
current flowing through the sample should decrease the
minimum on the capacitance curve. The number of strips
decreases with the current, and, ultimately, at very high
currents, only one strip (cf. Fig. 5b) will survive in the bulk
of the sample, which is equivalent to the pinch discussed
above. This is a qualitative description. The quantitative
consideration should be based on a self-consistent calcula-
tion of the distribution of potentials and electron density
around the incompressible current-carrying strip.

We would also like to discuss the case of low currents
when the peak is narrow and arises near the center of the
minimum (Fig. 3b). The width of the minimum is determined
by the dispersion of the electron density in the sample [4] and,
hence, by the range of the parameters at which strips of
incompressible electron phase exist in a sample, whereas the
width of the peak is determined by another range of the
parameters at which current flows only through the incom-
pressible strips, i.e., at which percolation over the regionswith
incompressible phase takes place.

We believe that the peaks observed on the capacitance
curve suggest that the current flows through the regions in the
bulk of the sample, whose positions change as the gate voltage
varies. The peaks can hardly be explained in terms of edge
currents.

The authors are thankful to the Russian Foundation for
Basic Research and INTAS for support of the work and to
producers of GaAs/AlGaAs heterostructures from Max
Planck Institute (Stuttgart, Germany) and Chalmers Uni-
versity (Sweden) for the presented samples.

References

1. Smith T P et al. Phys. Rev. B 32 2696 (1985)

2. Pikus F G, Efros A L Phys. Rev. B 47 16395 (1993)

3. Jungwirth T, Smr�cka L Phys. Rev. B 51 10181 (1995)

4. Dorozhkin S I, Dorokhova M O Pis'ma Zh. Eksp. Teor. Fiz. 71 606

(2000) [JETP Lett. 71 417 (2000)]

5. Gerhardts R R, Gudmundsson V Phys. Rev. B 34 2999 (1986)

6. Dorokhova M O, PhD Thesis (Chernogolovka: Institute of Solid

State Physics, 2000)

7. Pudalov VM, Semenchinski|̄ SG Pis'ma Zh. Eksp. Teor. Fiz. 44 526

(1986) [JETP Lett. 44 677 (1986)]

8. Gornik E et al. Phys. Rev. Lett. 54 1820 (1985)

9. Eisenstein J P et al. Phys. Rev. Lett. 55 875 (1985)

10. Dolgopolov V T, Zhitenev N B, Shashkin A A Zh. Eksp. Teor. Fiz.

94 307 (1988) [Sov. Phys. JETP 67 1471 (1988)]

11. Thouless D J Phys. Rev. Lett. 71 1879 (1993)

12. Buttiker M Phys. Rev. B 38 9375 (1988)

13. Chklovskii D B, Shklovskii B I, Glazman L I Phys. Rev. B 46 4026

(1992)

14. Efros A L Phys. Rev. B 45 11354 (1992)

15. Shashkin A A, Dolgopolov V T, Dorozhkin S I Zh. Eksp. Teor. Fiz.

91 1897 (1986) [Sov. Phys. JETP 64 1230 (1986)]

16. Semenchinski|̄ S G Zh. Eksp. Teor. Fiz. 91 1804 (1986) [Sov. Phys.

JETP 64 1068 (1986)]

17. Dorozhkin S I et al. Pis'ma Zh. Eksp. Teor. Fiz. 63 67 (1996) [JETP

Lett. 63 76 (1996)]

18. Efros A L, Pikus F G, Burnett V G Phys. Rev. B 47 2233 (1993)

The problem of Coulomb interactions
in the theory of the quantum Hall effect

M A Baranov, A M M Pruisken, B �Skori�c

Abstract. We summarize the main ingredients of a unifying
theory for abelian quantum Hall states. This theory combines
the Finkel'stein approach to localization and interaction effects
with the topological concept of an instanton vacuum as well as
Chern ± Simons gauge theory.We elaborate on themeaning of a
new symmetry (F invariance) for systems with an infinitely
ranged interaction potential.We address the renormalization of
the theory and present the main results in terms of a scaling
diagram of the conductances.

