
Abstract. The scaling method based on the parameters of pair
atomic interaction potentials proved to be suitable for analyzing
the various parameters of dense and condensed rare gases Ne,
Ar,Kr,Xe andaccurate towithin a fewpercent. In this paper, the
interaction potential between radon atoms is evaluated based on
the relevant scaling laws and using the macroscopic quantities
determining the behavior of dense and condensed gases. Proper-
ties of systems of bound particles with a specific pair interaction
potential between them are considered, leading to the conclusion
that the long-range interatomic interaction is of no significance
as far as the properties of dense and condensed rare gases are
concerned. Phase transitions in clusters and atomic systems at
high pressures are analyzed, and some aspects of scale invar-
iance in dense and condensed molecular systems are under
discussion.

1. Introduction

It is well known that a physical quantity of any dimensionality
can be constructed on the basis of three typical quantities with
different dimensionalities [1]. This provides the basis for
various systems of units, which are convenient in a certain
branches of science [1 ± 3] in spite of the existence of the
International System of Units (SI) [4]. Indeed, if we choose a

specific system of units for a certain physical object, the
parameters of this object are to the order of magnitude of
the unit with a given dimensionality for this system of units.
Moreover, dimensional analysis can be useful for the
determination of some dependences between physical quan-
tities, and this is used widely in hydrodynamics [2, 5, 6] for the
analysis of various phenomena. This method becomes more
productive if the objects under consideration are similar, and
then one can express the parameters of one object through the
parameters of the other one. Below we shall analyze the
systems of atomic and molecular particles with a pair
interaction from this standpoint. Since three-body interac-
tions are weaker in these systems than pairwise ones, this
means that the typical interaction energy between neighbor-
ing atomic particles in these systems is small compared to an
internal energy of an atomic particle. For this reason these
systems are gases or condensed media in which atomic
particles conserve their individuality in bound systems
comprising these particles. The simplest systems with a pair
interaction between atoms are rare gases. Molecular gases
also relate to these systems.

Evidently, various physical quantities characterizing a
system of interacting atomic particles can be expressed
through the parameters of the pair interaction potential of
particles. A typical interaction potential of two atoms is given
in Fig. 1 and is characterized, at least, by two parameters: D,
the depth of the potential well, and Re, the equilibrium
distance between the atoms in their diatomic molecule.
Considering the behavior of atoms in the system to be
classical, we obtain three base parameters m, Re, D, where m
is the atomic mass, so that one can construct any physical
parameter of a macroscopic system involving these atoms on
the basis of these three parameters. Under this approach we
neglect the shape of the atomic interaction potential. In
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addition, we ignore the long-range interaction between
atoms, considering a weak interaction with many surround-
ing atoms as giving an insignificant contribution to a given
macroscopic parameter. Thus, admitting the validity of a
scaling law, we neglect some interactions, and the accuracy of
these assumptions can be verified from the analysis of the
measurable quantities characterizing the system under con-
sideration. This analysis is the goal of the current paper. We
make use of information [7 ± 14] about various properties of
the systems under examination in the analysis of the accuracy
of scaling laws and check the validity of the scaling law for
some specific properties of the system.

Below we discuss dense and condensed classical inert
gases. Along with the check of validity of scaling laws for
inert gases, this approachmay be useful in two respects. First,
it allows us to ascertain the role of a long-range interaction
between atoms in such systems. Second, one can understand
on this basis the physical character of the properties and
phenomena intrinsic to inert gases. Such an analysis can be
extended to molecular and complex systems with pair
interaction of particles.

2. Dense and condensed rare gases

2.1 Pair interaction potential of rare gas atoms
The parameters of the interaction potential of two inert gas
atoms can be found from the analysis of physical quantities
which depend on this interaction potential. These quantities
are the differential and total cross sections of elastic scattering
of two atoms, the second virial coefficient of inert gases, the
diffusion coefficient of atoms in the parent inert gas, the
thermal conductivity and viscosity coefficients of these gases,
the excitation spectra for dimers of inert gas atoms, and some
parameters of solid and liquid inert gases. As a result of
measurements of these observable quantities and their
treatment, reliable parameters of the interaction potential
between two atoms of inert gases were found [15 ± 18]. Table 1
contains the parameters Re, the equilibrium distance for the
diatomic molecule formed from interacting atoms, andD, the
depth of the interaction potential well.

Note that the scaling version under consideration leans
upon the parameters of the attractive part of the pair
interaction potential of atoms, and hence the parameters
of an atomic system are determined by a short-range
interaction, when the interaction between nearest neighbors

dominates in a dense or condensed atomic system. One can
construct another version of scaling laws on the basis of a
long-range interaction between atoms. Indeed, at large
separations R the interaction potential of two atoms has
the form

U�R� � ÿC6

R6
: �2:1�

where the values of the constants C6 for two identical atoms
of rare gases are compiled in Table 1 [19]. In a new scaling
version, we take as the base units m, Re, C6, i.e. in the above
version we replace the depth of the potential well D by the
constant C6 of a long-range interaction. Table 1 contains the
values of the reduced parameterDR6

e=C6, and the statistically
average value of this parameter is 0:93� 0:08, and within the
accuracy of several percent both versions may be valid.
Nevertheless, below we keep the version leaned upon the
short-range character of interatomic interaction, and in the
next chapter we prove the validity of this scheme.

The mutual repulsion of interacting atoms at small
distances between them is determined by the exchange
interaction potential due to overlapping of their atomic
electron shells. The corresponding interaction potential
between two atoms varies sharply with variation of the
distance R between them Ð that is, the pair interaction
potential is approximated by the formula

U�R� � U�R0�
�
R0

R

�k

;

where we have k4 1. Table 1 contains the parameters of this
formula as applied to inert gases [20], if U�Ro� � 0:3 eV.

2.2 Dense rare gases
Wenow treat themeasured parameters of simple systems with
a pair interaction of particles from the standpoint of scaling
laws. We start from dense rare gases when the interaction
between atoms influences the properties of a gas. The popular
equation of state for a dense gas is the van derWaals equation
[21 ± 23] which takes the form�

p� n2a

V 2

�
�Vÿ nb� � nRT : �2:2�

Here, p is the pressure, V is the volume, T is the temperature,
R is the molar gas constant, and n is the amount of gas
measured in moles. Below we take n � 1, and the molar gas

R0

Re

D

U

R

Figure 1. Typical interaction potential of two atoms.

Table 1.Parameters of the pair interaction potential for rare gas atoms and
the reduced parameters of systems consisting of interacting rare gas atoms.

