
Abstract. The radiation observed inside or outside a stationary
radiator with a scattering medium is a sum of components, each
being determined by, first, the primary radiation from some
part of the radiator and, second, the probability of this radia-
tion reaching the region where it is observed. In this review,
general and rather simple relations between these components
are discussed. These relations, unlike the components them-
selves, are independent of the specific optical characteristics of
the object as well as of its geometry, inhomogeneity, etc. In
deriving the relations, the situations in which geometrical op-
tics is either applicable or inapplicable to radiation in a scatter-
ing medium are considered. For the case where geometrical
optics does apply, stationary relations are derived from the
probabilistic stationarity condition for radiation passing
through the medium, i.e., from the fact that all radiation
emitted in a stationary regime disappears with probability
unity. Equilibrium relations are derived from the stationary
relations in the particular case of a thermal radiator in an
isothermal cavity. To derive the stationary relations in the
geometrical optics approximation, we obtain general solutions
of the linear equation of transfer using the Green function

approach. If geometrical optics cannot be applied to a scatter-
ing and radiating medium, only relations for the components of
outgoing thermal radiation are obtained, and the generalized
Kirchhoff law, obtained by Levin and Rytov using statistical
radio-physics methods, is employed. In this case, stationary
relations are also derived from a probabilistic stationarity con-
dition; the equilibrium relations follow from the stationary ones
as well as from the equilibrium condition for radiation in the
isothermal cavity. The quantities involved in all the relations
obtained are a subject of experimental and computational spec-
troscopic studies. Examples of current and potential applica-
tions are given. The relations have been successfully used in
diverse spectroscopic experiments Ð in studies of the effects
of macroscopic particles on the emission line profiles in dusty
plasmas and in temperature measurements in strongly scatter-
ing solid porous materials.

1. Introduction

The present paper analyzes stationary radiation from objects
for which scattering by inhomogeneities in the medium is
important. Each scattering event may change the direction of
radiation. Radiation therefore travels through the scattering
medium in a zigzag manner. This substantially complicates
the passage of radiation from the point of origin to the point
of observation, and for this reason various regions in the
radiator or outside it may contribute to the observed
radiation. This is illustrated in Fig. 1, which presents a
schematic of an experimental setup for the observation of
radiation from a scattering medium. Let the surface S enclose
the region containing the scattering medium, and let Sp be a
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spectral or optical device focused on the point of observation
A. Radiation arrives at the device from the field of view
determined by the focusing optical systemL. In the absence of
scattering, radiation can reach the device only in the case of
having been emitted in the field of view in the direction
toward the device, within the entrance aperture. In the
presence of scattering, radiation can find its way to the device
after the last scattering event in the field of view, independent
of whether this radiation first appeared inside (point B) or
outside (point C) the scattering medium.

In practice, it is often necessary to know how much the
individual components originating in various parts of the
object contribute to the total radiation observed. Such
problems arise, for example, in experimental spectral diag-
nostics, which determines, based on the observed radiation,
the primary radiation from the individual components or
regions of the medium under study. It is this primary
radiation that gives the direct and most complete informa-
tion on the object under investigation.

In some cases, contributions from individual primary
radiators can be determined from specially designed experi-
ments in which some of the primary radiators are eliminated
while the others remain intact. Normally, however, the
separation of the observed radiation into components is
based on solving linear equations that describe the propaga-
tion of radiation in the scattering medium. In the approxima-
tion of geometrical optics, these are the radiation-transfer
equations; in the general case, the Maxwell equations.

Linear equations are adequate to describe radiation if
both the emission mechanism and the parameters of the
radiation ±material interaction are specified and do not
depend on the radiation considered. In this case, in spite of
the general complexity of the propagation pattern, the
radiation that appears at some point arrives at an arbitrary
point of observation independently of whether or not other
parts of the object radiate. This implies that, for any
arbitrarily chosen frequency, the observed radiation is the
sum (or integral) of the components corresponding to the
individual primary radiators.

The total radiation fluxes and their components can be
obtained by solving the radiation propagation equations,
provided that numerous optical and geometrical character-
istics of the radiator are known. Clearly, the results should
vary widely, depending on the radiator conditions. Over
many years, stationary solutions to the radiation-transfer
equations for various specific cases have been continuously
published.

The present review examines a different approach to
radiation from objects with scattering media. In recent
years, general and fairly simple relations between radiation
components originating from different primary radiators
have been established. These relations do not depend on the
specific optical (absorption and scattering) characteristics,
nor on the shape of the radiator, inhomogeneities in the
medium, etc. All these features influence the magnitude of the
components but not the general relations between them. It is
this fact that makes these relations especially useful in
performing radiation experiments and calculations for a
wide variety of physical conditions. In particular, the general
relations help in separating the observed radiation into
components due to different primary sources.

General relations of this kind cannot be obtained simply
by analyzing or solving the equations describing the process
under study. Additionally fairly general conditions not
contained in these equations are needed. Thus, one time-
honored approach to deriving general relations between
various physical quantities is to consider these quantities
under thermodynamic-equilibrium conditions. This
approach led, among other things, to the classical Kirch-
hoff ±Clausius law, a relation between the emissivity and
absorptivity of a body, which is quite general and indepen-
dent of the specific radiator characteristics determining either
of the quantities separately.

There are two different methods by which the radiation
component relations to be studied here have been derived in
the previous work. The earliest method also employed
thermodynamic equilibrium conditions (see Section 3.1).
The system considered was an isothermal radiator with
arbitrary optical and geometrical characteristics, surrounded
by an opaque wall at the same temperature. The primary
sources were assumed to be thermal, i.e., the primary
radiation was determined by the temperature of the source.
The equilibrium relations, i.e., those derived from the
thermodynamic-equilibrium conditions, involve only the
relative magnitudes of all radiation components. Since these
relative magnitudes do not depend on the temperature
directly, the relations can also be applied (within certain
restrictions) to non-isothermal objects, whose resulting
radiation is not equilibrated. In this case, the thermal
radiator should be surrounded by a radiating surface.

The second method for obtaining the relations, which
came later, is not commonly accepted and is based on the
probabilistic formulation of the stationarity condition for
radiation. To clarify the essence of the method, we note the
following two points. First, the propagation of radiation in
a medium is a statistical process, and each radiation
component is determined by the intensity of the primary
radiation and by the probability that it will reach the point
of observation. Second, in the present context, the statio-
narity of radiation is of course taken into account by the
fact that the time derivative in the radiation equations is
zero. However, the stationarity condition also puts restric-
tions on the probability of radiation passage through the
medium. Note that, in a stationary radiator, the appearance
and disappearance of radiation are normally simultaneous
processes. Radiation results from the energy of matter being
converted into that of radiation or, alternatively, is due to
the illumination of the radiator from the outside. The
disappearance of radiation involves the reverse processes:
the energy of radiation is either absorbed by the material or
escapes to the radiator's exterior. Note that radiation may
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L

Figure 1. Schematic diagram showing how radiation from a scattering

medium arrives at the detecting apparatus: S, surface enclosing the

scattering radiator; L, focusing optical equipment; Sp, entrance to the

detecting device;A, focusing region;B,C, radiation emergence points. The

device's field of view is dashed.
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preferentially appear in some particular parts of the radiator
and disappear in others. The equilibrium radiator is a
special case of the stationary one, the appearance of
radiation in it being fully compensated by its disappearance
at every point. At the same time, in any stationary radiator
the radiation emitted at some rate completely disappears at
the same rate. In other words, the disappearance of the
emerging radiation is a certain event.

According to the probability theory, the probability of a
certain event is unity. This general statement can be applied,
in particular, to the disappearance of radiation in a
stationary regime. The fact that the probability of disap-
pearance of radiation produced under stationary conditions
equals unity provides a general condition necessary to
obtain the required relations. The probability of disappear-
ance is determined by the probabilities that the radiation
will arrive at one part of the radiator or another and,
subsequently, will either be absorbed or will pass out.
Consequently, the probabilities for the passage of radiation
should also satisfy this condition.

The probability condition for the unavoidable disappear-
ance of radiation can be modified to include the relative
radiation components using the relationship between these
components and the radiation-passage probabilities. The
stationary relations include the sum of all the relative
components as well as the probability of radiation disappear-
ing in the non-radiating parts of the object. From the
stationary relations for the special case of a thermal radiator
surrounded by an opaque radiating surface, one can also
obtain the equilibrium relations that were earlier obtained
from the thermodynamic-equilibrium conditions. In this
context, we describe here the method based on the prob-
ability condition for the disappearance of radiation as the
basic technique for obtaining the relations of interest.

The relations between the radiation components will be
derived here both for scattering media where the approxima-
tion of geometrical optics is valid and for those where it fails.
The relations will be obtained both for the general case and
for special cases of practical significance. While the former
will be written in an integral form, an algebraic form will be
employed for the latter. The relations contain only quantities
measured in spectral and optical experiments, such as the
radiation intensities, optical densities, temperature, or the
relative populations of the radiator's energy levels.

Sections 2 ± 4 deal with media to which the geometrical
optics approximation can be applied. The propagation of
radiation is studied based on the equations of transfer
describing the intensity of radiation. An equation for the
response (Green) function is constructed in a fairly general
form, and the general solutions necessary to obtain the
relations of interest are written using this function (Section
2.3). This makes it possible to represent an individual
radiation component as a product of the primary radiation
intensity with the probability of the primary radiation
reaching the point of observation. The solutions obtained
are valid for arbitrary radiators, in particular, for thermal
ones, with the primary radiation given by the classical
Kirchhoff ±Clausius law. Both elastic (frequency-conser-
ving) and inelastic (frequency-nonconserving) scattering are
considered.Multi-phasemedia (e.g., dusty gases) are allowed.
In Section 3, stationary relations between the intensity
components are derived. In Section 3.2, radiation disappear-
ance probabilities are discussed in detail, equations for them
are formulated, and a condition on the total probability of

disappearance is obtained. In Section 3.3, the equations for
radiation disappearance probabilities are compared with
those for the radiation intensity. It is shown that introducing
intensity components into the probabilistic disappearance
condition leads to the required relations, provided the
reversibility conditions are valid for the medium and
reciprocity relations are obeyed in every scattering event. A
general form of the stationary relation is derived in Section
3.3, and special cases are treated in Section 3.4.

Section 4 considers specific examples of how the relations
obtained in the paper can be applied to dusty plasmas. In
Section 4.2, the application of equilibrium relations is
illustrated. The application of stationary relations to an
actual experimental study of the effect of dust particles on
the profiles of dusty-gas emission lines is described in Section
4.3. Next, the possibility of experimentally determining the
relative populations of atomic levels in a dusty plasma with
the use of a stationary relation is discussed (Section 4.4).

Section 5 discusses a more complex case, where geome-
trical optics is not valid inside the scattering medium. It is
applicable only outside the medium, in the region where the
radiation from a medium is usually observed experimen-
tally, for example, where the lens L and the spectrograph Sp
are located (see Fig. 1). For this case, only thermal radiation
is considered, whose description relies on the generalized
Kirchhoff law derived by Levin and Rytov using statistical
radiophysics methods, i.e., from Maxwell's equations. The
generalized Kirchhoff law immediately leads to general
expressions for the radiation energy in the region of
observation in terms of primary sources. The contribution
from each radiating part of the object to the radiation
energy at a given frequency is determined by the primary
thermal radiation from this part and by the probability that
it reaches the point of observation. Based on the generalized
Kirchhoff law, equilibrium (Section 5.3) and stationary
(Section 5.4) relations between the components of the
energy and radiation flux in the region of observation are
obtained. Only elastic scattering in a single-phase medium is
considered. Section 5.5 describes the application of the
equilibrium and stationary relations to the measurement of
the temperature of a strongly scattering solid porous
material inside which the geometrical optics approximation
is not applicable.

2. Radiation intensity expressed
in terms of primary sources

Linear radiation-transfer theory for scattering media where
geometrical optics is valid is based on the integro-differential
equation of transfer, which expresses the balance of radiative
energy (or photons) in a physically infinitesimal region. The
foundations of radiation-transfer theory were laid in the
middle of the 20th century, mainly by astrophysicists [1 ± 3].
The theory was then developed at an explosive rate by
numerous workers from such diverse fields as astrophysics
[4 ± 6], heat exchange [7 ± 9], and plasma [10] and neutron
[11 ± 13] physics. In recent years, numerical solutions to the
equation transfer have attracted much attention. New
methods and calculations for various specific conditions are
constantly being reported; see, for example, Refs [14 ± 23].
There is an extensive literature that justifies the phenomeno-
logical radiation-transfer theory and establishes its limits. We
only mention here one review article [24] and three mono-
graphs [10, 25, 26].
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2.1 Characteristics of the radiation ±matter interaction
Before writing out the transfer equations, it is necessary to
discuss those characteristics of the interaction between
radiation and matter that are used in the theory of transfer.
This interaction is basically as follows. First, the energy of the
radiation flux is absorbed by the medium, i.e., is converted
into the energy of matter. The radiation energy may turn into
the energy of the chaoticmotion of particles or into the energy
of the bound states in the material (which can be called true
absorption). Second, scattering by inhomogeneities of
various kinds causes the radiation to escape from the ray.
The theory of radiation transfer assumes individual scattering
events to be independent of each other.

Scattering may be either elastic, without a change in the
frequency, or inelastic, with such a change. For example,
scattering by water droplets or dust particles in the Earth's
atmosphere is normally elastic. In contrast, the photoexcita-
tion of an atom with a subsequent emission within the same
broadened spectral line is among the numerous examples of
inelastic scattering.

Let us introduce the local characteristics of the above
types of radiation ±matter interactions. Suppose an emitting,
absorbing, and scattering medium is within a volume v
enclosed by the surface S (Fig. 2). The local characteristics
are allowed to depend on the point within the volume
(determined by the radius vector r), as well as on the
radiation direction (the unit vector u) and frequency n. A
dependence on r refers to inhomogeneous media, whereas a
dependence on u characterizes anisotropic media.

Let k�r; u; n� be the absorption coefficient; then the
product k�r; u; n� dr equals the probability that radiation of
frequency n traveling in the direction of u will be absorbed
over the length element dr in the vicinity of r. Now let a�r; u; n�
be the extinction coefficient describing attenuation of radia-
tion due to both absorption and scattering. The product
a�r; u; n� dr is then the probability that radiation of frequency
n traveling in the u direction will interact with the medium
over the length element dr in the vicinity of r.

The optical distance t between two arbitrary points r1 and
r2 in an absorbing and scattering medium can be expressed in
terms of the extinction coefficient as

t�r1 ! r2� �
����� r2

r1

a�r 0; u 0; n� dr 0
���� : �2:1�

Here, the integration runs along the ray passing through the
points r1 and r2. Recall that the quantity exp

�ÿt�r1 ! r2�
�
is

the probability of radiation passing unabsorbed and unscat-
tered from r1 to r2.

Let L�r; u! u 0; n! n 0� du 0 dn 0 be the probability that
radiation of frequency n that travels in the u direction and
undergoes a single event of interaction with themedium in the
vicinity of the point r will acquire a direction in the interval
�u 0; u 0 � du 0� and a frequency in the interval �n 0; n 0 � dn 0�.
Here du 0 is a solid-angle element. The product
a�r; u; n�L�r; u! u 0; n! n 0� dr du 0 dn 0 is the probability
that radiation of frequency n that travels along u and
interacts with the medium over the length dr will acquire a
direction in the interval �u 0; u 0 � du 0� and a frequency in the
interval �n 0; n 0 � dn 0�.

The probability of scattering with arbitrary final direc-
tions and frequencies (survival probability l) can be obtained
fromL by integrating over all angles and all finite frequencies.
Let Dn be the range of possible frequency changes due to
scattering; then

l�r; u; n� �
�
4p
du 0

�
Dn
dn 0 L�r; u! u 0; n! n 0� : �2:2�

The absorption and extinction coefficients are related to
the survival probability in the following manner:

k�r; u; n� � a�r; u; n��1ÿ l�r; u; n�� : �2:3�

If the scattering is elastic, we have

L�r; u! u 0; n! n 0� � L�r; u! u 0; n� d�nÿ n 0� ; �2:4�

where

L�r; u! u 0; n� � l�r; u; n� w�r; u! u 0; n�
4p

; �2:5�

d�nÿ n 0� is the Dirac function, and w�r; u! u 0; n� is the
scattering indicatrix with the normalization�

4p

w�r; u! u 0; n�
4p

du 0 � 1 : �2:6�

If there is no scattering, then L � l � 0, a � k. If there is
no absorption, k � 0, l � 1. In many cases, L and w depend
only on the difference juÿ u 0j, i.e., on the absolute magnitude
of the scattering angle rather than on each of the directions u
and u 0 separately. If the indicatrix is independent of the
scattering angle, the scattering is said to be isotropic. We
have w � 1 in this case.

Scattering in various kinds of media is often due to small
macroscopic particles. They form patterns of dustiness,
clouds, fogs, etc. In recent years, there has been substantial
interest in phenomena occurring in so-called dusty plasmas
[27 ± 34].

