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Magnetocapacitance studies
of two-dimensional electron systems
with long-range potential fluctuations

M O Dorokhova, S I Dorozhkin

Abstract. We report on magnetocapacitance study of the
quantum Hall effect (QHE) states. Capacitance minima width
was found to be independent of magnetic field and to be the same
for even, odd and fractional QHE states when measured as a
function of the average electron density. This result indicates
that the width of capacitance minima in the samples investi-
gated are governed by long-range carrier density fluctuations.
At low temperatures, the amplitudes of the minima decrease
linearly with the temperature increase. All our experimental
results for the integer QHE states are quantitatively explained
by introducing unbroadened magnetic levels and dispersion of
the electron density along the sample. The energy gaps at even
filling factors obtained from fitting the experimental data are
found to be close to the known cyclotron gaps. At odd fillings
n � 1; 3, and 5, the energy gaps appear to be enhanced in
comparison with the Zeeman splitting, with the enhancement
decreasing with filling factor.

The capacitance minima are argued to originate from the
motion of incompressible regions along a sample caused by the
gate voltage variation. We derive the condition for the appear-
ance and motion of such regions for the case of gated samples
with long-range fluctuations of density of charged donors.

The appearance of narrow magnetocapacitance peaks when
a dc current is passed through the sample is reported. We
hypothesize that these peaks are due to the current percolation
along incompressible regions.

1. Introduction

The method of capacitance spectroscopy, which implies
precise measurement of electric capacitance C of a parallel-
plate capacitor formed from a two-dimensional electron
system (2DES) and a parallel metal film (FET gate), is one
of a few experimental methods for detecting thermodynamic
characteristics of 2DES. It can also be used to investigate
distribution of current under the conditions corresponding to
the quantum Hall effect.

In this paper we will consider details of the application of
the method for studies of 2DES with long-range potential
fluctuations in the quantum Hall regime. An example of
electron systems of this type is the most perfect semiconduct-
ing heterostructures with selective doping. We will show that
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the shape and the temperature dependence of minima on the
capacitance curve, caused by jumps of the chemical potential
at integer QHE states, are quantitatively described in terms of
the electron density dispersion related to the fluctuating
potential. Our data demonstrate that Landau levels broad-
ening due to short-range potential fluctuations is insignificant
in the studied samples. The jumps of the chemical potential
observed in the experiments are consistent with the spin gaps
enhanced by exchange interaction and with the cyclotron
energy. We will show that the microscopic mechanism
responsible for capacitance minima is the motion of strips of
the incompressible electron phase, corresponding to the
regions with an integer filling factor of Landau levels. We
will also investigate peaks on the capacitance curve, caused by
the current flowing through the sample under the QHE
conditions and will show that these peaks indicate pinching
of the current in narrow strips, whichmove over the sample as
the average electron density changes. The latter circumstance
proves the current to flow in the bulk of the sample.

The method of capacitance spectroscopy is based on the
existence of the contact potential difference between a 2DES
and a gate, which is equal to the difference in their work
functions. For this reason the difference in the corresponding
electric potentials is not equal to the applied voltage Vg. As a
result, the experimentally measured capacitance C �
dQ= dVg of such a structure appears to depend on the density
of electron states at the Fermi level [1] (hereQ is the charge of
the 2DES). When the 2DES is not homogeneous the
capacitance depends on the derivative dms= dns of the
average chemical potential ms with respect to the average
electron density ns, the potential being reckoned from the
bottom of the lowest subband of the size quantization. This
dependence can be written as [1 ± 3]:

1

C
� 1

Cg
� 1

Cz
� 1

Se2
dms
dns

; �1�

where S is the area of the 2DES under the gate, Cg � kS=4pd
is the geometrical capacitance of the sample, determined by
the thickness d of the dielectric layer between the 2DES and
the gate, and k is the dielectric constant of the layer. The
capacitance Cz depends on the electron density in the 2DES
and is of the order of ksS=4pz0, where z0 is the 2DES
thickness specified by the size of the electron wave function
in the direction perpendicular to the 2DES, while ks is the
dielectric constant in the vicinity of the 2DES. The last two
terms in Eqn (1) are usually small corrections to the first one.
Expression (1) is valid when a change in the gate voltage
affects only the charge in the 2DES and the gate, leaving
intact the charge of impurities in the heterostructure. In this
case the second term in Eqn (1) does not depend on magnetic
field. This condition is normally fulfilled at low temperatures
in FET based on GaAs/AlGaAs heterostructures. In
particular, it is perfectly fulfilled in the samples studied in
the work. According to Eqn (1), the chemical potential
jumps between the Landau levels in the QHE states result
in minima on the capacitance curve, which can serve as a
measure of the jumps.

2. Samples and the experimental technique

In this paper we present experimental data measured in FET
samples, which, at zero gate voltage, had ns � 1:4�1011 cmÿ2
and the electron mobility equal to 1:2� 106 cm2 Vÿ1 sÿ1. The

samples were prepared from GaAs/AlGaAs heterostructures
grown by the molecular-beam epitaxy. They had the follow-
ing sequence of layers in the order of growth: GaAs ±AlGaAs
(70 nm), d-layer of Si ± AlGaAs (500 nm), and d-layer of Si ±
GaAs (10 nm). The 2DES was formed at the lowest
heterojunction in the GaAs layer due to ionization of silicon
impurity centers. The thickness of the first undoped AlGaAs
layer (spacer) was about 70 nm so that the typical scale of
potential fluctuations in the 2DES, caused by fluctuations of
concentration of charged donors outside the spacer, exceeded
greatly the magnetic length and the average distance between
electrons. Ametal film of size 0:4� 2:3mm2 was deposited on
the top of the heterostructure, forming the Schottky barrier.
The electron density ns in the 2DES determined from the
period of the Shubnikov ± de Haas oscillations was propor-
tional to the voltage between the 2DES and the gate. The
corresponding coefficient of proportionality coincided with
the value extracted from the sample capacitance within 1%
accuracy, indicating that impurity centers were not recharged
and Eqn (1) can be used to evaluate the experimental data. To
measure the capacitance C, we modulated the dc voltage Vg,
which controlled the concentration ns, by an ac voltage at
frequency 9.2 Hz. We recorded two components of the
current flowing through the sample: the component shifted
by 90� relative to the modulation voltage, and the in-phase
component. The former is a measure of the sample capaci-
tance, while the latter characterizes conductivity along the
2DES. At low conductivity the capacitor can hardly be
charged and precise measurement of the capacitance
becomes impossible. Since the diagonal components of
magnetoconductivity tensor decrease exponentially with
lowering temperature, the capacitance spectroscopy method
described above can be used only in a limited temperature
range depending on the energy gap of the relevant QHE state.
To treat experimental data quantitatively, we used only the
results, which did not reveal resistive effects, that was verified
by the absence of the in-phase component of the current.

3. Temperature dependence of capacitance

Wehave investigated dependenciesC�ns;T� inmagnetic fields
perpendicular to the 2DES, which lead to the formation of the
QHE states in the 2DES at integer filling factors n � ns=N0

for the Zeeman sublevels of the Landau levels (N0 � eH=hc is
the degeneracy of the sublevel). Figure 1 shows an example of
the dependencies measured at H � 1 T and various tempera-
tures. The minima on the capacitance curve arising at integer
n correspond to jumps of the chemical potential in the QHE
state. The deep minima at even filling factors at T � 0:3 K,
however, are due to the resistive effects. The width of the
minima of the first type appears to be independent of the
filling factor and magnetic field within 10% of the experi-
mental accuracy (for even filling factors this effect was found
in the fields varying by a factor of 6) and does not depend on
the type (integer or fractional) of the QHE state (see also [4]).
This fact suggests that at low temperatures the broadening of
the magnetocapacitance minima in our samples is determined
by the inhomogeneous electron concentration rather than by
broadening of energy levels due to short-range potential. In
this paper we focus on the temperature dependence of the
amplitude of the minima, which is found to be nearly linear as
shown in Fig. 2.

