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This demonstrates the potential of these loops for further
work on macroscopic quantum coherence and solid-state
quantum computing. This requires quantum state control
with pulsed microwaves and development of measurement
schemes that are less invasive. Multiple qubit circuits with
controlled coupling are within reach using present-day tech-
nology.
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Quantum Andreev interferometer
in an environment

Y M Gal'perin, L Y Gorelik, N I Lundin,
V S Shumeiko, R I Shekhter, M Jonson

Abstract. The influence of a noisy environment on coherent
transport in Andreev states through a point contact between two
superconductors is considered. The amount of dephasing is
estimated for a microwave-activated quantum interferometer.
Possibilities of experimentally investigating the coupling
between a superconducting quantum point contact and its
electromagnetic environment are discussed.

1. Introduction

The assumption of coherent transport in Andreev states in a
superconducting quantum point contact (SQPC) is widely
used in theoretical work, see, e.g., the items of Ref. [1].
However, in realistic systems, interactions with a dynamical
environment will always introduce some amount of dephas-
ing, see the items of Ref. [2] for a review.

The so-called microwave-activated quantum interferom-
eter (MAQI) [3] is a device proposed as a tool to study the
dynamics of Andreev levels (ALs), present in a superconduct-
ing point contact. It is based on a short, single-mode, weakly
biased SQPC which is subject to microwave irradiation.
Confined to the contact area there are current-carrying
Andreev states. The corresponding energy levels — Andreev
levels — are found in pairs within the superconductor energy
gap 4, one below and one above the Fermi level. If an SQPCis
short (L < &, where L is the length of the junction while & is
the superconductor coherence length), there is only one pair
of Andreev levels and their positions depend on the order
parameter phase difference, ¢, across the contact as

E: = +E(¢) = 4 1—Dsin2(§). (1)

The two states carry current in opposite directions and in
equilibrium at low temperature only the lower state is
populated. The applied bias, V, through the Josephson
relation ¢ = 2eV/h, forces the Andreev levels to move
adiabatically within the energy gap with a period of
T, = hn/eV, see Fig. 1.

The microwave field induces Landau— Zener (LZ) transi-
tions between the Andreev levels (indicated by wavy lines in
Fig. 1). If the upper level is populated after the second
transition, a delocalized quasi-particle excitation will be
created when this Andreev level merges with the continuum.
The result will be a dc contribution to the current. Further,
this current exhibits an interference pattern since there are
two paths with different phase gains available to the upper
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Figure 1. Time evolution of the Andreev levels within the energy gap of a
single-mode SQPC. The wavy lines connecting points 4;, 4, and By, B,
symbolize resonant transitions between the levels induced by applied
microwave field. The symbol { defines the position of the resonances.

level. It is this ‘interference effect” which is utilized in the
MAQI for Andreev-level spectroscopy. This is an example of
a coherent quantum state created by transitions separated in
time.

In the previous work [3], full coherency of Andreev states
is assumed and a method for Andreev-level spectroscopy is
presented. The spectroscopy is based on the interference
pattern in the dc current through an SQPC induced by
coherent microwave field. If dephasing is present, this
interference pattern will deteriorate. This connection
between dephasing and current makes MAQI a suitable
system to study the effect of low-frequency electrical noise
(the so-called flicker noise) in the junction transparency on
transport through Andreev states. It also provides an
excellent opportunity to probe the coupling between an
SQPC and its electromagnetic environment.

The Andreev level positions in an SQPC depend on the
order parameter phase difference ¢ across the contact, as well
as on its transparency D. Consequently, there are two sources
of dephasing — fluctuations in the bias voltage and in the
transmission coefficient of SQPC. A fluctuation in the bias
voltage V' changes the ramping phase velocity ¢ = 2eV/F,
which in turn influences the phase accumulated between the
subsequent Landau—Zener transitions. The second source of
decoherence changes the positions of the Andreev levels
through variations in the transparency D, and in this way
the accumulated phase is changed again. The variation of the
transparency D can be caused by the presence of an impurity
atom close to the junction which has two states of almost
equal energy to choose from. When the atom tunnels between
its two states, the junction transparency will fluctuate.
Another source of D fluctuations is the tunneling of an
electron between impurity atoms in a doped region. If there
are two such neighboring defects with available states, a
hybrid two-level state is formed and the electron can hop
between the two. This hopping will then add a fluctuation to
the junction transparency. The amplitude of these fluctua-
tions depend on the distance between the defects and the
junction. From now on we will refer to these dynamic defects
as two-level elementary fluctuators (EFs). It is known that
EFs are responsible for the flicker noise.