In all such cases, treating radiation transfer requires a
knowledge of the absorption or elastic scattering of radiation
by individual particles. Theoretically, this gained by solving
theMaxwell equations for electromagnetic waves traveling in
a region containing a single particle. The first studies along
these lines date back to the early 20th century [35]. Since then,
calculations of absorption and scattering by various particles
have been done repeatedly. A wealth of material on this
subject is presented in a number of monographs (see
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Refs [36 ± 41]). A brief summary of the results is contained in
Ref. [42]. In recent years, computer codes have actively been
developed and employed to calculate the optical character-
istics of small particles under various conditions (see, e.g.,
Ref. [43]).

There is an important point to note about the treatment of
radiation in the theory of transfer, namely, the fact that the
propagation of radiation between two scattering events is
considered to be independent of the scattering events
themselves [26]. The propagation of radiation in between is
determined by the refractive index of themedium n, which can
vary only smoothly. As to the scattering, it is caused by sharp
inhomogeneities, which are in fact considered to be pointlike.
The dielectric constant of the medium through which
radiation travels between the scattering events may differ
considerably from that characterizing the vicinity of a sharp
inhomogeneity. This permits the use of the ray concept to
describe the radiation propagation. The behavior of rays
depends on the refractive index n. If n does not vary in the
medium, the rays of light are straight. If the refractive index
varies (depends on r), they are bent. If the medium is
anisotropic along the path between scattering events (n
depends on u), the ray-refraction index is employed to
describe the behavior of rays [10]. This quantity should be
used when treating radiation in, for example, solid aniso-
tropic materials or in plasmas in sufficiently strong magnetic
fields. In the following, for the sake of simplicity, we will
assume that the refraction index n is uniform and independent
of the location �r� and direction �u�.

The coefficients introduced above obey the reciprocity
relations that link the forward-scattering and backscattering
characteristics. These scattering events are shown schemati-
cally in Fig. 3. Let a direction- and frequency-changing
scattering event occur in the path 1. The scattering process
follows the scheme

�u; n� ! �u 0; n 0� :

We will consider this to be a forward-scattering event. Then
the reverse to it is the scattering event that occurs in the path 2
according to the scheme

�ÿu 0; n 0� ! �ÿu; n� :

The initial and final directions in such forward- and
backscattering events are opposite, and the frequency
changes are also opposite.

Usually, the reciprocity relations and the radiation ±
matter interaction characteristics themselves are obtained
simultaneously from the equations describing the scattering
process. Thus, in the case of elastic scattering by small
macroscopic particles, the reciprocity relations can be

obtained solving the Maxwell equations [41]. The reciprocity
relations for scattering by microparticles (atoms, molecules)
in an isotropic medium result from solving the SchroÈ dinger
equation [44].

In this paper, we will employ the reciprocity relations
obtained from the detailed-balancing principle [45]. For the
elastic scattering at an arbitrary frequency n, we have

a�u�l�u� w�u! u 0� � a�ÿu 0� l�ÿu 0� w�ÿu 0 ! ÿu� : �2:7�

Suppose that the scattering is inelastic but the frequency
changes it causes are small enough for the following
approximate equalities to be true:

I 0�T; n�
hn

� I 0�T; n 0�
hn 0

;

n2�n� � n2�n 0� :
Here,

I 0�T; n� �
�
exp

�
hn
kT

�
ÿ 1

�ÿ1
hn

2n 2

c 2
�2:8�

is the Planck function; h and k are the Planck constant and the
Boltzmann constant, respectively; c is the speed of light; andT
is the temperature.

In accord with Ref. [45], we have

a�u; n�L�u! u 0; n! n 0� � a�ÿu 0; n 0�L�ÿu 0 ! ÿu; n 0 ! n�
�2:9�

in this case.
Equations (2.7) and (2.9) imply that the probabilities of

single forward- and backscattering events are equal if the
scattering is elastic or if the inelasticity is such that the
frequency changes are sufficiently small.

If the medium is a mixture of different components, each
kth component can be characterized by the corresponding
extinction coefficients ak and absorption coefficients kk, as
well as by the scattering probabilities Lk or lk, wk=�4p�. The
general characteristics of the mixture are then given by the
following expressions:

a �
X
k

ak ; k �
X
k

kk ; L �
X
k

akLk

a
;

�2:10�
l �

X
k

aklk
a

; w �
X
k

lkakwk
al

:

The reciprocity relations (2.7) and (2.9) hold both for the
general characteristics of the mixture and for those of each
kth component.

To conclude this section, we recall that, for the geome-
trical-optics approximation to be applicable, rather stringent
conditions should be met. It is worthwhile to indicate the
conditions necessary for the applicability of the theory of
transfer and hence of the characteristics introduced above.
First, as usual, the radiation fluxes should not vary consider-
ably over a distance comparable to the wavelength l. This
requirement is met if kl5 1 and al5 1. Second, the scatterers
should be separated widely in the sense that the distances
between them should greatly exceed both the wavelength and
the distance from a scatterer to the wave zone 2pd 2=l, d being
the size of the scatterer [26].

1 1

2
2

u u0

ÿu ÿu0

n n0

Figure 3. Forward (1) and back (2) single scattering events. The light lines

refer to frequency n; the heavy lines, to n 0.
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The following two examples will demonstrate how the
above conditions put a limit on the concentration of particles
in the medium.

First, consider the radiation at the center of the resonant
sodium atomic line l � 589 nm � 6� 10ÿ5 cm in a gaseous
medium. This line has been widely used for years in the
diagnostics of the combustion products for various kinds of
fuel. Let NNa be the concentration of sodium atoms and let
the radiation absorption cross section be sNa. Then the
coefficient of absorption by sodium atoms can be written in
the form kNa � NNasNa. At the center of the 589 nm line,
under the atmospheric pressure, sNa � 2� 10ÿ12 cm2 [46].
From the first condition of the applicability of geometrical
optics, we obtain the following restriction on the concentra-
tion of sodium atoms:

kNal � NNa�2� 10ÿ12��6� 10ÿ5�5 1 ;

or

NNa 5 1016 cmÿ3 :

Second, consider the scattering of radiation at a wave-
length of l � 0:5 mm by particles of size d � 5 mm. The
distance between particles can be estimated as lpÿp � N

ÿ1=3
p ,

where Np is the particle concentration. The inequality
2pd 2=l5 lpÿp leads to the condition Np 5 105 cmÿ3.

Both of these inequalities considerably reduce the applic-
ability of geometrical optics to practical calculations.

2.2 The radiation-transfer equation
As radiation is treated in the framework of linear transfer
theory, two characteristics of radiation are used. The first
one, intensity, is the flux of radiant energy per unit
frequency passing through the medium per unit time, per
unit solid angle, and per unit area perpendicular to the flux
�I�r; u; n��. The second is the radiation flux emitted by the
medium per unit time, per unit solid angle per unit
frequency, and per unit volume � j�r; u; n��. The emission of
radiation by the medium occurs due to two factors Ð the
primary emission and the scattering of the radiation that
comes from all directions.

If the refractive index n determining the propagation of
radiation between scattering events is uniform, the stationary
radiation-transfer equation can be written in the form [10]

q
qb

�
I�r; u; n�� � j�r; u; n� ÿ a�r; u; n� I�r; u; n� : �2:11�

This is the energy-balance equation for the radiation flux
in a ray tube. The differentiation is carried out along the ray b
passing through the point r in the u direction (see Fig. 2).

We now determine the boundary conditions for the
problem. We assume that the intensity IS of the radiation
coming into the radiator from the enclosing surface S is
specified. The radiation that comes from the volume v onto
the surface S does not affect the magnitude of IS. In other
words, the radiation from the volume v completely disappears
as it arrives at the surface S. For this boundary condition to
be satisfied, the surface S should be constructed in an
appropriate way. This can usually be done without difficul-
ties, and we will take advantage of this below. Then, from the
transfer equation (2.11), the following expression for the
radiation intensity in terms of the flux j (see Fig. 2) can be

derived:

I�r; u; n� �
� r

r0

j�r �; u; n� exp �ÿt�r � ! r; n�� dr �
� IS�r0; u; n� exp

�ÿt�r0 ! r; n�� : �2:12�
The first term is the contribution to I�r; u; n� due to the

radiation the medium emits in the neighborhood of the ray b.
It is along this ray that the integration is performed. The
second term is the contribution from the radiation that comes
from the surface directly, without interacting with the
medium. Here IS�r0; u; n� is the intensity at the point r0 in the
direction u of the ray b.

In a similar way, the intensity at the same point but in a
different direction u 0r (along the ray b 0) and at a different
frequency n 0 can be written as

I�r; u 0r ; n 0� �
� r

r 0
0

j�r 0; u 0r ; n 0� exp
�ÿt�r 0 ! r; n 0��dr 0

� IS�r 00; u 0r ; n 0� exp
�ÿt�r 00 ! r; n 0�� : �2:13�

Let pv be the specific flux of the intrinsic primary radiation
per unit volume of the medium. Adding the flux due to the
scattering of omnidirectional radiation to pv makes it possible
to express the radiation flux j in terms of the intensity I:

j�r; u; n� � pv�r; u; n�

�
�
4p
du 0r

�
Dn
dn 0 I�r; u 0r ; n 0� a�r; u 0r ; n 0�L�r; u 0r ! u; n 0 ! n� :

�2:14�
Here, the integration in the second term on the right extends
over all possible frequencies n 0 and over all angles, du 0r being a
solid-angle element. The equation for j can be obtained by
substituting Eqn (2.13) into Eqn (2.14) and written in the
following general from:

j�r; u; n� � Vj�r 0; u 0; n 0� � pS�r; u; n� � pv�r; u; n� : �2:15�

Let us now consider each term in the right-hand side of
Eqn (2.15) separately. Here Vj is the integral operator of
scattering. This is the part of the flux j that is determined by
the scattering, at the point r, of the radiation that appeared or
was scattered in the volume earlier. The scattering operator
can be obtained by substituting the first term in the right-hand
side of Eqn (2.13) into the second term in the right-hand side
of Eqn (2.14), which yields

Vj�r 0; u 0; n 0� �
� r

r 0
0

dr 0
�
4p
du 0r

�
Dn
dn 0 j�r 0; u 0r ; n 0�

� exp
�ÿt�r 0 ! r; n 0�� a�r; u 0r ; n 0�L�r; u 0r ! u; n 0 ! n� :

�2:16�

The intensity pS of the primary scattering of the radiation
from the surface at an arbitrary point r in the volume can be
obtained by substituting the second term in the right-hand
side of Eqn (2.13) into the second term in the right-hand side
of Eqn (2.14). In doing this, it is helpful to change from the
integration over angles to the integration over the surface.
Suppose the surface S is not concave and let y be the angle
between the direction toward the point r and the normal to the
surface (see Fig. 2). Then du 0r � d2r 00�rÿ r 00�ÿ2 cos y, where
d2r 00 is an element of the surface S. The result for n 0 � n 00 can
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be written as

pS�r; u; n� �
�
S

d2r 00

�
Dn
dn 00 cos y�rÿ r 00�ÿ2IS�r 00; u 00; n 00�

� exp
�ÿt�r 00 ! r; n 00�

�
a�r; u 0r ; n 00�L�r; u 0r ! u; n 00 ! n� :

�2:17�
The primary sources pv in Eqn (2.15) are determined by

the primary radiation of the medium and may be arbitrary.
Two such sources will be specified below. Here we only note
that, if the medium in the volume v is a mixture of various
constituents, then the radiation from each of them can be
described by its own primary source pk, and the primary
radiation in the volume is determined by the sum

pv�r; u; n� �
X
k

pk�r; u; n� : �2:18�

Equation (2.15) is the basic integral equation for radiation
transfer. Once the equation is solved (i.e., the flux j is
expressed in terms of the primary sources p), the intensity at
an arbitrary point in the medium can be found from Eqns
(2.12), (2.13).

Equation (2.15) was obtained for a fairly general case.
Indeed, the expressions for the scattering operatorV [see Eqn
(2.16)] and for the primary source pS [see Eqn (2.17)] hold for
an arbitrary geometry and inhomogeneity of the radiator; the
medium may be anisotropic with respect to the absorption
and scattering of radiation (a, k, L depend on u); the
scattering may be either elastic or inelastic; the external
illumination may be different at various locations at the
enclosing surface and may vary with the direction and
frequency (IS depends on r 00, u

0
0, n).

Here we are interested in general relations. However, in
solving many practical problems, there is no need for the
general equation obtained. From this equation, various
specific cases with relatively simple expressions for the
scattering operator V and the primary source pS can be
obtained (see, e.g., Ref. [42]).

2.3 Intensity expressed in terms of primary sources
The integral equation of transfer (2.15) is linear in the
radiation flux j. Let us first make use of the general
properties of linear integral equations. Let a primary
radiation source be described by the function pm�r 0; u 0; n 0�.
Any such primary source guarantees the appearance of
radiation flux jm at an arbitrary point in the radiator. The
sum of fluxes jm corresponds to the sum of primary sources.
Using Eqns (2.15) and (2.18) we arrive at the following
expression for the resulting radiation flux from a mixture of
k components at the frequency n and at the point r �, in the
direction u of the ray b (see Fig. 2):

j�r �; u; n� �
X
k

jk�r �; u; n� � jS�r �; u; n� : �2:19�

The substitution of Eqn (2.19) into Eqn (2.12) allows the
intensity to be written as the sum

I�r; u; n� �
X
k

Ik�r; u; n� � IS; scat�r; u; n�

� IS�r0; u; n� exp
�ÿt�r0 ! r; n�� : �2:20�

Here, each intensity Ik is determined by the primary
radiation of the kth component of the mixture in the entire

volume v of the radiator. The intensity IS; scat is determined by
the passage, at (r; u; n), of the radiation from the entire surface
S after being scattered in the medium. The last term in Eqn
(2.20) describes the passage of radiation from the surface S to
the same point with the same direction and frequency, but
without interaction with themediumÐwhich is possible only
from the surface point r0 if the initial direction of radiation is u
and its frequency is n.

In order to express the intensities Ik, IS in terms of primary
sources, it is necessary to express jm explicitly in terms of pm,
i.e., to solve Eqn (2.15). One way to do this is to find the
response function for a unit primary source (Green function)
and then towrite down the general expression for the required
function.

Let G��r 0; u 0; n 0� ! �r �; u; n�� be the Green function
describing the response, in the vicinity of �r �; u; n�, to a unit
source of radiation located in the vicinity of �r 0; u 0; n0�. The
initial and the final point can be chosen arbitrarily. Here, the
final point �r �; u; n� is taken to be on the ray b for future
convenience.

The Green function has a probabilistic meaning, namely

G
��r 0; u 0; n 0� ! �r �; u; n�� d3r 0 du 0 dn 0

is the probability that the radiation emitted in the vicinity of
�r 0; u 0; n 0�within a volume element d3r 0, a solid-angle element
du 0, and a frequency element dn 0 will arrive, via arbitrary
paths, at the point r � and will be scattered there by the
medium, in the direction u, with the frequency n, within unit
volume, solid angle, and frequency ranges. No intermediate
hits on the surface between �r 0; u 0; n 0� and �r �; u; n�will occur,
since in the problem under study all possible reflections of the
radiation from the surface S have already been taken into
account by the specified intensity of radiation from the
surface IS. The equation for the Green function G can be
constructed based on the equation to be solved, i.e., Eqn
(2.15) in our case. Let us now write

G
��r 0; u 0; n 0� ! �r �; u; n��

� V
�
G
��r 0; u 0; n 0� ! �r 00; u 00; n 00��	

� d
��r 0; u 0; n 0� ÿ �r �; u; n�� �2:21�

and show that this equation is in line with the meaning of the
Green function as described above [50, 51].

The passage of radiation from �r 0; u 0; n 0� through the
scattering medium with a final scattering event at r � is
described by the scattering operator V. The Dirac function
accounts for the possibility of the appearance of primary
radiation of unit intensity at �r 0; u 0; n 0� � �r �; u; n�. The
scattering operator V can be written as (see Fig. 2)

V
�
G
��r 0; u 0; n 0� ! �r 00; u 00; n 00��	

�
� r �

r 00
0

dr 00
�
4p
du 00

�
Dn
dn 00 G

��r 0; u 0; n 0� ! �r 00; u 00; n 00��
� exp

�ÿt�r 00! r �; n 00�� a�r �; u 00; n 00�L�r �; u 00! u; n 00! n� :
�2:22�

The integrand is the probability that the radiation
traveling from �r 0; u 0; n 0� to �r �; u; n� will pass through an
arbitrary intermediate point r 00 on the ray b 00, where the
radiation has the direction u 00 and the frequency n 00. This can
be seen if we note that G��r 0; u 0; n 0� ! �r 00; u 00; n 00�� is the
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probability of passage via arbitrary paths from �r 0; u 0; n 0� to
�r 00; u 00; n 00�; exp �ÿt�r 00 ! r �; n 00�� is the probability of pas-
sage from r 00 to r � along the ray b 00 without interacting with
the medium; and a�r �; u 00; n 00�L�r �; u 00! u; n 00! n� is the
probability of scattering at the point r � in the direction u
with frequency n. These events are independent, so that the
probability that all these events occur jointly is given by the
product of the probabilities of the individual events.

