge carriers are
delocalized because the effective coupling l, i.e. the ratio of
the polaron energy to the band width, decreases due to the
increase of the band width in the ferromagnetic phase. The
decrease of l below a certain critical value results in the
delocalization of the carriers.

The above concept was developed in Ref. [109] using the
reasonable assumption that at given x and T only some of the
carriers become localized polarons above TC�x�. If np is the
concentration of the polarons, then nc � nÿ np is the number
density of delocalized electrons. In the study of the transition
between the PI (paramagnetic insulator) and FM (ferromag-
netic metal) phases it is essential to determine the balance
between these two carrier types. For this purpose, the simplest
possible statistical model is proposed, which includes spin
polarization in a lattice gas of Fermi carriers with free energy

F � ÿtnc � �Tÿ tnc�m2 � b
2
tnc m

4 ÿ epnp

� T�nc ln nc � np ln np� ; �7:3�

where ep is the polaron energy. The magnetization m and the
polaron concentration np should be considered as two
interacting order parameters. The analysis of minimization
equations for the energy (7.3) shows that the phase transition
PI! FM occurs at any n, provided b < 1=�n ln 2�, with
TC�x� increasing monotonically with n. For b > 1=�n ln 2�,
the ferromagnetic phase exists if n is above a certain critical
value. For ep and t of order 1 eV, the electrical resistivity
calculated from the model (7.3) sharply increases as the
temperature approaches TC, and then falls off rapidly for
T > TC. In this temperature range, the CMR effect takes
place. However, not all predictions of this model are in
agreement with the experimental findings on the manga-
nites. For example, the model predicts a first-order phase
transition PI! FM with fairly large jumps in the quantities
m and np, and this issue is inconsistent with experiment. Also,
it predicts too large intensities (� 50 T) for the magnetic field
at which a marked CMR effect is observed.

The authors of Ref. [109] therefore proposed another
model, which involves large-radius polarons unlike those just
outlined, and uses the Varma approach [68] complemented by
the introduction of the Jahn ±Teller effect. It is believed that
percolation in a system of such polarons gives rise to a more
adequate model for describing PI! FM phase transitions in
manganites.

The mechanism of metal ± insulator transitions in manga-
nites is still to be understood. Another unresolved problem
concerns the so-called charge ordering phenomena observed
in these materials.

7.2 Charge ordering
The idea of charge ordering in manganites dates back to
Goodenough [110] and was prompted by the discovery in

neutron diffraction data [2] of superstructural peaks of no
relation to magnetism. Specifically, the ordering process in
question involves theMn3� andMn4� ions. Half-doping with
a bivalent ion �x � 0:5� may clearly lead to the lattice period
doubling of the crystal (Fig. 19a). Charge ordering must also
be accompanied by orbital ordering, one possible realization
of which is shown in Fig. 19b. In this figure, distorted
octahedrals of oxygen ions surrounding lattice sites occupied
by Jahn ±Teller Mn3� ions are shown schematically. The
orbital ordering appears as a regular array of alternately long
and short octahedral axes. Clearly, charge ordering also
forms two spin sublattices, because the Mn3� and Mn4�

ions have spin 2 and 3=2, respectively.

Referring the reader to a recent review article [20] for a
more detailed discussion of charge ordering, we should
mention here one further aspect of this phenomenon, the so-
called striped structures discovered in the manganites [111,
112]. Unlike high-temperature superconductors, where such
structures had been found previously, in the manganites they
exist in the insulating phase. Specifically, they look like
alternating chains of Mn3� and Mn4� ions, the most
common element being three nearest-neighbor chains of
identical ions in the succession Mn3� ±Mn4� ±Mn3�. Such
chains appear to result from the elastic interactions due to the
Jahn ±Teller-distorted environment of the Mn3� ions. It is
believed that between such three-chain stripes already formed
in thematerial there exist repulsion forces which prevent them
from sticking together. The stripes are observed in `commen-
surate' compositions, when the ratio between Mn3� and
Mn4� concentrations Ð i.e. between x and 1ÿ x Ð is that
of some of the least positive integers. `Incommensurate'-
composition material breaks up into domains with the
nearest stable compositions. It was observed, for example,
that at x � 5=8 the system breaks up into domains with
x � 2=3 and x � 1=2, occupying 75% and 25% of the
volume, respectively [113]. It has also been observed that the
striped structure disappears when amagnetic field or pressure
is applied [113, 114]. Since striped structures in weakly doped
manganites have only been found experimentally (Fig. 20) but
not predicted theoretically, neither their formation mechan-
isms nor their impact on the physical properties of the
manganites are as yet known.

