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given in Eqn (2) and allows to optimize this process of
creating entangled electrons.

In Section 3.1 we have discussed the propagation of
entangled electrons in Fermi leads, i.e. in the presence of
many other (identical) electrons interacting with the electrons
belonging to the entangled pair. We find that the entangle-
ment becomes reduced by a factor z% due to the transport
through such an environment, where zg denotes the quasi-
particle weight factor of the host material. For a two-
dimensional electron gas, we explicitly calculate zg, see
Eqn (6). Then, in Section 3.2, we discuss a method for
detecting entangled electrons which were produced, e.g.,
using the method from Section 2. We consider a scattering
setup with a beam splitter, where electrons to be tested are
injected in the two ingoing arms, and the current noise is
measured in one of the outgoing arms. For the maximally
entangled singlet and triplet states of electrons with equal
energies (such as those produced by the method presented in
Section 2) we find the resultant Eqn (11), predicting an
enhancement by a factor of two of noise for the singlet, and
a complete reduction for the three triplets. We conclude that
the enhancement of noise unambiguously indicates an
entangled state (the spin singlet).

Finally, in Section 4 we analyze a different situation, in
which the entanglement of the ground state of a double dot is
probed. This is done by measuring the Aharonov—Bohm
oscillations in the co-tunneling current which are predicted in
Eqns (16) and (17). It is found that the phase-coherent part
(17) which distinguishes spin singlets from triplet factorizes in
the expression (16) for the co-tunneling current.
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Unpaired Majorana fermions in quantum
wires

A Yu Kitaev

Abstract. Certain one-dimensional Fermi systems have an
energy gap in the bulk spectrum while boundary states are
described by one Majorana operator per boundary point. A
finite system of length L possesses two ground states with an
energy difference proportional to exp(—L//y) and different
fermionic parities. Such systems can be used as qubits since
they are intrinsically immune to decoherence. The property of a
system to have boundary Majorana fermions is expressed as a
condition on the bulk electron spectrum. The condition is
satisfied in the presence of an arbitrary small energy gap
induced by proximity of a three-dimensional p-wave super-
conductor, provided that the normal spectrum has an odd
number of Fermi points in each half of the Brillouin zone (each
spin component counts separately).

1. Introduction

Implementing a full-scale quantum computer is a major
challenge to modern physics and engineering. Theoretically,
this goal should be achievable due to the possibility of fault-
tolerant quantum computation [1]. Unlimited quantum
computation is possible if errors in the implementation of
each gate are below a certain threshold [2 - 5]. Unfortunately,
for conventional fault-tolerance schemes the threshold
appears to be about 10~%, which is beyond the reach of
current technologies. It has been also suggested that fault-
tolerance can be achieved at the physical level (instead of
using quantum error-correcting codes). The first proposal of
these kind [6] was based on non-Abelian anyons in two-
dimensional systems. A mathematical result concerning
universal quantum computation with certain type of anyons
has been recently obtained [7], but, generally, this approach is

A Yu Kitaev Microsoft Research, Microsoft, Redmond, WA 98052, USA
L D Landau Institute for Theoretical Physics, Russian Academy of
Sciences, ul. Kosygina 2, 117940 Moscow, Russian Federation




132 Chernogolovka 2000: Mesoscopic and strongly correlated electron systems

Usp. Fiz. Nauk (Suppl.) 171 (10)

still undeveloped. In these paper we describe another
(theoretically, much simpler) way to construct decoherence-
protected degrees of freedom in one-dimensional systems
(‘quantum wires’). Although it does not automatically
provide fault-tolerance for quantum gates, it should allow,
when implemented, to build a reliable guantum memory.

