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Hidden SU(4) symmetry in bilayer
quantum well at integer filling factors

V I Fal'ko, S V Iordanski|̄, A B Kashuba

Abstract. Phase diagram of a bilayer quantum well at integer
filling factors is established using the hidden symmetry method.
Three phases: ferromagnetic, canted antiferromagnetic (CAP)
and spin-singlet, have been found. We confirm early results of
Das Sarma et al. Each phase violates the SU(4) hidden
symmetry and is stabilized by the anisotropy interactions.

1. Introduction

Integer filling factors of a 2D electron gas (2DEG) confined to
a quantum well in an external magnetic field are special ones
because a huge degeneracy of the ground state is gone here. It
justifies the Hartree ±Fock approximation with the accuracy
limited only by normally a small parameter: Vint=�ho0, where
Vint is the energy of the Coulomb interaction and o0 is the
frequency of the cyclotron resonance. Such an approach
predicts the ground state of a single-layer 2DEG at n � 1 to
be a ferromagnet with the degenerate total spin orientation.
The elementary excitations of 2DEG are electron ± hole pairs
or excitons, and in the limit of vanishing momentum they
transform into the elementary excitations of a ferromagnetÐ
spin waves. The latter are gapless [1] and do not interact with

each other [2] if Zeeman energy is neglected Ð the two
consequences of the Goldstone theorem. In the limit of large
momentum the electron and the hole of an exciton are well
separated and they become the elementary charged excita-
tions.

The case of a bilayer 2DEG turned out to be a more rich
one, where both spin and pseudo-spin (layer) dynamics
become entangled. The Hartree ±Fock approximation does
not apply here except for two limiting cases. The first one is
the case of well separated layers which is a common setup in
the experiment [3, 4] and where, theoretically, one starts from
the two single-layer ferromagnets in the balanced case of
filling factor n � 2 and makes the perturbation expansion in
powers of interlayer interactions [5]. And the second one is the
symmetric case defined in such a way that one can freely
rotate an electron spinor in both layer and spin spaces. The
latter requires to approximate the Coulomb interaction by its
symmetric part and to neglect all symmetry-breaking fields
like Zeeman energy. The first attempts in this direction dealt
with the case of filling factor n � 1 and relied heavily on the
assumption of a saturated spin polarization of electrons [6, 7].
This symmetric approximation turned out to be useful to
determine the exciton energy in bilayer [7]. Recent works [8, 9]
specialize to the bilayer heterostructure case n � 2, employ
the Hartree ±Fock approximation and predict a phase
diagram that features three phases: the ferromagnetic, the
canted antiferromagnetic and a special spin-singlet phase. In
this paper we reproduce the phase diagram of Refs [8, 9]
isolating the symmetric and the symmetry-breaking parts of
the Hamiltonian in a consistent way. Our approach reveals
the Hartree ± Fock phase diagram to be indeed exact in the
limitVanis=Vsym ! 0, whereVsym is the SU(4)-symmetric part
of the bilayer Hamiltonian whereas Vanis is anisotropy
interactions that reduce the bilayer Hamiltonian symmetry
to SU�2� 
 SU�2�. We prove the stability of all phases with
respect to long-range spatial perturbations. We find that low-
energy excitations over the bilayer ground state are governed
by theU�4�=U�n� 
U�4ÿ n� coset in nonlinear sigmamodel.

2. Hamiltonian of 2DEG bilayer

The electronic Hamiltonian of a 2DEG in a confining
potential V�q� and in an external magnetic field H perpendi-
cular to the layer consists of a one-particle part as well as a
Coulomb interaction part:

H �
�
c�a �q�

� 1

2m
ÿiHH� A�q�� �2�V�q� ÿ jgjmBHszab

� �
cb�q� d3q

� 1

2

� �
e2��qÿ q0

��c�a �q�c�b �q0�cb�q0�ca�q� d3qd3q0 ; �1�

where a; b � � are spin indices and thereafter a sum over
repeated indices is implied.We use such units that �h � 1, e � c
andH � B � 1. All distances can be expressed in terms of the
so-called magnetic length: lH �

�������������
c�h=eH

p � 1. We split three
coordinates q into a perpendicular to the layer coordinate x
and two in-plane coordinates r � �x; y� � �z; �z�. We assume
that the confining potential is uniform over the plane:
V�q� � V�x�, and represents a double-well structure in the
transverse direction as shown in Fig. 1, with the two wells
being separated by the distance d. We use only two eigenfunc-
tions: the lowest energy symmetric wS�x� and antisymmetric
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wA�x�, from a set of one-electron eigenfunctions in the
confining potential V�x� and we expand an electron second-
quantized operator in terms of these two eigenfunctions:

ca�q� �
X
t;n;p

wt�x�fn;p�r�cnatp ; �2�

where c�atp and catp are electron creation and annihilation
operators, fn;p�z�z� is an electron wave function number p in
the Landau gauge in the n's Landau level, the index t � 1; 2
being the layer index and the layer wave functions read:

w1;2�x� �
wS�x� � wA�x����

2
p : �3�

We restrict our model to the case of a sufficiently strong
magnetic field, such that the cyclotron energy �ho0 dominates
over the Coulomb, Zeeman and the level splitting, EA ÿ ES,
energies. Thus, we specialize to the lowest Landau level and
retain only the term n � 0 in (2).

Plugging the wave functions (2) into Eqn (1) we find a
2DEG Hamiltonian as:

H � 1

2m
c�atpcatp ÿ c�at1p ttxt1t2 � mztzt1t2

� �
cat2p

ÿ jgjmBHc�atps
z
abcbtp

� 1

2

X
p1;...; p4

� �
d2r d2r0 Vt1t4

t2t3�rÿ r0�

� f�p1�r�f�p2�r0�fp3
�r0�fp4

�r�ec�at1p1c�bt2p2cbt3p3cat4p4 ; �4�

where we have defined a hopping constant

t � 1

2

� �
d2r dx f�p�r�wt1�x�txt1t2V�x�wt2�x�fp�r� �5�

and an external electrostatic potential created by an asym-
metric gate charge,

mz � 1

2

� �
d2r dx f�p�r�wt1�x�tzt1t2V�x�wt2�x�fp�r� ; �6�

whereas the Coulomb interaction matrix reads:

Vt1t4
t2t3�rÿ r0� �

� �
wt1�x�wt2�x0�wt3�x0�wt4�x�����������������������������������������
�xÿ x0�2 � rÿ r0� �2

q dx dx0 : �7�

We use notations tx, ty and tz for the Pauli matrices in the
layer space whereas we use notations sx, sy and sz for the
Pauli matrices in the spin space. The hopping constant can be
related to the splitting of the symmetric and antisymmetric
levels: t � EA ÿ ES. The electrostatic potential mz, which can
be viewed as a difference between the chemical potentials in
the two layers, breaks down the symmetry between the two
wells of potential V�x�. This term appears naturally when a
single gate is fabricated to control the electron density in the
bilayer. In the limit d! 0, mz vanishes too, whereas in the
limit of large layer separation, d!1, mz !1 and electrons
reside only on the layer adjacent to the gate. We assume that
the energy of a capacitor formed by the two layers is much
lower than the characteristic Coulomb energy e 2=kl 3H, per
area, where k is the dielectric constant.We note the invariance
of the Coulomb energy (7) under the following transforma-
tions: t1 $ t4, t2 $ t3 as well as �t1t4� $ �t2t3�. To fully
exploit these symmetries we cast the Eqn (7) into a more
suitable representation:

V t1t4
t2t3 �rÿ r0� � V mn�rÿ r0�tmt1t4tnt2t3 ; �8�

where t0 is the unit matrix, Vmn is a 3� 3 symmetric
interaction matrix with indices m, n running over a set
�0; z; x�. If there is a symmetry of the Coulomb interaction
under an exchange of layers: �xx0� $ �ÿxÿ x0� and 1$ 2
then it restricts further values of the interaction matrix:
V0z � 0 andVzx � 0. But in the presence of a gate asymmetry
we shall keep the matrix element: V0z. Therefore, the
Coulomb interaction matrix for symmetric bilayer 2DEG
depends on four parameters: V00 > 0, V0x, Vxx > 0, Vzz > 0.
We note also thatV0x � w,Vxx � w2, whereasVzz � d2=jzj3 as
jzj ! 1. In the following we shall neglect small Vxx matrix
element.

