
There is experimental evidence in favor of this suggestion.
Figure 4 presents spectra of polariton emission recorded at
high angular resolution and high density of resonant excita-
tion. In the range k < 0, the signal is seen to decrease as jkj
rises. But the behavior changes at 0 < k < kex, when intense
two-photon scattering is accompanied by a sharp narrowing
of the line observed at k � 0, 2kex, and near k � kex.

So far we have investigated the behavior of polaritons
excited by circularly polarized light. Note, however, that the
energy 2�ho�kex� is close (lower by 1 ± 2 meV) to the ground
energy of the biexciton state in the quantum well. The state is
spin singlet and optically active for two-photon scattering of
linearly polarized light. Under excitation by elliptically
polarized light its optical activity decreases gradually down
to zero as the degree rex of circular polarization of exciting
light varies from 0 to 1. Thus, the two-photon scattering is
expected to be resonant and to increase sharply at linearly
polarized light.

Figure 5 presents the dependences rLP and ILP �
ILP� � ILPÿ on rex at two different densities of excitations.
As is seen, ILP increases when the circularly polarized light is
replaced by the linearly polarized one. The effects become
more pronounced as the density of excitation increases. At
P � 540 W cmÿ2 ILP increases by several times, growing
mainly at rex < 0:6. Under the conditions of spontaneous
two-photon scattering, the degree of circular polarization of
the LP line should disappear monotonically with decreasing
rex. Conversely, at high excitation density of excitations rLP
grows considerably as rex decreases and at rex � 0:6 even
exceeds the polarization degree of exciting light. Only at
rex < 0:4 the value of rLP decreases rapidly down to zero.
The behavior of the circular polarization of the LP line is an
additional evidence that the two-photon scattering process is
excited by elliptically polarized light and that the process is
stimulated.

Thus, studying the angle-resolved emission spectra ofMC
with quantum wells in a wide range of densities of the

excitation we have found the conditions at which polaritons
with high filling factors are excited at the LPB bottom. Under
these conditions we observed and studied strong nonlinear
effects in intensity and polarization degree of polariton
emission, and demonstrated that these nonlinearities occur
in the strong coupling regime.

In conclusion, we wish to thankMBayer, L V Butov, NA
Gippius, L V Keldysh, V B Timofeev, and S G Tikhodeev for
fruitful discussions. The work was supported by the RFBR
(Grant 00-02-17120) and Program ``Nanostructures''.
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Spectroscopy of electron ± electron
scattering in a 2DEG

H Buhmann, H Predel, L W Molenkamp,
R N Gurzhi, A N Kalinenko, A I Kopeliovich,
A V Yanovsky

Abstract. Experimentally electron-beam injection and detec-
tion via quantum point-contacts is used to investigate the
scattering of a non-equilibrium electron distribution in a two-
dimensional electron gas (2DEG) of a GaAs/(Ga,Al)As
heterostructure. The energy dependence of electron ± electron
scattering processes has been studied in a weak magnetic field
by investigating the detector signal. Assuming electron beams
with a narrow opening angle a magnetic field B perpendicular
to the 2DEG plane causes only electrons which are scattered in
a point O at an angle a to reach the detector. Thus, it is
possible to measure directly the energy dependence of the
angular electron distribution after scattering. The experimen-
tal data give a clear evidence for the importance of small angle
scattering processes in two-dimensional systems, as predicted
theoretically.
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Figure 5. Dependencies of degree of circular polarization rLP (a) and

intensity of the LP line ILP � ILP� � ILPÿ (b) on the degree of circular

polarization of the excitation at P � 200 and 540 W cmÿ2.
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The scattering characteristics of electrons in systems with
reduced dimensions are expected to exhibit decisive differ-
ences with respect to three-dimensional (3D) systems.
Theoretically, electron ± electron (ee) scattering in two-
dimensional (2D) systems was first considered in the early
seventies [1]. Further numerical evaluations followed in the
early eighties [2]. It was shown that the lifetime of a non-
equilibrium electron in a 2DEG is shorter by a factor of order
ln�eF=e� compared to the 3D case (e is the electron's excess
energy counted from the Fermi energy, eF).