Parameter Ne Ar Kr Xe

Re, A
�

D, meV
D, K
m, a.m.u.*
p0 � D=R3

e , MPa
V0 � R3

e , cm
3 molÿ1

r0 � m
���
2
p

=R3
e , g cm

ÿ3

C6, a.u.
DR6

e=C6

k

R0, A
�

3.09
3.64
42
20.18
20.2
17.8
1.606
6.3
0.84
7.6
207

3.76
12.3
143
39.95
37.1
32.0
1.764
65
0.90
8.1
2.85

4.01
17.3
200
83.80
43.0
38.8
3.051
130
0.93
7.7
2.99

4.36
24.4
278
131.3
47.1
49.9
3.718
270
1.04
5.9
3.18

* 1 a.m.u.=1:6605� 10ÿ24 g.
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constant is equal to

R � 82:06
cm3

mol

atm

K
� 8:314

cm3

mol

MPa

K
:

The quantities a, b are the so-called van der Waals constants
whose values are presented in Table 2 for rare gases. There are
more accurate equations describing the gaseous state [22, 24,
25], but the van der Waals equation is used more often due to
its simplicity and since it simultaneously governs the gaseous
and liquid states. A scaling analysis allows one to estimate the
accuracy of this equation. Indeed, on the basis of this
equation one can determine the parameters of the critical
point starting fromwhich the liquid and gaseous states are not
distinguished. At the critical point we have [23, 26, 27]�

qp
qV

�
T

� 0 ;

�
q2p
qV 2

�
T

� 0 : �2:3�

According to the van der Waals equation (2.2), the para-
meters Vcr, pcr, Tcr at the critical point are expressed through
the constants of this equation as

Vcr � 3b ; pcr � a

27b2
; Tcr � 8a

27b
: �2:4�

In particular, this leads to a simple relation between the
parameters at the critical point:

Tcr

Vcr pcr
� 8

3
: �2:5�

Table 3 enumerates the critical parameters of rare gases.
Notice that the validity of the scaling law for critical
parameters within the framework of the scheme under
consideration confirms that the critical phenomena in dense
rare gases are determined by the attractive interaction of rare
gas atoms. One can see that the accuracy of the scaling law for
interacting rare gas atoms amounts to several percent.
According to the data of Table 3, the ratio Tcr=pcrVcr is
equal, on average, to 3:4� 0:1. Comparing this result with
formula (2.5), one can conclude that the exactness of the van

der Waals equation of gaseous state is characterized by an
accuracy of tens of percent in the range of parameter variation
where the interaction of atoms is significant. The state of a
system of particles in the given volume is conveniently
characterized by the packing density j � 4pr30N=3, where
r0 � Re=2 is the particle radius, and N is the particle number
density (Table 3 lists values of the factor jcr relevant to the
critical point). For comparison, one obtains j � p

���
2
p

=6 �
0:7405 in the case of the crystal incorporating these particles.

According to the Clapeyron formula, the equilibrium
pressure psat�T� of saturated vapor over plane solid and
liquid surfaces is given by the following respective formulas
[27, 28]

psat�T� � psol exp

�
ÿ esol

T

�
; psat�T� � pliq exp

�
ÿ eliq

T

�
;

�2:6�

where the parameters esol, eliq can be considered as the atomic
binding energies for the solid and liquid systems under
consideration. Figure 2 depicts the temperature dependence
of the saturated vapor pressure of rare gases over solid and
liquid plane surfaces, while Table 4 gives the parameters of
formulas (2.6) for solid and liquid rare gases near the melting
point. Note that the parameters eliq, pliq can be found by using
the magnitudes of the triple and boiling points, and thus
obtained values are close to those of Table 4.

Table 4 also contains the boiling point Tb for rare gases,
i.e. the temperature values at which the saturated vapor
pressure is equal to 1 atm. It is necessary to mark that the
boiling point is not a parameter which must satisfy the scaling

Table 2. Parameters of the van der Waals equation for rare gases [4] and
their reduced values.

Parameter Ne Ar Kr Xe Average

a, 105 MPa cm6 molÿ2

b, cm3 molÿ1

a=�DR3
e�

b=R3
e

Vliq=b

0.208
16.72
3.27
0.941
0.97

1.35
32.01
3.57
1.000
0.88

2.32
39.6
3.59
1.020
0.87

4.19
51.56
3.57
1.033
0.83

ì
ì
3.50� 0.15
1.00� 0.04
0.89� 0.06

Table 3. Critical parameters of rare gases [14] and their reduced values.

Parameter Ne Ar Kr Xe Average

Tcr, K
pcr, MPa
Vcr, cm3 molÿ1

rcr=r0
jcr

Tcr=D
pcrR

3
e=D

Vcr=R
3
e

Tcr=�pcrVcr�

44.4
2.76
42
0.283
0.209
1.05
0.137
2.50
3.4

150.9
4.90
75
0.302
0.224
1.06
0.132
2.34
3.5

209.4
5.50
91
0.302
0.224
1.04
0.128
2.34
3.2

289.7
5.84
118
0.300
0.222
1.02
0.124
2.36
3.5

ì
ì
ì
0.297� 0.009
0.220� 0.007
1.04� 0.02
0.130� 0.006
2.38� 0.08
3.4� 0.1
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Figure 2. Saturated vapor pressure over the solid (a) and liquid (b) surfaces

of rare gases. Experimental data are taken from Ref. [29] for the solid

surface, and from Ref. [14] for the liquid phase.
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law, because it is more correct to compare the temperatures at
which the saturated vapor pressure is proportional to a
characteristic pressure p0 for this system, whose values are
given in Table 1 for rare gas systems. Comparing the boiling
points of various rare gases as temperatures corresponding to
different reduced pressures, we get an error in the scaling law,
which is estimated to be within the limits of several percent.
This error corresponds to the data presented in Table 4.

2.3 Rare gases near the triple point
Solid inert gases have a face-centered cubic crystal lattice
[30 ± 33]. The hexagonal structure of solid inert gases is only
observed in films fabricated on special substrates [34 ± 36].
Table 5 lists the parameters of solid inert gases [37, 38], so that
a is the distance between nearest neighbors in the crystal
lattice at zero temperature, r0 �

���
2
p

m=R3
e , where m is the

atomic mass, r�0� is the crystal density at zero temperature,
rsol, rliq are the densities of the solid and liquid rare gases at
the triple point,Ttr, ptr are the temperature and pressure at the
triple point, esub is the binding energy per atom for the solid
rare gas at themelting point,Vsol,Vliq are the specific volumes
for the solid and liquid states at the melting point, DSfus is the
entropy variation as a result of melting at the triple point,
DHfus � TtrDSfus is the fusion enthalpy, and DV � Vliq ÿ Vsol

is the volume change as the result of melting. As is seen, the
mechanical energy ptrDV released in the course of melting is
small in comparison to the fusion enthalpy DHfus. This fact
allows us to consider the phase transition of rare gases as a
thermodynamic process which depends on one variable. The
values of the parameter Ttr=�ptrVsol� show that solid rare
gases differ significantly from respective gases for which this
parameter is equal to unity.

The behavior of the phase curve of melting, which
separates the solid and liquid states, is described near the
triple point by the Simon equation [25, 39]

pÿ ptr
P
�
�

T

Ttr

�c

ÿ 1 ; �2:7�

where ptr, Ttr are the parameters of the triple point. In Table 5
are given the parameters P and c of this equation [25].

Let us return to equation (2.2). In the course of deduction
of this equation we introduced the constant b as the specific
volume occupied by atoms. One can take this volume as that
relevant to atoms in the liquid state of the atomic system,
which is denoted by Vliq. Table 5 contains corresponding
values of the latter, and the ratioVliq=b is given in Table 2. The
degree of variation of this ratio from unity testifies to the
exactness of the van der Waals equation.

2.4 Liquid rare gases
Let us consider amacroscopic liquid drop. TheWigner ± Seitz
radius rW for a system of randomly distributed atoms is
defined as

rW �
�

3m

4pr

�1=3

; �2:8�

where m is the atomic mass, and r is the bulk density. In this
case the average volume per atom equals 4pr3W=3. Table 6
collates the values of the Wigner ± Seitz radius for liquid rare
gases near the triple point. In addition, this table contains the
atomic binding energy eev for the liquid state, i.e. the energy
which is expended for evaporating one atom at the boiling
point.

Figure 3 gives the dependence of the surface tension of
liquid rare gases as a temperature function [40, 41], and
Table 6 compiles the surface tension of rare gases in the
liquid state near the triple point [40, 41]. It is convenient to

Table 5. Parameters of solid rare gases and their reduced values near the
triple point.