The reason why quantum states are so fragile is that they
are sensitive to errors of two kinds. A classical error,
represented by an operator o7, flips the jth qubit changing
|0) to |1) and vice versa. A phase error ¢% changes the sign of
all states with the jth qubit equal to 1 (i. €. jth spin down, if the
qubits are spins) relative to the states with the jth qubit equal
to 0. It is generally easy to get rid of one type of errors, but not
of both. However, the following method of eliminating the
classical errors is worth considering. Let each qubit be a site
that can be either empty or occupied by an electron (with spin
up, say, the other spin direction being forbidden). Let us
denote the empty and the occupied states by |0) and |1),
respectively. (Such sites are not exactly qubits because
electrons are fermions, but they can be also used for quantum
computation [8].) Now single classical errors become impos-
sible because the electric charge is conserved. Even in
superconducting systems, the fermionic parity (i.e. the
electric charge (mod 2)) is conserved. Two classical errors
can still happen at two sites simultaneously, but this would
require that an electron jumps from one site to the other. Such
jumps can be avoided by placing the ‘fermionic sites’ far apart
from each other, provided the medium between them has an
energy gap in the excitation spectrum.

Obviously, this method does not protect from phase errors
which are now described by operators aj-aj. To the contrary,
different electron configurations will have different energies
and thus will pick up different phases over time. Even without
actual inelastic processes, this will produce the same effect as
decoherence. However, a simple mathematical observation
suggests that the situation could be improved. Each fermionic
site is described by a pair of annihilation and creation
operators a;, a;. One can formally define Majorana operators

a./—a; .
CZ/: 1 s ]Zl,,N (1)

— i
Cj-1 = aj + a,

which satisfy the relations

Cw = Cm, ClCm + CmC1 = 251}77 )
If the operators ¢»;—; and cy; belonged to different sites then
the phase error
1
aja; =3
would be unlikely to occur. Indeed, it would require
interaction between the two ‘Majorana sites’ which could be
possibly avoided. Note that a single Majorana operator ¢aj_;
or ¢; can not appear as a term in any reasonable Hamiltonian
because it does not preserve the fermionic parity. Thus an
isolated Majorana site (usually called a Majorana fermion) is
immune to any kind of error!

Unfortunately, Majorana fermions are not readily avail-
able in solid state systems. The goal of this paper is to
construct Hamiltonians which would give rise to Majorana
fermions as effective low-energy degrees of freedom. Surpris-
ingly, this can be done even with non-interacting electrons.
(Some interaction is actually needed to create superconduc-

(1 + iCzj,lc’zj)

tivity, but it can be effectively described by terms like Aa;ay.)
The general idea is quite simple. An arbitrary quadratic
Hamiltonian can be written in the form

i .
H= ZZAlmclcmv Alm = Alm = 7Aml . (3)

ILm

Its ground state can be described as ‘pairing’ of Majorana
operators: normal mode creation and annihilation operators
a' , a, which are certain linear combinations of ¢, come in
pairs. (In this sense, an insulator and a superconductor
represent different types of pairing.) In some cases, most
Majorana operators are paired up with an energy gap while
few ones (localized at the boundary or defects) remain ‘free’.
For example, unpaired Majorana fermions exist on vortices
in chiral two-dimensional p-wave superconductors [9, 10]. We
will show that Majorana fermions can also occur at the ends
of quantum wires.

2. A toy model and the qualitative picture

We are going to describe a simple but rather unrealistic model
which exhibits unpaired Majorana fermions. It attempts to
catch two important properties which seem necessary for the
phenomenon to occur. Firstly, the U(1) symmetry a; — €%a;,
corresponding to the electric charge conservation, must be
broken down to a Z, symmetry, ¢; — —a;. Indeed, if a single
Majorana operator can be localized, symmetry transforma-
tion should not mix it with other operators. So we should
consider superconductive systems. The particular mechanism
of superconductivity is not important; we may just think that
our quantum wire lies on the surface of three-dimensional
superconductor (Fig. 1). The second property is less obvious
and will be fully explained in Section 2. Roughly speaking, the
electron spectrum must strongly depend on the spin. Here we
will simply assume that only one spin component (say, 1) is
presentt.

b b

Figure 1. A piece of ‘quantum wire’ on the surface of three-dimensional
superconductor.