A reduction of the dimensionality induces much more
drastic changes in the momentum transfer processes [3 ± 7].
Two types of ee-collisions with nearly the same probability
characterize scattering in 2D systems [3]. First, collisions of a
non-equilibrium electron with momentum p and excess
energy e with equilibrium electrons of momentum p1 usually
result in scattering of both electrons by a small angle a � e=eF
into states p2 and p3 leaving a hole (an empty place in Fermi
distribution) in the state p1, with p� p1 � p2 � p3. Second,
collisions with electrons of nearly opposite momentum,
p � ÿp1. In this case, the electrons at p2 and p3 � ÿp2 are
scattered by a much larger arbitrary angle, on average
a � ���������

e=eF
p

.
Up to now no direct experimental evidence for these 2D

effects in ee-scattering has been demonstrated. Recently, we
studied experimentally and theoretically the influence of
electron ± electron collisions on the propagation of electron
beams in a 2DEG for excess injection energies ranging from
zero up to the Fermi energy [8]. We found that the detector
signal consists of quasiballistic electrons, which either have
not undergone any electron ± electron collisions or have only
been scattered at small angles. Theoretically, the small-angle
scattering exhibits distinct features that can be traced back to
the reduced dimensionality of the electron system. A number
of nonlinear effects, also related to the two-dimensional
character of the system, were discussed. In the simplest
situation, the heating of the electron gas by the high-energy
part of the beam leads to a weakening of the signal of
quasiballistic electrons and to the appearance of thermo-
voltage. This results in a nonmonotonic dependence of the
detector signal on the intensity of the injected beam, as
observed experimentally. Extending the experimental techni-
ques used in that paper, we now have been able to extract
compelling evidence for the preponderance of small-angle
scattering in 2D systems directly.

In the experiment, an electron beam injected into the
2DEG via an electrostatically defined quantum point-contact
(QPCi) is detected by a second (QPCd) in a certain distance
[9, 10], schematically shown in Fig. 1.When amagnetic field is
applied perpendicular to the 2DEG plane, the injected beam
is deflected and only scattered electrons can reach the detector
QPCd. At low electron excess energies, e5 eF, one can neglect
the energy dependence of the cyclotron radius rc. When the
opening angle F of QPCi and QPCd [9] is sufficiently small
i.e., F5 1, we have that for a given magnetic field B the
detector signal is determined only by one trajectory i.e., the
signal results solely from electrons that were scattered in point
O across an angle a � 2 arcsin�L=2rc� (see Fig. 1). Thus, by
changing the magnetic field we can directly measure the
angular distribution function of scattered electrons in a wide
range of angles a.

As mentioned above, the angular scattering distribution
will in general depend on the excess energy e of the injected
electrons. This is why we apply a differential measurement

technique, which is equivalent to using mono-energetic
electron beams. Energy e is controlled by adjusting the bias
voltage Vi applied between the contacts denoted Vi in Fig. 1.
The non-local voltage drop Vd measured between contacts Vd

results from electrons that have reached the detector QPC and
charge the 2DEG area beyond QPCd. A small ac modulation
dVi 5Vi is added to the dc bias. Although an electron beam
injected via a QPC consists of electrons of all energies from eF
up to eF � e, only the contribution dVd of the high-energy part
of the beam to the signal can be detected by measuring the
signal with a lock-in at the same frequency as dVi.

For the experiments, conventional Si-modulation doped
GaAs/(Ga,Al)As heterosturctures were used, with a carrier
concentration of ns ' 2:8� 1011 cmÿ2 and an electron
mobility of m ' 100 m2(Vs)ÿ1, which implies an impurity
mean free path of limp � 10 mm. A pair of QPCs, about
L � 4 mm apart, were fabricated using split-gate technology.
By applying a negative voltage to the gate contacts, the
conductance of the QPCs (GQPC � N2e2=h) could be
adjusted from several conducting modesN into the tunneling
regime (N < 1). Throughout all experiments injector and
detector QPC were adjusted to N � 1 to ensure narrow
opening angles and ballistically transmitted electrons [9].
The injection dc voltage, Vi, was varied between 0 and 5
mV. The ac modulation voltage was kept constant at 30 mV,
so that dVi � kBT0=e5Vi. The sample was kept at a lattice
temperature T0 � 200 mK in a dilution refrigerator.