1. Introduction

In this contribution we discuss some of the recent advance-
ments in the theory of the quantum Hall effect [1±3]. In
particular, we address some of the main steps in the
development of a theory [4] that combines the instanton
vacuum approach to spin polarized, free electrons [5] with
the Finkel'stein treatment of the Coulomb interactions [6] in
the disordered systems.

The electron gas with an infinite-range interaction
potential is, in many ways, very different from what we
know about the theory of free electrons. This class of
problems belongs to a different universality class of quantum
transport phenomena and it is characterized by a typical
interaction symmetry which we termF invariance [1].F inva-
riance is intimately related to the electrodynamic U�1� gauge
invariance and it has major consequences for the renormali-
zation of the theory [2].

The main physical objective of our theory is to unify the
different aspects of (abelian) quantum Hall states originated
from different sources have been studied over the years
independently. They include the quantum critical behavior
of the quantum Hall plateau transitions [7], composite
fermion theory or the Chern ± Simons mapping between
integral and fractional quantum Hall states [8], the Luttinger
liquid theory of quantum Hall edge excitations [9], as well as
the stability or robustness of the quantization phenomenon
due to the disorder [10]. For a detailed exposure we refer the
reader to the literature and here, we only present a brief
introduction to the subject.

2. Matrices in frequency and replica space

Diffusive modes are encoded in the unitary matrix field
variables Qbg

nm [6]. Here, the superscripts represent the replica
indices (b,g � 1; 2; . . .Nr where Nr ! 0 at the end of all
calculations) and the subscripts denote the Matsubara
frequency indices (n;m � 0;�1;�2; . . .�N0max where the
cutoff N0max is sent to infinity in the end). The matrices Q
generally obey the constraints

Qy � Q; Q2 � 1; trQ � 0
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and they can be represented by Q � TyLT, where T is a
unitary matrix and L is a diagonal matrix

L� �bgnm� dbgdnm sgn�m� :

In order to facilitate a discussion of the electrodynamic U�1�
gauge invariance of the theory, we generally follow a very
specific cut-off procedure in frequency space and a very
specific set of algebraic rules for matrix manipulation which
we termF algebra [1]. For example, if wewrite thematrixQ in
the formQ � L� dQ then the dQmatrix is generally taken as
a small matrix in frequency space, i.e. its matrix elements are
non-zero only for n;m � 0;�1;�2; . . .�Nmax, where
Nmax 5N0max. In other words, the unitary rotation T mixes
amongst (positive and negative) frequencies with a small
cutoff (Nmax) whereas the U�1� gauge transformations
generally involve large matrices with a large cutoff (N0max) in
frequency space.

By employing distinctly different cutoffs Nmax and N0max

in Matsubara frequency space, both of which are sent to
infinity in the end, the problem of electrodynamic gauge
invariance simplifies dramatically [1]. Physically, the cut-off
procedure is motivated by the vastly different energy scales
that generally characterize the elastic scattering processes
(1=tel) on the one hand, and the bandwidth of the electron
gas on the other hand. However, the rules of F algebra can
be shown to have a quite universal significance for dis-
ordered electron systems. For example, it successfully des-
cribes the dynamics of chiral edge excitations in quantum
Hall systems. It has been used as a microscopic basis for
deriving, from first principles, the complete Luttinger liquid
theory of edge excitations for abelian quantum Hall states
[3, 9].

We generally need the introduction of two more (large)
matrices . Firstly, the diagonal matrix Z,

Z� �bgnm� dbgmdnm

which is the matrix representation of (imaginary) time
derivative. Secondly, there are the off-diagonal matrices Ian

Ian
ÿ �bg

kl
� dabdagdn;kÿl

which are the generators of the U�1� gauge transformations.
For more details on the rules of F algebra and various
algebraic identities, we refer the reader to the original papers
[1 ± 3].

3. The s model action

The action consists of three terms [1]

S�Q� � Ss�Q� � SF�Q� � SC�Q� : �1�

Here, the first term

Ss�Q� � s0xx
8

Tr qmQ
ÿ �2ÿ s0xy

8
emnTrQ qmQ qnQ �2�

represents the standard nonlinear s model [5] for spinless free
electrons in two dimensions and in the presence of a static
perpendicular magnetic field. The `Tr' symbol stands for both
the spatial integration and the trace `tr' over all matrix indices
(Matsubara as well as replica).