Parameter Ne Ar Kr Xe Average

a, A
�

a=Re

r�0�=r0
rsol, g cm

ÿ3

rsol=r0
rliq, g cm

ÿ3

rliq=r0
rsol�0�=rliq ÿ 1

Ttr, K
Ttr=D
ptr, kPa
ptr=p0, 10ÿ3

Vliq, cm3 molÿ1

Vliq=R
3
e

Vsol, cm3 molÿ1

Vsol=R
3
e

esub, meV
esub=D
esub=esol
Ttr=�ptrVsol�
DHfus=D
DSfus

ptrDV=DHfus, 10ÿ4

P, MPa
c

P=p0

3.156
1.02
1.06
1.444
0.899
1.247
0.776
0.159
24.54
0.581
43.3
2.2
16.2
0.911
14.0
0.77
22
6.1
0.98
340
0.955
1.64
2.8
102
1.600
5.14

3.755
1.00
1.00
1.623
0.920
1.418
0.804
0.144
83.78
0.587
68.8
1.9
28.2
0.879
24.6
0.77
80
6.5
1.00
400
0.990
1.69
2.1
209
1.593
5.70

3.992
0.99
0.99
2.826
0.926
2.441
0.800
0.157
115.8
0.578
73.1
1.7
34.3
0.884
29.6
0.76
116
6.7
1.04
450
0.980
1.70
2.1
235
1.617
5.52

4.335
1.01
0.98
3.540
0.952
3.076
0.827
0.151
161.4
0.570
81.6
1.7
42.7
0.855
37.1
0.74
164
6.7
1.04
450
0.977
1.71
2.0
258
1.589
5.52

ì
1.005� 0.013
1.01� 0.04
ì
0.92� 0.02
ì
0.80� 0.02
0.153� 0.006
ì
0.579� 0.007
ì
1.9� 0.2
ì
0.88� 0.02
ì
076� 0.01
ì
6.5� 0.3
1.02� 0.03
410� 50
0.98� 0.02
1.68� 0.03
2.2� 0.4
ì
1.60� 0.01
5.5� 0.2

Table 6. Parameters of liquid rare gases.

Parameter Ne Ar Kr Xe Average

rW=Re

s, erg cmÿ2

sR2
e=D

A, meV
A=D
eev, meV
eev=D
eev=eliq
�eev � DHfus�=esub
q

q0

0.654
5.65
0.93
18.1
4.98
18.6
5.1
0.96
1.00
10.10
10.07

0.639
13.55
0.97
61.4
5.00
68
5.5
0.98
1.00
10.27
10.15

0.641
16.33
0.95
84.8
4.90
95
5.5
0.99
1.00
10.11
10.14

0.627
18.83
0.95
111
4.53
132
5.4
0.98
0.96
10.19
10.19

0.64� 0.01

0.94� 0.02

4.9� 0.2

5.4� 0.2
0.98� 0.01
0.99� 0.02
10.17� 0.08
10.14� 0.04

Table 4. Parameters of saturated rare gas vapors over plane solid and
liquid surfaces near the melting point.

Parameter Ne Ar Kr Xe Average

eliq, meV
pliq, MPa
eliq=D
pliqR

3
e=D

esol, meV
psol, MPa
esol=D
psolR

3
e=D

Tb, K
Tb=D

19.4
410
5.3
20
22.5
1800
6.2
89
27.05
0.640

69.6
1060
5.7
29
80.2
4600
6.5
124
87.28
0.610

95.6
1030
5.5
24
112
5600
6.5
130
120.1
0.601

134
1270
5.5
27
158
4900
6.5
104
165.1
0.594

ì
ì
5.5� 0.1
25� 4
ì
ì
6.4� 0.2
110� 20
ì
0.61� 0.02
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introduce the specific surface energy of a bulk liquid drop
consisting of n atoms, if we represent the total binding energy
E of atoms for this drop in the form of an expansion in terms
of the small parameter nÿ1=3. Then we have [42]

E � enÿ An2=3 ; �2:9�

where the parameter e is the binding energy of bulk per atom,
and the parameterA is the specific surface energy of this drop.
Evidently, for the liquid state the quantity e is close to the
parameters eliq, eev in formula (2.6) and Table 4. The specific
surface energy A is connected with the surface tension s, so
that by definition the surface energy of a surface having an
area S is equal toEsur � sS. Comparing this relationship with
definition (2.9) for the surface energy of the liquid drop of
radius r, we arrive at the formula

A � 4pr2s
n2=3

� 4pr2Ws : �2:10�

In Table 6 are given the specific surface energies A for the
liquid state of rare gases near the triple point.

It is easy to verify that we have the following relation valid
for the phase curve:

esub � eliq � DHfus ; �2:11�

where esub, eliq are the binding energies per atom for the solid
and liquid states in the melting curve, and this relation can be
considered as the definition of the specific fusion energy.
Table 6 contains the values of the ratio �eev � DHfus�=esub,
which are equal to one if the quantity eev coincides with the
atomic binding energy eliq for the liquid state.

One can consider the liquid state of a system with a pair
interaction of atoms as a result of formation of voids inside
the system [43]. These voids can be thought of as effective
vacancies, so that an individual effective vacancy occupies a
volume of one atom. Then the relative number of such
vacancies can be determined from the variation of the system
density as a result of the phase transition. The number of
nearest neighbors for an internal atom in the solid-state
system of such atoms equals 12, and we denote the average
number of nearest neighbors for the liquid state by q. This
quantity is equal to [37, 44]

q � 24ÿ 12rsol
rliq

�2:12�

within the framework of the model involved, where rsol, rliq
are the densities for the solid and liquid states of the system.
The number of nearest neighbors q of an internal atom, or the
coordination number, can be determined from the fusion
energy under the assumption of a short-range character of
interaction in this system, i.e. if only nearest neighbors
interact. Then we obtain for the average number of nearest
neighbors:

q 0 � 12eliq
esub

� 12

1� DHfus=eliq
; �2:13�

where esub, eliq are the binding energies per atom for the solid
and liquid states, and DHfus is the specific fusion enthalpy.

Table 6 collates the numbers of nearest neighbors q and
q0 for liquid rare gases, which were determined in accor-
dance to formulas (2.12), (2.13). For their calculations we
replaced the atomic binding energy eliq in the liquid state at
the melting point by the atomic binding energy eev�Tb� at
the boiling point, with a consequent increase in q. As is seen
from the data of Table 6, both the methods offer close
values of the number of nearest neighbors for liquid inert
gases that confirms the validity of this rough model.
Averaging the sought-for number over the various inert
gases and the methods of its determination, we obtain the
following result: q � 10:15� 0:06. In addition, from these
data it follows that one effective vacancy in the liquid inert
gas at the melting point relates to 5:6� 0:2 atoms [37].

Above analysis shows that a crude model of liquid as a
system consisting of atoms located at sites of the crystal lattice
and effective vacancies at certain sites may be useful for the
description of some properties of liquid rare gases.

2.5 Classical condition for condensed rare gases
Assuming the scaling laws for rare gases to be valid, we
suppose a classical character of atomic movements in dense
and condensed gases. For molecules this approach holds true
if their typical vibrational energy �ho is small in comparison to
the binding energy of atoms. The relevant criterion has the
form �ho5D, i.e. the vibrational energy �ho is small in
comparison with the dissociation energy D, and can be
written for a diatomic molecule as

D2 4
�h2

m
U 00 ; �2:14�

where m is the atomic mass, U�R� is the interaction potential
of two atoms, and the derivative is taken near the bottom of
the potential well. This criterion means that the diatomic
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Figure 3. Surface tension of liquid rare gases in the case where this quantity

is reduced (a) to the parameters of the pair interaction potential of atoms,

and (b) to the surface tension at the melting point. Experimental data are

taken from works [40, 41].
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molecule must possess many vibrational levels and such a
condition is violated for neon and argon diatomics.