Figure 2 displays some examples of the measured detector
signal for various injection voltages as a function of magnetic
field. At low injection energy eVi � 0:1meV, the ee-scattering
mean free path lee is much larger than L and the electrons
reach the detector QPC ballistically. From this we determine
the characteristic opening angle [9] of injector and detector,
F � 12�. The detector signal is at maximum at zero magnetic
field. With increasing injection energy Vi, ee-scattering
becomes more important, leading to (i) a decrease of the

a
O

VdVi

Vi

QPCdQPCi

y

x

L
L=2

B

Vd

Figure 1. Schematic view of the sample structure showing the Schottky

gates (black areas) defining the injector (QPCi) and detector (QPCd)

quantum point contacts. Also indicated is a possible trajectory of an

injected electron in a perpindicular magnetic field B, where the electron is

scattered in point O over an angle a. Crossed squares represent the ohmic

contacts.
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signal of non-scattered electrons near B � 0, (ii) a broadening
of the signal with B and (iii) the appearance of a dip in the
signal around B � 0 for energies Vi 5 3:5 mV.

For further consideration we have to investigate how this
experimental behavior relates quantitatively to the expected
2D-scattering characteristics. Therefore, we describe the
problem by a linearized Boltzmann equation in magnetic
field:

oc
qf
qj
� nx

qf
qx
� ny

qf
qy
� Ĵf ; �1�

where oc is the cyclotron frequency and Ĵ is the linearized
operator of the ee-collisions, which can be written as

Ĵf�p� � ÿnf�p� �
�
dp0 npp0 f�p0� ; �2�

with n � � dp0 np0p. Integration of the collision integral kernel
np0p over energy yields the angular distribution function of the
scattered electrons [7]:

g�a� � mnÿ1
�
de0 np0p ; �3�

where a is the angle between p and p0, and p0 refers to the
electrons (holes) at p1, p2 and p3 mentioned above. By
definition, jg�a�j da is the probability that a non-equilibrium
electron, g�a� > 0 (or hole for g�a� < 0), emerges in an
interval da after scattering. In Figure 3 this function g�a� is
shown for two different electron excess energies e. For
comparison, we have also plotted the most commonly used
approximation for g�a� for 3D systems, g�a� / 1� 2 cos�a�,
and independent of e [11]. For 3D systems g�a� is very smooth,
exhibiting a broad distribution of electrons moving in
forward direction and holes moving backwards. In the 2D
case g�a� shows several distinct features. Most conspicuous is
a very narrow distribution of electrons moving in forward
direction. The height of this peak is determined by the small-
angular processes of the first type; its width is determined by
second-type processes and increases with energy according to
da � �e=eF�1=2. The second type of scattering events also
cause a secondary peak at a � pÿ 2�e=eF�1=2 and a narrow
hole dip of width �e=eF�1=2 at a � p [7]. However, these effects

occur in the backscattering direction and are quite small, so
that they will be difficult to detect experimentally. For a
comparison with experiments we therefore focus on angles
a < 1 (rad), where the small-angular scattering peak should
provide a clear token of specific 2D phenomena. Another
intriguing feature of g�a�, which can be seen more clearly in
the inset of Fig. 3, is a dip in forward direction for very small
angles, with a width � 0:1�e=eF�3=2. This dip is caused by the
conservation laws. The electron may give away its surplus
energy to equilibriumpartners only upon scattering by a finite
angle. This effect, which was discussed earlier in Refs [4,12],
also occurs in 3D systems. However, in 2D the amplitude of
the dip is enhanced by a factor eF=e.

If the probability for an electron to be scattered over a
distance L is small (i.e., lee�e� � nnÿ1 4L), Eqn 1 can be
solved using perturbation theory on the collision integral.
When we write the electron distribution function at the exit of
the injector as f0 � dVi d�eÿ Vi� lFd�y�ri�j�, and consider
only the first iteration of the collision integral, we can obtain
an expression for the current through the detector QPC. For
low injection energies eVi � e5 eF, the detector signal can be
written as

dV s
d � C n

�p=2
ÿp=2

dj
�j
j0

dj00
�p=2
ÿp=2

dj0 rd�j� ri�j1� cosj

� g�j00 ÿ j0;Vi�d�cosj� cosj0 ÿ cosj00 ÿ cosj1� ;
j0 � arcsin sinjÿ L

rc

� �
;

j1 � arcsin�sinj0 ÿ sinj00 � sinj0� : �4�

Here C � 2mLlFdVi�he�ÿ1, lF is the Fermi wavelength and
ri�j� (rd�j�) is the angular emittance (acceptance) function
of the injector (detector) QPC [9]. From this equation it is
clear that g�a� can be obtained from the magnetic field
dependence of dV s

d .
When g�a� varies only slightly on the scale of the opening

angle F, a local approximation to the integrals in Eqn (4) can
be made, yielding

dV s
d � 2C nK�a;F�g�a;Vi�; a � 2 arcsin

L

2rc
: �5�
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Figure 2.Behavior of the electron beam signal at different injector voltages

as a function of magnetic field B.
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The factor K is given by K � rc=L