Wewere able to describe the shape of theminima and their
temperature dependence, on the basis of a phenomenological
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approach [2, 5]. Within this approach the electron density
distribution in the sample is taken to be Gaussian, and the
chemical potential jump Dm is to be averaged over this
distribution. As a result [2], the expression for the minimum
at the integer filling factor i takes the form

DC � ÿC 2
g

S

Dm
e2

1������
2p
p

s
exp ÿ�iN0 ÿ ns�2

2s2

" #
: �2�

Here s is the dispersion of the Gaussian distribution. Below
we will demonstrate that this formula coincides with the
results [4] obtained by studying the motion of strips of the
incompressible electron phase. In contrast to [2, 5] we have
also taken into account the Fermi distribution of electrons
over energy levels. In such a model, there are three para-
meters: the dispersion s of the density distribution, the
cyclotron (Dc) and the spin (Ds) gaps. In GaAs/AlGaAs
samples the latter is much less than the former. These
parameters can easily be extracted from the experimental
data. The dispersion is determined from the width of minima,
after that the amplitude of the minimum depends only on the
gap where the Fermi level lies. The results of the fitting are
shown in Figs. 1 and 2 by solid lines. The values of parameters
Dc andDs are found to differ slightly for various minima. This
effect takes place mainly at odd n, when the relevant spin gap
decreases substantially with the number of filled Landau
levels. Figure 1 plots the curve calculated for n � 3 and
n � 5 with the same value of the spin gap; one can see that
the experimentally measured amplitude at n � 3 is higher
while that at n � 5 is smaller than the calculated ones. In order
to fit the data we used the difference in capacitances at zero
and quantizing magnetic fields,

dC�ns� � C�H; ns� ÿ C�H � 0; ns� :

Calculating this difference we replaced the zero-field deriva-
tive dms= dns by its value for noninteracting electrons,
p�h2=m�, where m� � 0:067me is the effective electron mass
in GaAs. The corresponding correction is 0.65 pF in our
case. Using this fitting procedure, we found not only the
amplitudes of the minima but also the whole dependence
dC�ns� plotted in Fig. 1. The chemical potential jumps
obtained by the fitting procedure at even filling factors are
shown in Fig. 2b. The jumps are found to be close to the
values for noninteracting electrons with m� � 0:067me. Note
that the spin gaps at the filling factors 3 and 5, and magnetic
field H � 1 T (Fig. 1) exceed by an order of magnitude the
Zeeman splitting equal to 0.3 K for the g-factor (ÿ0:44) of
electrons in GaAs. This fact reflects the known effect of
enhancement of spin gaps due to exchange interaction. It is
worth mentioning that our model predicts the linear tem-
perature dependence of the amplitude of the minimum at low
temperatures (such a dependence can also be found analyti-
cally [6]).

We emphasize that our data demonstrate the absence of
significant broadening of the Landau levels by the short-
range potential. The quality of the fitting procedure was
found to be strongly reduced by introducing a finite width
G > 0:1�hoc of the levels. Probably, Landau levels were locally
narrow, but long-range fluctuations were also dominant in
the experiments [1, 7 ± 10], whose data were used to draw
conclusions about high density of states between the Landau
levels, contradicting the theoretical predictions.
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4. Influence of current pinching
on FET capacitance

The effects considered in this section lead to a rather
important conclusion about the distribution of currents over
the sample in the QHE regime, shedding light on this still
unsolved problem (see, for example, [11]). There are two
approaches to solve this problem. They are based on
consideration of currents carried by various electron states
lying either exactly at or below the Fermi level. The most
widely discussed example of the first type of states are the edge
states [12] arising in the regions with non-integer local filling
factors of Landau levels when the potential changes smoothly
near the sample edge. The second type of states occurs in the
strips [13, 14] of incompressible electron phase with integer
filling factors.

