
(emitter) and final (quantum dot) states between which the
tunnel transition occurs [5, 6]. Note that the initial states of
the emitter are rather weakly localized in the real space, in
contrast to the strongly localized states of quantum dots.
Hence Fi�k� in the k-space is represented by a Dirac delta
function, which is nonzero only in the vicinity of k � 0. And
since the tunnel current is determined by the square of the
matrix element which contains both Fi�k� and Ff �k�, the fact
that Fi�k� is a Dirac delta function makes it possible to
determine the shape of the function

Ff �k� � FQD�k� ;

by varying B and hence k. Thus, in reality, by measuring the
dependence I�B� [orG�B�] for a certain direction of B, we can
find the shape of jFQD�k�j2 along the direction of k
perpendicular to B. Then, rotating B in the (X, Y) plane and
measuring I�B� (in a sequence) for different orientations of B,
we obtain the complete spatial profile of jFQD�kx; ky�j2, which
is the projection of the probability density of a given
electronic state of the quantum dot in the k-space in the
plane perpendicular to the current [3].

Figure 4 depicts the profiles of differential conductance

G�B� � dI

dV
� ��FQD�kx; ky�

��2
in the (kx, ky) plane for the two quantum-dot states
corresponding to Figs 3a, b. The resulting contour maps
visualize the probability density distribution of the wave
functions of the ground and excited states of a quantum dot.
The electron wave functions are biaxially symmetric in the
growth plane with the axes corresponding (to withinmeasure-
ment errors of about 15�) to the principal crystallographic

directions X and Y for a (311) substrate orientation. For a
(100) substrate we also obtained the characteristic images of
the probability density for the ground and excited SAQD
states.

The main result of the present work is a method that
makes it possible to extract experimental information about
the probability density distribution of the wave functions of
electrons in self-assembled quantumdots. So far the proposed
method is the only nondestructive technique for creating
maps of the wave functions in SAQDs and has been applied
to the given class of problems for the first time.

This work was made possible by grants from the Russian
Foundation for Basic Research (grants 00-02-17903 and 01-
02-17844), the Physics of Solid Nanostructures Program (97-
1057), INTAS ±RFBR (2000-774), and EPSRC (UK). The
authors are grateful to V A Tulin and V G Lysenko for
fruitful discussions and interest in the work, and to V V Belov
and A Orlov for helping with the experiments.
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Tunneling spectroscopy
of quasi-two-dimensional plasmons

V A Volkov, EÂ Takhtamirov, D Yu Ivanov,
Yu V Dubrovski|̄, L Eaves, P C Main, M Henini,
D K Maude, J-C Portal, J C Maan, G Hill

1. Introduction

In two-dimensional (2D) electron systems based on semi-
conductors with an isotropic, parabolic dispersion law, the
electron motion along the interface and transverse to the
interface separates. Hence, in a magnetic field B that is
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perpendicular to the interface, the one-particle Landau levels
(LL) from different subbands do not interact with each other,
and crossing of these levels is possible [1]. The situation is
quite different with 2D systems based on semiconductors with
a highly nonparabolic spectrum, such as the narrow-gap
semiconductor PbTe [2]. Tunnel measurements in the latter
case demonstrate anticrossing of Landau levels belonging to
different 2D subbands.

We were the first to discover the strong interaction
between such Landau levels in a tunnel 2D system based on
GaAs, which is a semiconductor with an almost perfect
parabolic dispersion law for the electrons. Highly disordered
samples were used in the experiments, which made it possible
to resolve the tunnel transitions between two 2D systems with
and without a change of the LL number in the 2D! 2D
tunneling process.

2. Measurements

2.1 Samples
We used a single-barrier GaAs/Al0.4Ga0.6As/GaAs hetero-
structure with a barrier 12-nm thick and vertical tunnel
transport. The barrier was separated from the highly doped
junction regions by undoped spacers 50-nm thick. To form
the 2D electron layers, we employed delta-doping with silicon
with a concentration in each layer amounting to 3� 1011

cmÿ2 at a distance of 5 nm on each side of the barrier. Wet
etching was used to form mesoscopic structures 100 ± 400 mm
in diameter. The penetrability of the tunnel barrier was much
lower than that of the spacer, whereby almost the entire
voltage applied to the structure falls on the tunnel barrier.
Measurements of Shubnikov ± de Haas type oscillations of
the tunnel current yielded a value of electron concentration in
the 2D layers approximately equal to the value of the
concentration of the doping impurity. A schematic of the
band diagram for the structure under investigation is depicted
in Fig. 1 for a zero bias voltage. A typical value of the electron
mobility amounted to m � 1000 cm2 Vÿ1 sÿ1 at 4.2 K.