������������������������
1ÿ �L=rc�2

q
for

F < a < pÿ 2
����
F
p

, and K � 1=F for a < F. Note that for
small enough beam energies Vi, a local approximation of
Eqn (5) is invalid for scattering angles a4F, andEqn (5) only
yields a smoothed (by the emittance and acceptance func-
tions) approximation of g�a�. The local approximation is also
invalid for large scattering angles, pÿ a < 2

����
F
p

.
However, it is possible to extend the range of validity for

this one-collision approximation. This is because in all
experiments we have Vi 4T, implying that the probability
for secondary ee-collisions is approximately an order of
magnitude lower than that of the first one [5, 7, 13]. It turns
out that a one-collision approximation is valid as long as
L < lee�eVi=3� � 10 lee�Vi�, i.e. for a much wider range of
parameters than the perturbation theory. Partial summation
of the corresponding iteration series of Eqn (1) results in the
following expression for ~g�a;Vi�:

~g�a;Vi� � exp ÿ L
lee

� �
g�a;Vi� ; �6�

which replaces g�a;Vi� in Eqns (4), (5). The exponential factor
on the r.h.s. gives the probability for an electron to travel
ballistically to a point of scattering, after which it reaches the
detector without further collisions. In the local approxima-
tion of Eqn (5), L � La=4 sin�a=2� can be interpreted as the
length of the trajectory from the injector to point O (see
Fig. 2).

In order to compare the experimental data with theory, it
is necessary to extract the contribution of scattered electrons,
dV s

d , from the observed signal dVd. We have

dV s
d � dVd ÿ exp ÿ 2rc

lee�Vi� arcsin
L

2rc

� �
dV 0

d : �7�

Here, dV 0
d �B� is the signal which would be observed in the

absence of scattering, so that the second term on the r.h.s. of
Eqn (7) is the contribution of electrons that reach the detector
ballistically. Experimentally, dV 0

d �B� can be obtained from
the experiment at lowest injection energyVi � 0:1 mV. In this
case lee=L � 102 and thus collisions can be neglected. For lee
we use the expression for energy relaxation in a 2DEG
obtained by Giuliani and Quinn [2]:

lee�e� � 4p�hn
eF

eF
e

� �2
ln
eF
e
� 1

2
� ln

2qTF
kF

� �� �ÿ1
; �8�

where qTF is the Thomas ±Fermi screening wave vector.
Figure 4a shows the angular distribution functions g�a�

for various injector energies obtained from the experimental
data in Fig. 2 using Eqns (5), (6), and (7). The various g�a�
clearly display the expected small-angle scattering behavior.

For comparison the results of Eqn (9) for various values of
Vi are presented together with experimental data for dV s

d in
Fig. 4b. As is evident from the figure, we find a gratifying
agreement between theory (markers) and experiment (drawn
curves), justifying the assumptions made in extracting g�a�
from the experimental data.

For smallVi (Fig. 4, curves corresponding toVi � 0.8 and
1.2mV) the observed peakwidth da is only slightly larger than
the point contact opening angleF. As discussed above, in this
limit the experimentally recovered g�a� is smoothed, and we
cannot expect to observe the dip at very small angles. The
peak in g�a� broadens when the energy of the injected

electrons is increased (Vi > 1:5 mV). In Figure 5 the width
of g�a� is displayed as a function of injection energy. It shows
a clear square-root behavior da / ��������������

eVi=eF
p

in contrast to 3D
where g is essentially energy-independent. The increase of da
with Vi also directly implies that the small angle scattering
observed by us can not be attributed to weak screening in 2D
systems. In this case the scattering angle should actually
decrease with excess energy.
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Figure 4. (a) g�a� restored from the experiment. (b) Comparison of the
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experiment using Eqn (7)) dV s
d. Curves are displaed with an offset for
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When da becomes larger than the QPC opening angle F
for higher Vi, one can clearly observe the expected dip in
forward direction (Vi > 3:0 mV, Fig. 4a). The amplitude of
the dip is much larger thanwould be the case for a 3D electron
system.