The second term SF is the singlet interaction term first
introduced by Finkel'stein [6]. It can be written in three
equivalent ways [1]:

SF�Q� � ÿpz0T
�
d2x

X
a;ni

Qaa
n1n2

Qaa
n3n4

dn1�n3;n2�n4 � 4 tr ZQ

" #
� const

� ÿpz0T
�
d2x

X
a;n

tr IanQ tr IaÿnQ� 4 tr ZQ

" #
� const

� ÿ p
2
z0T

X
a;n

Tr
�
Ian;Q

��
Iaÿn;Q

�
: �3�

Here, the quantity z0 represents the singlet interaction
amplitude and T is the temperature. The compact notation
of the last line indicates that the expression is invariant under
U�1� gauge transformations (F invariance, see Section 4).
This expression generally acts as a single operator under
renormalization group transformations [2, 4].

The nonlinear s model part and SF represent, together,
the effective action for a system with infinite-range electron ±
electron interactions. The Coulomb potential appears expli-
citly only in higher dimensional (irrelevant) terms (SC) which
are usually discarded. However, these higher-dimensional
operators turn out to be dangerously irrelevant and it is
generally important to take also the term SC (the so-called
Coulomb term) into account. This part of the action can be
written as

SC�Q� � pT
�
d2x d2x0

�
X
a;n

tr IanQ�x�Uÿ1�xÿ x0� tr IaÿnQ�x0� ; �4�

where

Uÿ1�p� �
�
d2xUÿ1�x� exp�ÿipx�

� p
2

1

1� rU0�p� � G jpj :

In this expression r � dn= dm represents the thermodynamic
density of states and U0�p� � 2pe2=jpj is the bare Coulomb
interaction in two dimensions.

3.1 Renormalization
The theory, as it stands, contains only four quantities for
which one needs to compute the quantum corrections, i.e. s0xx,
s0xy, z0 and G. As is well known, the quantity s0xy, multiplying
the topological charge q,

q�Q� � 1

16pi
Tr EmnQ qmQ qnQ � 1

4pi

�
dx trTqxTyL ; �5�

is not affected by the perturbative quantum theory andwill be
dealt with at a later stage. The quantity G, on the other hand,
remains strictly unrenormalized and this statement, as it has
turned out from the microscopic derivation of the action,
should be imposed as a general constraint on the quantum
theory [10] (see also Section 7).

This leaves us with two non-trivial renormalizations in
perturbation theory, i.e. the inverse coupling constant s0xx and
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the interaction amplitude z0. The complete list of renormali-
zation group b and g functions in 2� 2E dimension is given
by [2]

bt �
dt

d lnL
� ÿ2et� 2t2 �O�t3� ;

bxy �
dsxy
d lnL

� 0 ;

g � d ln z

d lnL
� ÿtÿ t2 3� p2

6

� �
�O�t3� ;

gC �
d lnG
d lnL

� ÿ1:

Here, we written t � 1=psxx, and L denotes the linear
dimension of the system. These results are quite similar to
those of the classical Heisenberg ferromagnet and the physics
of the electron gas in 2� 2E dimension can be obtained
following the (in many ways) unique field theoretical metho-
dology of dealing with Goldstone modes.

3.2 Fermi liquids versus non-Fermi liquids
It is important to keep in mind, however, that the physics of
interacting systems is very different from that of free electron
localization. Free electron formalisms, unlike the Finkel'stein
formalism, has Q matrix field variables which usually have
two frequencies only, i.e. the advanced and retarded ones [5].
A formal but general way of describing the crossover between
the single particle and many body formalisms is obtained by
varying the frequency cutoffNmax in theQmatrix fields, from
unity to infinity. By varying the value of Nmax, the theory
changes fundamentally. The most dramatic effect of putting
Nmax !1 is that the ultraviolet singularity structure of
theory (i.e. the b function) changes completely [4]. The
presence of the singlet interaction term SF now implies that
the problem generally belongs to a different universality class
of quantum transport phenomena. Since there is no Fermi
liquid principle for the disordered electron system with an
infinite-range interaction, it is necessary to reconsider the
topological concept of a y or instanton vacuum which
previously was introduced and investigated for the free
electron theory alone [5, 15].

