
B � 1:5 T (5 T). ForV9VB, the shape of both of these curves
is similar to that for y � 0�. Moreover, in this low voltage
regime, tilting the magnetic field has little effect on the
magnitude of vd. This is because when V is small, the
electrons travel such a short distance before scattering that it
is hard to distinguish between the regular (y � 0�) and chaotic
(y 6� 0�) trajectories, and so both types of orbit have similar
drift velocities. In a tilted magnetic field, vd is slightly lower
because the field component parallel to the potential barriers
deflects the electron trajectories, thus reducing the average
velocity along the SL axis [26]. At high voltages, by contrast,
the mean free path of the electrons is long enough for the
differences between regular and chaotic orbits to influence the
transport properties of the SL. Electrons in spatially extended
chaotic trajectories (Fig. 2c) travel further along the SL before
scattering, and therefore have higher drift velocities. This
should raise the electrical conductivity measured in electron
transport experiments.

In a tilted magnetic field, the vd�V� curves contain weak
oscillatory structure which can be seen most easily in the
dotted (5T, 45�) trace in Fig. 5. The origin of these oscilla-
tions seems to involve resonances between the classical
cyclotron and Bloch frequencies when y � 0�, and will be
analyzed in detail elsewhere [27].
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Quasiclassical memory effects: anomalous
transport properties of two-dimensional
electrons and composite fermions subject
to a long-range disorder

F Evers, A D Mirlin, D G Polyakov, P WoÈ lfle

Abstract. We have studied the ac response and magnetoresis-
tance of a two-dimensional electron gas in high-mobility
samples in the presence of smooth disorder, with emphasis on
the composite-fermion description of a half-filled Landau level.
We have found that the low-o behavior of the ac conductivity
s�o� is governed by memory effects associated with return
processes that are neglected in Boltzmann transport theory: the
return-induced correction to Re s exhibits a kink / joj. It is
shown that the non-Markovian quasiclassical kinetics leads to a
strong magnetoresistance Drxx. We argue that the quasiclassi-
cal memory effects account for the positive Drxx observed at
small deviations from half-filling. At a larger deviation, the
positive magnetoresistance is followed by a sharp falloff of rxx.

Recently, there has been a revival of interest in quasiclassical
transport properties of a two-dimensional electron gas
(2DEG). This is motivated by the realization that the
classical dynamics in a disordered system constitutes in fact
far more than the idealized Drude picture and, to describe the
transport properties of the system, one has sometimes to
completely abandon theories based on the Boltzmann
equation. In Boltzmann transport theory, formulated in
terms of a collision integral, quasiclassics leads to the Drude
results: analytical behavior of the ac conductivity s�o� at
o! 0, zero magnetoresistance (MR), etc. It has been
demonstrated, however, that quasiclassical memory effects,
neglected in the conventional Boltzmann approach, yield a
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wealth of anomalous transport properties of a 2DEG subject
to a long-range disorder. In particular, the non-Markovian
kinetics gives rise to a quasiclassical zero-frequency anomaly
[1] in the ac response of a disordered 2DEG, associated with
return processes in the presence of smooth inhomogeneities.
Specifically, the return-induced correction to Re s�o� exhi-
bits a kink / joj. Another manifestation of the non-
Markovian kinetics is a strong positive MR [2] in low
magnetic fields, which explains [3] the otherwise puzzling
positive MR observed near half-filling of the lowest Landau
level in the fractional quantum Hall regime. The strength of
the above anomalies depends on a ratio d=l, where d is the
correlation radius of disorder, l is the mean free path, and
grows with increasing d as a power of this parameter. Since
quantum corrections are governed by another small para-
meter 1=kFl5 1, where kF is the Fermi wavevector, it is the
long-range correlations of disorder with kFd4 1 that reveal
the quasiclassical anomalies. The condition kFd4 1 is
typically very well satisfied in high-mobility semiconductor
heterostructures, where charged impurities, located in a layer
separated by a large spacer from the 2DEG plane, create a
smooth disorder in the electron system.