As discussed above, the local approximation of Eqn (5) is
not valid at small scattering angles a < F. For these angles,
g�a� is more precisely given by the integral equation:

dV s
d ' 2Cn

�
djri�j�

�
dj0rd�j0�

� ~g j0 ÿ j� L

rc
;Vi

� �
k j0 ÿ j� L

rc

� �
; �9�

where k�x� � 1=jxj for x > F and k�x� � 1=F for x < F.
Here again we use ~g�a� as defined in Eqn (6);

L � L
2j0 � L=rc

2�j0 ÿ j� L=rc�

is the distance between injector and the crossing point (O) of
electron trajectories injected at angle j and detected at
angle j0; the integration in Eqn (9) has to be evaluated for
all L such that 0 < L < L, while lee � lee�Vi�.

In conclusion, electron-beam experiments in the 2DEG of
GaAs/(Ga,Al)As heterostructures demonstrate unambigu-
ously the occurrence of small-angle ee-scattering characteriz-
ing the dimensionality effect on the momentum relaxation in
2D systems. The characteristic scattering distribution func-
tion is obtained directly frommagnetic-field-dependent beam
deflection experiments. The scattering distribution function
broadens with increasing electron energy, da / ��������������

eVi=eF
p

, in
contrast to 3D systems where the width is energy-indepen-
dent. Furthermore, a pronounced dip occurs at small angles.
These observations represent conclusive evidence for the
manifestation of 2D density-of-states effects in the ee-
scattering process.
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Submicron charge-density-wave devices

H S J van der Zant, N Markovi�c, E Slot

Abstract. We review our fabrication methods to produce
submicron charge-density-wave (CDW) structures and present
measurements of CDW dynamics on a microscopic scale. Our
data show that mesoscopic CDW dynamics is different from
bulk behavior. We have studied current-conversion and found a
size-effect that can not be accounted for by existing models. An
explanation might be that the removal and addition of wave
fronts becomes correlated in time when probe spacing is reduced
below a few mm. On small segments we occasionally observe
negative differential resistance in the I�V� characteristics and
sometimes the resistance may even become negative.We believe
that the interplay between CDW deformations (strain) and
quasi-particles may yield non-equilibrium effects that play a
crucial role in this new phenomenon. No detailed theoretical
calculations are available. Our measurements clearly show the
need of a microscopic model for CDW dynamics.

1. Introduction

Electrical conductors with a chain-like structure may exhibit
a phase transition to a collective ground state with charge-
density waves (CDWs) [1]. The appearance of a CDW state is
connected to the Peierls instability [2]: at low temperatures the
uniform distribution of conduction electrons of a one-
dimensional (1D) conductor is unstable due to their coupling
to phonon modes. As a result, the lattice of atoms is distorted
and the electrons condense into a ground state with a periodic
modulation of the charge density. Collective transport occurs
when these CDWs move along the chains. This sliding CDW
motion shows similarities with transport in superconductors,
with the role of current and voltage reversed. To date, CDW
transport has been studied in bulk crystals and has shown
many remarkable phenomena. Examples are ac current
oscillations induced by a dc electric field and strongly
nonlinear electrical properties.

In metallic and superconducting devices, reduction of
sizes has revealed a variety of new mesoscopic phenomena.
For charge-density-wave (CDW) conductors, the mesoscopic
regime has not been studied in detail, largely because samples
of (sub)micron sizes could not be fabricated in a controlled
way. In this paper, we review our efforts to fabricate small-
scale CDW devices of the CDW conductors NbSe3 and o-
TaS3 (Section 2). We discuss two examples of microscopic
CDWdynamics in somemore detail: a size effect of phase-slip
processes in NbSe3 wires (Section 3) and negative resistances
in (sub)micron segments of o-TaS3 (Section 4).

2. Fabrication of mesoscopic CDW structures

We have developed three different techniques for the
fabrication of submicron CDW devices. First, we combine
an old technique Ð gluing thin CDW crystals on top of an
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