Along with the renormalization behavior, also the
structure of the operators of the theory change as the cutoff
Nmax is being sent to infinity [2]. A new, previously
unrecognized notion of interaction symmetries now becomes
an integral part of the problem. These symmetries (F invar-
iance, Section 4) are intimately related to the electrodynamic
U�1� gauge invariance andmuch is yet to be learned about the
behavior of the theory in the strong coupling regime.

Before elaborating on symmetries and gauge invariance,
however, we wish first to address some of the general ideas
that are associated with the perturbative renormalization
group results of the previous Section.

Notice that on the basis of the b function or asymptotic
freedom alone, one generally expects that the interacting
electron gas, in two spatial dimensions, behaves quasi-
metallic at short distances but it eventually enters a strong
coupling phase with a massgap (an insulating phase), as the
lengthscale is increased.

The renormalization of the interaction terms SF and SC,
i.e. the g and gc functions, generally determine the dynamical
scaling in the problem, i.e. the temperature and frequency
dependence of physical observables, and this includes the non-
Fermi liquid behavior of quantities like the specific heat [2].

The result of the g indicates that the singlet interaction
term SF plays formally the role of an order parameter (i.e. the
spontaneous magnetization) in the context of conventional
critical phenomena phenomenology. Physically it means that
the theory generates a (Coulomb) gap in the density of states
that enters in the expression for the specific heat [2]. This
result is quite different from what one is used to in the theory
of free electron localization, or in the theorywith a finite value
of Nmax. For example, such free particle concepts like
anomalous or multifractal fluctuations in the local density of
states are no longer valid in the theory with Coulomb
interactions. The physics of the g functions is generally very
different.

In Figure 1, we plotted the results for the anomalous
dimensions g and gc versus t. We see that in the weak coupling
or small t regime, the g�t� dominates the gc�t� indicating that
the Coulomb term SC is irrelevant. However, with the gc�t�
function remaining fixed at the value ÿ1, as mentioned
before, there is likely a point on the t axis beyond which the
gc�t� dominates the g�t� function. This means that upon
entering the strong coupling regime, the roles of SF and SC

get interchanged, and the dynamics of the insulating phase is
now entirely determined by the Coulomb term SC.

This dangerously irrelevant behavior of SC has not been
recognized previously but it, obviously, plays a fundamental
role in the theory ofmetals and insulators. This notion cannot
be obtained in any heuristic or phenomenological fashion,
but it clearly affects the way in which we are going to look
upon the complications of the theory in dealing with the
quantum Hall effect. For example, if the quantum critical
singularities of the quantum Hall plateau transitions [7] are
appropriately described by the non-perturbative behavior of
the bxy and g functions of the Finkel'stein theory [4], then this
critical behavior is certainly very different from the main
expectations of the free particle approximation. Unlike the
free particle problem which effectively lives in two spatial
dimensions alone, the Finkel'stein theory contains the time
variable as an extra non-trivial dimension. This not only
destroys any hope of finding an exact (conformal) scheme of
critical indices, but also invalidates any explicit or implicit
attempt of employing Fermi liquid ideas for quantum Hall
systems in the presence of the Coulomb interactions.

4. F invariance

F invariance [1] is one of the most important interaction
symmetries of disordered systems. It means that the action for
systems with an infinite-range interaction potential (like the

ÿ1

0

g

gc

g; gc

t

Figure 1. The anomalous dimensions g and gc versus t.
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Coulomb potential) is invariant under spatially independent
U�1� gauge transformations. Such gauge transformations can
be represented by a (large) unitary matrixW

W � exp

�
i
X
a;n

fa
nI

a
n

�
;

where the fa
n are the frequency components of the imaginary

time quantityf�t�. The statement ofF invariance can now be
written as

S�Q� � S�Wÿ1QW� :

F invariance is generally violated in systems with a finite-
range interaction potential, or free electron systems. One can
show that these systems map, under the action of the
renormalization group, back onto the free electron theory
and, therefore, Fermi liquid ideas can be applied in this case.

The concept of F invariance implies that only the
quantities and correlations that are F -invariant have a
simple infrared behavior that generally can be handled with
themethodology of the renormalization group. It also implies
that the dynamical scaling of physical observables like the
conductances can only be extracted from the theory if F
invariance is respected by the renormalization scheme that
one chooses. For example, the momentum shell or back-
ground field methodology generally violates F invariance
and this complicates the computation of e.g. the AC
conductances.