Next, we split the total bilayer Hamiltonian (4) into two
parts: the first one contains a dominant Coulomb energy
term:

H sym � 1

2m
c�atpcatp

� 1

2

�
d2q

�2p�2 V
00�q� exp ÿ q2

2

� �
N�q�N�ÿq� ; �9�

where V mn�q� is the Fourier transform of V mn�r� and the
electron density operator reads:

N�q� �
X
p

c�atpcatpÿqy exp�ÿiqx� pÿ qy

2

� �
: �10�

This part of the Hamiltonian is invariant under uniform
rotations from the SU(4) Lee group in the combined spin
and layer space. Every of its eigenenergies is hugely degen-
erate. Given any eigenstate jCi0, a set of related eigenstates
jCi can be generated by applying uniform rotations:
U 2 SU�4�. For Landau level filling factor n � 1, n � 2 and
n � 3 we assume that the bilayer ground state is uniform over
p-orbitals:

C �
Yn
i�1

Y
p

c�aitip jemptyi ; �11�

and we prove in the next Section that this state is stable with
respect to long-range spatial perturbations. One can easily
check by inspection that any such wave function (11)

V�x�

x

d

Layer 1 Layer 2

Figure 1. Schematic view of a confining potential V�x� in a typical bilayer

setup.
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represents an eigenfunction of the Hsym (9). The wave
function (11) represents the so-called Halperin (1,1,1) multi-
component wave function [10] that describes an incompres-
sible quantum Hall effect state.The remaining few terms in
the Hamiltonian (4) are treated like perturbations:

Hanis � ÿc�at1p ttxt1t2 � mztzt1t2

� �
cat2p ÿ jgjmBH c�atps

z
abcbtp

� 1

2

�
d2q

�2p�2 V
mn�q� exp ÿ q2

2

� �
Tm�q�T n�ÿq� ; �12�

where (see, e.g. [7])

T m�q� �
X
p

c�at1pt
m
t1t2cat2pÿqy exp�ÿiqx� pÿ qy

2

� �
�13�

with �mn� 6� �00�. The Hamiltonian (12) breaks down the
SU(4) symmetry but it is still invariant under separate
rotations in the spin and layer space: SU�2� 
 SU�2�. We
shall call this part of the Hamiltonian the anisotropy
Hamiltonian. It lifts the degeneracy of eigenstates of the
SU(4)-symmetric Hamiltonian (9). An important point to
note here is that a splitting of energy levels is determined by
matrix elements of weak-anisotropy Hamiltonian (12) trun-
cated to a linear space of the symmetric Hamiltonian (9) level
degeneracy. There are no Fermi-liquid type renormalizations
of the constants of the anisotropyHamiltonian (12) due to the
SU(4)-symmetric Hamiltonian (9). In other words, the mean-
field Hartree ±Fock approach is perfect for the n � 1, n � 2
and n � 3 cases.

Our guiding analogy in treating the total bilayer Hamilto-
nian (9), (12) lies in the theory of magnetism. We will see
below that there exists a local order parameter, Q, very much
like to magnetization. And we aim to express the total bilayer
Hamiltonian (9), (12) in terms of this order parameterQ. The
exchange-like Hamiltonian (9) has to be expanded in powers
of spatial variations of order parameter Q�r� with the second
power of gradients being an important contribution, whereas
only locally homogeneous Q has to be retained in the
anisotropy Hamiltonian (12).

3. SU(4)-symmetric case

According to our plan we first specialize to the SU(4)-
symmetric part of the bilayer 2DEG Hamiltonian (9) which
is invariant under the global rotations of a four-component
electron spinor by the 4� 4 matrix U from the SU(4) Lee
group. An inhomogeneous state of 2DEG described by an
electron field is related to the reference state (11) by a 4� 4
unitary matrix U�r�. For ground state (11) one can define an
occupation number for the electronic states:

N � 1 0
0 0

� �
; �14�

where blocks are 1� 1 and 3� 3 in the case of n � 1; 3, and
2� 2 in the case of n � 2.The fifteen generators of SU(4) Lee
group, fSlg, with l � 1; . . . ; 15, can be subdivided into two
complementary sets: the first one includes those generators
that do commute with the occupation number matrix (14),
and we shall call it an even set, whereas the second one
includes the remaining generators, and we shall call it the
odd set. Generators of the even set constitute an algebra itself.
A Lee group built around the even set of generators is called a

stabilizer subgroup S of SU(4) Lee group. The odd set always
contains an even number of generators. Specifically, eight in
the case of n � 2 and six in the case of n � 1; 3.