2.2 Experiment
Figure 2 depicts the differential tunneling conductivity G at
4.2 K (measured by the standard lock-in method) as a
function of the applied bias voltage Vb in different magnetic
fields up to 15 T. In a zero magnetic field (the lower curve in

Fig. 2), the differential conductivity has a peak at zero bias
voltage and two prominent `arms' at higher bias voltages for
both polarities of the applied voltage. The peak at zero bias
voltage reflects the resonance nature of the tunneling between
the ground states of the right and left electron systems, while
the `arms' appear because of resonance tunneling between the
ground 2D subband (n � 0) of the emitter system and the first
excited subband (n � 1) of the collector system. The very fact
that there is a prominent peak in zero magnetic field and at
zero bias voltage indicates that the fraction of tunneling
processes proceeding with the conservation of momentum
along the interface is relatively large, despite the large number
of scattering centers. The development of these singularities
as the magnetic field strength grows is due to tunneling
between different Landau levels.

In the vicinity of B � 6 T, i.e. near an LL filling factor
n � 2, the measured G�V� curves demonstrate (see Fig. 2) a
sizable minimum for a zero bias voltage. A further increase in
B gradually transforms the minimum into two maxima. A
detailed discussion of the tunneling process in the vicinity of
zero bias voltage can be found in Ref. [3] and will not be
discussed here.

3. Results

Let us discuss the behavior of the `arms' in the G�V�
dependence, which are indicated by small black disks in
Fig. 2. The fan-shaped diagram for such transitions is
depicted in Fig. 3. Here we consider only negative bias
voltages, since the main features of this diagram are
symmetric in voltage.

Inmagnetic fields higher than 12 T and for bias voltages in
the vicinity of 30 mV, the small dark disks correspond to a
transition between the lower Landau level (N � 0) of the
ground 2D subband (n � 0) in the emitter and the first excited
Landau level (N � 1) of the ground 2D subband (n � 0) in the
collector, i.e. �n � 0, N � 0� ! �n � 0, N � 1�. The dashed
straight line A has a slope L�hoc, where oc is the cyclotron
frequency, andL � 1:28 is the electrostatic factor (the ratio of
the applied voltage to the voltage falling on the barrier). This
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line demonstrates the position of the peak for tunneling with
DN � 1 in an approximation that ignores the broadening of
the Landau level. The dashed straight line B represents (in the
same approximation) the position of peaks for tunneling with
DN � 2.

For broadened Landau levels, the measured differential
tunneling conductivity is determined by the density of states
at the Fermi level in the emitter 2D system. The calculated
positions of the peaks for transitions �n � 0,
N � 0� ! �n � 0, N � 1� between broadened Landau levels
is depicted by the solid curve 1. The position of the peaks
corresponding to tunneling with LL number conservation
(DN � 0) does not depend on the magnetic field intensity and
must coincide with the vertical straight line 2. When there is
no interaction between the Landau levels, some of the lines in
Fig. 3 should cross, as lines 1 and 2 do. Instead there appears
distinct repulsion of the lines consisting of dark disks and
squares, which proves the Landau levels �n � 0, N � 1� and
�n � 1, N � 0� interact. The observed splitting is about
10 meV. A certain indication that there is line repulsion can
also be seen in the vicinity of the point of crossing of lines 2
and B, which corresponds to interaction of the Landau levels
�n � 0, N � 2� and �n � 1, N � 0� in the collector system.
Unfortunately, the accuracy of determining the position of
the peaks is not high enough to make more specific
statements.

Tomake the picture complete, we also depict the positions
of the peaks in the vicinity of zero bias voltage (the triangle-
based curves), which have been described by Khanin et al. [3],
who studied the tunneling energy gap at the Fermi level in a
magnetic field. The origin of the peaks represented by the
open circles near 14 mV in magnetic fields higher than 12 T is

apparently related to the spin splitting in the system under
consideration.

4. Possible reasons for anticrossing

Let us discuss the possible reasons for the strong (� 10 meV)
anticrossing of the levels �n � 0, N � 1� and �n � 1, N � 0�
observed in our experiments. The mechanism responsible for
this effect must mix the longitudinal (along the layer) and
transverse (perpendicular to the barrier) electron motions in
the quasi-two-dimensional (Q2D) system.

4.1 Misorientation of magnetic field
Experiments in an oblique magnetic field have shown that the
precision withwhich themagnetic field was oriented along the
current �B k J� was sufficiently high to exclude the effect of
the magnetic field's component in the sample plane on
anticrossing. More exactly, a misorientation �B and J� of
about 5� had no noticeable effect on the pattern in Fig. 3, and
there were no noticeable quantitative changes either.

4.2 Nonparabolicity of the electronic spectrum E(k)
Another possible reason for anticrossing could be the
nonparabolicity of the electronic spectrum E�k� in GaAs.
Qualitatively similar anticrossing has been observed in the
highly nonparabolic material PbTe [2]. However, in the case
of PbTe the strong anticrossing of Landau levels is caused by
the fact that the principal axes of the constant-energy
ellipsoids of the bottom of the conduction band (the L-points
of the Brillouin zone) do not coincide with the direction of
growth. This is not true of GaAs, and estimates of the
contribution of this effect (nonparabolicity) to anticrossing
yield a value of order 1 meV, which is too small to explain the
detected effect.