Consider a chain consisting of L > 1 sites. Each site can be
either empty or occupied by an electron (with a fixed spin
direction). The Hamiltonian is

1
oo

J

—|—Aaja]~+1 +A*d;+la}i| . (4)

Here w is a hopping amplitude, x a chemical potential, and
A = |A|e'? the induced superconducting gap. It is convenient

T It appears that only a triplet (p-wave) superconductivity in the three-
dimensional substrate can effectively induce the desired pairing between
electrons with the same spin direction — at least, this is true in the absence
of spin-orbit interaction.
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to hide the dependence on the phase parameter 0 into the
definition of Majorana operators:

0 0\

Cyj—1 = €Xp 15 a; + exp —15 a; ,
o 0 : 0\
Cyj = —1eXp 15 a; + 1exp —15 a; ,

In terms of this operators, the Hamiltonian becomes

j=1,...,L. (5

i
Hy = 52}_: [—Hé’z/'—lczj + (W + [4])czjcajsn
+ (7W + |A|)02]~_1021~+2} . (6)

Let us start with two special cases.
(a) The trivial case: |4] = w =0, u < 0. Then

1 i
Hy = —u E (a;aj —§> :E(_“) E €2j-1€2j -
J J

The Majorana operators c¢;;_i,cy from the same site j are
paired together to form a ground state with the occupation
number 0.

(b) |[4] = w > 0, u = 0. In this case

H] = iwz C€2jCj41 - (7)
J

Now the Majorana operators ¢y, ¢2i41 from different sites are

paired together (Fig. 2). One can define new annihilation and

creation operators
1

aj = E(C2j +iey), a = 3

—_

(2 — icj11)

a b
Cr—1 o (SRS €3 (4 Cr—1 €L

¢ ¢ c c

1 4

—e

Figure 2. Two types of pairing.

which span the sites j and j + 1. The Hamiltonian becomes

L1 1
Hy = 214*2(51}511« — 5) .

=

Ground states satisfy the condition gjy) =0 for j=
1,...,L — 1. There are two orthogonal states |{,) and |i,)
with this property. Indeed, the Majorana operators b’ = ¢,
and b” = ¢y; remain unpaired (i.e. do not enter the
Hamiltonian), so we can write

—ib'b" o) = o), —ib'D ) = =) (8)

Note that the state |i),) has an even fermionic parity (i.e. itis a
superposition of states with even number of electrons) while
|/;) has an odd parity. The parity is measured by the operator

P= H(_iCZI—ICZI) : 9)

These two cases represent two phases, or universality classes
which exist in the model. A subtle point is that both phases
have the same bulk properties. In fact, one phase can be
transformed to the other (and vice versa) by mere permuta-
tion of Majorana operators,

Cm 7 Cmyl - (10)
Such a local transformation (operator algebra automorph-
ism) is usually considered as ‘equivalence’ in the study of
lattice modelsf. Yet the boundary properties of the two
phases are clearly different: only the phase (b) has unpaired
Majorana fermions at the ends of the chain. This is due to the
fact that the operators cy;_1, ¢y belong to one physical site
while ¢, ¢211 do not. We may put it this way: one can not cut
a physical site into two halves; if one could, both types of
boundary states would be possible in both phases.

Also note that the transformation (10) can not be
performed in a continuous fashion, starting from the identity
transformation. From the mathematical perspective, it means
that one should have different definitions for ‘weak’ and
‘strong’ equivalence of lattice models. We will not touch such
abstract matters here.