Here, we summarize recent work on (i) quasiclassical zero-
frequency anomaly and (ii) quasiclassical magnetoresistance.
We focus on the case of smooth (allowing for a quasiclassical
treatment) Gaussian (in the sense of statistics of fluctuations)
disorder. As we will show, the amplitude of the anomalies is
sensitive to time-reversal symmetry of disorder. Specifically,
in the limit of weak disorder, the anomalies appear to be
strongly enhanced for a random magnetic field (RMF) as
compared to a random scalar potential.Wewill consider both
types of disorder. The case of a smoothly varying RMF is of
major interest particularly because of the relevance of the
problem to the composite-fermion (CF) description of the
transport properties of a half-filled Landau level [4]. Also, a
long-range RMF has been realized in semiconductor hetero-
structures by attaching superconducting or ferromagnetic
overlayers or by prepatterning the sample (randomly curving
the 2DEG layer).

We begin by considering the zero-frequency anomaly.
Our starting point is the disorder-averaged quasiclassical
expression for the conductivity in terms of the exact Liouville
operator L:

s�o� � e2nv2F

�
df
2p

cosf
1

L
cosf

� �
; �1�

where n is the density of states at the Fermi energy EF, vF is the
Fermi velocity, f is the velocity angle on the Fermi surface.
The Liouville operator is represented as L � L0 � dL, where
L0 � ÿio� vFnH, n � �cosf; sinf�, and dL is a disorder-
induced correction. In the case of a RMFB�r�, the fluctuating
correction is dLB � �e=mc�B�r�qf. For a scalar random
potential V�r�, it is given by

dLV � dv�r�nH� �Hdv�r���ẑ� n�qf ;

where dv�r� � v�r� ÿ vF is the fluctuation of the local velocity
v�r� � f�2=m��EF ÿ V�r��g1=2 and ẑ is a unit vector in z
direction. Expanding Eqn (1) in dL and resumming the
series, we obtain the ac conductivity s�o� � s0=t�ÿio�M�
in terms of a self-energyM�o� (`memory function'). Here s0 is
the dc Drude conductivity and t is the momentum relaxation
time. In the Boltzmann (collision integral) approximation

M0 � tÿ1. Introducing the self-energy allows us to construct a
classical diagrammatic technique [1] for the return-induced
correction DM in terms of classical diffusion propagators (see
also [5]), close in essence to the quantum diagrammatic
technique in the weak-localization theory.

The leading contribution to the nonanalytic in o correc-
tion DM comes from return processes involving one diffusion
propagator. In the simplest case of a weakRMF, it is given by

DM � 2
e

mc

� �2� d2q

�2p�2
df
2p

df0

2p

� sinf WB�q�PD�q;f;f0� sinf0 ; �2�

where PD�q;f;f0� � g�q;f��ÿio�Dq2�ÿ1g�q;f0� is the dif-
fusion propagator with the vertex corrections g�q;f� and
WB�q� is the Fourier transform of the correlator of RMF. At
ql5 1, g�q;f� ' 1ÿ iql cos �fÿ fq�. For CFs in a half-filled
Landau level WB�q� � �2hc=e�2ni exp�ÿ2qd�, where ni is the
concentration of charged impurities. In Eqn (2) the character-
istic (from the infrared side) q � �joj=D�1=2, so that in doing
the integral one can take the correlator WB�q� at q � 0. The
result is

DRe s�o�
s0

� ÿ p
2

d

l
jojt ; jojt5 1 : �3�

The nonanalytic frequency dependence of s�o� reflects long-
time tails in the velocity ± velocity correlator v�t�v�0�h i �
�d=l�v2F�t=t�2 (familiar from the Lorentz gas model [6]),
which should be contrasted with the exponential decay in
Boltzmann theory. The long-memory effect is related to self-
intersections of a diffusion trajectory: traveling through the
same local configuration of disorder twice introduces correla-
tions of scattering acts, totally absent in the Boltzmann
description. The larger the parameter d=l, the stronger the
anomaly. Note that for CFs at half-filling d=l � 1 [3, 4].