A moderate dc current I flowing through a sample of the
Hall bar geometry results in the appearance of the peaks near
the minima on the capacitance curve (Fig. 3b). As the current
increases, these peaks get larger, broadened and shifted
(Fig. 3a). Changing polarity of the current leads to the
change in the direction of the shift, with the difference in the
gate voltage between the centers of the peaks observed at
opposite currents being equal to RxyI (where Rxy is the Hall
resistance at the corresponding integer filling factor) (see inset

in Fig. 3a).We think that these peaks on the capacitance curve
can be explained only by current pinching inside narrow
regions whose positions depend on the average electron
density. A similar effect at high currents was carefully
considered in [15, 16], the analytical solution to the nonlinear
problem being obtained in [15] under the assumption that the
dissipative conductivity depends on the electron density as

sxx � s0 exp ÿDm
2T

� �
cosh

EF
T

� s0 exp ÿDm
2T

� �
cosh

Dn
DT

: �3�

Here EF is the Fermi energy reckoned from the center of the
gap Dm between the Landau levels, s0 is the conductivity,
usually of the order of e2=h, Dn � nÿ iN0, and D is the
density of states in the center of the gap. Such a dependence
arises in the model considering narrow strips of delocalized
states near the centers of Landau levels. This dependence is
confirmed by experimental data (see, for example [17] and
references therein) and numerical calculations for the 2DES
with long-range disorder [18], provided that the electron
density n is replaced by its average value ns, and the density
of statesD is replaced by dns= dms. Due to the inhomogeneity
of the electron density, the value of dns= dms at integer filling
factors is finite and weakly depends on ns. Since the current
flowing through the 2DES leads to the spatial redistribution
of electrons required to produce theHall voltage, the problem
of current distribution is nonlinear. In the gated samples with
the density dependence of the conductivity following Eqn (3),
the problem can be solved analytically within the capacitor
approximation. The latter relates the potential difference U
between the gate and the 2DES with the electron concentra-
tion, n � C0U=e, whereC0 � Cg=S is the capacitance per unit
area. The corresponding solution for a long rectangular
sample is given by [15]

U�x� � gT arsinh
x

w
sinh�z� s� � 1ÿ x

w

� �
sinh�zÿ s�

h i
� V0

g : �4�

Here s � I Rxy=2gT, z � �Vg ÿ V0
g � I Rxy=2�=gT, w is the

width of the conducting channel of the 2DES, Vg is the
potential difference between the gate and the point x � 0 of
the layer, V0

g is the gate voltage corresponding to the QHE
state, and g � e=�C0 dms= dns�. The distribution of the
potential calculated by this formula is shown in Fig. 4a. The
current pinch corresponds to sharp changes inU, it is located
in the vicinity of the point where the QHE state (n � iN0) is
formed and the dissipative conductivity has the minimum. A
small change in the gate voltage displaces the pinch. The area
between two curves corresponding to different gate voltages is
proportional to the change in the charge of the sample. When
the current pinch does not move (bottom pair of solid curves)
this change is seen to be much less and does not differ
significantly from that at zero current (the area between the
horizontal dashed lines). Using Eqn (4), one can easily
calculate the dependence of the capacitance on the gate
voltage:

C � Cg
s coth s

cosh2 z
� tanh2 z

� �
: �5�
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This relation describes the peak on the capacitance curve
(Fig. 4b) atVg � V0

g ÿ IRxy=2, when the pinch passes through
the center of the sample. This explains the shift in the peak
position by IRxy with respect to the gate voltage on changing
the polarity of the current, that was observed experimentally
(Fig. 3a). The amplitude of the peak is inversely proportional
to temperature and increases with the current I. At rather high
current and low density of statesD the capacitance can exceed
by several times the geometrical capacitanceCg of the sample.

Equation (4) had been derived in [15] under assumption
that the current density is proportional to the electric field,
i.e., it neglects the difference in the chemical potentials across
the pinch, equal to the energy gapDm between the neighboring
Landau levels. This approximation is valid when the potential
difference across the pinch greatly exceeds Dm. The opposite
situation will be qualitatively discussed below. Recently [4] we
have demonstrated that, in the absence of dc current, the
motion of incompressible strips [13, 14], caused by a change of
the average (ns) electron density in FET with long-range
fluctuations of n, leads to the minima on the capacitance
curve, described by Eqn (2).