Now we want to study the model at arbitrary values of
w, i and 4. Let us begin with some generalities. Let N be the
total number of fermionic sites in the system, for now N = L.
The Hamiltonian (6) has the general form (3). Hence it can be
reduced to a canonical form

. N N
i o 1
Hcanonical = E § Emb:nb;,,q = § € (a,rnam - §> y € = 0.
m=1 m=1
(11)

Here &/, b)), are real linear combinations of ¢y;_i, ¢5; with the

m’=m
same commutation relations whereas a,, = (1/2)(b), +1b!),

al = (1/2)(b!, —ib" ). More specifically,

bll Cl
by )
=W : ;
bly CIN-1
byv N
0 €1
—€] 0
wAw?™ = o , (12)
0 en
—€N 0
where W is a 2N x2N real orthogonal matrix

(WTW = WWT = I') whose rows are eigenvectors of 4. The
numbers ¢,, = 0 are one-particle excitation energies. How-
ever, it is more convenient to deal with a ‘double spectrum’
{€m, —€m} since the matrix 4 has eigenvalues +ie,,.

1 Nonlocal transformations can change the physical properties of the
model even more dramatically. The Jordan-Wigner transformation
-1+ 0 1) op o — af 12} o7 transforms our model to a spin
chain with zz and yy interactions and a z-directed magnetic field. Unlike
Eqn (10), the Jordan — Wigner transformation is well defined at the ends of
the chain. However, this mathematical procedure falls apart in the
physical context, as far as perturbations are involved. Indeed, the phase
(b) has now an order parameter (¢”) # 0. External fields will interact with
the order parameter breaking the phase coherence between |) and [,).
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The bulk spectrum (energy vs. momentum) is given by

e(g) = j:\/(chosq +u)? + 4|4 sin’q, —n<g<m.
(13)

We may conjecture that the phases (a) and (b) extend to
connected domains in the parameter space where the
spectrum has a gap. The signs of u and w seem not to be
important, so we actually expect that the phase (a) occurs at
2|w| < |u| while the phase (b) occupies the domain 2|w| > |u],
A #0. (The phase boundary is given by the equation
2|w| = |u| while 4 =0, 2|w| > |u| is a line of normal metal
phase inside the domain (b).)

To verify the conjecture, we need to find boundary modes.
They correspond to eigenvectors of 4 localized near the ends
of the chain. Due to the spectrum symmetry ¢ — —¢, zero
eigenvalues can occur in a general position. If exist, such zero
modes should have the form

Y = Z((>c’+x/+ +o X )y,

J
" n = "o —j
b :E (oc+x+]+oc_x_’)cz,~,

J

—p /12— 4w + 4)4)

X4 =
* 2(w+ |4))

(14)

We will consider two cases corresponding to the expected
existence domains of the two phases.

(a) If 2|w| < |u|, we have |x4| > 1, [x_| < 1or |x4| <1,
|x_| > 1. Therefore, only one of the coefficients o/, , o (or
oy, o” ) can be non-zero, depending on whether the mode is to
be localized at the left or at the right end of the chain. This
makes it impossible to satisfy boundary conditions. So the
supposed zero modes (14) do not exist.

(b)If 2w > |u|, 4 # 0, we find that |x, |, [x_| < 1. Hence &’
islocalized near j = 0 whereas b” is localized near j = L. There
are also boundary conditions

o 4o =0, oc’ix;(Hl) +o x"HD =0,

but they can be satisfied too. The zero modes &', 0" are
actually the same as the unpaired Majorana fermions
discussed above. If —2w > |u|, 4 # 0 then »’ and b” change
places. Thus the unpaired Majorana fermions exist in the
whole expected domain of the phase (b).

The above analysis is exact in the limit L — oo. If the
chain length L is finite, there is a weak interaction between 4’
and b". (For definiteness, we will always assume that 4’ is at
the left end of the chain whereas b” is at the right end.) This
interaction is described by an effective Hamiltonian

(15)

where /5! is the smallest of |In|x. || and |In|x_|| (note that
both logarithms have the same sign). Thus the energies of the
ground states ) and |y,) (see Eqn (8)) differ by 7. Note that
it is not obvious anymore which state of the two is even and
which is odd. In the case —2w > ||, the parity is proportional
to (—l)L. (This factor is the parity of the bulk part of the
chain.)