Calculating DM for scalar disorder is somewhat trickier.
The fluctuating term dLV contains spatial derivatives, which
yields the first-order contribution to DM:

DM1 � 2

p2F

�
df
2p

df0

2p
d2q

�2p�2 sinf sin �fÿ fq�q2WV�q�

� PD�q;f;f0� sinf0 sin �f0 ÿ fq� ; �4�

whereWV�q� is the correlator of a random potential,

WV�q� � �p�h2=m�2ni exp�ÿ2qd�

for charged impurities. Note that, unlike the case of RMF,
this integral does not require taking the vertex corrections
g�q;f� into account. Equation (4) gives

DRe s�o�
s0

� p
d

l

� �3
jojt :

In fact, however, the leading contribution toDM in the case of
scalar disorder comes from second-order processes. Specifi-
cally, the second-order term DM2=M0 / �d=l �2 scales with a
smaller power of d=l. This, at first glance, counterintuitive
feature is related to the anomalous smallness of DM1 in the
otherwise regular expansion in powers of d=l (third- and
higher-order terms in DM are small compared to DM2). The
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point is that the joj anomaly is related to the integration over
small q of the form�

d2qq2

ÿio�Dq2
;

where the numerator of the integrand tends to zero as q2 at
q! 0. To second order, the large momenta associated with
the spatial derivatives in LV are `disentangled' from the small
momentum carried by the diffuson, so that the leading q2 term
comes from the vertex corrections g�q;f�. Let us now count
powers of l: two factors g�q;f� yield q2l 2, whereas one loses
only lÿ1 when going to second order, which explains the total
gain of one power of l=d as compared to Eqn (3). Evaluation
of the second-order diagrams [1] gives

DRe s�o�
s0

� 3p
8

d

l

� �2

jojt ; jojt5 1 : �5�

The anomaly for scalar disorder is seen to be much weaker (at
d=l5 1) compared to the case of RMF and has opposite sign.

Equations (3), (5) describe the limit of weak disorder at
zero external magnetic field B. We examined also the
percolation-type problem that arises [3, 7] in a weakly
disordered system with smooth disorder at strong B. The dc
conductivity sxx then falls off exponentially with growing B
because of the increasing adiabaticity of the electron motion
and related quasiclassical localization. It is worth stressing
that the exponential suppression of the chaotic dynamics for
CFs starts in fact at a small deviation fromhalf-filling, namely
at jne ÿ 1=2j � 1=kFd5 1, where ne is the electron filling
factor. In the limit where transport is governed by the
quasiclassical localization we found [3] that

DRe s�o�=s�0� � jojts ;

where ts is a characteristic time of traversal of a link of the
percolation network. For CFs ts scales as sÿ7=3xx . Note also
that the ac conductivity behaves similarly in a system with
strong RMF (d=l4 1) at zero B: dc transport in this system is
due to percolating `snake states' [3] and ts � �d=vF��d=l�7=9.

In addition to the analytical methods we have employed
computer simulations of the classical motion of a particle in
RMF. The results obtained for the memory function at

d=l � 0:5 are shown in Fig. 1. The magnitude of the joj
correction is noticeably smaller than Eqn (3) would predict.
We attribute this discrepancy to the fact that Eqn (3) was
derived for d=l5 1. A smaller value of the coefficient at
d=l � 0:5 is consistent with the fact that at d=l � 1 the
coefficient changes sign and the correction to the conductiv-
ity becomes positive. In Figure 2 we show the numerical data
for d=l ' 30. A pronounced dip in the ac conductivity around
o � 0 in the expected range joj � 1=ts confirms the analytical
results.