For a system of many bound atoms, the classical criterion
takes the form

esub 4 yD ; �2:15�

where yD is the Debye temperature for condensed rare gases,
and esub is the energy of sublimation, i.e. the energy expended
per atom in transformation of a condensed system into a gas.
Table 7 contains the Debye temperatures for solid rare gases,
and also their sublimation energies taken from Table 4. As is
seen, criterion (2.15) is fulfilled.

2.6 Parameters of dense and condensed radon
We now demonstrate the possibilities of the scalingmethod in
regard to evaluating the parameters of the interaction
potential between two radon atoms on the basis of some
parameters characterizing dense and condensed radon. In
Table 8 are listed several parameters pertaining to dense and
condensed radon. From these data by relying on the scaling
laws for reduced quantities (see Tables 3 ± 5) we find for the
parameters of the interaction potential of two radon atoms
the following values:

D � 30:2� 0:4 meV; Re � 4:68� 0:04 A
�
:

Here the error accounts for the statistical weight of results
obtained with different physical quantities. In addition, the
scaling approach allows us to determine the other parameters
of condensed radon systems:

rliq � 3:9� 0:2 g cmÿ3 ; rsol � 4:5� 0:2 g cmÿ3 ;

ptr � 90� 20 MPa ; DHfus � 29:6� 1 meV ;

Vliq � 55� 1 cm3 molÿ1 ; Vcr � 149� 6 cmÿ3 molÿ1 ;

and we used the same notation as earlier.
In addition, the surface tension of liquid radon near the

triple point is s � 23:0 erg cmÿ2 [41]. From the above data we
find sR2

e=D � 1:04� 0:03 for radon, whereas according to

the data of Table 6 this value is 0:94� 0:02 for other rare
gases. This all confirms the conclusion that the accuracy of
several percent is achieved when obtaining radon parameters.

2.7 Peculiarities of scaling laws for systems
of rare gas atoms
In conclusion of the scaling analysis for rare gas systems we
enumerate the factors which cause the scaled parameters to be
in error. First, we assume that the character of atomic
interaction in dense and condensed systems does not depend
on the shape of the pair interaction potential between atoms,
so it is only determined by the parameters of the atomic
interaction potential near the well bottom. Second, we ignore
the contribution of a long-range interaction of atoms to the
parameters of the system under consideration. Third, we
neglect the quantum effects. Fourth, we assume that three-
body interactions of atoms are not of importance for these
systems. Evidently, the correctness of these assumptions
influences the accuracy of the scaling laws for the rare gas
systems. The analysis fulfilled for the example of dense and
condensed rare gases shows that the scaling law holds true
with the accuracy of several percent.

It is essential that there are several different parameters of
the same dimensionality, whose employment allows one to
improve the accuracy of the results. Table 9 contains the
ratios of the parameters with the similar dimensionality. For
the scaling analysis we used the following parameters with the
dimensionality of energy: Ttr, Tb, Tcr, eev, esub (the notation is
coincident with that given above), the quantitiesVliq,Vcr, b of
the volume dimension, the quantities ptr, pcr of the pressure
dimension, and also the constant a entering into the van der
Waals equation. We did not include the quantities eliq, esol in
this list assuming them to be identical to eev, esub, and the
quantities pliq, psol [formula (2.6)] which by definition
correspond to a typical number density of atoms and are
characterized by a large error. The variety of physical
parameters under consideration improves the scaling analy-
sis and excludes random errors from this analysis.

Figure 4 illustrates the phase diagram of rare gases, and
we indicated on this diagram the domains which were used for
the scaling analysis. We apply to the parameters of the triple
point (Ttr, ptr, Vsol, Vliq) and the critical point (Tcr, pcr, Vcr).
Next, we use the parameters of the three curves of phase
coexistence, which include P, c Ð the parameters of the
Simon equation (2.7) for the solid ± liquid phase transition,

Table 7. Debye temperature yD [33] and separately taken longitudinal ylD
and transverse ytD Debye temperatures [45] for condensed rare gases.

Parameter Ne Ar Kr Xe

yD, K
ylD, K
ytD, K
esub, K

75
79
70
260

92
100
69
930

72
72
50
1300

64
63
44
1900

Table 8. Parameters of a system of interacting and bound radon atoms.

Parameter Value Reduced value

Ttr, K
Tb, K
Tcr, K
a, 105 MPa cm6 molÿ2

b, cm3 molÿ1

pcr, MPa
esol, meV
eliq, meV
pliq, 103 MPa

202.1
211.4
377
6.6
62.4
6.28
188
181
2.1

0.58� 0.01
0.602� 0.007
1.07� 0.01
3.7� 0.2
1.01� 0.03
0.135� 0.006
6.2� 0.1
6.0� 0.1
45� 4

Table 9. Ratios of quantities of an identical dimensionality for dense and
condensed rare gases.

Ratio Ne Ar Kr Xe Average

Tb=Ttr

Tcr=Tb

eliq=Ttr

esol=Ttr

Vcr=Vliq

pcr=ptr
esol=Tcr

eliq=Tcr

eev=Tcr

eev=eliq
Vcr=Vliq

Vcr=b
pcr=ptr
TcrR

6
e=C6

1.808
1.64
9.2
10.6
2.74
64
5.9
5.1
4.9
0.96
2.74
2.51
64
0.89

1.801
1.73
9.6
11.2
2.66
71
6.2
5.4
5.2
0.98
2.66
2.34
71
0.95

1.805
1.75
9.6
11.3
2.65
75
6.2
5.3
5.3
0.99
2.65
2.30
75
0.97

1.795
1.76
9.6
11.4
2.76
72
6.3
5.4
5.3
0.98
2.76
2.29
72
1.06

1.802� 0.006
1.72� 0.05
9.5� 0.2
11.1� 0.4
2.70� 0.06
70� 5
6.2� 0.2
5.3� 0.1
5.2� 0.2
0.98� 0.01
2.70� 0.06
2.36� 0.10
70� 5
0.97� 0.07
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and the parameters esol and eliq for the solid ± gas and liquid ±
gas phase transitions. The binding energies per atom, esub and
eev, for the solid and liquid states are assumed to be close to
the quantities esol and eliq, correspondingly. In addition, we
use the constants a and b of the van derWaals equation which
describes the behavior of a gas of weakly interacting atoms. It
is essential that the number of the parameters used signifi-
cantly exceeds threeÐ the number of parameters on the basis
of which a system of measurement units can be constructed.
The variety of physical parameters under consideration
improves the reliability of the above scaling analysis and
excludes occasional errors from this analysis. This fact also
allows us to estimate its accuracy thatmay amount to asmuch
as several percent.

The scaling version employed in our analysis is valid if the
parameters appropriate for the domains of the phase diagram
in Fig. 4 are determined by the short-range part of the
interaction potential between two atoms. This scaling ver-
sion assumes that the interaction of nearest neighbors gives
the main contribution to the energy of the system. Another
version can be based on the long-range part of the pair
interaction potential (2.1). For demonstration of this possi-
bility, Table 9 gives the reduced critical temperature of rare
gases for this scaling version. From this it follows that such a
version may also be realized with an accuracy of several
percent. Thus, it is necessary to prove the validity of the
scaling version under consideration. We shall dwell on this
problem in the next section.