The radiation we are consideringmay reach the point r � in
the above-described way, passing through various points r 00

with various frequencies n 00. These are mutually exclusive
events. The probability that all these events occur in
combination is determined by the sum of the probabilities of
the individual events. Therefore, the integration over the
points r 00 on the ray b 00, over all rays passing through r �

(i.e., over u 00), and over all possible intermediate frequencies
n 00 takes into account all possible appearances, at �r �; u; n�, of
the radiation that appeared earlier at �r 0; u 0; n 0�. Thus, the
above equation does indeed agree with the already noted
probabilistic interpretation of the Green function.

Given themeaning of the response function, one can write
down the solution to Eqn (2.15) for arbitrary primary
radiation in the volume pm�r 0; u 0; n 0�. In the vicinity of r �, in
the direction u, and at the frequency n, we have

jm�r �; u; n� �
�
v

d3r 0
�
4p
du 0

�
Dn
dn 0 pm�r 0; u 0; n 0�

� G
��r 0; u 0; n 0� ! �r �; u; n�� : �2:23�

Here d3r 0 is a volume element around the point r 0. The
integration extends over the entire volume v, all possible
initial directions u 0 at the point r 0 and all frequencies n 0. The
component of the intensity at �r; u; n� determined by the
primary source pm can be obtained by the substitution of
Eqn (2.23) into the integral in the right-hand side ofEqn (2.12)
and can be written in the form

Im�r; u; n� �
�
v

d3r 0
�
4p
du 0

�
Dn
dn 0

�
� r

r0

dr � im
��r 0; u 0; n 0� ! �r �; u; n� ! �r; u; n�� ; �2:24�

where

im
��r 0; u 0; n 0� ! �r �; u; n� ! �r; u; n��
� pm�r 0; u 0; n 0�P

��r 0; u 0; n 0� ! �r �; u; n� ! �r; u; n��; �2:25�
P
��r 0; u 0; n 0� ! �r �; u; n� ! �r; u; n��
� G

��r 0; u 0; n 0� ! �r �; u; n�� exp �ÿt�r � ! r; n�� : �2:26�

The function im
��r 0; u 0; n 0� ! �r �; u; n� ! �r; u; n�� repre-

sents the contribution to the intensity Im from the radiation
that first appeared in unit volume, solid angle, and frequency
elements about �r 0; u 0; n 0� and then passed through the
scattering medium to the point r �, where it underwent its
last scattering before reaching the point of observation
�r; u; n�. The integrations in Eqn (2.24) take into account all
possibilities of the primary appearance of radiation as well as
all possible points of the last scattering on the ray b. The
meaning of the functionP can be understood from expression
(2.25) and the probabilistic interpretation of the Green
function; specifically,

P
��r 0; u 0; n 0� ! �r �; u; n� ! �r; u; n��

is the probability density for the radiation passage, via
arbitrary paths, from �r 0; u 0; n 0� to r �, scattering at the point
r � in the direction uwith the frequency n, and arrival at �r; u; n�
without interacting with the medium again.

Expressions (2.24) ± (2.26) also describe the intensities of
the scattered external radiation. These can be obtained by
substituting Eqn (2.17) into Eqn (2.23) and substituting the
result into Eqn (2.12), which yields

IS; scat�r; u; n� �
�
S

d2r 00

�
v

d3r 0

�
�
Dn
dn 00 iscat

��r 00; u 00; n 00� ! �r 0� ! �r; u; n�� ; �2:27�

where

iscat
��r 00; u 00; n 00� ! �r 0� ! �r; u; n��
� IS�r 00; u 00; n 00�Pscat

��r 00; u 00; n 00� ! �r 0� ! �r; u; n��: �2:28�
Here iscat��r 00; u 00; n 00� ! �r 0� ! �r; u; n�� is the contribution to
IS; scat�r; u; n� from the primary radiation that originated on
the surface S around �r 00; u 00; n 00�, was scattered first at the
point r 0, and then passed through the medium to �r; u; n�. We
omit here the cumbersome expression for Pscat and note only
that it includes integrations over u 0, n 0 from Eqn (2.23) and
over r � from Eqn (2.12). Each first-scattering location r 0 has
its own corresponding direction u 00 of the initial radiation at r

0
0

(see Fig. 2). Therefore, the integrations over r 0 in Eqn (2.27)
also take into account all initial directions u 00 for any given r 00.
The probabilistic interpretation of the function Pscat is
analogous to that of P, with the difference that Pscat includes
only the probabilities of radiation passing from �r 00; u 00; n 00� to
�r; u; n� after being scattered somewhere inside the volume v.

Thus, the components Ik, IS; scat, ik, iscat of the total
radiation intensity I are now expressed in terms of the
primary sources pk of radiation in the volume and in terms
of the external illumination intensity IS. The intensity
components are related to the primary radiation through the
probabilities for radiation to pass through its point of origin
to the point of observation.

We next write down the expression for the total intensity
substituting the expression (2.24) for m � k and Eqn (2.27)
into Eqn (2.20). This yields

I�r; u; n� �
X
k

�
v

d3r 0
�
4p
du 0

�
Dn
dn 0

�
� r

r0

dr � ik
��r 0; u 0; n 0� ! �r �; u; n� ! �r; u; n��

�
�
S

d2r 00

�
v

d3r 0
�
Dn
dn 00 iscat

��r 00; u 00; n 00� ! �r 0� ! �r; u; n��
� IS�r0; u; n� exp

�ÿt�r0 ! r; n�� : �2:29�

Similar intensity expressions are obtained in Refs [50, 51]
for the case of the refractive index n varying over the medium.
Expressions (2.24) ± (2.29) simplify in special cases. Let us
consider two of them.

(1) In elastic scatterings �n � n 0�, all integrations over n 0
drop out. This results from the use of Eqn (2.4) with the d
function: after integrating over frequency, only integrands for
n 0 � n survive. (It is recognized that the frequency interval Dn
covers all possible frequencies and can be extended down to 0
and up to1.)
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(2) If there is no scattering (l � L � 0), then, instead of
Eqn (2.21) describing the Green function, we obtain

G
��r 0; u 0; n� ! �r �; u; n�� � d

��r 0; u 0; n� ÿ �r �; u; n�� : �2:30�
Upon substituting this into Eqn (2.26), substituting the result
into Eqns (2.25) and (2.24), and carrying out the integration
for m � k, we find

Ik�r; u; n� �
� r

r0

pk�r �; u; n� exp
�ÿt�r � ! r; n��dr � : �2:31�

This is a well-known expression, applied in many cases to
radiating and absorbing non-scattering media.

3. Relations between radiation
intensity components

3.1 Equilibrium relations
Let us discuss briefly the successive steps in the derivation of
relations between the intensity components due to different
primary radiation sources. First, from the thermodynamic
equilibrium conditions for a closed isothermal cavity, equili-
brium relations between the thermal radiation components Ik
and IS were obtained for various cases [42, 47 ± 49]. The
specific cases differed in the characteristics of themedium and
of the radiation ±material interaction (we considered elastic
and inelastic scattering, isotropic and anisotropic optical
characteristics, and different refractive indices for the
passage of radiation between scattering events). Next,
relations between the partial intensities ik, iS were derived
along the same lines [50, 51]. Let us explain how the
equilibrium relations can be obtained.

Primary sources in the case of thermal radiation are
described by the classical Kirchhoff ±Clausius law. In the
above notation, the rate of the primary emission of radiation
by the kth material component can be written as

pk�r; u; n� � kk�r; u; n� n 2�n� I 0
�
Tk�r�; n

�
: �3:1�

Recall that, if the temperature variations are smooth
enough, such expressions can also be applied locally to a
nonisothermal medium. If the primary radiation from an
object is determined by its temperature, both the object and
radiation are called thermal, whether the internal temperature
of the object varies or not. For any object containing a
radiating, absorbing, and scattering medium, thermal radia-
tion can be described by the expressions which were obtained
in Section 2.3 from the equations of transfer. For the primary
radiation, Eqn (3.1) should be used. Such a description can be
applied, in particular, to the radiation in a closed cavity
containing the medium. If the temperature T of all compo-
nents of the medium and of the cavity surface is everywhere
the same, then the total radiation intensity at arbitrary points
inside the medium and near the surface is equilibrium and
isotropic, and, for a fixed refractive index of the medium n, is
determined by the following equalities:

Ieq�T; n� � IS; eq�T; n� � n 2�n� I 0�T; n� : �3:2�

Many important relations (including the Kirchhoff ±
Clausius law) were derived from the detailed balancing
principle, valid under the conditions of thermal equilibrium.

In deriving equilibrium conditions between the components
originating from various parts of the radiator, the detailed
balancing principle was not employed. In all the above-
mentioned studies, only the known equilibrium values of the
resulting total intensity (3.2) were used. This approach was
used earlier to find equilibrium relations between the
individual terms of the integral transfer equation, for which
purpose the equilibrium fluxes were introduced into the
equation itself. In the theory of radiative heat transfer, the
closure conditions were obtained precisely in this way [9, 52,
53]. In Refs [54, 55], the closure conditions serve to relate the
resolvents of the integral transfer equations. The known
equilibrium value of the thermal radiation intensity was also
used in Ref. [56] to relate two equilibrium radiation
components Ð the primary component and that scattered
by the medium.

In Refs [42, 47 ± 51], the general solutions of the
equation of transfer were equated to the equilibrium
intensities in order to obtain equilibrium relations between
the intensity components of different nature. Then both
sides of the equality were divided by the equilibrium
intensity, which yielded equilibrium relations between the
relative intensity components (here, we use this procedure
only in Section 5.3, in the case where geometrical optics
does not work). Since the relative components do not
depend directly on temperature but are determined by the
optical parameters of the radiation ±matter interaction, it
was concluded that the equilibrium relations could also be
applied to nonisothermal objects provided the temperature
changes do not appreciably affect the optical parameters.
The range of applicability of the equilibrium relations is
limited by the following conditions. First, the relations
apply only to thermal radiation. Second, a closed radiating
surface must surround the radiator. And finally, the method
used to obtain the relations also poses restrictions on their
applicability to a nonisothermal radiator.

Following this, a method based on the probabilistic
description the stationarity conditions for radiation was
proposed to obtain the relations of interest [57, 58]. This
approach dramatically extended the range of validity of the
resulting relations. The primary radiation might now be
arbitrary in its nature and not necessarily thermal. A closed
radiating surface around the radiator was no longer needed.
The confining surface was allowed to be partially or fully
transparent and not necessarily illuminated from the outside.
Also the above-mentioned restriction on the variations in the
thermal-radiator temperature was removed. This methodwas
used to obtain stationary relations between the thermal-
radiation components [57, 58]. In Refs [59, 60], it was even
extended to the case of arbitrary primary radiation.

In Section 3, the secondmethodwill be used. On this basis,
stationary relations will be derived, and it will be shown that
the equilibrium relations can be obtained from the stationary
ones in some special case. As before, the geometrical-optics
approximation will be assumed applicable.

3.2 Radiation disappearance probability
Let us consider a flux of radiation passing through a certain
region in a certain direction at a given frequency. Any such
flux is produced by the radiation that first originated
somewhere and then passed to the region in question. The
primary radiation results from the conversion of the energy of
the material into radiation energy inside the radiator or,
alternatively, enters from the outside. On the other hand,
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the radiation flux under study disappears. This may be due to
the absorption of energy by matter in various parts of the
radiator as well as to the escape of radiation from the object.
In a stationary object, the radiation that appears at some rate
completely disappears at the same rate. This also refers to the
radiation that forms the flux under study, in particular, to its
intensity at any place and in any direction. To decide what
time periods can be reasonably chosen in the problem, note
that the theory of transfer deals with the radiation averaged
over times much longer than the radiation oscillation period
nÿ1 and than the time scales for the appearance, disappea-
rance, and propagation of radiation in the object. Conse-
quently, the appearance and disappearance processes can be
regarded as instantaneous and simultaneous.

In general, the appearance of radiation in a given part of
the object is not compensated by the disappearance of the
same amount of radiation in the same part, i.e., there is no
detailed balance in the system. The appearance of radiation at
a certain place may be compensated by disappearance
processes anywhere inside or outside the object.

To obtain stationary relations, we will employ a probabil-
istic description of radiation. In Section 2.3, by writing the
general solutions of the transfer equations in terms of the
Green function, we expressed radiation intensity components
in terms of the primary sources and the probabilities for
radiation passage through the material [see Eqns (2.24) ±
(2.28)]. On the other hand, from it follows what the above
consideration of a stationary radiator that the disappearance
of the radiation emerging in a stationary object is a certain
event. As known from the probability theory, the probability
of such an event is unity [61]. This result can be applied to the
probability of disappearance of any radiation flux that
appears under stationary conditions, and it is this circum-
stance that will serve as the basis for the derivation of the
relations in question.

Formulating equations for the probability of a process
usually requires a detailed account of all events involved in
the process and a knowledge of the probability of each of
them. In what follows, only two statements of the probability
theory will be used: (1) the probability of a combination of
independent events equals the product of the probabilities of
all these events and (2) the probability of a combination of
mutually exclusive events equals the sum of the probabilities
of these events. These statements have already been used in
interpreting the equations and functions of relevance in
Section 2.

We take advantage of the fact that we can consider the
disappearance probability for radiation of any direction and
any frequency arriving from wherever we wish and at any
place within the stationary object. At the point of observation
r, we will consider the radiation that has a frequency n and
whose direction is �ÿu�, opposite to the direction of
observation assumed for the expressions for intensity
obtained above [Eqns (2.24) ± (2.29)]. Let us first discuss the
probability of this radiation disappearing due to absorption
within a unit volume about an arbitrary point in the medium.
This probability is determined by the following set of
successive independent events:

(1) Radiation comes from the point r to an arbitrary point
r � on the ray b (see Fig. 2) without interacting with the
medium.

(2) At the point r �, the first scattering event takes place.
(3) After being scattered at r �, the radiation comes via an

arbitrary path, undergoing scatterings in between, to the

neighborhood of an arbitrary point r 0 within a unit cross
section, in the direction �ÿu 0� and with a frequency n 0.

(4) In the neighborhood of the point r 0 the radiation is
absorbed over a unit length.

We next introduce notation for the probabilities of
various groups of events in the above set and then derive
equations relating them.

Let

Pabs

��r;ÿu; n� ! �r �;ÿu; n� ! �r 0;ÿu 0; n 0��
describe the probability of the set of all the events (1) ± (4);

P
��r;ÿu; n� ! �r �;ÿu; n� ! �r 0;ÿu 0; n 0��

be the same for events (1) ± (3);

g
��r �;ÿu; n� ! �r 0;ÿu 0; n 0��

be the same for events (2) and (3); and finally, let

k�r 0;ÿu 0; n 0�

be the absorption coefficient determining the probability of
event (4).

These probabilities should actually be understood as
probability densities, Pabs referring to unit volume, and P
and g, to a unit area about the end point r 0 of the path of
radiation. We will ignore this refinement for the sake of
brevity.

From the above definitions, the relations between the
introduced probabilities of independent events follow imme-
diately:

Pabs

��r;ÿu; n� ! �r �;ÿu; n� ! �r 0;ÿu 0; n 0��
� P

��r;ÿu; n� ! �r �;ÿu; n� ! �r 0;ÿu 0; n 0�� k�r 0;ÿu 0; n 0�;
�3:3�

P
��r;ÿu; n� ! �r �;ÿu; n� ! �r 0;ÿu 0; n 0��
� g
��r �;ÿu; n� ! �r 0;ÿu 0; n 0�� exp�ÿt�r! r �; n��: �3:4�

We now write down the equation that the function gmust
satisfy,

g
��r �;ÿu; n� ! �r 0;ÿu 0; n 0�� �
� V

�
g
��r 00;ÿu 00; n 00� ! �r 0;ÿu 0; n 0��	

� d
��r �;ÿu; n� ÿ �r 0;ÿu 0; n 0�� ; �3:5�

and explain its meaning.
The probability of radiation passing through the medium

after being scattered first at �r �;ÿu; n� is described by the
scattering operator V, which can be written in the form

V
�
g
��r 00;ÿu 00; n 00� ! �r 0;ÿu 0; n 0��	
�
� r �

r 00
0

dr 00
�
4p
d�ÿu 00�

�
�
Dn
dn 00g

��r 00;ÿu 00; n 00� ! �r 0;ÿu 0; n 0��
� exp

�ÿt�r � ! r 00; n 00�� a�r �;ÿu; n�
� L�r �;ÿu! ÿu 00; n! n 00�: �3:6�
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The multipliers in the integrand determine the probabil-
ities of the following successive independent events (from left
to right):

a�r �;ÿu; n�L�r �;ÿu! ÿu 00; n! n 00� is the probability
that the first scattering event occurs at r �;

exp
�ÿt�r � ! r 00; n 00�� is the probability that radiation

passes along the ray b 00 from r � to r 00 without interacting
with the medium;

g
��r 00;ÿu 00; n 00� ! �r 0;ÿu 0; n 0�� is the probability that a

scattering event occurs at r 00 and is followed by an arbitrary
passage from �r 00;ÿu 00; n 00� to �r 0;ÿu 0; n 0�.

The intermediate point r 00may lie anywhere on the ray b 00,
the ray b 00 may pass through r � in any direction �ÿu 00�, and
frequencies n 00 may differ. Since events differing in the values
of r 00;ÿu 00; n 00 are mutually exclusive, the probability of a set
of such events should be obtained by integrating over them.