First we consider the case when the electron density
changes only in the direction perpendicular to the long
channel (coordinate x in Fig. 5a). A strip of incompressible
phase arises in the region where the integer number i of
Landau levels is filled (n � iN0). We assume here that the

width of the strip is much less than the distance d between the
2DES and the gate. Since m� ej � const, the electric poten-
tial (j) jump across the strip equal to Dm=e [13]. When the
distance between neighboring strips greatly exceeds d, the
capacitor approximation is valid far away from the strips. As
the gate voltage changes by dVg, the strip is displaced. The
change in the carrier density can easily be calculated in the
case of large dVg, when the displacement of the strip is much
greater than d. In the regions I and III (see Fig. 5a) this
change is given by C0dVg=e, while in the region II through
which the strip moves it is smaller:C0�dVg ÿ Dm=jej�=e. In the
case of arbitrary number of strips the change in the charge of
the capacitor is dQ � C0 �Sÿ dS�dVg � dS�dVg ÿ Dm=jej�� �

.
Here dS is the change in the area of regions with n < iN0

caused by the change in the gate voltage. If the electron
density distribution in the sample is described by a function
f�n; ns�, then dS � Sf�iN0; ns�C0dVg=jej, and for the Gaussian
distribution we obtain the expression for the capacitance
which coincides with Eqn (2).

Now let us turn to the case of finite currents. A current I
flowing in the strip should alter the electrochemical potential
difference across the strip by IRxy. This will increase or
decrease the electrical potential jump as dictated by the sign
of the current. The motion of strips with increasing
(decreasing) potential difference should enhance (diminish)
the capacitance minimum. The Hall voltage induced by the
current results in that the average electron densities at the
opposite edges in the sample get shifted in the opposite
directions with respect to iN0. In this case the number of
strips with potential difference less than Dm exceeds the
number of the strips of another type by unity. Hence the
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current flowing through the sample should decrease the
minimum on the capacitance curve. The number of strips
decreases with the current, and, ultimately, at very high
currents, only one strip (cf. Fig. 5b) will survive in the bulk
of the sample, which is equivalent to the pinch discussed
above. This is a qualitative description. The quantitative
consideration should be based on a self-consistent calcula-
tion of the distribution of potentials and electron density
around the incompressible current-carrying strip.

We would also like to discuss the case of low currents
when the peak is narrow and arises near the center of the
minimum (Fig. 3b). The width of the minimum is determined
by the dispersion of the electron density in the sample [4] and,
hence, by the range of the parameters at which strips of
incompressible electron phase exist in a sample, whereas the
width of the peak is determined by another range of the
parameters at which current flows only through the incom-
pressible strips, i.e., at which percolation over the regionswith
incompressible phase takes place.

We believe that the peaks observed on the capacitance
curve suggest that the current flows through the regions in the
bulk of the sample, whose positions change as the gate voltage
varies. The peaks can hardly be explained in terms of edge
currents.

The authors are thankful to the Russian Foundation for
Basic Research and INTAS for support of the work and to
producers of GaAs/AlGaAs heterostructures from Max
Planck Institute (Stuttgart, Germany) and Chalmers Uni-
versity (Sweden) for the presented samples.