In the following we briefly discuss the role of bias voltage
fluctuations and then concentrate on the dephasing induced

by flicker noise in the normal state junction transparency D of
an SQPC in the transport through Andreev states.

2. Theory

Consider a short single-mode SQPC which is subject to a high
frequency microwave field (fiw =2E(¢) < 24). Let the
contact, placed at x =0, be characterized by an energy-
independent transparency D. A weak bias, eV < 4, is applied
across the junction. We choose to describe the quasi-particles
in the contact region with the following wave function:

Y (x,t) = uy(x,t)exp(ikpx) + u_(x, 1) exp(—ikgx),

where the envelope functions w4 (x, f), left and right movers,
are two-component vectors in electron-hole space. To
simplify notation we introduce the four-component vector
u = [u;,u_]. This vector satisfies the time-dependent Bogo-
liubov—de Gennes equation i7#0u/0r = [Ho + g, V,(f)]u
where

Ho = —ihvpo.t.0/0x
+ 4 {ax cos {@] + sgn(x)o, sin {@] } ,

g; and 1; denote Pauli matrices in electron-hole space and in
+ space, respectively, while V,(¢) = V,, cos(wt) is the time-
dependent gate potential. We assume eV, < 4. The bound-
ary condition at x = 0 is

u(+0) = D712 [1 —,(1- D)l/z] u(—0).

As a result of the applied high frequency field, there will be
resonant transitions between the Andreev levels. These
transitions introduce a mixed state which can be described
within the resonance approximation as

u(x,1) = S0 (0w (v exp(FS)

where u'(x) and u™(x) are the envelope functions of the
upper and lower Andreev states, while b™ and b~ are the
corresponding probability amplitudes. The final result is a dc
current through the SQPC [3],

Iye = 21ysin*(O + @),
_2e ) 2
Iy = ! (1 =r)(24 — hw), (2)

where r is the LZ transition amplitude, which depends on the
bias voltage and the amplitude of the perturbation (O is the
phase of the LZ transition, which can be considered
constant). The phase @ which inhibits the interference is
calculated through

1 (¢ fio
D= %—I/J% d¢ {E(qﬁ) — 7} .

3. Noise in the bias voltage

One of the basic assumptions for the interferometer is a stable
bias. Let us now assume that V() = V+ Vi(¢) where
Vi(f) < Vis the fluctuation. The corresponding contribution
to the accumulated phase is
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Figure 2. Dephasing as a result of voltage fluctuations appears with a factor of W = exp(—K). Here K is calculated as a function of the resonance
position { (a) when eV/4 = 0.1 and as a function of the bias voltage (b) for { = 2.2 (iw/24 ~ 0.95). Zy = 200 Q and C = 0.5 fF.
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52, e i(55).

E(¢) — how/2
eV '

& =

g(¢) =

Inserting the fluctuating part of the phase into the expression
(2) for the current and averaging over the fluctuations of bias
voltage we find

Iic = Ih[l — Wcos (29 +20)], W = Re({exp2i®r). (3)

By introducing the quantity
1 (¢ g
_— do'o(dVVe| ——
p| e f(zeV)

and assuming the distribution of ¥ to be Gaussian, we can
write W as W = exp(—K), with

K(d)Avd)BH) = *([WWBH) - lp(d)A)]lP(d)A» :

¥ (¢)

This correlation function depends on the environment
through the averages, (V(2)V¢(?')), and we calculate K by
expanding the periodic function g(¢) in a Fourier series, gi
and g;, and further applying the fluctuation-dissipation
theorem. The resultis K = ", gxg/Ki; with

K =

8 Jvdv Re [Z,(vaoy)] sin®[(k + [ 4 2v)¢/2] @

Ry (v + k) (v + 1) tanh (hiwyv/2T)

Here (= (¢py — Pa)/2, Rq=h/e* and v=ow/w;, wy=
2¢V /i is the Josephson frequency, while Z; is the effective
impedance of the circuit.