Thus, the scattering operator (3.6) takes into account all
possibilities of radiation passing from �r �;ÿu; n� to
�r 0;ÿu 0; n 0� after being scattered in the medium.

Equation (3.5) takes into account the possibility that the
initial �r �;ÿu; n� and final �r 0;ÿu 0; n 0� points may coincide.
In this case, as described by the scattering operator, radiation
may pass through the scattering medium and return to
�r �;ÿu; n�; however, direct absorption at the initial point,
without the random walk of radiation within the medium, is
also possible. It is the d function in Eqn (3.5) that allows for
such a possibility. The probabilities of all these mutually
exclusive events are add up, thus yielding the right-hand side
of Eqn (3.5).

The functions P and g give the probabilities that the
radiation under study will reach the vicinity of r 0. The
probability of arrival and absorption in a unit volume in this
region is given by Eqn (3.3). Absorption by various material
components at various locations r 0 with different frequencies
n 0 and directions �ÿu 0�, as well as the first scattering at
various positions r � on the ray b, are mutually exclusive
events; therefore, the total probability of radiation from
�r;ÿu; n� being absorbed by the whole of the medium can be
written in the form

Pv; abs�r;ÿu; n� �
X
k

Pk; abs�r;ÿu; n�

�
X
k

�
v

d3r 0
�
4p
du 0

�
Dn
dn 0

�
� r

r0

dr � P
��r;ÿu; n� ! �r �;ÿu �; n� ! �r 0;ÿu 0; n 0��

� kk�r 0;ÿu 0; n 0� : �3:7�

Here, expression (2.10) for the absorption coefficient was
used, and the integration variable �ÿu 0� was replaced by u 0,
which is allowable because the integration extends over all
angles.

In a similar way, we write the expression for the
probability that radiation will disappear on the enclosing
surface S after being scattered within the volume. Since all the
radiation reaching the surface disappears there (the radiation
from the surface IS is specified in the problem), we have

PS; scat�r;ÿu; n� �
�
S

d2r 00

�
v

d3r 0

�
�
Dn
dn 00 Pscat

��r;ÿu; n� ! �r 0� ! �r 00;ÿu 00; n 00�� : �3:8�

For the sake of brevity, Pscat incorporates the probabilities of
scattering at the point r 0 into various directions with various
frequencies as well as the probabilities of the first scatterings
occurring at various points r � on the ray b.

The complete disappearance of radiation emerging under
stationary conditions is a certain event. Its probability is
determined by all mutually exclusive disappearances both in
the volume and on the surface. Note that radiation may have
been either scattered or not in the medium before arriving at
the surface. In the case of no scattering, the arrival probability
is determined by the exponential of the optical density. Since
the probability of a certain event is unity, the condition for the
complete disappearance of radiation can be written as

Pv; abs�r;ÿu; n� � PS; scat�r;ÿu; n� � exp
�ÿt�r! r0; n�

� � 1 :

�3:9�

This equality will be used below as the basis for deriving
stationary relations.

3.3 Stationary relations between intensity components
To obtain a stationary relation, we need to introduce intensity
components into the condition (3.9). To do this, we compare
the equations for the probabilities of radiation disappearance
with those for the radiation intensity. We start by comparing
Eqns (3.5) and (3.6), which determine the probability g, with
Eqns (2.21) and (2.22), which give the Green function for the
transfer equation. It can easily be verified that the equations
are completely identical if the reciprocity relation (2.7) or
(2.9) is satisfied and if the radiation is equally attenuated
when traveling in opposite directions along an arbitrary ray,
i.e., the following reversibility conditions are met:

k�r; u; n� � k�r;ÿu; n� ;
a�r; u; n� � a�r;ÿu; n� ; �3:10�
exp
�ÿt�r1 ! r2; n�

� � exp
�ÿt�r2 ! r1; n�

�
:

These conditions may be violated in highly anisotropic
media.

If the equations for the functionsG and g are identical, we
have

g
��r �;ÿu; n� ! �r 0;ÿu 0; n 0�� � G

��r 0; u 0; n 0� ! �r �; u; n�� :
�3:11�

If this equality holds, we find, comparing Eqns (2.26) and
(3.4) and using Eqn (3.10) again, that

P
��r;ÿu; n� ! �r �;ÿu; n� ! �r 0;ÿu 0; n 0��
� P

��r 0; u 0; n 0� ! �r �; u; n� ! �r; u; n�� : �3:12�

In a similar way, we establish the equality of the
probabilities of radiation passing between an arbitrary point
on the surface and any point inside the volume. We present
this result without derivation:

Pscat��r;ÿu; n� ! �r 0� ! �r 00;ÿu 00; n 00�
�

� Pscat

��r 00; u 00; n 00� ! �r 0� ! �r; u; n�� : �3:13�

Equations (3.12) and (3.13) imply that the probabilities
that radiation passes from one arbitrary point in the
scattering media to another and back are equal. These
equalities follow from the fact that the reciprocity relations
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are obeyed in every scattering event in the medium and that
the reversibility conditions (3.10) hold.

Using Eqns (3.7), (3.8), equalities (3.12), (3.13), and
expressions (2.25), (2.28), we can introduce the partial
radiation components ik, iscat into the stationarity condition
(3.9). In doing this, it should be kept in mind that iscat is
determined only by that part of the enclosing surface which is
illuminated from the outside or radiates. In the general case,
the closed surrounding surface can be divided into two parts,

S � Srad � Sex ;

where Srad supplies radiation to the volume (and IS 6� 0 on it),
whereas, from Sex, radiation is not supplied but it only
escapes through it from the volume (IS � 0 there). The
surface may be either fully absorbing and cold or transparent
and not illuminated from the outside. Accordingly, we should
divide the region of surface integration in Eqn (3.8) into two
parts and then introduce iscat only into that part which
radiates or is illuminated from the outside. The result isX
k

�
v

d3r 0
�
4p
du 0

�
Dn
dn 0

�
� r

r0

dr �
ik
��r 0; u 0; n 0� ! �r �; u; n� ! �r; u; n�� kk�r 0; u 0; n 0�

pk�r 0; u 0; n 0�

�
�
Srad

d2r 00

�
v

d3r 0
�
Dn
dn 00

iscat
��r 00; u 00; n 00� ! �r 0� ! �r; u; n��

IS�r 00; u 00; n 00�
� PSex

�r;ÿu; n� � exp
�ÿt�r! r0; n�

� � 1 : �3:14�

Here, PSex
�r;ÿu; n� is the probability that radiation arrives at

the transmitting surface Sex after being scattered inside the
medium. This probability is given by a formula of the form
(3.8), but with the integration extending over Sex rather than
S. In writing the absorption coefficient kk, the first of the
equalities (3.10) was used here.

Equation (3.14) is the condition of the stationarity of
radiation and describes relations between the partial intensity
components ik and iscat in the general case. In Ref. [59], the
stationarity condition is also obtained for the special case of
the refractive index n varying over the medium.

Let us now discuss the meaning of the quantities involved
in Eqn (3.14). First, we note that the emissivity-to-absorptiv-
ity ratio pk=kk is equal to the intensity of the kth component of
the primary radiation that appears in a volume of unit cross
section of thickness kÿ1k . Hence, ikkk=pk in Eqn (3.14) is the
ratio of the intensity component ik to the intensity of the kth
component of the corresponding primary radiation. Further,
iscat=IS is the ratio of the component iscat of the scattered
radiation of the surface to the intensity of its primary
radiation. The exponential term is the ratio between the
intensity component that has passed from r0 to the observa-
tion point r without interacting with the medium and the
primary radiation from the surface.

Equation (3.14) involves quantities that are the subject of
both computational and experimental spectroscopic studies.
In experiments, one can directly measure the intensity IS of
the outside radiation, the optical densities t, and the
integrated intensities I given by Eqn (2.20). Also the escape
probability PSex

�r;ÿu; n� can be measured (see Section 4.4).
Such intensity components as ik and IS, as well as the ratio
pk=kk, usually cannot be measured directly, but often should
be found based on other measurements. Relation (3.14) may
be useful for this purpose.

It is important point to note that Eqn (3.14) can readily be
transformed based on its probabilistic interpretation. Only
one example will be discussed here. Let a certain part vnonrad
of the volume radiate so little that the corresponding intensity
component cannot be detected experimentally. On the other
hand, the absorption of radiation may be significant in this
area. This may occur if some part of the thermal radiator is
much cooler than the rest of it. Then, formally, Eqn (3.14)
acquires an indefiniteness of the type ik=pk � 0=0 associated
with the volume vnonrad. This indefiniteness can be taken into
account in the following way. The integral over the volume
vnonrad in relation (3.14) equals the probability Pvnonrad of
absorption in this volume. It can be separated out from the
total absorption probability excluding vnonrad from the region
of integration. Instead, Eqn (3.14) will explicitly involve the
probability Pvnonrad along with the term PSex

. This representa-
tion may prove to be more suitable for specific problems.

3.4 Special cases of the stationary relation
Relation (3.14) is fairly general and has a wide range of
applicability. In applications, however, there is no need for
that much generality. For elastic scattering, as in the case of
describing the radiation intensity (Section 2.3), all integra-
tions over frequency disappear in Eqn (3.14). For a radiator
open on all its sides and not illuminated from the outside, the
term containing the integral over the surface Srad vanishes.
Finally, the probability of escaping from the object is often
zero, PSex

�r;ÿu; n� � 0. This in the case, first, if the entire
surrounding surface S radiates or is illuminated from the
outside. Second, even in the cases in which a nonradiating
surface Sex is present, radiation from �r;ÿu� can by no means
always reach this surface. There are a number of reasons for
this. For example, if the optical density of the radiator is high
and absorption significant, then radiation may be completely
attenuated on its way to the surface Sex. Conversely, if the
optical density is low and scattering occurs only at small
angles relative to the initial direction �ÿu�, then the radiation
under study comes only to that part of the surface which faces
the observer. If the nonilluminated surface Sex is outside this
part, the radiation will not reach it. In both cases,
PSex
�r;ÿu; n� � 0.
Let us specify the emissivity-to-absorptivity ratio �pk=kk�

for two practically important cases. First, in the case of
thermal radiators, the primary radiation from each compo-
nent is determined by theKirchhoff ±Clausius law (3.1). Then

pk�r 0; u 0; n 0�
kk�r 0; u 0; n 0� � n 2�n 0�I 0

�
Tk�r 0�; n

�
: �3:15�

Second, consider radiation from a gas. The distribution of
populations over atomic and molecular energy levels may be
either equilibrium or nonequilibrium. The ratio of the
emissivity to the true absorptivity can be obtained for each
kth gas species through the use of the Einstein relations (see,
e.g., Ref. [62]). It is determined by the ratio of the populations
�N� of the energy levels between which the radiation ±
absorption transition takes place. Let l and u be the lower
and upper levels of the given transition for the kth component
of the gaseous mixture. Then we can write

pk�n 0� � auÿlhn 0Nu

4p
;

kk�n 0� � c 2

8p�n 0�2
gu
gl

auÿlNl

�
1ÿ glNu

guNl

�
:
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Here, auÿl is the probability of a spontaneous radiative
transition from the upper to the lower level, and gu, gl are
the statistical weights of the levels. From this, we obtain

pk�r 0; u 0; n 0�
kk�r 0; u 0; n 0� �

2hn 0 3

c 2

�
guNl�r 0�
glNu�r 0� ÿ 1

�ÿ1
: �3:16�

For Boltzmann-distributed energy levels, Eqn (3.16) goes
over into Eqn (3.15) for n � 1 and the corresponding
temperature. The temperature that appears in Eqn (3.15)
and the population ratio that appears in Eqn (3.16) are often
of interest to experimenters. Determining them for scattering
media is a quite complex task. Relation (3.14), in which both
these quantities are directly involved, may be helpful in
solving such problems.

Note that, in both cases discussed, the small frequency
changes due to scattering, as well as radiation direction
changes, have virtually no effect on the ratio pk=kk, although
each of the quantities pk and kk may strongly depend on the
frequency and direction. The reason is that the dependences
are almost the same for both quantities. This invariance of the
ratio pk=kk over frequency and direction changes is a fairly
characteristic feature of the problem.

Next we turn to those special cases of the stationary
relation (3.14) which are related to primary radiator char-
acteristics.

(1) Let pk=kk be independent of coordinates, i.e., the
relative level populations (or the corresponding tempera-
tures) of each kth material component do not vary inside the
radiator. Then the ratio pk=kk can be taken out of the integral
signs in each term in the sum

P
k. Also, let the surface Srad

radiate uniformly and isotropically, and suppose that its
radiation depends weakly on frequency, i.e., IS does not
depend on (r 00; u

0
0; n
0
0). Then IS can be taken out of the integral

signs in the second term on the left. After that, it can easily be
verified that the integrals represent the intensities Ik and IS; scat
in accord with Eqns (2.24) and (2.27). In view of this, instead
of Eqn (3.14), we obtainX

k

�
pk
kk

�ÿ1
Ik�r; u; n� � IS; scat�r; u; n�

IS

� PSex
�r;ÿu; n� � exp

�ÿt�r! r0; n�
� � 1 : �3:17�

Similar relations can also be obtained in this same way if
the ratio pk=kk or the intensity IS do not vary inside individual
parts of the volume or the surface. We can then separate out
the intensities of the corresponding parts in Eqn (3.14). Such a
transformation will be used later in Section 4.2.3.

(2) Let the radiator be thermal and surrounded by a closed
radiating wall. Then we should use Eqn (3.15) to express the
ratio pk=kk, and the primary thermal radiation from the
surface should be described by the well-known formula

IS�r0; u0; n� � n 2�n� I 0
�
T�r0�; n

�
[cf. Eqn (3.2)]. Furthermore, since the surface is closed, we set
PSex
� 0 and Srad � S. In this case, Eqn (3.14) immediately

yields the component ± component relation obtained earlier
from the radiation equilibrium condition for a cavity
containing a radiating, absorbing, and scattering medium
[50, 51].

Instead of Eqn (3.17), we haveX
k

Ik�r; u; n�
n 2�n�I 0�Tk; n� �

IS; scat�r; u; n�
n 2�n�I 0�TS; n� � exp

�ÿt�r! r0; n�
� � 1 :

�3:18�

Such conditions were derived earlier [42, 47 ± 49] for the
conditions of thermodynamic equilibrium in a cavity.

(3) In real objects, the primary radiation characteristics
pk=kk and IS usually vary over the bulk and surface of the
object. However, one is often concerned with and employs the
primary radiation characteristics averaged over volume and
surface. The observed radiation should remain unchanged
upon averaging. This refers to both the total radiation and its
components. Using such averages, we can obtain compo-
nent ± component relations from Eqn (3.14). Sometimes, k, a,
L Ð the optical characteristics of the radiation ±matter
interaction Ð are also averaged to simplify the problem.
Below the relations between the components will be found
without this simplification, assuming that the interaction of
radiation with the material does not change on averaging. In
this case, the probabilities of radiation passing from one
location to another, as well as of its passing and being finally
absorbed, also remain unchanged.

We now write the radiation intensity for the kth
component. We use Eqns (2.24) and (2.25) with m � k and
Eqns (3.3) and (3.12), and employ averaging as indicated
above, to obtain

Ik�r; u; n� �
�
v

d3r 0
�
4p
du 0

�
Dn
dn 0

�
� r

r0

dr �
pk�r 0; u 0; n 0�
kk�r 0; u 0; n 0� kk�r

0; u 0; n 0�

� P
��r 0; u 0; n 0� ! �r �; u; n� ! �r; u; n��

�
�
pk
kk

�
eff

Pk; abs�r;ÿu; n� : �3:19�

Here, Pk; abs�r;ÿu; n� is the probability of the entire kth
component absorbing the radiation from �r;ÿu; n�, and
� pk=kk�eff is the effective (averaged) emissivity-to-absorpti-
vity ratio of the kth component of the medium.

Asmentioned earlier, the volume averagemay be of prime
importance, since the emissivity-to-absorptivity ratio nor-
mally depends weakly on the direction and, within the range
Dn, on the frequency. In the case of thermal radiators, the
counterpart of the effective value � pk=kk�eff is the averaged
effective temperature of the kth component Tk; eff and, in the
case of atomic-line emission, the effective ratio of the
populations of the atomic-transition levels, �Nu=Nl�eff.

In a similar way, we can introduce the effective (averaged)
radiation intensity of the surrounding surface S with the use
of Eqns (2.27), (2.28), (3.8), and (3.13):

IS; scat�r; u; n� �
�
Srad

d2r 00

�
v

d3r 0
�
Dn
dn 00 IS�r 00; u 00; n 00�

� Pscat��r 00; u 00; n 00� ! �r 0; u 0; n 0� ! �r; u; n�
�

� ISeff

�
S

d2r 00

�
v

d3r 0

�
�
Dn
dn 00 Pscat

��r;ÿu; n� ! �r 0;ÿu 0; n 0� ! �r 00; u 00; n 00��
� ISeff

PS; scat�r;ÿu; n� : �3:20�

The meaning of this averaging is that the real initial radiation
from the surface Srad is distributed uniformly over the entire
closed surface S in such a way that the intensity of the
scattered radiation IS; scat remains unchanged. We apply
Eqns (3.19) and (3.20) to the condition of the full disappea-
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rance of radiation (3.9) and found using Eqn (3.7) that

X
k

�
pk
kk

�ÿ1
eff

Ik�r; u; n� � IS; scat�r; u; n�
ISeff

� exp
�ÿt�r! r0; n�

� � 1 : �3:21�

The quantity PSex
does not appear in this relation, as in the

equilibrium relation between the thermal-radiation compo-
nents (3.18). This is the simplest relationship between the
radiation components. If the initial radiation were averaged
only over the surface Srad, this relation would not differ from
Eqn (3.17).