3. Systems with a specific particle interaction
potential

3.1 The solid state of a system of interacting atoms
In the previous section we analyzed the character of scaling
laws for dense and condensed rare gases. As a result, this
analysis proved the validity of the similarity laws for various
parameters of rare gases with the accuracy of several percent
and allowed us to restore unknown parameters on the basis of
the scaling procedure. Along with this, the scaling method
gives the possibility of ascertaining the nature of various

properties of dense and condensed gases if we compare their
reduced parameters with those of similar systems with a
specific pair interaction potential between their particles.
Below we shall consider some properties of atomic systems
with a pair interaction potential in order to connect the latter
with macroscopic parameters of these systems.

We first consider solids consisting of atoms with a pair
interaction potential. If the short-range interaction of atoms
gives a significant contribution to the atomic binding energy
of the system with a pair interaction of atoms, the solid state
of this system of atoms features a close-packed structure.
Note that the definition of a short-range interaction in atomic
physics [46] differs from that in nuclear physics [47, 48].
Indeed, in nuclear physics a short-range interaction potential
is not zero, if the coordinates of interacting particles coincide.
A presence of the short-range interaction potential in atomic
physics means that in a system of atomic particles the
interaction takes place between nearest neighbors only.

We shall model the atoms in this bound system by balls of
a radius a, where a is the distance between nearest neighbors.
The close-packed structure of balls can be either face-centered
cubic (fcc) or hexagonal. Each atom-ball of these structures is
surrounded by 12 nearest neighbors. In order to understand
the general peculiarities and differences between these two
close-packed structures, let us construct them by leaning
upon the same method (see Fig. 5). Assuming the atoms to
be balls, arrange them on the xy plane in such a way that these
balls are placed in parallel lines directed parallel to the x axis.
Then neighboring lines are placed at a distance b � a

���
3
p

=2,
and the ball center in the next line is shifted with respect to the
previous one by a distance�a=2. Each atom on the plane has
6 nearest neighbors which form a regular hexagon with the
side a. This plane is denoted by f111g.

Let us compose the next plane of balls along the z-axis at a
distance of a

��������
2=3

p
from the previous one in such a way that

the balls of the next plane are placed in hollows between balls
of the previous plane. Then the projections of the balls of the
upper plane are shifted in the y-direction with respect to the
balls of the preceding plane by a distance a=

���
3
p

:
Up to now the above procedure has related to the

construction of both the hexagonal and fcc lattices. Placing
balls of the third plane in the hollows of the second plane, we

Figure 5. Crystal lattices of close-packed structures. Large circles corre-

spond to positions of atoms-balls of a given layer. Crosses stand for the

positions of atomic centers of the previous layer, open squares mark the

positions of atomic centers of the subsequent layer for the hexagonal

crystal lattice, and filled squares are those for the face-centered cubic

lattice.

Triple
point

Ctitical
point

Evaporation
curve

Sublimation curve

Melting curve

Gas

Solid
Liquid

p

T

1

32

4

Figure 4. Phase diagram of rare gases and regions of the phase diagram

used for the scaling analysis. Namely, the parameters are taken of the triple

and critical points, the parameters of phase boundaries near the triple

point (1, 2, 3), and the constants of the van der Waals equation related to

the gaseous state (4).
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are led to two types of ball positions (see Fig. 5). If the
projections of the balls of the first and third planes coincide, a
hexagonal lattice is formed. The other possibility of locating
the atoms of the third layer leads to the formation of an fcc
lattice. One can see that the number density of balls for both
the close-packed structures is equal to

���
2
p

=a3: Thus, there are
two close-packed structures, face-centered cubic and hexago-
nal, and from the standpoint of interaction character in the
system the difference between these structures isminor. Below
we shall evaluate the binding energy for these structures for
several specific pair interaction potentials. Comparison of
real parameters of rare gases with calculated ones will allow
us to determine the character of atomic interactions in real
solid rare gases.

Placing a test atomat the origin of the coordinates, one can
distribute other atoms of the solid system over shells, so that
the distance of atoms of one shell from a test atom is identical
and atoms belonging to a certain shell can be transformed one
into another as a result of transformations which leave this
lattice unchanged. Table 10 collates the parameters of atomic
shells for the face-centered cubic structure, and Table 11 gives
the analogous parameters for the hexagonal structure [44, 49].
Evidently, the binding energyper atom for a systemwith apair
interaction of atoms is given by [50]

esub � 1

2

X
k

nkU�rk� ; �3:1�

where U�rk� is the interaction potential between an atom of
the kth shell and a test atom, and the numerical factor 1/2
accounts for the fact that each bond relates to two atoms.

It is convenient to divide the specific binding energy into
three parts [51]:

esub � enn�Re� � ennn�Re� � estr ; �3:2�
where enn�Re�, ennn�Re� are the interaction energies between
nearest neighbors and non-nearest neighbors, respectively,
and the strain energy is given by

estr � esub�a� ÿ esub�Re� ; �3:3�
where a is the optimal distance between nearest neighbors,
which corresponds to the maximum binding energy in the
crystal. For the close-packed structures, enn�Re� � 6D. In the

case of a short-range interaction between atoms, if only
nearest neighbors interact, we have enn�Re� � 6D, ennn �
estr � 0, and

esub � 6D ; a � Re : �3:4�
From the data of Table 5 it follows that the sublimation
energy and the distances between nearest neighbors in solid
rare gases are close to those of a system with a short-range
atomic interaction.

3.2 Lennard ± Jones crystal and gas
We now consider the other types of pair interaction potential
between atoms in order to ascertain the role of a long-range
interatomic interaction in the formation of real crystals. The
most popular Lennard ± Jones potential of pair interaction
between atoms assumes the form

ULD�R� � D

��
Re

R

�12

ÿ 2

�
Re

R

�6�
; �3:5�

where R is the distance between atoms. This interaction
potential is often taken as an accurate potential describing
interaction of two atoms of rare gases [33, 52], and we shall
show that such an inference is incorrect. Below we shall
determine the sublimation energy of the Lennard ± Jones
crystal. Then formula (3.1) gives for the specific sublimation
energy of the crystal [33] the following expression

esub
D
� ÿC1

2

�
Re

a

�12

� C2

�
Re

a

�6

;

C1 �
X
k

nk

�
Re

rk

�12

; C2 �
X
k

nk

�
Re

rk

�6

: �3:6�

Optimizing formula (3.6), we arrive at the optimal distance a
between nearest neighbors and the specific binding energy
esub:

a � Re

�
C1

C2

�1=6

; enn � 6D ; ennn �
�
C2 ÿ C1

2
ÿ 6

�
D ;

estr � �C2 ÿ C1�2
2C1

D ; esub � C 2
2D

2C1
: �3:7�

Table 11. Shell parameters of the hexagonal crystal structure, so that rk is
the distance of atoms of the kth shell from a test atom, a is the distance
between nearest neighbors, and nk is a number of shell atoms [44, 49].

Layer r2k=a
2 nk Layer r2k=a

2 nk

0
1
1
2
0
1
2
0
1
2
1
3
2
0
1
3
3
0

1
1
2
8/3
3
3
11/3
4
5
17/3
6
19/3
20/3
7
7
22/3
25/3
9

6
6
6
2
6
12
12
6
12
12
6
6
12
12
12
6
12
6

1
2
1
3
4
1
3
2
4
0
3
0
1
4
3
2
4
1

9
29/3
10
31/3
32/3
11
34/3
35/3
35/3
12
37/3
13
13
41/3
43/3
44/3
44/3
15

6
24
12
12
2
12
6
12
12
6
12
12
12
12
6
12
12
12

Table 10. Shell parameters of the fcc-crystal structure, so that rk is the k-
shell distance from a test atom, a is the distance between nearest neighbors,
and nk is a number of shell atoms [44, 49].