Concrete results were obtained for the so-called infinite
transmission line model of the environment which is rather
close to a realistic situation. The impedance in this case is
expressed as Z(w) = [(Ro + iwLo)/iwCo]"/* where Ly is the
inductance and C is the capacitance, both per unit length. To
calculate the impedance seen by the junction we need to
include the capacitance C of the junction itself in parallel
with Z(w),

I

L _ (Lo R e )
0o — C() )

B C()CU% '
Here we have neglected Ry which is usually small. An example
of results is shown in Fig. 2.

The nonmonotonic behavior of K when traced as a
function of { follows from the Fourier series expansion
of g({). These terms reflect the dependence of the Andreev
spectra on ¢. Around this point it can be interesting to vary
the parameters of the environment and the bias. The
dependence on the bias voltage at the above mentioned
point, { &~ 2.2, is shown in Fig. 2b. An increased bias should
give a weaker dephasing, since a higher bias gives, through the
Josephson relation, a shorter time between the resonances.

Re [Z(w)]

4. Flicker noise in the junction transparency

The main topic of this work is to study the effect of
fluctuations in the junction transparency on the MAQI. For
simplicity we choose to model the sources of these fluctua-
tions, the EFs, with the so-called random telegraph process.
This process is characterized by a random quantity &(¢) which
has the value +1 or —1 depending on whether the upper or
lower EF state is occupied. We assume that the probability of
each state is the same, namely 1/2. This is acceptable since
EFs with interlevel distances, E; < T, will be ‘frozen’ — they
behave as static impurities which do not affect the dynamic
fluctuations of D. In this model the EF switches between its
two states randomly in time. Physically, switching is a result
of interactions between the EF and phonons or electrons in
the contact area.

In the presence of EFs the junction transparency will be
modulated. In other words, D — D + D¢(t), where Dg(t) is
assumed to be small. Generally, Di(f) = 3", 4;¢(t), with 4;
being the coupling strength of the ith EF. We assume that the
random processes in different EFs are not correlated.
Consequently, after a change in variables from ¢ to ¢ we can
specify the random telegraph processes &;(f) through the
correlation function,

<§i(¢1)f/(¢2)> = 5ijeXP(*2“/i|¢z -0,
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where y; is the switching rate of i-th EF in units of the
Josephson frequency. It is related to the dimensional switch-
ing rate I as y = hil'/2eV.

Depending on the construction of the SQPC there can be
any number of EFs which are ‘in range’ to influence the
transparency. In junctions which are very small it is probable
that only one single EF will be in the vicinity of the contact. In
this case, the coupling constant 4 and the switching rate I' can
be directly evaluated from the measured telegraph noise
intensity in the normal state, S(t) = (I(z + t)1(1)), — (I(1));.
Indeed, the current through a single mode QPC at low
temperatures can be expressed, according to the Landauer
formula, as I(¢) = 2¢?VD(t)/h. Consequently, the random
telegraph noise intensity is equal to

() = (262 VA>2exp<—2rr>,

h

and both 4 and I' can be extracted from measured S(t).
A possible approach for extracting these model parameters
from noise measurements in the case of many fluctuators in
the QPC area will be discussed later.

5. Small contact — single EF

In the case of a very small contact it is possible to consider
only one EF and put i = 1. We start by decomposing Eqn (1)
as

E(9) = E.(8) + E-($)(9),
Ex = S[E(@IDy) + E(@|D )],

where Dy, are the two different values the transparency
fluctuates between. Further, we assume that both y and
A= E_/eV are much smaller than the reduced interlevel
distance

A ~ 1 21
E.~2  E :%L E (¢)do.

This means that all deviations in time are much longer than
the Andreev level formation time, which is of the order 71/24.

Fortunately, the expression above is linear in £ and we can
write the effect of the EF as an additive contribution to the
accumulated phase without making any approximations.
Namely,

¢BH

o= [ " an6)0) 0.
A

After averaging over the realizations of the random process

(1), the expression (2) for the MAQI current is replaced by

Eqn (3). To facilitate the calculation of the dephasing term,

W, we define the auxiliary function,

¢
() = <6Xp i4 L d¢/gfs(¢/)f(¢/):| > (5)
grs(¢) = E%—(jm :

The quantity of interest, W, is related to Y(¢) as
W= Y(¢py). The function ¥ satisfies the differential
equation, cf. with Ref. [4],

Ag(9)¥ =0, (6)

d’y ding\ d¥P
P 2y — R
a9’ *( " "dg ) b "

with the initial conditions ¥ (¢,) = 1, d¥/d¢|,_, =0.