8. Conclusions

Avery fundamental question which remains to be discussed is
how adequately the DEmodel describes the physics of CMR-
revealed manganites. Several dynamical mean field calcula-
tions [11, 61] show good qualitative agreement with the

a b

Figure 19. Charge ordering (a) and one possible mode of orbital ordering

(b) for a manganite at x � 0:5.\
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experimental data. This is true, in particular, of the general
structure of the temperature ± electron concentration phase
diagram containing a homogeneous ferromagnetic phase,
various metal or insulating antiferromagnetic phases, and
inhomogeneous separated phases. Also magnetization and
various transport properties are well accounted for by the DE
model, including the temperature, electron-concentration,
and field variation of electrical resistivity and optical
conductivity.

When it comes to quantitative comparison, the situation is
different, however. It was pointed out long ago [13] that the
DE model overpredicts the Curie temperature and under-
predicts the electrical resistivity, and since the reason for this
is electron scattering by magnetization fluctuations, correc-
tions for the interaction of electrons with lattice degrees of
freedom had to be introduced into the theory. This gives a
much better agreement with experiment for the Curie
temperature and r�T�. Moreover, the inclusion of Jahn ±
Teller distortions, easy to observe experimentally, makes it
possible to understand the nature of the paramagnetic
insulating phase in the electron concentration range where
ferromagnetic ordering exists. The possibility of polaron
localization allows a new approach to the problem of finding
the mechanism of the metal ± insulator transition, currently
the most important in the physics of the manganites.

Thus, as far as the most general physical properties of the
manganites are concerned, it can be argued that theDEmodel
with an electron ± lattice interaction is good to describe the
physics of the manganites, but when it comes to the details
and quantitative aspects, instead of answers, it is questions
which turn out to dominate the subject. To clear things up,
further detailed experimental research is needed, the top
priority being the physics of the metal ± insulator transition
and whatever has relevance to it.

Our primary concern in this review was with the DE
model, which together with the Hubbard model [115] and the
tJmodel [116] is one of the fundamental investigation tools in
the theory of strongly correlated systems. The question of
whether and how far this model encompasses the physics of
the manganites is too large for one review article to resolve.
Experimental studies of themanganites are far fromover, and
further attempts at understanding this broad subject theore-
tically are of course expected to be made occasionally down
the road.

The manganites are a unique system, whose electronic,
magnetic, and lattice properties are all intertwined and may
be controlled by varying the chemical composition and the
doping level. We have begun, in the last few years or so, to

witness research interest in magnetic materials shifting from
metals and alloys to the transition metal oxides, as the
manganites with their CMR features and cuprates with
high-temperature superconductivity most clearly exemplify.

These two classes of oxides havemuch in common. Oxides
in either class have a perovskite structure, their parent
compounds are antiferromagnetic insulators, and the phy-
sics of electrons in them is determined by Mn and Cu ions
surrounded by oxygen ligands. Substitution of a bivalent
element for a trivalent one creates holes in a system of Mn
ions in the manganites or in a system of Cu ions in cuprates,
the holes acting as charge carriers in either case. The
similarities end there, however, and the difference in the
interactions involved Ð i.e. the strong sd-exchange in the
former case, and the strong on-site Coulomb interaction in
the latter Ð comes into play giving rise to two different and
totally unrelated phenomena: CMR in the manganites and
HTSC in the cuprates.

Even though the major interactions operating in the
manganites and cuprates are different, the two classes often
share common physical properties. Among them are phase
separation and the unusual, stripe-structured charge ordering
Ð presumably a manifestation of the strong electron
correlation existing in either class. The two systems are very
complicated. Note that in the case of the cuprates, fifteen
years of extensive study has left many important questions of
their low-energy physics unanswered. For themanganites, the
period of intense research activity (apart from the long
prehistory of the current explosive growth) has been only
half as long, so it comes as no surprise that more time is
needed to better understand them.

We conclude by referring the reader to Refs [117 ± 119] as
themost recent theoretical works on the subject of this review.

This work was supported by the Science School Support
Program (project 00-15-96544) and the Russian Foundation
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