The effective Hamiltonian (15) still holds if we include
small electron—electron interaction (a four-fermion term)
into Eqn (4). Indeed, the physical meaning of ¢ is an ampli-

i
Hyr = 3 by, toce M

tude for a fermionic quasi-particle to tunnel across the chain.
In a long chain, this amplitude vanishes as exp(—L/lp) if the
bulk spectrum has a gap.

Finally, we will discuss a role of the phase parameter 6
(4 = exp(i0)|4]). According to Eqn (5), the Majorana
operators c¢yj_p,cy are multiplied by —1 when 0 changes
by 27n. The physical parameter 4 is the same at 6 and 0 + 2,
of course, but the ground states should undergo certain
transformation as 6 changes to 6 + 2n adiabatically. Note
that the transformation ¢,, — —c,, also occurs if one con-
jugates ¢, by the parity operator P. Within the effective
Hamiltonian approach, P is the same as s(L)(—ib'd")
(s(L) = £1). Hence the adiabatic change of the supercon-
ducting phase by 2= results in the unitary transformation

V=s(L)(=10'D") + Vi) = W), VIY) = —[y). (16)
This is equivalent to transfer of an electron between the ends
of the chain. Some physical consequences of this result will be
mentioned in Section 4.

3. A general condition for Majorana fermions

Let us consider a general translationally invariant one-
dimensional Hamiltonian with short-range interactions. It
has been mentioned that the necessary conditions for
unpaired Majorana fermions are superconductivity and a
gap in the bulk excitation spectrum. The latter is equivalent to
the quasi-particle tunneling amplitude vanishing as
exp(—L/ly). Besides that, it is clear that there should be
some parity condition. Indeed, Majorana fermions at the
ends of parallel weakly interacting chains may pair up and
cancel each other (i.e. the ground state will be non-
degenerate). So, provided the energy gap, each one-dimen-
sional Hamiltonian H is characterized by a ‘Majorana
number’ M = M(H) = +1: the existence of unpaired Major-
ana fermions is indicated as M = —1. The Majorana number
should satisfy M(H' & H") = M(H')M(H"), where @
means taking two non-interacting chains.

Remarkably, the Majorana number reveals itself even if
the chain is closed into a loop. This is handy as it eliminates
the need to study boundary modes. Let H(L) be the
Hamiltonian of a closed chain of length L > [y. (H itself is a
template which is used to generate H(L) for any L.) We claim
that

P(H(Ly + Ly)) = M(H) P(H(Ly)) P(H(L>)) , (17)
where P(X) denotes the ground state parity of a Hamiltonian
X (assuming that the ground state is unique).

The following argument justifies Eqn (17). An open chain
of length L can be described by an effective Hamiltonian
which only includes boundary modes. If M(H) = —1, there
are Majorana operators b’, b” associated with the ends of the
chain. The parity operator P (see Eqn (9)) can be replaced by
s(L)(—ib'b"), where s(L) = £1. Thus the fermionic parity of
[,)is s(L) (—=1)%, « = 0, 1. If we close the chain, the effective
Hamiltonian is He(L) = (i/2) ub”b’. (We have chosen to
write b”b’ in this order because b” precedes #’ in the left-to-
right order on the loop, where they are next to each other.)
The parameter u represents direct interaction between the
chain ends (unlike 7 from Eqn (15)), so u does not depend on
L. The ground state of the closed chain is |;) if u > 0, and
[Wo) if u < 0. Hence
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P(H(L)) = —s(L) sgnu.

Now let us take two chains, one of length L;, the other of
length L. There are two ways to close them up, see Fig. 3.
Both cases can be described by effective Hamiltonians:

5 u (BB + b))
(BYbh + B3b)) .