If the transparency D is not too close to 1, then the
function gg(¢) is rather smooth and the qualitative results
can be obtained assuming gg(¢) = 1. Then

W = exp(—2y() x [cosh<2(:\/«/2_—,42)

+ \/ﬁsmh (v - A2)} . (7)

We observe that the result depends on the dimensionless
parameter y/A. It is practical to consider the following two
limiting cases: (i) the ‘slow EF’, y < A4, which corresponds to
low temperatures, and (ii) the ‘fast EF’, y > 4, which
corresponds to relatively high temperatures.

In the low-temperature limit the EF will slowly switch
between its two states, and y — 0. Then

_ cos(® + P¢) + cos(P — D)
N 2

For a constant g = 1, & = 2, where { = (dgy — da)/2 is
equal to half the distance between the resonance positions, see
Fig. 1. In the general case these quantities are increasing
functions of {. Thus, at y =0, the current is split into two
interference patterns of equal magnitude shifted by the phase
&, and there is no dephasing. This splitting into two patterns
of equal magnitude follows from the assumption that the
occupation probability is the same for the two EF states. The
general case of arbitrary probabilities for the EF states can be
solved numerically. At finite y, dephasing takes place and the
amplitude of the interference oscillations decreases by
exp(—2y{). The physical reason for dephasing is the finite
lifetime of an EF in a given state. In the case of fast switching,
W = exp(—K), K = A*(/y. Here we also find an exponential
decay of the interference term, however, the decay rate is
o y~!. This effect is similar to the well known motional
narrowing of spectral lines [5]. When the EF fluctuates
rapidly enough compared to the ‘energy resolution’ E_ /i,
influence from the difference between two EF states is
smeared and dephasing will be of a diffusive character, with
an effective, time-dependent, diffusion constant 42/2y.

The two above limiting cases match at y =~ A. In general,
when gy is a pronounced function of ¢, one has to solve
Eqn (6) numerically. Our analysis shows that the above
qualitative conclusions remain valid if the SQPC transpar-
ency, D, is not very close to 1.

W cos(P)

6. Large contact — many EFs

Let us consider a large number of EFs with varying switch-
ing rates distributed in the contact area. For simplicity, we
shall assume that only the fluctuators with interlevel spa-
cings U; < T are important, and that their distribution is
uniform, Py(U) = PyV. Here V is the sample volume.
Further, we assume that the switching rates y; are the same
for both transition directions (up and down) between the
EF’s levels. This assumption is natural because the ratio
between the corresponding transition rates is exp(—U;/T).
Within the assumptions discussed above, the final results are
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substantially simplified while preserving the essential depen-
dence on temperature and the resonance position. These
approximations agree with a general theory developed in
Ref. [6] for the case of dephasing by two-level systems (TLS)
in glasses.

The first step now is to linearize the SQPC’s transparency
with respect to &; as D — D + Dg(t). This allows us to once
again find an additive contribution to the accumulated phase,
which in this case will be

(Df%ZAiJ

Here we have defined

¢BH

, Ci(¢) gim () dop .

L dE(@)

-1
dE(¢)
570 —ap .

dD

dE(9)
)

) gfm(¢) =

In the same manner as above, we can express the modified
MAQI current through expression (3) with W — W given by
the expression

W—<exp[izi:A,-J

To approximate this average we use the Holtsmark method [7]
which is wvalid in the limit of many fluctuators,
N = PyVkT » 1. This allows us to rewrite W as the average
over the contributions (7) from single EFs as W = exp(—K)
with

‘/’BH

gim(¢) &i() d¢}>

¢A Av?’:é

K~ PoVKT(1 — W(A,7)) 4, - (8)

Since the number of EFs is assumed to be large, to keep
dephasing at a reasonable level it is important to keep
(1 — W) small.