A non-homogeneous order parameter matrix Q is then
defined as follows:

Q�r� � U�r�NU��r� : �15�

This electronic order parameter can be used to average any
operator A:

hAi � tr�AQ� : �16�

It is evident that any rotation from the denominator
subgroup S leaves the order parameter intact. Thus, rota-
tions in Eqn (15) can be restricted to a coset or, in other words,
a physical space of the bilayer 2DEG,

U�4�
U�n� 
U�4ÿ n� : �17�

We refer the reader to Ref. [11] for details of effective
Hamiltonian calculation. This method uses gradient expan-
sion and in terms of the order parameter matrix the result
reads:

H � E1

4

�
tr HHQHHQ� � d

2r

2p

� sgn�Bz�E0

2

�
Emn tr Q qmQ qnQ

ÿ � d2r
2p

; �18�

where Coulomb interaction constants

E0 � 2E1 �
���
p
2

r
e2

klH
: �19�

In the order parameter matrix representation, the topological
index appears as an index of a map of the order parameter
coset space into a 2D plane. The Hamiltonian (18) must be
invariant under the time reversal symmetry. The time reversal
operator can be chosen as a complex conjugate operator:
U! U�. To ensure the time reversal, sgn�Bz� has been added
to the topological index term. The appearance of topological
excitationsÐ skyrmionsÐ in themodel (18) is a consequence
of a well known homotopy group identity:

Q � p2
U�4�

U�n� 
U�4ÿ n�
� �

� Z : �20�

4. Anisotropic part of Coulomb energy.
Phase diagram

In this Section, we cast the anisotropic part of the bilayer
Hamiltonian (12) in terms of the order parameter matrixQ. It
can be conveniently done by the following Hartree ± Fock
average of c-operator product in Eqn (12):

tmt1t4t
n
t2t3hc�at1p1c�bt2p2cbt3p3cat4p4i

� dp1p4dp2p3 tr�Qtm� tr�Qtn� ÿ dp1p3dp2p4 tr�QtmQtn� ; �21�

where tm acts on four-spinor as tm 
 s0. Next, we define the
following Coulomb anisotropy constants:
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Eab �
�
dzd�z

2pl 2H
Vab�jzj� expÿjzj

2

2l 2H

� �1ÿ vab�
�
dz d�z

2pl 2H
Vab�jzj� ; �22�

where vab � 0 for �ab� 6� �00� in the limit d5 lH. And, finally,
we rewrite the anisotropy Hamiltonian (12) in terms of order
parameter matrix Q:

Hanis

N � ÿ t� �nÿ 1�E 0x
� �

tr Qtx� �
ÿ mz � �nÿ 1�E 0z
� �

tr Qtz� �
ÿ jgjmBH tr Qsz� �
� 1

2
Ezz tr Qtz� � tr Qtz� � ÿ tr QtzQtz� �� � ; �23�

where N is the number of degeneracy of the Landau level.
Equations (18), (23) define the effective long-range Hamilto-
nian of a bilayer at integer filling factors. At non-zero
temperatures thermal fluctuations of the order parameter
soften the anisotropy constants in the Hamiltonian (23). The
relevant calculation can be found, e.g., in Ref. [12] and the
result reads:

t� �nÿ 1�E 0x ; mz � �nÿ 1�E 0z ; jgjmBH
� �

R

� t� �nÿ 1�E 0x ; mz � �nÿ 1�E 0z ; jgjmBH
� � lH

R�

� �8T=E1

;

Ezz
R � Ezz lH

R�

� �24T=E1

; �24�

where the spatial scale R2
� � l 2HE1=max�t; mz; jgjmBH;Ezz�

indicates the excitation wavelength where its anisotropy
energy starts to compete with its exchange energy. Note that
the three first constants renormalize as an external field
whereas Ezz constant renormalizes as an easy-axis aniso-
tropy. Although the Coulomb energy E1 � 100K4T � 1K
inmost experiments, the specific number: 24 � 3� 8, which is
related to the order of anisotropy and to the eight degrees of
freedom for thermal fluctuations in the case of SU(4)
symmetry, makes the renormalization of the constant Ezz

noticeable.
As we have seen in previous Section, the order parameter

can be parameterized by six or eight angles in the case of
n � 1; 3 or n � 2. Actually, not every of those rotations
corresponds to a physically distinct eigenstate. We restrict
the calculation of the total bilayer energy up to a first order in
powers of the anisotropy Hamiltonian, which means that we
shall need only its diagonal matrix elements. But, these are
real matrix elements of course, despite the fact that in an
external magnetic field there is no time reversal symmetry.
Hence, if the Hamiltonian is real one, so real has to be its
ground state. One generates all real eigenstates from a
reference state by rotations from the SO(4) subgroup of the
SU(4) group. This group has 6 parameters with two of them
falling into the denominator subgroup. Thus, the ground
state differs from the reference state by just four rotations.
One can view locally the 8Dmanifold of order parameter as a
composition of four unit vectors: magnetization of the first
and the second layers and the two hopping-tau vectors which
represent the distribution of spin-up and spin-down electron
density over the two layers. Now the first two term in the
Hamiltonian (12) are external fields acting on these four