Shell r2k=a
2 nk Shell r2k=a

2 nk

011
002
112
022
013
222
123
004
114
033
024
233
224
015
134
125

1
2
3
4
5
6
7
8
9
9
10
11
12
13
13
15

12
6
24
12
24
8
48
6
24
12
24
24
24
24
48
48

044
334
035
006
244
116
235
026
145
226
136
444
055
017
345
046

16
17
17
18
18
19
19
20
21
22
23
24
25
25
25
26

12
24
24
6
24
24
48
24
48
24
48
8
12
24
48
24
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Replacing the summation in formula (3.6) by integration for
R5 r0, we find the contribution to the constants C1, C2 from
an atomic domain where rk > r0:

DC1 � 1

2

X
R5 r0

nk

r12k
� 1

2

�1
r0

���
2
p

a3
4pr2 dr
r12

� 4p
���
2
p

9r90
;

DC2 �
X
R5 r0

nk

r6k
�
�1
r0

���
2
p

a3
4pr2 dr

r6
� 4p

���
2
p

3r30
:

We now account for the fact that the average number density
of atoms in a close-packed crystal structure is

���
2
p

=a3.
Choosing r20 to be between 26 and 27, we get the following
results for the face-centered cubic structure of the crystal on
the basis of the data from Table 10 [33]:

C1 � 12:131 ; C2 � 14:454� 0:002 ;

and the error indicated is caused by the choice of the lower
limit of integration. In the expressions for DC1, DC2, we took
k0 such that r20 � 26. This gives for the parameters of the
Lennard ± Jones face-centered cubic crystal (i.e. for a crystal
with the Lennard ± Jones interaction potential of atoms):

a � 0:971Re ; esub � C 2
2D

2C1
� 8:61D : �3:8�

Comparison with formula (3.4) shows that a short-range
interaction between atoms makes a contribution of approxi-
mately 70% to the energy of the Lennard ± Jones crystal with
the face-centered cubic structure. Partition of the specific
binding energy esub into three parts in accordance with
formula (3.7) results in the following expressions for these
terms:

enn�Re� � 6D ; ennn�Re� �
�
C2 ÿ C1

2
ÿ 6

�
D � 2:39D ;

estr � �C2 ÿ C1�2
2C1

D � 0:22D : �3:9�

Repeating these operations for the hexagonal lattice, we
obtain using the data from Table 11 for parameters of the
Lennard ± Jones crystal:

C1 � 12:132 ; C2 � 14:454� 0:002 :

As is seen, within the accuracy of the analysis, the energy
parameters of the Lennard ± Jones crystal coincide for the fcc
and hexagonal structures. Thoughmore accurate calculations
show the preferableness of the hexagonal structure [53], this
fact has no practical significance.

Comparing the reduced parameters of the Lennard ±
Jones crystal, obtained according to formula (3.8), with
those for solid rare gases (see Table 5), we convince ourselves
that the Lennard ± Jones interaction potential is not suitable
for condensed rare gases. This inference also relates to other
parameters of the Lennard ± Jones system [54, 55]. The
reduced temperature of the Lennard ± Jones system at the
triple point isTtr=D � 0:695; the reduced density of the liquid
Lennard ± Jones system is rliq=r0 � 0:85 at the triple point.
The reduced parameters for the critical point are as follows:
Vcr=R

3
e � 2:33, Tcr=D � 1:316, and pcrR

3
e=D � 0:184. The

critical parameters are equal to Vcr=R
3
e � 2:9� 0:2, and

Tcr=D � 1:34� 0:02 [56, 57]. As is seen, the values of the

above parameters at the critical point, except the critical
volume, differ from those of rare gases (see Tables 3, 5). In
addition, the ratio Tcr=�pcrVcr� is 3:1 for the Lennard ± Jones
system that differs from 3:4� 0:1 (Table 3) for rare gases. All
this permits one to conclude that the Lennard ± Jones
interaction potential does not describe rare gases.

3.3 Morse crystal
The other type of interaction potential allows us to vary the
ratio between the short-range and long-range parts of the
interaction potential. We now consider a crystal consisting of
atoms with a Morse interaction potential which takes the
form

U�R� � D
n
exp

�
2a�Rÿ Re�

�ÿ 2 exp
�
a�Rÿ Re�

�o
;

�3:10�

and passes aminimum atR � Re. According to formula (3.1),
we have for the specific binding energy of crystal atoms:

esub � D

�
exp�aRe�F�aa� ÿ 1

2
exp�2aRe�F�2aa�

�
;

F�aa� �
X
k

nk exp�ÿark� : �3:11�

Here, rk is the distance between a test atom and atoms of the
kth shell, nk is the number of atoms in this shell, and a is the
distance between nearest neighbors in the lattice. Values of
the function F�aa� may be evaluated on the basis of the data
from Table 10 for the face-centered cubic lattice and are
compiled in Table 12. In addition, the latter table contains an
effective number F�aa� exp�aa� of atoms that partake in the
interactions with a test atom, and the derivative of the
function under consideration is given by

F 0�aa� � dF

d�aa� � ÿ
X
k

nkrk
a

exp�ÿark� : �3:12�

Note that the quantity F�aa� exp�aa� at large aa tends to 12,
i.e. the number of nearest neighbors.

Formula (3.11) establishes the connection between the
equilibrium distance Re of atoms in the diatomic molecule
and the distance a between the nearest neighbors in the
crystal. This connection takes the form

exp�aRe� � f �aa� � F 0�aa�
F 0�2aa� ; �3:13�

Table 12. Parameters of the face-centered cubic crystal in the case of the
Morse interaction potential between atoms [44, 58].

aa aRe F �aa� ÿdF �aa�= d�aa� F�aa� exp�aa� esub=D

2
3
4
5
6
7
8
9
10

3.03
3.57
4.31
5.17
6.10
7.06
8.03
9.02
10.01

3.87
0.910
0.274
0.0911
0.0318
0.0114
0.00412
0.001503
5.499�10ÿ4

6.47
1.17
0.311
0.0975
0.0330
0.0116
0.00417
0.001514
5.523�10ÿ4

28.6
18.3
14.9
13.5
12.8
12.5
12.3
12.2
12.1

21.3
12.2
8.94
7.52
6.84
6.47
6.29
6.18
6.11
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and the optimal specific binding energy of the crystal is given
by

esub
D
� f �aa�F �aa� ÿ 1

2
f 2�aa�F �2aa� : �3:14�

These parameters for the lattice of the fcc crystal are given in
Table 12.

Notice that in contrast to the Lennard ± Jones interaction
potential, in the case of the Morse interaction potential
between atoms the variation of the free parameter a allows
us to change continuously the specific atomic binding energy
in the crystal. In particular, the specific binding energy of the
Lennard ± Jones crystal with the parameters (3.8),
esub � 8:61D, is realized at the value of aa � 4:17 for the
Morse interaction potential. This corresponds to aRe � 4:46,
i.e. a � 0:935Re. As is seen, the Morse crystal for this Morse
parameter is more compressed than the Lennard ± Jones one.
In addition, in this case the separate terms of formula (3.2) for
the Morse interaction potential of atoms are as follows:

enn�Re� � 6D ; ennn�Re� � 2:136D ; estr � 0:474D :

The contributions to the total binding energy from interac-
tions between non-nearest neighbors and from the strain
energy for the Morse crystal are equal to 25% and 5.5%,
correspondingly. For the Lennard ± Jones crystal, appropri-
ate values according to formula (3.9) are equal to 28% and
2.6%. From this fact and the crystal compression one may
conclude that the crystal parameters depend on the shape of
the interaction potential between atoms.