Her(L1) ® Hetr(Lo) =

Hee(Li + Ly) = U

L, L, L,

Wb W b, BB

Figure 3. Reconnecting closed chains.

It follows that

P(H(Ly)) P(H(Ly)) = s(L1) s(La) ,
P(H(L, + Ly)) = —s(Ly) s(Lp) .

So, the equation (17) holds for M = —1. It also obviously
holds for M = 1 because in this case there are no boundary
modes to worry about.

Computing the Majorana number in general (especially
for strongly correlated systems) may be a difficult task.
However, the computation can be carried through for any
system of non-interacting electrons. Consider a periodic chain
of L unit cells with n fermionic sites (i.e. 2n Majorana
operators) per cell, which totals to N = nL fermionic sites.
We will index the Majorana operators as c;, where

I=1,...,L,a=1,...,2n. The Hamiltonian is
LSS B D v
lm o
By (j)" = Bup(j) = —Bpa(—)) - (18)

We assume that the chain forms a loop, so m — / should be
taken (mod L).

Equation (18) is a special case of Eqn (3), so we will first
find P(H) for the general quadratic Hamiltonian (3), assum-
ing that the matrix A is not degenerate. The canonical form of
this Hamiltonian (11) has an even ground state |0). The
transformation (12) can be represented as conjugation by
the parity-preserving unitary operator

= &Xp ( Z Dlm‘l@n)
I.m

if W has the form W = exp D for some real skew-symmetric
matrix D, i.e.if det W = 1. Otherwise, the transformation (12)
changes the parity. Hence

P(H) = sgndet W =sgnPfA4. (19)
We remind the reader that the Pfaffian Pf is a function of a
skew-symmetric matrix such that (Pf4)? =detd. It is

defined as follows

Pf4 = 2NN' Z sen () Ae(1)2(2) - - Azon-1)22v) - (20)

T€SHN

(Here S,y is the set of permutations on 2N elements.) For
example,

0 ap a3 aig
—ap 0 ay  ax

Pf
—ai3 —ax 0 axu
—aiy —axu —azy 0

= apnas4 + ajydrz — a13az4 -
In equation (19) we have used this property of the Pfaffian:
(21)

PR(WAWT) = Pf(A4) det(W).

Now we are to compute the Pfaffian of the matrix B from
Eqn (18). First, we use the Fourier transform,

k
Buylq Zexp ig))Bup(j), g = 2752 (mod 2m),

k:o,..., —1. (22)
The matrix B(g) has these symmetries:
~f ~ ~T
B(q) = —-Blq) =B (-q). (23)

The spectrum ¢(q) is a continuous real 2n-valued function on
a circle (real numbers (mod 2m)) given by the eigenvalues of
iB(q). It has the symmetry ¢(—¢) = —¢(g). The energy gap
assumption implies that ¢(g) never passes 0. It follows that
there are n positive and n negative eigenvalues for any gq.
Indeed, this is the case for ¢ = 0 due to the € — —e symmetry,
hence it is true for any ¢ by continuity.
It follows from Eqns (22) and (21) that

PfB = [H Pfl?(q)} {H det B(q)

9=—q #—q

} . (24)

Remember that ¢ is considered (mod 2n), so ¢ = —g when
q¢=0 or ¢g=m. In the g # —q case, each {q,—¢} pair is
counted once. Note that det B(g) is a positive number since
iB(g) has n positive and n negative eigenvalues. Hence

sgnPfB = H sgn[Pf B(q)]

| sgn[PfB(0)] sgn [PfB(n)], if L is even, (25)
| sen[PfB(0)], if L is odd.