On the other hand, the partition function itself, or the
response to electromagnetic fields, generally respects state-
ment of F invariance. It is therefore important to study F -
invariant quantities in general and see F algebra at work.

5. External EM fields

If, for the sake of simplicity, we first consider the theory of
weak static magnetic fields, then the various pieces of the
action, in the presence of scalar and vector potentials, can be
written in a transparent fashion as follows [2]

Ss�Q;A� � s�0�xx

8
Tr Dm;Q
� �2ÿ s�0�xy

8
emn TrQ Dm;Q

� �
Dn;Q� � ;

SF�Q;A� � SF�Q� ;

SC�Q;A� � pT
�

d2p

�2p�2
X
a;n

tr�IanQ� ÿ
1

pT
A0� �aÿn

� �
�Uÿ1�p� tr�IaÿnQ� ÿ

1

pT
A0� �an

� �
:

Here, Dm � qm ÿ iAm is the covariant derivative in matrix
form with Am �

P
a;n�Am�anIan. By the rules of F algebra, the

U�1� gauge invariance can now be formulated by saying that
the following set of transformations Q!Wÿ1QW,
�Am�an ! �Am�an � iqmf

a
n, and �A0�an ! �A0�an � ionf

a
n leaves

the action invariant.
The theory of strong static magnetic fields B is slightly

more complex and has additional terms (sIIxy, Section 7)
reflecting the B dependence of the electron density.

6. Response at a tree level

As a simple check of the above formulae, we compute the
gauge invariant electromagnetic response at a tree level, in the

case sxy � 0. We obtain

Stree
eff �A� �

1

T

X
a;n

�
d2p

�2p�2
s�0�xx

8
dmn ÿ pmpn

p2 � 4onUÿ1�p�=s�0�xx

" #

� �Em�an�En�an
on

; �6�

where �Em�an is the electric field. The charge density can be
defined as nan�p� � ÿTdSeff�A�=d A0� �aÿn, then from Stree

eff �A�
one obtains the continuity equation that in ordinary space-
time notation can be written as [2]

qtn� HH � �jC � jdiff� � 0 ; �7�

where jdiff � ÿD�0�xxHHn with D
�0�
xx � s�0�xx =2pr is just diffusive

current component and

jC �
s�0�xx

2p
Etot ;

with

Etot � Eext ÿ HH
�
d2x0U0�xÿ x0�n�x0�

being the electric current density due to the external and
internally generated electric fields. The tree level response
therefore reproduces the well known results of the theory of
metals.

7. Response with quantum corrections

We have computed the complete response to external
electromagnetic fields with quantum corrections and
checked the gauge invariance at a one loop level. The analysis
is rather lengthy and the details will be reported elsewhere [10].
We present, instead, the final result for the continuity
equation which can be written in frequency and momentum
notation as follows:

oZ

�
nZ ÿ s�0�xy

2p
B Z
�
� ipm

"
slxx
2p

E Z
m ÿ ipmU0nZ

� �
ÿDxxiqm nZ � i

sIIxy
2p

BZ

 !#
: �8�

Here, slxx is the renormalized longitudinal conductivity which
is expressed as s�0�xx plus quantum corrections. Furthermore,
Dxx � slxx=2pr the renormalized diffusive coefficient and
sIIxy=2p � dn= dB.

It is important to remark that the static (oZ � 0) limit of
this expression has an important general significance for the
renormalization of the theory. Notice that by putting oZ � 0,
the expression only contains the thermodynamic quantities
such as r, the thermodynamic density of states, sIIxy � qn=qB,
which is the derivative of the electron density with respect to
the static external B, as well as the bare Coulomb interaction
U0. This form of the static response can be shown to be quite
generally valid, independently of the effective action of the Q
field variables. Thismeans that the thermodynamic quantities
r, sIIxy as well as U0 generally do not acquire any quantum
corrections and this statement can be imposed as an
important general constraint on the quantum theory.
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Notice that this constraint does not involve the quantities
sxx, sxy and the interaction amplitude z which do not appear
in the expression for static response. These quantities are
therefore the only ones for which quantum corrections are
possible (and do occur) in general.