Let us now discuss some properties of the averaged
characteristics. We consider first the effective emissivity-to-
absorptivity ratio � pk=kk�eff. The way of obtaining this
quantity is determined by Eqn (3.19), which implies that, for
a given observed intensity, the effective ratio depends on the
entire set of local quantities pk=kk for the radiator and on the
probability of radiation passage through the radiator, i.e., on
the radiation-material interaction. If the primary radiation
varies inside the radiator and if the interaction is frequency
dependent, then the effective ratios also can significantly
depend on the frequency, although the corresponding local
ratios, as indicated above, depend only weakly on it.

As an illustration, we consider the radiation in the vicinity
of an atomic spectral line in the case where the intensity
observation point r lies on the periphery of the radiator. The
atomic absorption coefficient in the line depends strongly on
the frequency, increasing rapidly as the center of the line is
approached. Therefore, the closer to the center, the smaller
the fraction of radiation that comes to the observer from
distant regions of the radiator, or, in other words, the lower
the probability P of the arrival of radiation. If the optical
density of the radiator is large enough at the center, then the
center-of-the-line light comes to the observer only from the
radiator periphery closest to him. Let the radiator be thermal.
If the temperature at all depths is the same (i.e., pk=kk is
constant), then frequency changes do not affect the effective
ratio in any way. But if the temperature varies, so does the
effective ratio � pk=kk�eff. To see this, let the temperature in the
central part of the radiator be higher than on the periphery,
where the observer is located. Then the light observed at the
center of the line is that primarily emitted by the cold
peripheral regions of the radiator, whereas at a sufficient
distance from the line center the light is emitted at all depths in
the radiator. Consequently, if the averaging is done according
to Eqn (3.19), then � pk=kk�eff for the center-of-the-line
frequency is smaller than for off-center frequencies.

The frequency dependence of the effective ratio � pk=kk�eff
(i.e., of the effective relative populations or temperatures) can
provide useful information about an inhomogeneous radia-
tor. Based on the above-described effect of frequency on the
radiation output in a spectral line, a method was developed to
study the temperature distributions in thermal radiators in
media with [42] and without [63, 64] scattering. In Section 5.5,
we will return to the question of determining the effective
temperatures at different radiation frequencies in a scattering
medium.

We now consider the effective initial surface intensity ISeff

defined by Eqn (3.20). This quantity was introduced fairly
conventionally: suffice it to say that it is related to the
intensity of the scattered rather than total observed radiation
from the surface. Nevertheless, ISeff

may be a very useful

quantity, since it is fairly easy to measure experimentally (see
Section 4.3) and can be used in Eqn (3.21) to determine other
radiation components. Using ISeff

in this way may emphasize
that part of the frequency dependence of the effective initial
intensity which reflects the averaging procedure rather than
the frequency dependence of the primary radiation, IS�n 00�.
We will discuss this question using Eqns (3.20) and (3.13). Let
the real initial intensity IS�r 00; u 00; n 00� be constant, so that it can
be taken out of the integral signs in the first of the equalities
(3.20). Then

ISeff

IS; scat
� PSrad

�r;ÿu; n�
PSrad
�r;ÿu; n� � PSex

�r;ÿu; n� : �3:22�

We use here the fact that the probability of arrival at the
closed surface S is the sum of the arrival probabilities for the
surfaces Srad and Sex. The above equality implies that the
averaging-induced frequency dependence of ISeff

can be
expected if PSex

6� 0.

4. Application of relations between intensity
components to dusty plasmas

4.1 Conditions in a dusty plasma
The relations obtained above are fairly general and may
therefore be useful in solving radiation-transfer problems
for various objects. In this section, we discuss their applica-
tion to a dusty plasma, i.e., to a two-phase system consisting
of a gas �k � a� and dust particles �k � p�.

Depending on the region of the spectrum, the intrinsic
radiation from a dusty plasma is determined by different
plasma components [42]. Thus, both the atoms (molecules) of
the gaseous phase and dust particles contribute to the
radiation in spectral lines. At the centers of sufficiently
strong lines, the contribution from the gas predominates. In
the continuum, between the lines, the radiation is due to the
particles. Dust particles are responsible for the elastic
scattering of radiation. Elastic scattering by atoms (mole-
cules) is negligible in comparison with that due to macro-
particles. At frequencies within spectral lines, inelastic
scattering on atoms (molecules) may generally be important.
For the problems of interest here, however, inelastic scatter-
ing is of no importance; therefore, only elastic scattering by
macroparticles will be considered in what follows. Also, we
can put n � 1 for gas.

Primary radiation from solid surfaces exposed to a plasma
and dust particles is usually thermal and determined by the
temperatures TS and Tp, respectively. The distribution of
population over atomic (molecular) energy levels in the
gaseous phase can be considered equilibrium only at suffi-
ciently high pressures. Then the radiation of the gaseous
phase is also thermal; it is determined by the temperature Ta.
The dusty plasma is called thermal in this case. The gas
temperatureTa in a thermal dusty plasma usually differs from
the particle temperature Tp and the solid-surface temperature
TS. Torches of combustion products at the atmospheric
pressure are an example of such a plasma. At sufficiently
low pressures, the population distribution over energy levels
is usually nonequilibrium, so that the radiation from atoms is
not thermal. Such a dusty plasma forms, for example, in a
low-pressure discharge.

In experiments with dusty plasmas, one measures the
intensity of the total radiation outgoing from the plasma.
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The point r in this case lies either on the boundary of the
object �r � rS� (see Fig. 2) or outside it. Also, it is usually
possible to measure the optical depth of the plasma, t0�n� �
t�r0 ! rS; n�, between mutually opposite points rS and r0. If
the plasma is surrounded by opaque walls, small optical holes
are usually made in the walls to enable measurements. From
Eqn (2.10), for a dusty plasma, the total optical density t0
within a spectral line can be found to be

t0�n� � ta�n� � tp�n� : �4:1�

In the continuum, t0 � tp.

4.2 Examples of applications of equilibrium relations
to thermal plasmas
In Refs [42, 47 ± 49, 51], possible applications of equilibrium
component ± component relations to calculations and experi-
ments were discussed. Here, we discuss some typical examples
of their application to thermal plasmas. For brevity, we omit
the arguments r and u at the intensity symbols and we rewrite
Eqn (3.18) in the form

Ia�n�
I 0�Ta; n� �

Ip�n�
I 0�Tp; n� �

IS; scat�n�
I 0�TS; n� � exp

�ÿta�n� ÿ tp�n�
� � 1 :

�4:2�

4.2.1 Computation error determination. Since the compo-
nent ± component relations are exact and independent of the
specifics of the radiating object, they can be used to determine
the computation errors in some cases. In solving the transfer
equations to obtain the intensity of radiation from a radiant
object, a probabilistic method is highly effective. This
method, proposed by V V Sobolev [65], starts with calcula-
ting, with due account for scattering, the probability of
radiation escaping from the object. For this purpose, an
integral transfer equation with a specially constructed free
term is solved. The outgoing-radiation intensity is expressed
in terms of the power of the primary sources and the escape
probability. This method has been developed by many
workers [2, 42, 56, 66 ± 68] and is currently actively employed
in solving a variety of radiation-transfer problems (see. e.g.,
Ref. [69]).

The probability method has been used to calculate the
relative magnitudes of the components of the radiation
intensity for a thermal dusty plasma surrounded by opaque
radiating walls. The results are presented in Refs [42, 47 ± 49,
68, 70]. The radiator shape was varied, along with a number
of parameters, such as the optical densities of atoms and
particles [ta�n�; tp], survival probabilities lp, and scattering
indicatrices for particles w. Calculations were performed for
both spectral lines and the continuum.

To estimate the computation errors, relation (4.2) was
used. The calculated relative intensities and the assumed
optical densities were inserted into the left-hand side of Eqn
(4.2), and it was the deviation of the result from unity that
served as a measure of the error.

4.2.2 Finding individual intensity components. Relation (4.2)
involves the relative values of three radiation components Ð
Ia, Ip, and IS; scat. In many cases, one of these is absent. This is
the case in the continuum, where Ia � 0, and in the case of
white, fully scattering particles, for which Ip � 0. In such
cases, if one of the relative components is known or simple to
determine, the second can be found using a component ±

component relation. We consider here only one example,
radiation in the continuum, assuming that the dust macro-
particles are sufficiently large and their scattering indicatrix is
strongly forward-elongated, i.e., the scattering angles are
small [41]. Then the intensity of the radiation that appears in
the bulk of the radiator can be evaluated under the
assumption that the forward-scattered light does not interact
with the medium. It is admissible to assume in this case that
the radiation ±material interaction reduces to absorption
alone. We then have

Ip�n�
I 0�Tp; n� � 1ÿ exp

�ÿ�1ÿ l�tp
�
: �4:3�

The well-known transfer approximation [71] yields similar
results.

On the other hand, for the other radiation component,
IS; scat�n�=I 0�TS; n�, treating scattering in this crude and
simplistic manner is not adequate, since this component is
fully determined by scattering. However, it can easily be
found from Eqns (4.2) and (4.3) that

IS; scat�n�
I 0�TS; n� � exp �ÿtp�

�
exp �ltp� ÿ 1

�
: �4:4�

The approximate relations (4.3) and (4.4) were employed [48]
to obtain the relative intensities Ip=I

0�Tp� and IS; scat=I
0�TS�

in the continuum for a plane layer. The results were
practically identical to those obtained by solving the transfer
equation numerically.

4.2.3 Near-electrode region in a heavy-current discharge. To
illustrate the use of the component ± component relations, we
consider here the case in which different regions of the closed
surface surrounding a dusty plasma have different tempera-
tures.

Because of electrode erosion, the near-electrode region of
a heavy-current discharge often contains macroscopic parti-
cles, which emit, absorb, and scatter radiation. The closed
surface around the discharge may contain electrodes and
opaque walls. The electrodes often have bright, high-
temperature spots on their surfaces. Spectroscopic studies of
the near-electrode region are performed by measuring the
intensity of the radiation coming outward through small
holes in the walls, so that the spots (as well as other parts of
the surface) are outside the observer's field of view. The
observed intensity, however, necessarily includes the scat-
tered radiation from the whole of the surface. In performing
experiments, it is helpful to know the contributions of various
parts of the radiator to the measured intensity. This
information is of diagnosticimportance. We use here the
near-electrode problem as an example, to discuss one
possible way of using the component ± component relations.

The surrounding surface may be divided into two parts:
S � S1 � S2, where S1 is occupied by hot spots and has a
temperature T1, and S2, the rest of the surface, is at a
temperature T2. According to Ref. [72], these quantities and
the optical densities of particles are typically as follows:

S1 � 10ÿ2 cm2 ; S2 � 20 cm2 ;

T1 � �4000ÿ20000� K ; T2 4 2000 K ;

n � 5� 1014 sÿ1 ; tp � 0:5 :
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Based on these data, a preliminary estimate for the ratio of
the scattered-radiation intensities between the spots and the
rest of the surface at a given frequency can be obtained using
the following very simple formula:

IS1; scat

IS2; scat

� I 0�T1�S1

I 0�T2�S2
:

For T1 � 4000 K,

IS1; scat

IS2; scat

� 2 ;

and for T1 � 20000 K, we obtain

IS1; scat

IS2; scat

� 400 ;

i.e., the scattered radiation from a spot may be comparable to
or much greater than that from the other surfaces. We will
now show that, independent of this ratio, the component ±
component relations permit the determination of the absolute
values of IS1; scat

and IS2; scat
for the case of fully scattering

particles.
Let us first make use of the general relation (3.14). We

start by dividing the surface integration region S � Srad into
two parts, S1 and S2. This gives us a sum of two surface
integrals. We then note that the primary radiation from the
surfaces is determined by the Planck function for tempera-
tures T1 and T2, respectively. The values of the Planck
function can be taken out of each integral sign. The
remaining integrals give the intensities of the scattered
radiation from the corresponding parts of the surface, IS1; scat

and IS2; scat [see Eqn (2.27)]. The result of this procedure is that
the third term in the left-hand side of Eqn (4.2) is replaced by
the sum of two ratios each of which is determined by the
corresponding surface. Instead of Eqn (4.2) we have, for a
continuum,

Ip�n�
I 0�Tp; n� �

IS1; scat�n�
I 0�T1; n� �

IS2; scat�n�
I 0�T2; n� � 1ÿ exp

�ÿtp�n�� : �4:5�
As can be seen from the above data, the area occupied by

the spots is much less than the entire remaining area, i.e.,
S1 5S2. It is these areas that mainly determine the relative
intensities of the scattered radiation from the surfaces in
Eqn (4.5). If the observer's field of view is not in the
immediate vicinity of the spots, we have

IS1; scat�n�
I 0�T1; n� 5

IS2; scat�n�
I 0�T2; n� ;

i.e., the relative intensity of the scattered radiation from a spot
is negligible and can be dropped in Eqn (4.5). The obtained
relation enables the experimental determination of the
scattered radiation from both the spots and the rest of the
surface. If the particles scatter radiation completely and hence
do not radiate themselves �Ip � 0�, then, instead of Eqn (4.5),
we have

IS2; scat�n�
I 0�T2; n� � 1ÿ exp

�ÿtp�n�� : �4:6�

The quantities that can be measured in experiments are
the total scattered radiation from the whole of the surface,

IS; scat � IS1; scat � IS2; scat ;

the optical density tp; and the surface temperature T2. Then,
from Eqn (4.6), one readily obtains IS2; scat for known tp and
T2, and from the equality

IS1; scat � IS; scat ÿ IS2; scat

we find IS1; scat. Thus, using Eqn (4.6) and the results of
measurements has led us to the solution of the problem.

Note here that the proposed method does not require a
knowledge of the hot-spot-region temperature T1, which is
very difficult to determine; furthermore, it yields the absolute
values for the scattered radiation coming from various parts
of the surface. If the macroscopic particles not only scatter
but also absorb (emit) radiation, the same method yields a
useful upper estimate for the effect of the scattering of
radiation by the surfaces.

Let us note an important feature of the above procedure.
Although the absolute magnitude of the scattered radiation
from the spots may be much larger than that from the rest of
the surface, the reverse is true for the relative magnitudes,
which appear in the relations we employ. It is this fact that
makes it possible to simplify the the relations between the
relative components in the way discussed above.

This example illustrates the possibilities to modify,
simplify, and employ the component ± component relations
when solving specific experimental problems.

4.3 Experimental studies of spectral-line profiles
based on stationary relations
In the spectral diagnostics of plasma, the profiles of atomic
spectral lines are the most important source of information.
There are many currently available, well-developed diagno-
stic methods based on the use of profiles for a `clean' plasma,
where scattering on inhomogeneities is not significant. In
dusty plasmas, line profiles are affected by macroparticles,
and this should be taken into account when applying the
existing diagnostic methods. Experimental studies of the
effect of particles on the atomic-line profiles are discussed in
Refs [42, 73 ± 75]. The experiments were primarily aimed at
verifying whether the `clean' profile of a spectral line can be
calculated from its experimentally observed, dust-distorted
counterpart. The experiments were performed with the
plasma of combustion products, under the atmospheric
pressure, so that the atomic radiation could be considered
thermal. Specifically, the effect of white scattering particles of
aluminum oxide Al2O3 on the line profile of sodium
(589.0 nm) and cesium (455.5 nm) was studied. The particle
size varied between 1 mm and 100 mm. The combustion-
product torch was open (Fig. 4).

Intensity measurements were performed both in the
presence and in the absence of macroscopic particles, with
and without external illumination. The open surface of the
torch served as the bounding surface; part of it was
illuminated from the outside using a specially designed
optical system. The system included an external illumination
source 1 (tungsten lamp ribbon) and a small screen 2 (see
Fig. 4). The area of the torch surface could be varied, as also
could the solid angle within which the external illumination
was created. All the illuminated surface was on the side of the
torch opposite to the detector Sp. The screen prevented
external radiation from directly entering the apparatus, so
that this radiation could be detected only after being scattered
in the field of view 5 of the spectral device.

Tomeasure the atomic temperature and optical density of
the plasma, other optical arrangements (not shown in Fig. 4)
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were used. The effective atomic temperature Ta; eff averaged
over the observation direction was determined by the general-
ized reversal method. The optical densities were measured by
the attenuation of the external radiation, both in the absence
and in the presence of particles. In the former case, the
dependence of the optical density of atoms ta�n� on frequency
within a spectral line was determined. In the latter case, the
total optical density �t0�n� � ta�n� � tp� was measured at
various frequencies. The optical densities of the particles
were not large �tp � 0:1ÿ0:2� and remained virtually
unchanged by frequency variation.