Let us consider now the effect of electron ± electron
interaction on the zero-frequency anomaly, which is two-
fold. First, it leads to inelastic scattering at finite temperature
and one might wonder if the inelasticity cuts off the singular
behavior of s�o� ato! 0. The answer is no [1], in contrast to
the quantum singular corrections, since although the inelastic
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scattering does make the Liouville operator massive it does
not destroy the pole in the classical diffusion propagator.
Second, the interaction yields dynamical screening, which
requires a delicate treatment in the present problem. It turns
out that the screening has a profound effect on the zero-
frequency anomaly since the Coulomb interaction destroys
the diffusion pole in the return-induced correction DM. In
terms of the standard diagrammatic technique, this means
that although the conductivity is a response to the screened
(total) electric field and, therefore, is given by unscreened
(irreducible with respect to the Coulomb interaction) den-
sity ± density correlator, one should use screened diffusion
propagators in all internal blocks. Specifically, instead of the
bare diffuson G�o; q� � �2pnt20�ÿ1�ÿio�Dq2�ÿ1 one should
use the screened (RPA) propagator

Gscr�o; q� � G�o; q�
� 1� G�o; q��2pnt0�2 ÿ io

2p

� �
Vscr�o; q�

� �
: �6�

The dynamically screened Coulomb interaction is given by

Vscr � 2pe2

q

ÿio�Dq2

ÿio�Dq2 � vMq
;

where vM � 2ps0 is the Maxwell velocity of the charge
spreading in two dimensions. The screening `kills' the
diffusion pole responsible for the joj anomaly,

Gscr ! 1

2pnt20

vM
Dq

1

ÿio� vMq
:

It follows, in particular, that the interaction makes the zero-
frequency anomaly sensitive to the screening by external
gates, since a weak short-range interaction does not affect
the memory effects. Hence, we predict the quasiclassical
anomaly in gated structures. As for the half-filling problem,
CFs interact with each other not only by the Coulomb
interaction but also through the transverse gauge field
fluctuations [4]. One can show, however, that by symmetry
the latter do not have any effect on the joj anomaly, whereas
the Coulomb interaction leads to results similar to a Fermi
liquid at zero magnetic field.

We turn now to another phenomenon associated with the
quasiclassical memory effects, the quasiclassical MR. To
begin with, we recall that MR is zero in Boltzmann theory
only in the case of a white-noise disorder, when
v�t�v�0�h i � v2F exp�ÿS�t�� with S�t� � t=t at all t down to
t � 0 and t does not depend on B. In fact, there exists a finite
MR even within the collision-integral approximation if
disorder is correlated on a finite spatial scale d. The source
of MR is a cyclotron bending of trajectories within this
correlation radius, which gives [8, 9] a small negative MR
Drxx=r0 of the order of �d=Rc�2, where Rc is the cyclotron
radius. A remarkable feature, which we address here, is that
the non-Markovian kinetics leads to a much stronger positive
MR [2], which may even be much larger than unity. We
believe that it is this positiveMR, counted from the resistance
at half-filling, that has been observed in the fractional
quantum Hall regime. More specifically, since the memory
effects depend on time-reversal symmetry of disorder, in the
case of a weak RMF the return-induced MR dominates
(compared to the negative MR above) at all B, thus
explaining the positive MR of CFs, whereas in the case of a

weak scalar disorder this only occurs at large enough B. The
point, however, is that the non-Markovian kinetics gives a
leading contribution to MR at fields that are still much
weaker than the field at which the quasiclassical localization
[3, 7] shows up and rxx starts to fall off with increasing B. The
strong positiveMR is related to correlations of scattering acts
at the points where quasiclassical trajectories self-intersect
and may be considered as a precursor of the adiabatic
localization.

Let us outline the derivation of MR. The starting point is
the expression for the 2� 2 conductivity matrix in terms of
the exact Liouville operator, similar to Eqn (1). We then
proceed along the same lines as in the derivation of the zero-
frequency anomaly to introduce the memory-function matrix
and the return-induced correction DMxxt � Drxx=r0. An
essential difference is that the characteristic q in the integral
determining DMxx [cf. Eqn (2)] now does not tend to zero at
o! 0 and grows with increasing B. Let us focus on the limit
oct4 1, where oc is the cyclotron frequency, in which case
the characteristic q4 lÿ1. Clearly, at such large q we can no
longer expand the average Liouville propagator in terms of
diffusionmodes and should treat the dynamics on the ballistic
scalemore carefully. Since we deal with a long-range disorder,
it is appropriate to approximate the stochastic motion of
particles by a Fokker ± Planck equation corresponding to the
diffusion in momentum space. For the case of RMF we get