8. Physical observables

The results of the previous Section imply that a general
quantum theory of physical observables can be formulated
and expressed in terms of F -invariant correlations of the Q
field variables. For example, the linear response to an external
electric field can be generally expressed in terms of a quantity
s0xx (Kubo formula) as follows:

s0xx � ÿ
s�0�xx

4Z
tr IaZ;Q
h i

IaÿZ;Q
h in oD E

� s�0�2xx

16ZD

�
d2x0 tr IaZ;Q

h i
qmQ

n o
tr IaÿZ;Q
h i

qmQ
n oD E

:

This result, when evaluated perturbatively [2], is of the general
form s�0�xx � quantum corrections. A similar expression exists
for the Hall conductance s0xy. These general results retain
their significance also beyond the theory of perturbative
quantum corrections. For example, they can be used for
non-perturbative (instanton) calculus [4] as well and this has
led to the previously unrecognized concept of y renormaliza-
tion, or renormalization of the Hall conductance sxy [5].

For completeness, we mention that the list of effective
parameters s0xx and s0xy can also be extended to include an
effective quantity z0 which is associated with the interaction
amplitude z0. The result can be expressed as [2]X

n>0

onz
0�on� � p

2
z0T

X
n>0

tr
�
Ian;Q

��
Iaÿn;Q

�� 	
 �
:

9. Instantons

The non-perturbative contributions from a topologically
non-trivial sectors of the theory (instantons) have formally
the same structure as those obtained in the theory of free
electrons [15]. Since the analysis is rather involved [4], we
simply present the most important results as illustrated by the
renormalization group flow lines in the sxx and sxy con-
ductance plane in Fig. 2.

The general consequences of the Coulomb interactions for
the quantum critical behavior of the plateau transitions will
be reported elsewhere. On the other hand, there is the problem
of robust quantization of the Hall conductance which is
represented in Fig. 2 by the strong coupling fixed points at
integer values of sxy. This aspect of the theory cannot
obviously be obtained from any analysis in the weak
coupling regime, either perturbative or non-perturbative,
and it generally requires a more explicit knowledge of physics
of incompressible quantum Hall states.

Recently, a new and general ingredient of the instanton
vacuum has been discovered from which the phenomenon of
robust quantization can be derived. It has turned out that the
edge of the instanton vacuum is generally massless, and the
theory can be mapped directly onto the more familiar theory
of chiral edge bosons in quantum Hall systems [3]. The
effective action for massless edge excitations, along with a
mass gap for the excitations in the bulk, is dynamically
generated by the Finkel'stein theory and quantized Hall

conductance now appears as the renormalized quantity s0xy
in the effective action for the edge.

It is important to remark that by extending the instanton
vacuum approach to include the effective action for edge
excitations in the quantumHall state [3], the significance ofF
invariance has now also been demonstrated in the otherwise
forbidden strong coupling regime of the Finkel'stein theory.

10. Chern ± Simons statistical gauge fields

The theory of composite fermions [8] is obtained by adding
the Chern ± Simons statistical gauge fields to the theory. The
idea has been discussed at great length and in extensive detail
elsewhere. Here, we just mention how the flux attachment
transformation by the Chern ± Simons gauge fields generates
a scaling diagram that includes both the abelian quantum
Hall states and the half-integer effect (Fig. 3) [1]. The theory
also includes the Luttinger liquid theory for edge excita-
tions [9]. This, then, leads to a unifying theory for both the
compressible and incompressible states in the quantum Hall
regime.

sxy

sxx

n n� 1=2 n� 1

Figure 2. The renormalization gruop flow for the conductances. The

arrows indicate the scaling towards the infrared.

sxx

0 sxy1

2

3

7

2

5

1

3

1

4

Figure 3. Unified renormalization group diagram for integral and

fractional quantum Hall effects.
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Hidden SU(4) symmetry in bilayer
quantum well at integer filling factors

V I Fal'ko, S V Iordanski|̄, A B Kashuba

Abstract. Phase diagram of a bilayer quantum well at integer
filling factors is established using the hidden symmetry method.
Three phases: ferromagnetic, canted antiferromagnetic (CAP)
and spin-singlet, have been found. We confirm early results of
Das Sarma et al. Each phase violates the SU(4) hidden
symmetry and is stabilized by the anisotropy interactions.