Thus, the experiments described above allowed a compar-
ison to be made between distorted and `clean' profiles of
spectral lines.

In our further discussion, the following two experimental
results will be used.

(1) The effect of white scattering particles on the atomic-
line radiation is noticeable only if external illumination is
present. Hence, the line profiles in the presence of particles
but without illumination are `clean'.

(2) If the particles are of relatively low optical density,
their effect is significant at those frequencies for which the
atomic optical densities are also not large. This means that, if
at the center of a spectral line, the atomic optical density ta is
small, then the particles modify the entire line profile. Note
that both the line intensity and the shape of the profile are
changed. But if ta is large at the center of the line then the
particles affect only the wings of the line, where the atomic
optical density is fairly low. For this reason, atomic
temperatures were measured at frequencies in the central
part of the powerful resonance line of sodium, where the
effect of the particles is not significant.

As an example, figure 5 shows, the results of profile
measurements of the cesium 455.5-nm line (in relative units).
The optical density of cesium atoms in the line varied from 0.2
at a distance ofDl � 0:017 nm from the line center to 0.004 at
Dl � 0:06 nm.

To explain the experimental results, numerical solutions
to the transfer equation were obtained [73 ± 75]. In the
calculations, additional data were used and a number of
simplifying assumptions were made. The additional data
included particle sizes, approximate values of the complex
refractive index of aluminum oxide at high temperatures, and
the character of the external illumination. The simplifying
assumptions concerned the particles (spherical, uniform in

size, uniformly distributed over the torch), the shape of the
plasma body (a plane layer), and the geometry of the external
illumination (axial symmetry). Based on the measured,
particle-distorted line profiles, the calculations yielded
`clean' profiles which allowed comparisons with experimen-
tal unperturbed profiles.

In Ref. [76], `clean' profiles were obtained from perturbed
ones using the component ± component relations for radia-
tion. Let us show that in this case, neither a numerical
solution to the transfer equation nor simplifying assump-
tions are needed to clean a profile from the effect of particles.
We start from Eqn (3.21) taking into account, first, that the
primary radiation from atoms on the torch surface illumi-
nated from outside can be considered thermal and, second,
that no intrinsic radiation of white particles is present
�Ip � 0�. Within a spectral line (where n � nl), upon suppres-
sing the arguments r and u, instead of Eqn (3.21), we have

Ia�nl�
I 0�Ta; eff; nl� �

IS; scat�nl�
I 0�TSeff

; nl� � 1ÿ exp
�ÿta�nl� ÿ tp�nl�

�
: �4:7�

Here, Ia�nl� is the required `clean' profile intensity, IS; scat�nl� is
the distorting intensity of the scattered external radiation, and
TSeff

is the effective surface temperature.
For the continuum at n � ncont, where Ia � 0, we obtain

IS; scat�ncont�
I 0�TSeff

; ncont� � 1ÿ exp
�ÿtp�ncont�� : �4:8�

The quantities usually measured directly in experiments
are the following: in a line, the total intensity I�nl� � Ia�nl��
IS; scat�nl� (solid line in Fig. 5) and total optical density
ta�nl� � tp; in the continuum, the intensity of the scattered
surface radiation IS; scat and the optical density of particles tp.
Whereas the optical density of particles virtually does not
vary with frequency in a spectral line and in its immediate
vicinity (i.e., with the transition from ncont to nl), the scattered
intensity changes significantly. Its effect on the observed
intensity should be taken into account as follows. First,
using IS; scat and tp measured in the continuum, TSeff

can be
found fromEqn (4.8). Next, fromEqn (4.7) and themeasured
total intensities I�nl�, one finds the required Ia�nl� and
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Figure 4. Schematic diagram of an experiment with dusty combustion

products: 1, external illumination source; 2, screen; 3, focusing lenses;

4, torch of combustion products with macroparticles; 5, field of view;

6, burner; Sp, entrance to spectral device.
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Figure 5. Profile of the 455.5-nm cesium line emitted by the plasma of

combustion products with aluminum-oxide particles with an average

diameter of 3.6 mm at tp � 0:1. The solid line (squares): the profile

measured in the presence of particles and external illumination; dot ±

dash line (circles), the profile measured without external illumination;

dashed line is calculated from the solid one using Eqns (4.7) and (4.8).
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IS; scat�nl� using the measured optical densities and effective
temperature of atoms and the calculated effective tempera-
ture TSeff

of the surface. In Fig. 5, the intensity Ia calculated in
this way (dashed line) is compared with the independently
measured `clean' profile (dot ± dashed line). It is seen that the
agreement is quite satisfactory.

In obtaining Ia in this way, it is assumed that averaging
over a nonuniformly illuminated surface does not introduce
any additional frequency dependences of the effective surface
radiation intensity ISeff

and the effective temperature TSeff
.

This assumption is valid provided PS; ex � 0 (see Section 3.4).
In the open-torch experiments under consideration, this
condition was ensured by externally illuminating the whole
torch surface, which might be the escape surface for the
radiation whose direction at the observation point was
opposite to that of observation. This implies, however, that
Eqn (3.17) withPS; ex � 0 could lead to the same result. In this
case, Eqns (3.17) and (3.21) are identical. Clearly, the
resulting clean profile does not differ from the previously
obtained one.

Thus, the above results demonstrate that relations (3.17)
and (3.21) are quite effective in processing experimental data.
To solve the problem, neither any additional information
about the object under study nor complicated calculations
proved to be necessary.

4.4 Measurements of relative atomic-level populations
using a stationary relation
In studies of dusty plasmas, it is often essential to determine
the relative populations of atomic levels. Spectral methods
involve measuring the relative intensities of spectral lines and
the attenuation of the external radiation. The effect of
scattering particles can be treated numerically in either case.
To do this, as already mentioned, many characteristics of the
object must be specified. On the other hand, the radiation
component ± component relations we have obtained include
the ratios of the emissivities and absorptivities of atoms,
which are related to the relative level populations. In what
follows, the application of the component ± component
relations to measuring the relative level populations is
analyzed [60].

Let us first discuss the possibility of experimentally
determining PSex

�r;ÿu; n�, the probability of radiation escap-
ing through a transparent surface Sex not illuminated
externally. (It should be recalled that we mean escaping after
being scattered in the medium.) There are at least two
different methods to measure this probability experimen-
tally. First, we can illuminate the object at the point r in the
direction ÿu and measure the scattered-radiation flux
through the surface Sex. Second, we can illuminate the
surface Sex from the outside and measure the scattered flux
at the point of observation r in the direction u. In either case,
the ratio of the observed to the illuminating flux equals the
required probability.

In such measurements, care must be taken to prevent
direct, nonscattered radiation from entering the detector. In
the first method, all that is needed is to eliminate the radiation
passing through a small surface region around (r0;ÿu). This
region is directly opposite to the point of observation. In the
second method, this same region should not be illuminated
from the outside; otherwise we will measure not the prob-
ability PSex

�r;ÿu; n� but rather the sum fPSex
�r;ÿu; n��

exp�ÿt�r! r0; n��g (which may also be useful, however). Of
course, to obtain PSex

�r;ÿu; n�, the component ± component

relations can be employed aswellÐprovided other quantities
involved in, for example, Eqn (3.17) have been measured.

We turn now to examples of possible determinations of
the relative atomic-level populations. We rewrite the expres-
sion (2.20) for the observed intensity and Eqn (3.17), for the
case of dusty plasma, as

I�r; u; n� � Ia�r; u; n� � Ip�r; u; n� � IS; scat�r; u; n��
� IS�r0; u; n� exp

�ÿt0�r0 ! r; n�� ; �4:9��
pa
ka

�ÿ1
Ia�r; u; n� � Ip�r; u; n�

I 0�Tp; n� �
IS; scat�r; u; n�

IS

� PSex
�r;ÿu; n� � exp

�ÿt0�r! r0; n�
� � 1 : �4:10�

Here, pa=ka is directly related to the level populations
through Eqn (3.16). It is assumed that radiation from dust
particles is thermal and is characterized by the temperature
Tp. Consider the case where the plasma is open, i.e., the
surrounding surface is transparent and not illuminated, but
can be illuminated from the outside during themeasurements.
Then the intensity IS 6� 0 only in the presence of specially
arranged external illumination. Let us show how the relative
atomic population can be obtained in the case of white
particles, when Ip � 0. The radiation frequency n should be
chosen so as to lie within a spectral line. To determine the
relative populations with the use of Eqns (4.9), (4.10), and
(3.16), the following measurements should be performed:

(1) Intensity measurements without external illumination,
when S � 0. From Eqn (4.9), we find I�r; u; n� � Ia�r; u; n�.

(2) Determination of the optical density t0�r! r0; n� from
the attenuation of external radiation emitted at the point r0 in
the direction u, i.e., for IS�r0; u; n� 6� 0.

(3) Measurements of the escape probability PSex
using one

of the methods indicated above. Either method involves a
specially arranged external illumination of the plasma.

(4) Measurement of the intensity I with the same special
external illumination that was used to measure PSex

. (As
indicated earlier, this illumination should not enter the
detector directly, without scattering). Then, from Eqn (4.9)
we obtain

I�r; u; n� � Ia�r; u; n� � IS; scat�r; u; n� :

Since the intensity Ia�r; u; n� has already been determined at
step 1, this equality yields IS; scat�r; u; n�.

(5) Measurements of the external-radiation intensity IS.
After performing all these measurements, the required

ratio guNl=�glNu� can be determined from Eqns (4.10) and
(3.16).

It is clear that, depending on the specific conditions and
goals of the experiment, various sets of the required
measurements may be employed. For example, in the case
described, there is no need to measure the optical density
separately (step 2); furthermore, instead of measuring the
escape probability PSex

(step 3), one can measure the sum
�fPSex

�r;ÿu; n�� exp�ÿt0�r! r0; n��g�, as described above.
The above examples of using the component ± component

relations were, for the sake of clarity, chosen so that virtually
no additional calculations were needed to solve the experi-
mental problems. Clearly, in many studies, these relations
may be combined with other, e.g., computational, methods.
Let us demonstrate this for the special example of the
determination of the relative atomic-level populations in the
case of radiating particles �Ip 6� 0�. In this case, the particle-
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radiation intensity Ip and the Planck function I 0�Tp� (or the
particle temperature) have to be found by calculations or
additional measurements. If the ratio Ip�r; u; n�=I 0�Tp; n� and
the intensity Ip are known, the same measurements as in the
previous, white-particle �Ip � 0� case yield the relative
population guNl=�glNu�.

If the particles are large enough compared to the radiation
wavelength, the ratio Ip�r; u; n�=I 0�Tp; n� can be determined
quite simply by calculation (see Section 4.2.2). Then, if the
particle temperature Tp is measured by a reversal method, the
intensity Ip can also be found.

It is worthwhile to compare the proposed method for
determining the relative populations in a dusty plasma with
the corresponding method for clean plasmas, where no
scattering by macroparticles is present. The main difference
is that, in the case of scattering, additional intensity measure-
ments with special indirect (relative to the detector) illumina-
tion are needed to determine the escape probabilities PSex

and
intensities IS; scat�r; u; n�. These measurements enable one to
account for the scattering in the simplest way based on using
the component ± component relations, e.g., Eqn (4.10).

5. Relations between thermal-radiation
components for radiators to which the
geometrical-optics approximation does not apply

In the above discussion, all relations between radiation
components were obtained under the assumption that the
approximation of geometrical optics is applicable to descri-
bing the radiation in the radiator. It is of interest to obtain
similar relations for scattering media within which geometri-
cal optics does not apply. In this case, one cannot use the
classical Kirchhoff law to describe the thermal radiation.
Indeed, the very concept of the radiation intensity becomes
meaningless.

Solid porous heat-shielding materials are an example of
such amedium. These are crystalline structures consisting of a
transparent solid substance (e.g., quartz) and air in its pores.
Such materials are used, in particular, in orbital spacecraft.
Radiation and heat transfer in such materials are of direct
relevance to technological progress, which is the reason why
these materials are currently the subject of much theoretical
and experimental activity [77 ± 80].

On the other hand, in the spectral studies of scattering
media, all detecting devices are usually placed outside the
medium, in the region where geometrical optics does apply.
Studying the optical properties of strongly scattering materi-
als at high temperatures is an example of such a situation [81 ±
83].

In what follows, the relations between the thermal-
radiation components will be derived for the case in which
radiation is emitted by an elastically scattering medium,
where geometrical optics does not apply, but is observed in a
region where it does. This derivation will rely on the general-
ized Kirchhoff law obtained by methods of statistical radio
physics [84, 85].

5.1 Thermal radiation characteristics
and the generalized Kirchhoff law
Where the geometrical-optics approximation does not work,
the basic characteristics of a fluctuating field of thermal
radiation are the averaged quadratic and bilinear combina-
tions of the electric and magnetic fields (correlation func-
tions), rather than the intensities employed in the radiation-

transfer theory. With the use of the classical Kirchhoff ±
Clausius law, the power of the thermal radiation originating
at some location in the medium can be expressed in terms of
the radiator's absorptivity and its temperature at this
location; see Eqn (3.1). The intensity at every point of
observation can then be found by solving the transfer
equations (2.24), (2.25). In the generalized Kirchhoff law,
the averaged quadratic and bilinear combinations of the
thermal electric and magnetic fluctuation fields are already
expressed, for any point of observation, in terms of the
radiator's absorption characteristics and temperature. The
bilinear combinations depend on those parameters of the
medium which determine the passage of radiation through it.
The energy characteristics of the thermal radiation can be
expressed in terms of the averaged bilinear combinations of
the fields.

The generalizedKirchhoff lawwas obtained [84, 85] based
on the use and development of the fluctuation ± dissipation
theorem of statistical physics [86, 87], which, as its name
indicates, relates the occurrence of random thermal fluctua-
tions in a medium to the medium's ability to dissipate energy,
i.e., to convert it to heat. It is thermal fluctuations in the
medium that are the source of thermal radiation.

To examine themeaning of the generalized Kirchhoff law,
we will briefly outline the main stages of its derivation, as
given in Ref. [85]. The starting point is to modify theMaxwell
equation by introducing extraneous currents describing the
appearance of thermal fluctuations. Then the electric and
magnetic fields determined by the resulting equations are
thermal fluctuation fields. Along with the thermal fields, the
theory also considers auxiliary fields created by unit point
dipoles located at the point where thermal radiation is
observed. The oscillations of the dipoles are not random but
rather fully determined, and they behave harmonically at a
chosen frequency. Further, the reciprocity theorem that
follows from the Maxwell equations enables the thermal
fluctuation field at an arbitrary point of observation to be
related to the random extraneous currents with through unit-
dipole fields. As the next step, the averaged quadratic and
bilinear combinations of thermal fields at the point of
observation are expressed in terms of the averaged products
of extraneous random currents. The analysis of thermal fields
in an isothermal medium and the use of the detailed-
balancing principle permit [84] expressing the averaged
products of extraneous random currents in terms of the
absorption (dissipation) characteristics and temperatures at
every point in the medium. It is these expressions that
represent the fluctuation ± dissipation theorem in the case
under consideration. Finally, using the relations following
from the reciprocity theorem, the average quadratic combina-
tions of the thermal fluctuating fields at an arbitrary point of
observation can be related to the medium's temperature and
to the absorption, by the medium, of the radiation from the
unit dipoles located at the same point of observation. These
relations express the generalized Kirchhoff law and have a
wide range of applicability.

The generalized Kirchhoff law has previously been used
[88] to treat some heat-exchange problems using the concept
of the averaged Poynting vector for the thermal fluctuation
field. Below, the law will be applied to obtain the averaged
square of the strength of the thermal-fluctuation electric field.

According to the generalized Kirchhoff law, the averaged
square of the absolute strength of a thermal electric field of
frequency n at an arbitrary point of observation r can be

December, 2001 Stationary radiation of objects with scattering media 1273



written, for a given orientation n (see Fig. 6 below), as [85]
��E�r; n; n���2� � �
vabs


��E�r 0 ! r; n; n���2� d3r 0 ; �5:1�

where
��E�r 0 ! r; n; n���2� � 4P
�
T�r 0�; n� q�r! r 0; n; n�� : �5:2�

Here

P�T; n� � hn
�
exp

�
hn
kT

�
ÿ 1

�ÿ1
�5:3�

is the average energy of a harmonic oscillator of frequency n at
a temperature T (minus the zero energy, which does not
participate in the emission process); q�r! r 0; n; n� is the
density of energy losses for the radiation from a unit
electrical dipole of frequency n in the vicinity of r 0, provided
that the dipole is located at r and aligned along n; the symbol
h i signifies an average over random thermal fluctuations.

The absolute magnitude of the moment of a unit electrical
dipole of frequency n is [84]

del � 1

2pn
: �5:4�

In scattering media, the passage of radiation from a unit
dipole to a point r 0 is determined by the interaction of the
radiation with the material in the whole volume of the object,
so that the energy-loss density of the dipole is also determined
by the material characteristics everywhere in the volume.

The expression hjE�r 0 ! r; n; n�j2i d3r 0 in Eqn (5.1)
represents contribution of the primary thermal radiation
from d3r 0 to the quantity under consideration, the total
square of the modulus of the electric-field strength at the
point r. The additivity of the contributions follows from the
linearity of the Maxwell equations. Importantly, the primary
thermal sources do not correlate with one another. The
primary thermal radiation can appear only in those regions
where it is absorbed. It is this fact that determines the region
of integration vabs in Eqn (5.1).