4.3 Tunneling with participation of magnetoplasmons
An alternative explanation of anticrossing is based on
collective excitations of the electronic system. Let us discuss
the possible mechanisms of energy relaxation of an electron
that has tunnelled onto an excited level in a system with a
totally discrete spectrum. It is a common fact that if the
distance to a low-lying level is an integral multiple of the LO-
phonon energy, then the energy relaxation occurs due to
resonance emission of such phonons. This corresponds to the
appearance of phonon replicas in the tunneling spectrum. In
our case such processes are still forbidden (phonon replicas
are observed at much higher bias voltages Vb). On the other
hand, relaxation accompanied by emission of Q2D magneto-
plasmons with a characteristic energy equal either to �hoc

(intrasubband plasmons) or the distance between the 2D
subbands (intersubband plasmons [4]) is allowed in energy.
Generally speaking, tunneling processes accompanied by
resonance emission of intra- and intersubband 2D magneto-
plasmons must manifest themselves in experiments in a way
similar to single-particle processes in which the quantum
numbers n and N change. The situation is quite different in
the vicinity of the point of crossing of the single-particle terms
1 and 2 in Fig. 3. One should expect the Coulomb interaction,
which is responsible for the emergence of plasma excitations,
to lead to a strong interaction of the two magnetoplasmon
branches mentioned earlier precisely in the vicinity of the
point where the single-particle terms cross. This fact could be
used to explain the observed anticrossing of `single-particle'
terms.
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Nowwe turn to a quantitative description of the spectrum
of Q2D magnetoplasmons. There exist a large number of
theoretical studies devoted to the plasmon spectrum in Q2D
systems. In most of these the plasmons were investigated in
the absence of a magnetic field (e.g. see Refs [4 ± 6]). The
researchers found that there are two plasmon branches:
intrasubband plasmons related to electron oscillations in the
ground 2D subband, and intersubband plasmons related to
virtual transitions between 2D subbands. The first have a
gapless spectrum, while the second exhibit a weak dispersion
and a gap with a width equal to the sum of the intersubband
energy D and the depolarization energy. The interaction of
intersubband and intrasubband modes in the absence of a
magnetic field is extremely weak even for a specially selected
geometry of the structure [7]. A number of papers have been
devoted to calculating the spectrum of Q2D plasmons in a
magnetic field (e.g. see Refs [8 ± 11]). The results contain an
extremely rich structure of the spectrum of such magneto-
plasmons but very strongly depend on the approximations
employed and the type of a system. We calculated the
magnetoplasmon spectrum in the random phase approxima-
tion for the structure studied in our experiment. Since
plasmons are excited in the process of 2D! 2D tunneling in
the symmetric system, only antisymmetric (with respect to the
barrier's center) plasmonmodes are of interest. The result was
obtained in the dipole approximation [small wave vectors
q � �qx; qy�] for fairly strong magnetic fields, when the filling
factor is n < 4.

Our finding is depicted in Fig. 4, where four magneto-
plasmon branches are shown, namely, the intersubband
branch 1, the intrasubband branch 2, and the combined
resonance branches 3 and 4 related to virtual transitions
between the states �n � 0, N � 1� and �n � 1, N � 0� as well
as �n � 0, N � 0� and �n � 1, N � 1�. The depolarization
energy in this case is close to 4 meV. At q � 0, the
magnetoplasmon energies coincide with the energies of
single-particle excitations depicted in Fig. 4 by lines
consisting of small open circles and crosses. Possibly, it

was the anticrossing of the branches 1 and 4 that was
discovered in our experiments due to the high density of
states on these branches. The observed anticrossing of the
two peaks can be interpreted as relaxation on `hybrid' intra-
and intersubband magnetoplasmons. The unusual shape of
the anticrossing in Fig. 3 is, possibly, related to the effect of
branch 2 in Fig. 4.

5. Conclusions

We have studied tunneling between highly disordered 2D
electron systems in a quantized magnetic field parallel to the
current. A strong interaction between the Landau levels
belonging to different 2D subbands has been discovered. We
proposed an explanation for the observed anticrossing related
to the excitation of intra- and intersubband magnetoplas-
mons in a Q2D system.

This work was made possible by support given by the
Russian Foundation for Basic Research (projects 99-02-
17592, 01-02-97020, and 01-02-06476), the Physics of Solid
Nanostructures Program, the Surface Atomic Structures
Program, and the Physics of Quantum and Wave Processes
Program.
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Quantum dot Ge/Si heterostructures

A V Dvurechenski|̄, A I Yakimov

1. Introduction

Determining the parameters of the energy spectrum, the
kinetics of the transitions between electronic states, and the
interaction of elementary excitations and establishing the
correlation effects constitute the basis for current funda-
mental research in the field of quantum dots (QD). Among
the numerous heterostructures with quantum dots (see Refs
[1 ± 4]) that are being actively studied the silicon-based
structures have always provoked special interest, due to the
promising integration of the results of such research and the
basic silicon technology used in building modern semicon-
ductor devices and circuits. The substantial advances in the
epitaxy of Ge on Si and the prospects for using Ge/Si
heterostructures formed the natural basis for systems with
quantum dots. From the viewpoint of fundamental research,
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