1. Introduction

Integer filling factors of a 2D electron gas (2DEG) confined to
a quantum well in an external magnetic field are special ones
because a huge degeneracy of the ground state is gone here. It
justifies the Hartree ±Fock approximation with the accuracy
limited only by normally a small parameter: Vint=�ho0, where
Vint is the energy of the Coulomb interaction and o0 is the
frequency of the cyclotron resonance. Such an approach
predicts the ground state of a single-layer 2DEG at n � 1 to
be a ferromagnet with the degenerate total spin orientation.
The elementary excitations of 2DEG are electron ± hole pairs
or excitons, and in the limit of vanishing momentum they
transform into the elementary excitations of a ferromagnetÐ
spin waves. The latter are gapless [1] and do not interact with

each other [2] if Zeeman energy is neglected Ð the two
consequences of the Goldstone theorem. In the limit of large
momentum the electron and the hole of an exciton are well
separated and they become the elementary charged excita-
tions.

The case of a bilayer 2DEG turned out to be a more rich
one, where both spin and pseudo-spin (layer) dynamics
become entangled. The Hartree ±Fock approximation does
not apply here except for two limiting cases. The first one is
the case of well separated layers which is a common setup in
the experiment [3, 4] and where, theoretically, one starts from
the two single-layer ferromagnets in the balanced case of
filling factor n � 2 and makes the perturbation expansion in
powers of interlayer interactions [5]. And the second one is the
symmetric case defined in such a way that one can freely
rotate an electron spinor in both layer and spin spaces. The
latter requires to approximate the Coulomb interaction by its
symmetric part and to neglect all symmetry-breaking fields
like Zeeman energy. The first attempts in this direction dealt
with the case of filling factor n � 1 and relied heavily on the
assumption of a saturated spin polarization of electrons [6, 7].
This symmetric approximation turned out to be useful to
determine the exciton energy in bilayer [7]. Recent works [8, 9]
specialize to the bilayer heterostructure case n � 2, employ
the Hartree ±Fock approximation and predict a phase
diagram that features three phases: the ferromagnetic, the
canted antiferromagnetic and a special spin-singlet phase. In
this paper we reproduce the phase diagram of Refs [8, 9]
isolating the symmetric and the symmetry-breaking parts of
the Hamiltonian in a consistent way. Our approach reveals
the Hartree ± Fock phase diagram to be indeed exact in the
limitVanis=Vsym ! 0, whereVsym is the SU(4)-symmetric part
of the bilayer Hamiltonian whereas Vanis is anisotropy
interactions that reduce the bilayer Hamiltonian symmetry
to SU�2� 
 SU�2�. We prove the stability of all phases with
respect to long-range spatial perturbations. We find that low-
energy excitations over the bilayer ground state are governed
by theU�4�=U�n� 
U�4ÿ n� coset in nonlinear sigmamodel.

2. Hamiltonian of 2DEG bilayer

The electronic Hamiltonian of a 2DEG in a confining
potential V�q� and in an external magnetic field H perpendi-
cular to the layer consists of a one-particle part as well as a
Coulomb interaction part:

H �
�
c�a �q�

� 1

2m
ÿiHH� A�q�� �2�V�q� ÿ jgjmBHszab

� �
cb�q� d3q

� 1

2

� �
e2��qÿ q0

��c�a �q�c�b �q0�cb�q0�ca�q� d3qd3q0 ; �1�

where a; b � � are spin indices and thereafter a sum over
repeated indices is implied.We use such units that �h � 1, e � c
andH � B � 1. All distances can be expressed in terms of the
so-called magnetic length: lH �

�������������
c�h=eH

p � 1. We split three
coordinates q into a perpendicular to the layer coordinate x
and two in-plane coordinates r � �x; y� � �z; �z�. We assume
that the confining potential is uniform over the plane:
V�q� � V�x�, and represents a double-well structure in the
transverse direction as shown in Fig. 1, with the two wells
being separated by the distance d. We use only two eigenfunc-
tions: the lowest energy symmetric wS�x� and antisymmetric
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