If we approximate the interaction potential of rare gas
atoms by the Morse potential, in order to obtain the
sublimation energy and the distance between nearest neigh-
bors in accordance with the data of Table 5, it is necessary to
take the Morse parameter aRe � 8� 1. In this case the
contribution of the interaction between non-nearest neigh-
bors to the total crystal energy is less than 10%. Thus,
comparing the crystal parameters of the close-packed
structure with those of rare gas solids, one can infer that
interaction in solid rare gases is close to being short-range.

3.4 Surface energy of Lennard ± Jones and Morse crystals
We now determine the specific surface energy of a crystal with
face-centered cubic lattice using the above interaction
potentials of atoms. Such a crystal possesses surfaces of
three structural types, as is illustrated in Fig. 6. Let us take
an infinite fcc crystal and divide it into two parts by a plane
f100g or f111g. The specific surface energy corresponds to
the interaction potential of these parts per unit area. Let us
denote the interaction energy of a test surface atom with all
the atoms of the kth layer by ek (this atom is located in the
zeroth layer). Then the specific surface energy is written as

s �
X1
k�1

kek
s
; �3:15�

where s is the area per atom, and we took into account that
each bond relates to two atoms. From this formula we obtain
for the specific surface energy of a solid in the case of the
Lennard ± Jones interaction potential:

s
D
� 1

s

�
B6

R6
e

a6
ÿ B12

R12
e

2a12

�
; �3:16�

where D is the dissociation energy of the diatomic molecule,
a is the distance between nearest neighbors, Re is the

equilibrium atomic separation, s is the surface area per
atom, and

B6 �
X
i;k

knik
a6

r6ik
; B12 �

X
i;k

knik
a12

r12ik
: �3:17�

Here, rik is the distance from a test atom to the ith atom of the
kth layer, and nik is the number of such atoms.

First we consider the surface f100g. The area per atom of
this surface is equal to s � a2, and the distance between
neighboring layers is a=

���
2
p

. Table 13 contains information
about the numbers of atoms whose distances from a test atom
are r2ik 4 12, and their locations in the layers. We take the
sums in formulas (3.17) up to r2ik � 12, and for r2ik > 12 we
replace the sum by integration both for atoms of the first four
layers and atoms of subsequent layers. Correspondingly, the
sums in formulas (3.17) reduce to three terms:

B 100
6 � 5:35� 10a6

�1
r0

2prdr dz

�r2 � z2�3

�
X1
k�5

ka4
�1
ka=

��
2
p

2pr dr

�r2 � k2a2�3 � 5:39 ;

where we took r20 � 13. In the same way we get B100
12 � 4:06:

We use the same method for the surface f111g. Table 14
lists relative positions of the nearest atoms for a test atom of

{111}

{110}

{100}

a

b

c

Figure 6. Structural types of surfaces for the fcc crystal with the following

directions: (a) f100g; (b) f110g, and (c) f111g. Crosses and open and filled

circles relate to different layers.
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this surface. In this case we get

B 111
6 � 4:116� 10p���

3
p a4

r40
� 3

���
3
p

p
8k20

� 4:44 ; B 111
12 � 3:07 ;

where k0 � 5:
Let us take the distance between nearest neighbors at the

surface in the same manner as in the Lennard ± Jones crystal:
a � 0:975Re. Then, taking into account that for the f100g-
surface the area per atom is s � a2, and that for the f111g-
surface it is s � a2

���
3
p

=2, we get from formula (3.17) for the
specific surface energy of the appropriate layers the results as
follow:

s100 � 3:66D

a2
; s111 � 3:59D

a2
: �3:18�

In the case of the Morse interaction potential between
atoms (3.10), the specific surface energies of the face-centered
cubic lattice are given by

s � D

�
exp�aRe�G�aa� ÿ 1

2
exp�2aRe�G�2aa�

�
;

G�aa� �
X
i; k

knik exp�ÿarik�
s

: �3:19�

Here, k is the number of a layer, i is the number of an atom in
this layer, nik is a number of such atoms, rik is the distance
from a test surface atom to these atoms, and s is the area per
atom in the layer of the corresponding direction. The first
terms of this series for the f100g- and f111g-surfaces have the

form

G100 � 4 exp�ÿaa� � 2 exp�ÿaa
���
2
p
�

� 16 exp�ÿaa
���
3
p
�� 8 exp�ÿ2aa� � 16 exp�ÿ2aa

���
5
p
� ;

G111 � 3 exp�ÿaa� � 3 exp�ÿaa
���
2
p
�

� 12 exp�ÿaa
���
3
p
� � 6 exp�ÿ2aa� � 18 exp�ÿaa

���
5
p
� ;

with the first term of each expansion corresponding to a
short-range interaction, i.e. it accounts for the interaction
between nearest neighbors only.

The results of numerical calculations are presented in
Table 15, with the above sum being restricted to distances
r2ik 4 12. In order to estimate the accuracy of this operation,
when we neglected the interaction between a test and farther
atoms, we compare the contribution of farther atoms to the
sum DG with that from nearest neighbors of the first layer,
Gnn � n1 exp�ÿaa�, where n1 is the number of nearest
neighbors of a test surface atom in the first layer. Its value
would run to n1 � 4 for the f100g-surface plane, and n1 � 3
for the f111g-surface plane. We have in the limit ar0 4 1 that

DG
Gnn
� 231

ban1
exp�ÿ2:6aa�

for r0 �
�����
13
p

. In particular, for aa � 3 and for the f111g
surface plane this ratio is 0:01. Because we are guided by the
inequality aa5 3, below we shall neglect DG.

From above results one can find the specific energy per
surface atom:

g�aa� � exp�aRe�G�aa� ÿ 1

2
exp�2aRe�G�2aa� ;

s�aa� � Dg�aa�
s

;

where s is the surface area per atom.
We now apply to the above results for determining the

surface energy of solids with face-centered cubic structure. A
geometric figure of such a structure with the maximum
binding energy of atoms has plane facets with directions
f111g and f100g (the definition of such planes is illustrated
in Fig. 6), i.e. this figure possess 8 facets as hexagons of the
direction f111g, and 6 facets as squares of the direction f100g.
This figure is represented in Fig. 7 [59]. One can introduce the
total binding energy E of atoms in this system on the basis of
formula (2.8), which has the form [42]

E � esubnÿ An2=3 ; �3:20�

Table 14. Distances between nearest atoms and a test atom of the f111g
surface in the fcc crystal [44, 58].

r 2ik=a
2 1st layer 2nd layer 3rd layer 4th layer

1
2
3
4
5
6
7
8
9
10
11
12

3
3
6
ì
6
3
6
ì
3
6
6
ì

ì
ì
3
3
6
ì
6
3
6
ì
3
6

ì
ì
ì
ì
ì
1
6
ì
6
ì
6
3

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
3
3

Table 15. Parameters of a bulk crystallite with the fcc structure for the
Morse interaction potential between atoms [44, 58].

aa aRe G100 G111 g100 g111 A dopt

2
3
4
5
6
7
8
10
12

3.03
3.57
4.31
5.17
6.10
7.06
8.03
10.01
12.00

2.00
0.387
0.103
0.0322
0.0109
0.02 384
0.02 138
0.03 184
0.04 247

1.70
0.321
0.0832
0.0255
0.02 850
0.02 296
0.02 106
0.03 139
0.04 186

37.6
11.3
5.53
3.64
2.85
2.48
2.25
2.08
2.02

32.1
9.52
4.57
2.94
2.28
1.95
1.74
1.59
1.52

155
46.4
22.4
14.5
11.3
9.69
8.71
7.96
7.66

0.30
0.33
0.35
0.39
0.41
0.43
0.45
0.48
0.49

Table 13. Distances between nearest atoms and a test atom of the f100g
surface in the fcc crystal [44, 58].