With known solutions for W found above the average
(I — W) remains to be calculated. To calculate this average
one has to specify the distributions of the parameters 4 and y.
The simplest and most natural assumption is that these two
quantities are not correlated. Consequently, the distribution
P(A,7) can be decoupled as Pa(A4)P,(y). To specify the
distribution P4 let us assume that the EFs are uniformly
distributed in space. An EF behaves like a dipole, either
electric or elastic, this allows us to specify its interaction
strength as 4(r) = Ao /r3, where r is the distance between the
contact and a given EF [8], while 4, is a coupling constant
dependent on a specific interaction mechanism. Note that the
quantity 4, has dimension of volume. Within this model we
arrive at the normalised distribution function Pa(4) =
4nAy/3VA%. The distribution P, (y) is specified in a manner
which is commonly used in glasses. Namely, the logarithm of y
is assumed to be uniformly distributed. Hence, P,(y) o< 77!
To normalise it let us take into account that for a given energy
spacing U there is a maximal switching rate. Since we are
interested in the fluctuators with U; < T, we can specify the
maximal switching rate as y;, which is a function of tem-
perature. The actual temperature dependence is determined
by the specific interaction mechanism between the EF and its
environment. If the transitions between the EF states are
caused by interaction with phonons, then y, oc 773 [9], while if
the transitions are caused by the electron excitations, then
yr o< T [10]. Therefore, the normalised distribution can be
specified as P, (y) = (Ly)~", where £ = In(y7/ymn) > 1. Here

we introduced the minimal switching rate, y,,,;,,. To express the
decay in a more clear form let us introduce the dimensionless
frequency v4 corresponding to the interaction strength for an
EF separated from the contact by an average distance to the
active fluctuators, = (4nPokT/3)""3, divided by the
Josephson energy 2eV. We can specify vq as

41'EPOkTAO A()
= =—. 9
Vg 3 3 9)
The decay rate L = — In W is then given by the expression
vq [*°dA [T
K== —
el ]

Vmin

Tt = ). (10)
To estimate the amount of dephasing let us use a simplified
expression (7) for W obtained for smooth gg(¢p). One can see
that the most important are EFs with 4 = y, or located at
ry & (Ao/ y)l/ 3 from the contact. As a result, the interference
pattern decays exponentially with & = 3v4{. In general case,
this expression is modified by a factor of the order 1 which is a
smooth function of {.

7. Nonoptimal EFs

In the previous consideration it was assumed that the system
size is much larger than r,. A consequence of this assumption
is that, independent of temperature, the EFs which have the
strongest effect on the junction transparency will always be
included in the estimates. A further point is that the rate y is
confined to the interval between y,,;, and y;. Thus we have
actually assumed that the size of the region where EFs reside
is larger than rpax = (Ao/ymin)l/3, and that there is no
‘excluded region’ without EFs near the contact with the size
less that ryin = (Ao /yT)l/ 3. Both Fmin and rpax decrease with
increasing temperature.

What happens if this ‘optimal’ EF is out of the range? This
can occur if the system is limited in size, or if there is a
specifically pure region around the contact. If R < ryax no
‘optimal’ EFs are present in the contact area, and one has to
look for the most efficient, however nonoptimal ones.
Concrete results depend upon the relationship between the
system size R and rp;,, they will be published and discussed in
detail elsewhere. In any case, the decoherence is slower than
that for R > rpax.

8. Discussion and conclusions

To estimate the dephasing rate one needs information on EF
properties and distribution. For a small SQPC, when a single
EF is important, the necessary parameters 4 and I" can be
determined from measured random telegraph noise in the
normal state, as discussed earlier. The case of many EFs
requires much more information, and at present time we can
discuss only qualitative predictions. Generally, dephasing will
increase with temperature, as well as with the interval (
between sequential resonances. However, at large enough
temperatures, when y,.;, appears large enough, the tempera-
ture dependence of dephasing will slow down. The free
parameter of the theory, 4, can be estimated only roughly
through comparison with the noise measurements in the
normal state. To map the parameter 4, to the noise, one can
apply the theory of flicker noise in a QPC [11] to the case of a
single mode contact. According to that theory, results for the
noise intensity S(t) are substantially dependent on the
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relationship between the maximal and minimal distances
between the EFs and the QPC. The simplest case, which is
quite realistic, is when these distances are of the same order of
magnitude. When I';! < |t| < ', the noise intensity can be
expressed as (cf. Ref. [11])

s <2eZV)2 (4TEP0;€TA0)2X rf;((lr/:/ mrm‘“))} g

By obtaining estimates for I'7/mix from noise spectra in the
normal state one can, in principle, estimate the coupling
parameter Aj. A key point is to make measurements of both
the MAQI interference pattern and the normal-state noise
spectra in a rather large frequency range. This combination
does not look too simple.