References

1. Smith T P et al. Phys. Rev. B 32 2696 (1985)

2. Pikus F G, Efros A L Phys. Rev. B 47 16395 (1993)

3. Jungwirth T, Smr�cka L Phys. Rev. B 51 10181 (1995)

4. Dorozhkin S I, Dorokhova M O Pis'ma Zh. Eksp. Teor. Fiz. 71 606

(2000) [JETP Lett. 71 417 (2000)]

5. Gerhardts R R, Gudmundsson V Phys. Rev. B 34 2999 (1986)

6. Dorokhova M O, PhD Thesis (Chernogolovka: Institute of Solid

State Physics, 2000)

7. Pudalov VM, Semenchinski|̄ SG Pis'ma Zh. Eksp. Teor. Fiz. 44 526

(1986) [JETP Lett. 44 677 (1986)]

8. Gornik E et al. Phys. Rev. Lett. 54 1820 (1985)

9. Eisenstein J P et al. Phys. Rev. Lett. 55 875 (1985)

10. Dolgopolov V T, Zhitenev N B, Shashkin A A Zh. Eksp. Teor. Fiz.

94 307 (1988) [Sov. Phys. JETP 67 1471 (1988)]

11. Thouless D J Phys. Rev. Lett. 71 1879 (1993)

12. Buttiker M Phys. Rev. B 38 9375 (1988)

13. Chklovskii D B, Shklovskii B I, Glazman L I Phys. Rev. B 46 4026

(1992)

14. Efros A L Phys. Rev. B 45 11354 (1992)

15. Shashkin A A, Dolgopolov V T, Dorozhkin S I Zh. Eksp. Teor. Fiz.

91 1897 (1986) [Sov. Phys. JETP 64 1230 (1986)]

16. Semenchinski|̄ S G Zh. Eksp. Teor. Fiz. 91 1804 (1986) [Sov. Phys.

JETP 64 1068 (1986)]

17. Dorozhkin S I et al. Pis'ma Zh. Eksp. Teor. Fiz. 63 67 (1996) [JETP

Lett. 63 76 (1996)]

18. Efros A L, Pikus F G, Burnett V G Phys. Rev. B 47 2233 (1993)

The problem of Coulomb interactions
in the theory of the quantum Hall effect

M A Baranov, A M M Pruisken, B �Skori�c

Abstract. We summarize the main ingredients of a unifying
theory for abelian quantum Hall states. This theory combines
the Finkel'stein approach to localization and interaction effects
with the topological concept of an instanton vacuum as well as
Chern ± Simons gauge theory.We elaborate on themeaning of a
new symmetry (F invariance) for systems with an infinitely
ranged interaction potential.We address the renormalization of
the theory and present the main results in terms of a scaling
diagram of the conductances.

1. Introduction

In this contribution we discuss some of the recent advance-
ments in the theory of the quantum Hall effect [1±3]. In
particular, we address some of the main steps in the
development of a theory [4] that combines the instanton
vacuum approach to spin polarized, free electrons [5] with
the Finkel'stein treatment of the Coulomb interactions [6] in
the disordered systems.

The electron gas with an infinite-range interaction
potential is, in many ways, very different from what we
know about the theory of free electrons. This class of
problems belongs to a different universality class of quantum
transport phenomena and it is characterized by a typical
interaction symmetry which we termF invariance [1].F inva-
riance is intimately related to the electrodynamic U�1� gauge
invariance and it has major consequences for the renormali-
zation of the theory [2].

The main physical objective of our theory is to unify the
different aspects of (abelian) quantum Hall states originated
from different sources have been studied over the years
independently. They include the quantum critical behavior
of the quantum Hall plateau transitions [7], composite
fermion theory or the Chern ± Simons mapping between
integral and fractional quantum Hall states [8], the Luttinger
liquid theory of quantum Hall edge excitations [9], as well as
the stability or robustness of the quantization phenomenon
due to the disorder [10]. For a detailed exposure we refer the
reader to the literature and here, we only present a brief
introduction to the subject.

2. Matrices in frequency and replica space

Diffusive modes are encoded in the unitary matrix field
variables Qbg

nm [6]. Here, the superscripts represent the replica
indices (b,g � 1; 2; . . .Nr where Nr ! 0 at the end of all
calculations) and the subscripts denote the Matsubara
frequency indices (n;m � 0;�1;�2; . . .�N0max where the
cutoff N0max is sent to infinity in the end). The matrices Q
generally obey the constraints

Qy � Q; Q2 � 1; trQ � 0
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