According to the generalized Kirchhoff law, each con-
tribution is determined, first, by the temperature of the
radiator at the point r 0 where the primary thermal radiation
appears and, second, by the passage of the unit-point-dipole
radiation through the medium, from the point of observation
r to the primary radiation point r 0, and by the subsequent
dissipation of this radiation in d3r 0. The dipole radiation
travels in the medium in the direction opposite to that of the
propagation of the observed thermal radiation.

Thus, the generalized Kirchhoff law, Eqns (5.1) and (5.2),
enables the description of the fluctuation-averaged square of
the thermal electric-field strength. Note that, at any arbitrary
point of observation, the contributions from individual
primary thermal radiators located in various parts of the
object are summed (integrated).

5.2 Experimentally observed radiation as expressed
in terms of the primary radiation of the medium
Let us consider the arrangement of the basic elements of an
experimental setup for studying thermal radiation. Such a
typical arrangement is shown schematically in Fig. 6.
Radiation comes from the object v to the detecting apparatus
Sp through air as well as through some elements of the optical

systemL. The object vmay be surrounded by a transparent or
opaque wall w. If the wall is opaque, special holes are used to
observe the radiation. Let us assume that the radiation within
the object v cannot be described by the methods of
geometrical optics. At the same time, they can be applied
outside the volume v, at a distance of the order of the
correlation length [26]. The correlation lengths in such
objects as strongly scattering, randomly inhomogeneous
materials are determined by the size of inhomogeneities and
by the radiationwavelength. The spectral detecting apparatus
can always be focused to an observation point r at which
geometrical optics is applicable.

The propagation of radiation inside the scattering object v
determines, first, the outward flow of the own radiation
energy of the objects and, second, the passage of external
radiation Ð for example, from the wall w Ð through the
material of the object (note the `trajectories' 1 and 2 in Fig. 6).
If the conditions for the applicability of geometrical optics are
not fulfilled within the radiator, then the generalized Kirchh-
off law can be applied to describe the emission of thermal
radiation in the radiator and the emergence of radiation into
the geometrical-optics region. The thermal radiation from the
walls and other setup elements can be described in the same
way, with the region of integration vabs in Eqn (5.1) covering
all the thermal radiators listed above. If some parts of the
experimental setup neither emit nor absorb radiation but only
scatter it, they do not contribute to the region of integration
but, of course, affect the passage of radiation and the resulting
field at the point observation, i.e., affect the quantity
q�r! r 0; n; n� in Eqn (5.2).

Hereafter, it will be assumed that both the permittivity
and magnetic permeability in the region of observation equal
unity. Then U�r; n�, the averaged spectral-energy density of
the radiation at the point of observation r, at frequency n, can
be written in the form [84]

U�r; n� �

��E�r; x; n���2�� 
��E�r; y; n���2�� 
��E�r; z; n���2�

2p
:

�5:5�

Here, E�r; x; n�;E�r; y; n�;E�r; z; n� are the projections of the
spectral density of the electric field at the point r onto the axes
of an arbitrarily oriented orthogonal coordinate system.
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Figure 6. Schematic diagram of an arrangement used to observe an object

within which geometrical optics is not applicable: v, object; w, wall; S1 and

S2, surrounding surfaces; S1; trans, transparent part of surface S1;L, optical

system; Sp, entrance to spectral instrument.
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Equality (5.5) holds in the wave zone of the radiator, i.e.,
in the region of applicability of geometrical optics. The
average squares of the moduli of the field projections are
given by expressions (5.1) and (5.2). Applying these to all the
three electric field components in Eqn (5.5) and multiplying
and dividing the result by 4pn 2=c 3, allows us to write the
average spectral energy density as

U�r; n� �
�
vabs

u�r 0 ! r; n� d3r 0 ; �5:6�

where

u�r 0 ! r; n� � U 0
�
T�r 0�; n�PU�r 0 ! r; n� �5:7�

is the contribution to the radiation energy at the point r from
the radiation that has originated in a unit volume about r 0 and
has then passed through the medium to point r. Here,

U 0�T; n� � 8pn 2

c 3
P�T; n� �5:8�

is the equilibrium energy of the electromagnetic field at
temperature T and frequency n in the geometric optics
approximation, and

PU�r 0 ! r; n� � c 3

4p 2n 2
X

n� x; y; z

q�r! r 0; n; n� : �5:9�

As it follows from the foregoing discussion, the function
PU�r 0 ! r; n� depends directly on the object's optical charac-
teristics, which determine the passage of radiation via
arbitrary paths from the point of observation r to the point
r 0 and the dissipation of radiation there.

Thus, we have expressed the thermal-radiation energy
density in terms of the radiator characteristics. Note,
however, that in performing optical and, in particular,
spectroscopic experiments, one measures the radiation fluxes
entering an optical instrument. It is therefore necessary to be
able to relate the radiation energy to the fluxes.

According to Ref. [26], we write the relation connecting
the intensity and the radiation energy density in the geome-
trical-optics region as

U�r; n� � cÿ1
�
4p
I�r; u; n� du : �5:10�

Here, I�r; u; n� is the intensity of radiation of frequency n at the
point r in the direction u, and du is a solid-angle element.

The integral of the intensity over all directions is the total
radiation flux F at r:

F �r; n� �
�
4p
I�r; u; n� du � U�r; n�c : �5:11�

To obtain the intensity in a given direction from the
energy-density expression (5.10), the dependence of the
intensity I on the direction u is needed. If the radiation is
isotropic, i.e., I is independent of the direction, we immedi-
ately obtain

I�r; n� � cU�r; n�
4p

: �5:12�

We note that the expressions for the energy and flux
densities we have derived apply to any point in space where

the geometrical-optics approximation can be used. Changing
the point and direction of observation changes the fields as
well as the dipole-energy-loss density q�r! r 0; n; n� involved
in the generalized Kirchhoff law (5.2). At the same time, all
the formulas remain valid independent of the position of the
point of observation. Therefore, they can be applied, for
example, both to the point of observation with the radius
vector r and to the point rentr at the entrance to the detector
(see Fig. 6). Importantly, the passage of radiation through the
focusing optical system �L� directly affects the quantity
q�rentr ! r 0; n; n� and hence the energy density, intensity,
and total radiation flux at the entrance to the instrument (at
the point rentr). This is the point to which the radiation from
the object under study is focused.

In view of the linearity of the problem, we can write the
intensity I and the total flux F in a form analogous to
Eqns (5.6) and (5.7):

I�r; u; n� �
�
vabs

i�r 0 ! r; u; n� d3r 0 ; �5:13�

where

i�r 0 ! r; u; n� � I 0
�
T�r 0�; n�PI�r 0 ! r; u; n� ; �5:14�

F �r; n� �
�
vabs

f �r 0 ! r; n� d3r 0 ; �5:15�

where

f �r 0 ! r; n� � F 0
�
T�r 0�; n�PU�r 0 ! r; n� : �5:16�

In the above equations, I 0 is given by the Planck formula
(2.8), and F 0 � U 0=c, withU 0 given by Eqn (5.8). According
to Eqns (5.6), (5.7), (5.10), (5.13), and (5.14),

PU�r 0 ! r; n� �
�
4p

PI�r 0 ! r; u; n�
4p

du : �5:17�

In the case of isotropic radiation, instead of Eqn (5.17), we
have the equality

PU�r; n� � PI�r 0 ! r; n� : �5:18�

In the integrals (5.6), (5.13), and (5.15), all the energy,
intensity, and flux components (in the integrands) differ in the
location where the primary thermal radiation appears.
Analogously, in Eqns (5.7), (5.14), and (5.16), the function
P�r 0 ! r; u; n� characterizes the emergence of radiation at r 0

and its passage to r. On the other hand, according to the
generalized Kirchhoff law (5.2), these radiation components
are determined by the passage of radiation from a unit dipole
at r in the opposite direction, to point r 0, and by its dissipation
there. This dualism of the radiation components and the
functions P is due to the reciprocity relations, which served as
the basis for the derivation of the generalized Kirchhoff law.
The functions P introduced here are analogous to the
functions that appear in the intensity expressions derived in
the geometrical-optics approximation [see Eqn (2.25)]. In that
case there was also no difference in the propagation of
radiation between the cases of mutually opposite directions
of propagation, since both the reversibility conditions and
reciprocity relations were fulfilled in any scattering event.
Note also that the corresponding functions P were the same
[see Eqns (3.12) and (3.13)].
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The formulas obtained in this section will be used below to
derive component ± component relations by two different
methods.

5.3 Equilibrium relations
We now apply the energy and intensity expressions (5.6) and
(5.13) to equilibrium radiation in an isothermal cavity with a
scattering medium inside. Let the wall w in Fig. 6 be closed,
opaque, and let it have the same temperature as themedium in
the cavity has. We use the notation wc to emphasize that the
wall is closed. Both the wall and the medium can emit and
absorb thermal radiation. If we assume that absorption
occurs within the volume of the wall, the region of
integration vabs should be divided into two corresponding
parts, v and wc. Let us observe that, in the region of
observation Ð outside the volume v, where the geometrical
optics approximation is applicable, the resulting energy
densities and intensities are in this case equal to their
equilibrium values U 0 and I 0 given by Eqns (5.8) and (2.8),
respectively. Substituting U 0 and I 0 on the left-hand sides of
Eqn (5.6) and (5.13) and dividing both sides of each equation
by these quantities, we find (assuming for the moment that all
the temperatures involved are the same) that�

v

u�r 0 ! r; n�
U 0
�
T�r 0�; n� d3r 0 �

�
wc

u�r 0 ! r; n�
U 0
�
T�r 0�; n� d3r 0 � 1 ; �5:19�

�
v

i�r 0 ! r; n�
I 0
�
T�r 0�; n� d3r 0 �

�
wc

i�r 0 ! r; n�
I 0
�
T�r 0�; n� d3r 0 � 1 : �5:20�

The above equations are very simple equilibrium relations
between the relative values of the components of the energy
density u=U 0 and the intensity i=I 0. The relation (5.19)
between the energy-density components was obtained in
Ref. [89], where a relation between the intensity components
was also derived under the assumption that radiation inside
the cavity is isotropic and hence Eqn (5.12) holds. Note that,
in the present work, these relations have been obtained from
the equilibrium condition for an isothermal cavity, based on
Eqns (5.6) and (5.13), equations which simply express the
additivity of the contributions from the primary radiators.

The denominators of the integrands in the last two
formulas involve temperatures T�r 0� varying inside the
object. This suggests that these relations could be applied to
nonisothermal objects. Let us explain where this possibility
comes from. From Eqns (5.7) and (5.14), it follows that the
integrands in Eqns (5.19) and (5.20) involve the functions PU

and PI, which are determined by the specifics of the
radiation ±matter interaction and do not depend directly on
the temperature. It is for this reason that the last two
equalities can be used if the temperature T�r 0� varies over
the object, provided its variation is small enough to prevent
significant changes in the functions PU and PI.

The relations we have obtained become simplified if some
parts of a non-isothermal radiator have the same tempera-
ture. Let the wall w be at one temperature, Twc

, and the
substance inside the cavity at another, Tv. Then our relations
can be rewritten noting that, after U 0 and I 0 are taken out of
the integral signs, what remains there is the energy density and
the intensity of the corresponding part of the object. The
result in the same if the temperatures vary over the wall and
the volume but the radiation can be characterized by averaged
(effective) temperatures. The effective temperature of a
nonisothermal radiator is the temperature of an isothermal

radiator that has the same optical properties and whose
radiation intensity equals that of the actual nonisothermal
object. Averaged radiator characteristics of this type have
already been discussed in Section 4.2.

Let us write down the relation between the intensity
components Iv and Iwc

for this case:

Iv�r; n�
I 0�Tv; eff; n� �

Iwc
�r; n�

I 0�Twc; eff; n�
� 1 : �5:21�

This relation is analogous to Eqn (3.18), but was derived
for the simplest case of a single-phase medium �k � 1�, with
n � 1 in the region of observation. Note also that, unlike Eqn
(3.18), in Eqn (5.21) the radiation coming to the point of
observation r directly from the opposite wall is not separated
out but is incorporated in the second term.

In Section 5.5 we will show how relation (5.21) can be
applied to the analysis of experimental data when determin-
ing the effective temperatures of a strongly scattering
medium.

5.4 Stationary relations
The purpose of this section is to obtain component ±
component relations for the radiation in the geometrical-
optics region using the stationarity, rather than equilibrium,
condition. As in Section 3.2, we will derive again a
stationarity condition that should be satisfied by the pro-
babilities of the disappearance of the emerging radiation.
However, the method of derivation is different. It makes use
of the fact that the generalizedKirchhoff law in the form (5.1),
(5.2) involves the energy-loss density of a unit dipole,
q�r! r 0; n; n�. The dipole field acts as the Green function in
the problem under study [85]. The required relations will be
found using the stationarity condition which the radiation of
a deterministic unit dipole obeys.

For a unit electric dipole of frequency n with a moment
given by Eqn (5.4), located at the point of observation r, the
radiant energy emitted into ambient space per unit time is

e�n� � 4p 2n 2

3c 3
: �5:22�

Let the location r of an n-directed dipole be within an
imaginary closed surface S. Also, there is a region vabs within
the surface where the radiation from the dipole can be
absorbed. Further, let the radiation in the object be
stationary in the sense that the parameters averaged over a
time interval long compared to the oscillation period �nÿ1�
are time-independent. (It is such radiation that is described by
the generalized Kirchhoff law.) Then the dipole-radiation
energy disappears in the ambient space at the same rate at
which it appears. The energy can disappear due to absorption
in the volume and due to outward flow through the surface.
This can be written in terms of the volume density of losses
and the Poynting vector at the surrounding surface as follows:

e�n� �
�
vabs

q�r! r 0; n; n� d3r 0 �
�
S

S�r! r 0S; n; n� d2r 0S :
�5:23�

Here S�r! r 0S; n; n� is the Poynting vector of a unit dipole at
the point r 0S of the surface S. This expression will be used as
the basis for deriving the required component ± component
relations for stationary radiation.
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Expression (5.23) is valid for any closed surface S
provided both the volume vabs and the point of observation
r involved in Eqn (5.23) are within it. The dotted lines in Fig. 6
illustrate two ways in which such a surface can be drawn.
First, it may coincide with the outer boundary of the radiating
and absorbing wallsw and close the open portion of the wall if
it exists. This is the surface S1. Enclosed within it is the object
under studyÐa radiator with a scatteringmedium occupying
a volume v Ð as well as the wall w and the point of
observation r. Second, in spectroscopic experiments S can
generally be chosen to enclose all experimental devices or
their elements that affect the observed radiation. This is
precisely the way in which the surface S2 is drawn in the
figure. It encloses the same volume v and the same walls w as
well as other parts of the experimental setup, such as the
optical system L. The point of observation in this case may lie
at the entrance to the detecting instrument and be determined
by the radius vector rentr. In both cases, we can write

vabs � v� w : �5:24�
Note, however, that, while in the first case w is the absorbing
volume of the wall only, in the second case this is the
absorbing volume of all the elements within S2, except for v.

We now consider the surface integral in Eqn (5.23) for
various cases. This integral vanishes if the radiation flux from
the radiator does not reach the surface S. This may be the
case, in particular, if the radiator is surrounded from all its
sides by opaque, fully absorbing walls w located inside S. In
this case, radiation disappears in the bulk, which is completely
accounted for by the volume integral. If radiation emerges
freely through the entire surface S in all directions, then any
region of the surface can contribute to the surface integral. In
general, it can be assumed that radiation from the volume
may escape through a certain transparent portion of the
surface, Strans. Then it is the escape through this portion that
contributes to the surface integral. Such a transparent part of
the surface S1 is labeled as S1; trans in Fig. 6.

Let us now introduce thermal electric fields into equality
(5.23) using the relation (5.2) of the generalized Kirchhoff law
in the volume integral. We have

e�n� �
�
vabs


��E�r 0 ! r; n; n���2�
4P
�
T�r 0�; n� d3r 0

�
�
Strans

S�r! r 0S; n; n� d2r 0S : �5:25�

Equation (5.25) expresses the conservation of energy for a
dipole under stationary conditions and includes the squared
moduli of the electric field of thermal radiation. Let us employ
this equation to relate the radiation-energy-density compo-
nents.

From Eqn (5.1), (5.5), and (5.6), the energy density at the
point r due to the primary radiation at the point r 0 can be
rewritten as

u�r 0 ! r; n� �

�

��E�r 0 ! r; x; n���2�� 
��E�r 0 ! r; y; n���2�� 
��E�r 0 ! r; z; n���2�

2p
:

(5.26)

As can be seen from Eqns (5.7) and (5.8), the energy density
u�r 0 ! r; n� is proportional toP�T�r 0�; n�, i.e., depends on the
temperature at the point of origin of the radiation.