To conclude, we have presented a method for investigat-
ing the influence of noise in bias and gate voltage of a SQPC
on coherent Andreev states. This is done by estimating the
effect of the fluctuations on the so-called microwave-
activated quantum interferometer [3]. Finally, we note that
this paper together with work in Ref. [12] presents a frame-
work which can be used to investigate the coupling of a SQPC
to its electromagnetic environment.
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Spin-entangled electrons in mesoscopic
systems

G Burkard, E V Sukhorukov, P Recher, D Loss

Abstract. Entanglement acts as a fundamental resource for
many applications in quantum communication. We propose and
theoretically analyze methods for preparing and detecting
entanglement between the spins of electrons in a mesoscopic
environment. The entanglement production mechanism which
we present is based on two quantum dots coupled to a
superconductor from which paired electrons are injected via
Andreev tunneling. The spin-correlated electrons can then hop
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from the quantum dots into normal leads. For detection we
propose to measure the shot noise which is produced by the
entangled electrons after they have passed a beam splitter. The
enhancement of the noise by a factor of two turns out to be a
unique signature for the spin singlet, a maximally entangled
state. In a different setting, the entangled ground state in two
tunnel-coupled quantum dots is detected via the Aharonov—
Bohm oscillations in the co-tunneling current.

1. Introduction

The recently demonstrated injection of spin-polarized elec-
trons into semiconductor material [1, 2] is an important
progress towards replacing the spatial (charge) degrees of
freedom of the electron by its spin as the carrier of
information in electronics [3]. Moreover, Kikkawa et al. [4]
have found very long quantum coherence times for the
electron spins in GaAs, which makes them candidates for
carriers of quantum information (qubits) [5]. The long-term
goal of implementing quantum information into physical
systems is building a quantum computer, a device that could
efficiently solve some problems for which there is no efficient
classical algorithm (for a recent review, see [6]). However,
there are also other ideas, e.g. in quantum communication,
which seem to be more feasible with the presently available
technology. One of the fundamental resource for many
applications in quantum communication are pairs of
entangled particles [7]. Two qubits (spins) are called
entangled if their state cannot be expressed as a tensor
product of states of the two qubits (spins). Well-known
examples of maximally entangled states of two qubits are
the spin singlet and triplet (with m, = 0) of two spin-1/2
particles. In quantum optics, violations of Bell inequalities
and quantum teleportation with photons have been investi-
gated [8, 9], while so far, no corresponding experiments for
electrons in a solid state environment are reported. This
reflects the fact that it is very hard to produce and to measure
entanglement of electrons in solid state.

One possibility for producing entangled states from
product states is using the quantum gates which are the
building blocks of quantum computers [5, 10]. In this paper,
we present and theoretically analyze another proposal for
the production of spin entangled electron pairs in meso-
scopic systems, which uses the properties of the super-
conducting condensate and the simultaneous tunneling of a
Cooper pair into a pair of quantum dots [11]. After this
process, the entangled pair of electrons can hop from the
dots into normal Fermi leads. We then discuss the persis-
tence of this entanglement during electron transport in the
Fermi leads where a large number of other electrons are
present and interact with the entangled electrons. Further-
more, we propose an interference experiment, in which the
EPR pairs produced in this way can be unambiguously
tested for entanglement [12]. Here, the indicator for
entanglement is the shot noise at the outgoing arm of a
beam splitter into which the electrons to be tested are
injected. Finally, it is known that the two-electron ground
state of a pair of quantum dots coupled by a tunneling
barrier is a spin singlet at zero magnetic field, which can
cross over into a spin triplet at finite magnetic fields [10]. We
discuss a recently proposed detection scheme [13] for these
entangled ground states, which involves the Aharonov-—
Bohm phase in the co-tunneling current in the Coulomb
blockade regime.
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