vectors. On the other hand the Coulomb energy couples
pairs of tau vectors via an exchange interaction. This
instructive picture allows us to identify only three special
global rotations that do change the total bilayer energy. We
start with the case n � 2 and we use a set of trial many-
electron wave functions parameterized by the three angles of
rotations relevant in our case, y� and #:Y

p

U�#;ÿ#�R�y�; yÿ� c��1pc�ÿ2p jemptyi ; �25�

where spins in the layer 1,2 are first rotated by �#:

U at1
bt2
�#;ÿ#� � t0 � tz

2

� �
t1t2

exp i
#

2
sy

� �
ab

� t0 ÿ tz

2

� �
t1t2

exp ÿi#
2
sy

� �
ab
; �26�

and then wave functions of electrons with spin � � spill over
the two layers, the process described by two distinct
angles, y�:

Rat1
bt2
�y�; yÿ� � s0 � sz

2

� �
ab
exp i

y�
2
ty

� �
t1t2

� s0 ÿ sz

2

� �
ab
exp ÿi yÿ

2
ty

� �
t1t2

: �27�

This set includes the singlet-liquid state at y� � p=2 and
# � 0 and the canted antiferromagnetic state at y� � 0. The
order parameter reads:

Q � URNR�U� ; �28�

withN being the electron density calculated with the reference
state of previous Section (see Eqn (14)). Now we substitute
Eqn (28) into the anisotropic Hamiltonian (23) to find the
total anisotropy bilayer energy as:

E anis � ÿEzz cos y� cos yÿ
ÿ �t� E 0x� cos#�sin y� � sin yÿ�
ÿ �mz � E 0z��cos y� ÿ cos yÿ�
ÿ jgjmBH sin#�cos y� � cos yÿ� : �29�

The minimum of this energy corresponds to three phases:
(i) ferromagnetic, # � p=2, y� � yÿ � 0; (ii) spin singlet,
# � 0, y� � pÿ yÿ � y; and (iii) canted antiferromagnetic
state otherwise, as it is shown in Fig. 2. It is identical to that
found in Ref. [9]. A line of continuous phase transitions
between the ferromagnetic phase and the canted antiferro-
magnetic phase is given by the following equation:

Ezz � jgjmBH� �2ÿ mz � E 0z
ÿ �2h i

jgjmBH
� t� E 0x
ÿ �2

Ezz � jgjmBH� � : �30�

In the spin singlet phase the interlayer mixing phase y is
determined by equation

Ezz sin y� t� E 0x
ÿ �

cos y � mz � E 0z
ÿ �

sin y : �31�
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A phase transition line that separates the spin singlet phase
from the canted antiferromagnetic phase is given parame-
trically by equation

�t� E 0x� sin yÿ Ezz � mz � E 0z
ÿ �

cos y
� �

t� E 0x
ÿ �

� jgjmBH� �2sin y ; �32�

where y is determined from Eqn (31). This phase transition is
a continuous one also.

In the case of n � 1, the Coulomb interaction energy is
canceled except for a small vab correction defined in Eqn (22)
and the total bilayer energy reads:

E anis � ÿt sin yÿ mz cos yÿ jgjmBH cos#� Ezzvzz cos2 y :

�33�

The minimum of this energy is given by electron spin directed
along the magnetic field, # � 0, whereas y � tanÿ1 t=mz.
There is no phase transition in the case of n � 1 and the only
phase can be characterized as ferromagnetic in both the spin
and the layer spaces. Actually, there exists a phase transition
between an incompressible quantum Hall state and a
compressible metallic state [13], but it happens when
Vsym � Vasym and is beyond our mean field method.

The case of n � 3 formally reduces to the case of n � 1
although here the Coulomb interaction energy is not
identically zero. We find renormalizations to the one-particle
electron Hamiltonian whereas the total energy being similar
to the case of n � 1:

E anis � ÿ�t� 2E 0x� sin yÿ �mz � 2E 0z� cos y
ÿ jgjmBH cos# ; �34�

There is no phase transition in this case either.
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