Let us write Eqn (5.25) for three dipoles located at the
point of observation r and directed along the axes n � x; y; z
of an orthogonal coordinate system (x, y, z are the unit
vectors). We then sum the three resulting equations, and use
Eqn (5.26) under the sign of the volume integral. Finally,
dividing the result by 3e�n� and using Eqns (5.8) and (5.22), we
obtain�

vabs

u�r 0 ! r; n�
U 0
�
T�r 0�; n� d3r 0 � P3�r! Strans; n� � 1 : �5:27�

Here

P3�r! Strans; n� �
�
Strans

X
n�x; y; z

S�r! r 0S; n; n�
3e�n� d2r 0S �5:28�

is the fraction of the energy of the three dipoles that escapes
from the volume v through the surface Strans.

Relation (5.27) expresses the fact that the disappearance
probability of emerging dipole radiation is unity. The terms in
Eqn (5.27) have the following probabilistic meaning. The
volume integral is the probability that the radiation from the
three dipoles will be absorbed in the volume vabs, and the
surface integral P3�r! Strans; n� is the probability that the
same radiation will escape through the surface Strans. The
integrands represent the probability densities for the radia-
tion to be absorbed in a volume around r 0, and for its escaping
through a surface around r 0S, respectively. In view of Eqn
(5.7), Eqn (5.27) becomes�

vabs

PU�r 0 ! r; n� d3r 0 � P3�r! Strans; n� � 1 : �5:29�

Eqns (5.27), (5.29) are the required stationary relations
between the relative values of the components of the average
spectral radiation-energy density at the point of observation
r. Indeed, note that the integrands of the volume integrals
involve relative density components, each determined by the
primary radiation from the corresponding region. Moreover,
we can break down the volume integrals Ð for example,
according to Eqn (5.24) Ð into terms related to the primary
radiation from individual parts of the total radiating
(absorbing) volume.

If some regions of the radiator can be considered
isothermal, we should break down the volume integral in
Eqn (5.27) into the corresponding parts and then take the
denominators out of the integral sign in each. Assume that the
isothermal regions of the object are the radiator v and the wall
w, whose temperatures are Tv and Tw, respectively. Then,
instead of Eqn (5.27), we find

Uv�r; n�
U 0�Tv; n� �

Uw�r; n�
U 0�Tw; n� � P3�r! Strans; n� � 1 : �5:30�

In the case of nonisothermal radiators, it is useful to
introduce, as before, effective temperatures averaged over the
entire radiator or over a given region of the volume (or
surface). We introduce the effective temperature of an
arbitrary radiating volume vi using Eqns (5.6) and (5.7):

Ui�r; n� �
�
vi

u�r 0 ! r; n� d3r 0

�
�
vi

U 0
�
T�r 0�; n�PU�r 0 ! r; n� d3r 0

� U 0�Ti; eff; n�
�
vi

PU�r 0 ! r; n� d3r 0 : �5:31�
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Therefore,�
vi

PU�r 0 ! r; n� d3r 0 �
�
vi

u�r 0 ! r; n�
U 0
�
T�r 0�; n� d3r 0 � Ui�r; n�

U 0�Ti; eff; n� :

�5:32�

We use these equalities to transform, the volume integrals in
Eqns (5.27) and (5.29) into sums of the ratios
Ui�r; n�=U 0�Ti; eff; n�. If Eqn (5.24) is valid, i.e., i � v;w, then,
instead of Eqns (5.27), (5.29), we obtain a relation quite
analogous to Eqn (5.30) but with the Ti replaced by the
effective temperatures Ti; eff.

Let us consider the case in which S � S1 (see Fig. 6) and
the wall w is not closed. In analogy to Section 3.3, we
introduce the effective temperature of the entire surrounding
surface S or of the wall w. The actual nonuniform radiation
that enters the volume v through the surrounding surface is
thus replaced by radiation distributed uniformly over the
entire closed surface S. In carrying out this procedure, the
following two relations are used:

Uw�r; n� �
�
w

U 0
�
T�r 0�; n�PU�r 0S ! r; n� d3r 0

� U 0�TS; eff; n�
��

w

PU�r 0 ! r; n� d3r 0 � P3�r! Strans; n�
�
:

�5:33�
Here, P3�r! Strans� is defined by Eqn (5.28).

Instead of Eqn (5.27), we obtain usingTi; eff with i � v and
TS; eff:

Uv�r; n�
U 0�Tv; eff; n� �

Uw�r; n�
U 0�TS; eff; n� � 1 : �5:34�

To pass from the relations between the components of
radiation energy to relations between the components of the
fluxes of this energy, we use Eqns (5.6), (5.10), (5.11), (5.13),
and (5.15). Instead of Eqn (5.27), we obtain�
vabs

d3r 0
�
4p
du

i�r 0 ! r; u; n�
4pI 0

�
T�r 0�; n�� P3�r! Strans; n� � 1 ; �5:35�

�
vabs

f �r 0 ! r; n�
F 0
�
T�r 0�; n� d3r 0 � P3�r! Strans; n� � 1 : �5:36�

The practical application of Eqn (5.35) requires a knowl-
edge of the dependence of the intensity components
i�r 0 ! r; u; n� on the direction u. The simplest case is
isotropic radiation. It was already mentioned (see Section
5.3) that radiation in an isothermal cavity is isotropic. There
are other conditions under which radiation can be considered
isotropic. In particular, a strongly scattering medium can
produce such radiation. Thus, radiation in an unclosed,
nonisothermal cavity can also be isotropic if a strongly
scattering radiator is placed within it. Then Eqns (5.12) and
(5.18) and the equality

u�r 0 ! r; n� � i�r 0 ! r; n�4p
c

hold. The integrands in Eqn (5.27) become

u�r 0 ! r; n�
U 0
�
T�r 0�; n� � i�r 0 ! r; n�

I 0
�
T�r 0�; n� :

Let us examine one possible application of Eqn (5.36), in
which radiation fluxes summed over directions are present.
We make use of the fact that at the entrance to the spectral
instrument (point rentr in Fig. 6) the total radiation flux from
the object v is localized within the solid angleo determined by
the optical system used. Outside this solid angle, the fluxes
from the object are usually negligible at rentr. Then the
integrand in Eqn (5.36) contains the ratio of the recorded
flux of the radiation that originated at r 0 to the equilibrium
flux at the temperatureT�r 0�. If the parts v andw of the object
are isothermal, the relations between the fluxes can be
obtained directly from Eqns (5.30) and (5.34), simply
replacing U by F, U 0 by F 0, and r by rentr.

Thus, in this section, we have obtained a set of relations
between the energy, intensity, and flux components of
stationary radiation. These relations are represented by
Eqns (5.27) ± (5.30), (5.34) ± (5.36). All relations that do not
involve the effective surface temperature TS; eff do involve the
probability P3�n� of the dipole radiation escaping through
the surface Strans. This quantity can generally be determined
experimentally in a manner similar to that described in
Section 4.3, i.e., by properly illuminating the object and
measuring the passage of radiation through it. On the other
hand, as mentioned above, this quantity may vanish if
radiation from the point of observation simply does not
reach the transparent portion of the surface Strans. As will be
seen from what follows, determining the effective surface
temperatures from the relations obtained in this and the
previous section is a rather straightforward procedure, so
that using relations with effective temperatures may often be
preferable. The set of component ± component relations is
complete enough to allow one to choose the most suitable
ones, based on the experimental conditions and require-
ments.

A comparison of the stationary relations derived here with
those obtained earlier shows that the former agree quite well
with what was obtained in Section 3.3 for the case where
geometrical optics is applicable to a scattering medium. The
main difference from the equilibrium relations given in
Section 5.3 for thermal-radiation in a closed cavity is that
the equilibrium relations do not involve the probability of
radiation escaping through a transparent surface. The
equilibrium relations are a special case of the stationary ones.

5.5 Component ± component relations in application
to the spectroscopy of highly scattering materials
The emissivity of highly scattering materials at high tempera-
tures is measured by high-speed-spectrometry methods [81 ±
83]. An experimental setup is schematically shown in Fig. 7.
The sample to be studied (4), made of a strongly scattering
material, is placed in a furnace (6) Ð a cylindric graphite
cavity heated by the field of a high-frequency inductor. A
horizontal partition divides the cavity into an upper (5) and a
lower (3) part. The sample is suspended inside the upper
cavity by two thin wires (7) fixed to the sample holder (8). The
radiation pyrometer (1) focused onto the furnace floor by an
infrared lens (2) serves to measure the furnace hearth
temperature T0. The top of the furnace is open, allowing the
radiation directed by a rotatingmirror (9) and an infrared lens
(10) to pass to the high-speed spectrometer (12). In per-
forming experiments, the radiation spectrum of the hearth
of the heated furnace, I0�n�, is measured first. After this, the
sample is placed inside the furnace. After the sample has been
heated to a stationary temperature, the spectrum of the
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radiation from the sample in the furnace, Iv�w�n�, is
measured. Then the sample-radiation spectrum Iv�n� is
measured using the method of a falling furnace [90]: the
furnace falls down, and its radiation is cut off by a screen.
The radiation is recorded immediately after the fall of the
furnace, before the sample temperature has significantly
changed. The emissivity is determined from the measured
radiation spectral-intensity ratio between the sample and the
furnace hearth, the furnace being treated as a black body. The
black-body approximation is not ideal, however, since the top
of the cavity is open and since the walls of the furnace are not
quite isothermal (the temperature Tw is variable).

In studying the emissivity, it is necessary to know the
temperature of the sample. The temperature of a sample of a
strongly scattering and weakly absorbing material is not
uniform inside a nonisothermal furnace. In this case, the
above-mentioned effective sample temperature Tv; eff is
needed. To determine it directly using thermocouples or
pyrometers is extremely difficult. Usually, this temperature
is determined by numerically solving the heat and radiation
transfer equations for the sample. In doing this, the sample's
thermal and optical properties as well as thermocouple
measurements of the furnace-wall temperatures are used,
and many simplifications are used in calculations.

A method for effective-temperature determination based
on the component ± component relations of Section 5.3 is

proposed in Ref. [91]. The method does not require complex
radiation-transfer and heat-conduction calculations, nor are
numerous assumptions and much additional information
needed.

The method was applied to the study of a fibrous heat-
insulating material with a porosity of 93.5%. The samples
used were disks 30 mm in diameter and 4 or 9.7 mm in
thickness. The spectra were measured in the continuous
scanning regime in the wavelength range from 1.5 to 5.0 mm
and hearth-temperature range from 800 to 1200 �C. Note that
the characteristic fiber diameter did not exceed a few
micrometers and the observation area on the surface of the
sample was measured in millimeters, which is far larger than
the size of the sample inhomogeneities. Consequently,
according to Ref. [26], the geometrical-optics approximation
could be used in the observation area.

There is an important point to note about these measure-
ments. If a scattering material is present in the furnace, the
intensity Iw�n� of the furnace-wall radiation that comes to the
recording instrument is strongly affected by this material. At
the same time, the intensity Iv�n� of the radiation from the
sample of scattering material is, on the contrary, is virtually
independent of whether the sample is inside or outside the
furnace, since the inside walls of the graphite furnace absorb
the incident radiation almost completely. This means that
measuring the sample radiation outside the furnace also
yields the component Iv�n� due to the primary sample
radiation even if the sample is placed in the furnace. Then,
from the total intensity Iv�w�n� of the recorded radiation from
the furnace with the sample inside, the second intensity
component Iw�n� � Iv�w�n� ÿ Iv�n� can be determined. Thus,
the described experiments measure the components Iv and Iw
of the radiation from the furnace with a sample of scattering
material within it.

Now let us employ the relations of Sections 5.3 and 5.4 to
determine the effective temperature of the scattering material
in the described experiments. First, following Ref. [91], we
make use of the equilibrium relation (5.21). First of all, we
should note that the equilibrium relations involve the
intensities Iwc

�n� and effective temperatures Twc; eff of the
walls of the closed cavities, whereas the cavity is partly open
in the falling-furnace experiments. The difference in intensi-
ties was approximately accounted for by means of the
coefficient K defined as, the ratio of the radiation-energy
flux onto the top of the sample from the real black-body
model to the flux from the closed model. The coefficient K
was calculated based on the known geometry of the furnace
interior, taking into account the opening angle a (see Fig. 7).
It was assumed that Iwc

�n� � Iw�n�=K. With the above in
mind, Eqn (5.21) becomes

Iv�n�
I 0�Tv; eff; n� �

Iv�w�n� ÿ Iv�n�
KI 0�Twc; eff; n�

� 1 : �5:37�

Generally speaking, this relation is quite sufficient to
obtain the effective temperature Tv; eff, but, since in Ref. [91]
only relative intensities were measured, use was also made of
the measured values of I0�n� and T0 and of the relationship
between them,

I0�n� � E�T0; n� I 0�T0; n� ;

where E�T0; n� is the effective emissivity of the black-body
model, which is calculated by a specifically developedmethod

a
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Figure 7. Experimental setup for measuring the emissivity of strongly

scattering materials at high temperatures: 1, radiation pyrometer; 2, 10,

infrared lenses; 3, lower part of the furnace; 4, sample under study; 5,

upper part of the furnace; 6, furnace wall; 7, sample suspension wire; 8,

sample holder; 9, rotating mirror; 11 spectrometer's entrance slit; 12,

spectrometer.\
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[82, 92]. As a result, we have the relation

Iv�w�n�
I0�n� �

KI 0�Twc; eff; n�
E�T0; n� I 0�T0; n� �

Iv�n�
I0�n�

�
1ÿ KI 0�Twc; eff; n�

I 0�Tv; eff; n�
�
;

�5:38�

which involves the relative values of the measured intensities
and the effective sample and furnace-wall temperatures.

The effective temperatures were found from the above
relation in view of the fact that Iv�n� � 0 in a certain
frequency range. The effective surface temperature Twc; eff

was then obtained from Eqn (5.38) using the Planck
function. After that, is was shown by calculations that this
temperature is frequency independent over the entire
spectral range under study. Then in those spectral regions
where Iv�n� 6� 0, Eqn (5.38) was applied to determine the
effective sample temperature as a function of frequency. The
results of these measurements are shown in Fig. 8. It can be
seen that the effective sample temperature depends on the
wavelength, sample thickness, and the furnace-hearth
temperature.

Let us see what the stationary relations of Section 5.4 will
give in the same case when used instead of the equilibrium
relations of Section 5.3. Under the considered experimental
conditions, the radiation inside the furnaceÐ the region onto
which the spectral apparatus is focused Ð can be assumed
isotropic; then, from Eqns (5.34) and (5.12) we obtain (after
noting that, in our case, the surface S coincides with the inner

surface of the furnace):

Iv�n�
I 0�Tv; eff; n� �

Iw�n�
I 0�Tw; eff; n� � 1 : �5:39�

Unlike the equilibrium relation (5.21) that underlies the
processing of experimental data, the radiation intensity and
effective temperature involved in this equation refer not to
the closed wall wc but to the partially open wall w. Such a
relation is more suitable for open-top furnace experiments.
Therefore, it requires no corrections whatsoever for a non-
closed wall, i.e., there is no need to employ the approximate
coefficient K. Note that the value of Tw; eff �n� differs from
that found above, which is directly related to the fact that in
the stationary case the temperature-averaging procedure is
based on other formulas [see Eqn (5.33)] than in the case of
a closed cavity.

6. Conclusions

We can summarize our main results as follows:
(1) General relations between the components of the

stationary radiation from objects with scattering media have
been obtained. Each component is determined by the primary
radiation from a certain part of the radiator as well as by the
passage of the radiation to the region of observation. The
relations do not depend on the specific conditions within the
radiator, although the components themselves do.

(2) The radiation component ± component relations have
been derived both for the case in which geometrical optics can
be applied to the scattering medium and for the case in which
it cannot. In the former case, the derivation involves general
solutions of the transfer equation obtained within the Green
function formalism; in the latter, the generalized Kirchhoff
law is used to treat thermal radiation from the scattering
medium.

(3) The method used to derive the general relations is
based on the probabilistic description of radiation. In the case
where geometrical optics is applicable, the first step is to write
an equation expressing the fact that the probability of
disappearance of the radiation emitted in the stationary
regime is unity. The introduction of stationary-radiation
components into the resulting equations leads to stationary
relations between the components. The relations were
obtained under the assumption that the reversibility condi-
tions are satisfied in the medium and that the reciprocity
relations are obeyed in every scattering event.

(4) If the geometrical optics approximation is not valid,
the stationary relations were again obtained by considering a
stationary condition that has a probabilistic meaning.

(5) In the special case of a thermal radiator enclosed by a
radiating surface, the stationary relations yield equilibrium
ones, which can also be derived from the equilibrium-
radiation condition for an isothermal cavity with radiating
and scattering medium inside.

(6) In the general case, the relations between the radiation
fluxes are written in an integral form [see Eqns (3.14), (5.35),
(5.36)], while for special cases of practical interest an algebraic
form is given [Eqns (3.17), (3.18), (3.21), (5.21), (5.39)].

(7) The quantities involved in the component ± compo-
nent relations are the subject of spectroscopic investigations.
The examples given here demonstrate the great potential
usefulness of these relations for both experimental and
theoretical studies of radiation.
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Figure 8. Effective temperature of samples of a quartz heat-insulating

material with a thickness of 4 mm (solid lines) and 9.7 mm (dashed lines)

for various furnace-hearth temperatures T0: 1, 800 �C; 2, 1000 �C; 3,
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