Finally, we get
M(H) = sgn[Pf B(0)] sgn[Pf B(n)] . (26)

This very general equation can be simplified if superconduc-
tivity is a weak effect, i.e. |4]| < |€(0)], |e(n)|. Indeed, the right
hand side of Eqn (26) makes perfect sense for a U(1)-
symmetric Hamiltonian

ZZCaﬁ

Im of

Cup()" = Cpau(=) 5

(27)

a[“amﬁ )

where o, f = 1,...n refer to fermionic sites. The eigenvalues
of C(g) (the Fourier transform of C) form a ‘single spectrum’
€o(q). The ‘double spectrum’ defined above is ¢(q) = +¢o(g).
It is easy to show that Pf B(¢) = det C(g) for ¢ = 0, . Hence
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M(Ho) = (=1)"7, (28)
where v(g) is the number of negative eigenvalues of C(q).
Note that v(n) — v(0) equals (mod 2) the number of Fermi
points on the interval [0, 7t]. (A Fermi point is a point where
co(gq) passes 0.) In the most interesting case v(m) — v(0) =
1 (mod 2), the Hamiltonian H, has a gapless spectrum. So,
Eqn (28) is only relevant in the presence of superconductivity,
i.e. a small symmetry-breaking perturbation which opens an
energy gap.

4. Speculations about physical realization

Physical realization of an M = —1 quantum wire is a difficult
task because electron spectra are usually degenerate with
respect to spin, so v(0) and v(r) are even. The degeneracy at
q¢=0 and ¢ =7 can be lifted only if the time reversal
symmetry is broken. Thus, spin-orbit interaction does not
help. External magnetic field could help, but the Zeeman
energy gugM is usually small compared to other spectrum
parameters, so v(0) and v(n) do not change. The situation
may be different for charge and spin density waves which add
fine features to the electron spectrum. Charge density waves
(CDW) tend to occur at the wave vector ¢. = 2¢r so that a
gap opens at the Fermi level. In the presence of magnetic field,
gr is slightly different for the | and | spin components, so it is
possible that ¢, matches only one of them. The resulting
spectrum is shown in Fig. 4 in the ¢, /2n units. This scenario
can be realized if |[4| < Ecpw < gugH.
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Figure 4. An electron spectrum in the presence of magnetic field and CDW.

Another speculative possibility is to use midgap states at
the edge of a two-dimensional p-wave superconductor [11].

A quantum wire bridge between two superconducting
leads (see Fig. 5a) could be used as an experimental test for

a £5(0) b

N

0=0,—0,
Figure 5. A Josephson junction made of quantum wire.

Majorana fermions. When the phase parameter 0, in the right
piece of superconductor changes by 2m (relative to 6;), a
fermionic quasi-particle is effectively transported to the
junction region. At the same time, the Majorana fermions at
the ends of the wire switch from |i},) to |y,) or vice versa. If
the quasi-particle stays localized, the junction parameters
change. They change back when 6, changes by another 2x.
Thus the Josephson current is 4m-periodic as a function of
0 =6, —0,. In fact, it is more accurate to say that the
Josephson energy Ej is 2n-periodic but 2-valued, as shown
in Fig. 5b. The two levels may not quite cross at 0 = rduetoa
non-vanishing tunneling amplitude ¢ < exp(—L//y), where L
is the distance between the junction and the closest end of the
wire.

Interesting phenomena can also take place in the simple
layout shown in Fig. 1. Suppose that the superconducting
island supporting the quantum wire is connected to a larger
piece of superconductor through an ordinary Josephson
junction. If the Coulomb energy is comparable to the
Josephson energy, spontaneous phase slips can occur. Each
2w phase slip is accompanied by the operator V' (see Eqn 16).
The phase slips occur by tunneling, so the effective Hamilto-
nian is

Hepy = —AV =2V = %S(L) th'b’, t=4Rei, (29)
where 1 is the amplitude of the 0 — 0 + 21 process while 1"
corresponds to the reverse process. Similarly, if the super-
conducting island supports two quantum wires, the effective
Hamiltonian becomes

1
Hero = =AM Va = 2" V1T VQT = ES(LI)S(Q) 1B\ DYByDY .
(30)

Turning 4 on and off can be possibly used for quantum gates
implementation.
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