DMxx � 2
e

mc

� �2� d2q

�2p�2
df
2p

sinfWB�q� gD�o; q;f� ; �7�

where gD is the solution of

�ÿio� ivq� ocqf ÿ tÿ1q2f�gD�o; q;f� � sinf : �8�

The result is

Drxx
r0
� B

B0

� �2
� 2

d

l
�oct�2 ; �9�

where we used the correlator of RMF [given above Eqn (3)]
describing disorder in the CF system, B0 is the rms amplitude
of the fluctuations. Equation (9) is valid for B5B0, whereas
the adiabatic regime begins at B � B0�l=d�1=6 [3]. In the
intermediate range, the positive MR gets large, Drxx=r0 4 1.
In this region, the effective scattering rate is renormalized
tÿ1 ! tÿ1 � DMxx, which yields

rxx
r0
� 1

2
� 1

4
� B

B0

� �2" #1=2
: �10�

This result describes MR up to B=B0 � �l=d�1=6, where the
resistivity reaches its maximum; in still higher fields rxx drops
rapidly due to the adiabatic character of motion.

Following the same route for the case of a random scalar
potential, we obtain

Drxx
r0
� 2z�3=2�

p
d

l

� �3
�oct�9=2 : �11�

In contrast to RMF, the adiabatic falloff starts already when
this expression becomes of order unity.

We have performed numerical simulations of MR for
both types of disorder. In Figure 3 the results for RMF are
shown, for three different strength of disorder. At d5 l, the
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theoretical prediction of a strong positive MR (10) crossing
over to a negative one at B � B0�l=d�1=6 is confirmed by the
data. At moderately small d=l the positive MR still exists, but
becomes weak; this is the region of d=l relevant to the CF
system. The numerically calculated MR for d=l � 0:1 ± 0.2
agrees well [3] with the experimental data [10] around
ne � 1=2. At sufficiently large d=l the region of positive MR
disappears, and rxx drops monotonously with B [3]. The
numerically foundMR for the random potential case (Fig. 4)
shows good agreement with the theoretical result (11) up to
Drxx=r0 � 1. At larger B, rxx deviates from (11) and starts to
decrease, as expected.

In conclusion, we have analyzed non-Markovian effects in
quasiclassical transport of a two-dimensional electron gas
subject to a long-range Gaussian disorder. Particular atten-
tion has been paid to the composite-fermion description of

transport in a half-filled Landau level. We have shown that
the ac conductivity has a nonanalytic correction / joj. We
have also calculated the quasiclassical magnetoresistance: the
memory effects lead to a strong positive magnetoresistance,
which we argue to have been observed in the composite-
fermion system near half-filling.
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``Quanten-Hall-Systeme" of the Deutsche Forschungsge-
meinschaft, by INTAS (Grants 97-1342 and 99-1705, and by
the German ± Israeli Foundation.
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Density of states near the Anderson
transition in the �4ÿ E�-dimensional space

I M Suslov

Abstract. The calculation of the density of states for the
SchroÈ dinger equation with a Gaussian random potential is
equivalent to the problem of a second-order transition with a
`wrong' sign of the coefficient of the quartic term in the
Ginzburg ± Landau Hamiltonian. The special role of the
dimension d � 4 for such Hamiltonian can be seen from
different viewpoints but fundamentally is determined by the
renormalizability of the theory. Construction of E-expansion in
direct analogy with the phase transitions theory gives rise to a
problem of a `spurious' pole. To solve this problem, the proper
treatment of the factorial divergency of the perturbation series
is necessary. In �4ÿ E�-dimensional theory, the terms of the
leading order in 1=E should be retained forN � 1 (N is an order
of the perturbation theory) while all degrees of 1=E are essential
for large N in view of the fast growth of their coefficients. The
latter are calculated in the leading order inN from the Callan ±
Symanzik equation with results of Lipatov method using as
boundary conditions. The qualitative effect consists in shifting
of the phase transition point to the complex plane. This results
in elimination of the `spurious' pole and in regularity of the
density of states for all energies.
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