r 2ik=a
2 1st layer 2nd layer 3rd layer 4th layer

1
2
3
4
5
6
7
8
9
10
11
12

4
ì
8
ì
4
ì
8
ì
8
ì
ì
ì

ì
1
4
4
ì
4
8
ì
ì
4
ì
8

ì
ì
ì
ì
4
ì
8
ì
4
ì
8
ì

ì
ì
ì
ì
ì
ì
ì
1
4
4
ì
4
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where n is the total number of atoms, esub is the binding
energy per atom for a bulk system, and A is the specific
surface energy. The optimal shape of the crystalline particle
in Fig. 7 is characterized by the maximum binding energy
for a given number n of atoms, and hence by the minimal
surface energy. In the case of a short-range interaction of
atoms, the optimal figure is tetrakaidecahedron [60], and its
facets are 6 squares and 8 regular hexagons. The specific
surface energy amounts in this event to A � 7:56 [46, 61].
Constructing the figure of interest in a general case [59], we
characterize it by the parameter

d � l6
l4 � l6

; �3:21�

where l4 is the length of a general edge of surface squares and
hexagons, and l6 is the length of the other edges of hexagons.
The geometric figure under consideration (see Fig. 7) with
surface squares and hexagons is realized if 0 < d < 1 [59].
Table 15 enumerates the optimal values of d and A for a
crystalline particle with the Morse interaction potential
between constituent atoms [58]. Note that the connection
between the nearest neighbor distance a and the equilibrium
distance Re in the diatomic molecule is given in Table 12 in
accordance with formula (3.13). One can see that a decrease in
the Morse parameter, which leads to a more active role of
interaction between non-nearest neighbors in the total
particle energy, is accompanied by an increase both in
asymmetry of the particle shape and its surface energy. For
the Lennard ± Jones crystalline particle, the above parameters
are d � 0:3 and A � 15:1 [44]. As is seen, the specific surface
energy in the Lennard ± Jones case is twice that in the case of a
short-range interaction of atoms.

We define the crystal surface tension, i.e. the surface
energy per unit area, as the specific energy which is consumed
when dividing a crystal into two parts. We neglect here the
pressure of the equilibrium vapor over the forming surface
because its value is relatively small for the solids under
consideration, and then the surface tension is revealed as the
specific energy consumed on breaking the bonds between
atomswhich belong todifferent parts of the particle cut. Let us
determine this quantity for a short-range interaction of atoms
in the crystal. According to the data of Table 15 we have

g100 � 2 for f100g-surface plane and g111 � 3=2 for f111g-
surface plane, and because the surface area per one atom is a2

for the f100g plane and a2 ���
3
p

=2 for the f111g plane, we obtain
the surface tension for these planes in the form

s100 � 2D

a2
; s111 � D

���
3
p

a2
: �3:22�

In this case the distance a between nearest neighbors coincides
with the equilibrium distance Re for the diatomic molecule.

On the basis of formulas (3.22) we get approximately for
the surface tension of a solid with the face-centered cubic
structure and a random direction of the surface:

sfcc � 1:9D

a2
; �3:23�

which is accurate to about 10%. This is approximately a half
as many as in the Lennard ± Jones crystal, where the surface
tension is given by formula (3.18).

In conclusion of this section we note that the considera-
tion of model systems is useful for the analysis of real systems
in two respects. First, comparing the results of these models
with the parameters of real systems, one can choose themodel
describing such a real system. In particular, the model of a
system with a short-range interaction of atoms is appropriate
for describing the rare gas systems in contrast to a widespread
standpoint that the properties of dense and condensed rare
gases are determined by the Lennard ± Jones interaction
potential between atoms. Second, the use of the scaling laws
allows us to understand more deeply the nature of the system
under consideration and acquire new data about additional
parameters of the models. This will be demonstrated for
models describing the liquid state of rare gas systems.

4. Phase transitions in dense systems of particles

4.1 Solid ± liquid phase transition in rare gases
We now consider the solid ± liquid phase transition for a
system of bound atoms with a short-range interaction and
pose a simple model of this phenomenon using the data for
rare gases. The liquid state [62 ± 66] differs from the solid one
by the presence of voids inside the system. Because of the
short-range character of atomic interaction in condensed rare
gases, the phase transition in these systems can be analyzed on
the basis of the lattice gas model for these systems [67 ± 69].
Within the framework of thismodel, atoms are located at sites
in the lattice, and only neighboring atoms interact in this
lattice. If the number of sitesN in this lattice is large compared
to the number of atoms n, two limiting distributions exist,
which in the limit n!1 correspond to two phase states, viz.
the ordered and disordered states (see Fig. 8). In the first case
the atoms form a compact structure, so that each atom has
practically the maximum possible number of nearest neigh-
bors for this lattice (we denote the number of nearest
neighbors for an internal site by q). Designating the energy
of attraction of two neighboring atoms as e, we obtain the
quantity qen=2 for the total binding energy of the ordered
state. The concentration of atoms in this lattice is c � n=N,
and we will follow the Bragg ±Williams approximation [67 ±
70], thus assuming the binding energy of atoms for different
random distributions of atoms over sites to be identical. This
energy equals acqen=2, where the numerical factor a � 1, and
the excitation energy of the disordered state is enq�1ÿ ac�=2.

Figure 7. Optimal completed geometric figure of bound atoms forming

face-centered cubic structure [59].
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The entropy of the disordered state, when atoms are
distributed over sites randomly, is given by

S � ln
N!

n!�Nÿ n�! �ÿN
�
c ln c��1ÿ c� ln�1ÿ c��: �4:1�

We used the Stirling formula and the conditionN, n4 1. As a
result, we have for the free energy F d�T� of the disordered
state, if the free energy of the ordered state is F0 � 0:

Fd � Eÿ TS � e
2
qn�1ÿ ac�

� TN
�
c ln c� �1ÿ c� ln�1ÿ c�� : �4:2�

Whence follows the expression for the phase transition
temperature T� with due regard for the condition of the
phase transition having the form Fd � 0:

T� � e
2

q�1ÿ ac�
ln�1=c� � �1ÿ 1=c� ln�1=�1ÿ c�� : �4:3�

Assuming T�5 e, we find that the order ± disorder phase
transition is possible for certain parameters of this model and,
in particular, for a certain concentration of atoms in the given
lattice.

In spite of this model being rough, one can convince
oneself from this that realization of the order ± disorder or

solid ± liquid phase transition is problematic for a system of
interacting atomic particles. Hence, the presence of the
phase transition gives additional information about the
system. We use this fact for condensed rare gases, consider-
ing them as systems with a short-range interaction of atoms
and accounting for the liquid state differs from the solid one
by the presence of voids inside the system [43]. We shall
prepare the liquid state of this system from the solid one in
the following manner [71, 72]. Let us take a crystal
consisting of n atoms and create inside it v vacancies. Then
during a short time that is comparable with the typical time
trel of atomic displacement over a distance of the order of
the nearest neighbor distance, the system relaxes. This
relaxation leads to compression of the system and an
increase of its internal energy. After a relatively long time
tv voids reach the surface of this system and disappear or
new voids penetrate from the surface to the system's
interior. We will consider this system during times

trel 5 t5 tv ; �4:4�

when the number of voids inside the system varies weakly. So,
we describe the system by the temperature T, which is
connected with the kinetic energy of atoms, and the number
of voids v inside it. If the system has two phase states, as do
condensed rare gases, the partition function logarithm as a
function of the number of voids takes a form as shown in
Fig. 9. The maxima of this latter function correspond to the
solid and liquid states, correspondingly.

Table 16 collates the values of some parameters of
condensed rare gases, which follow from the data of Table 5

b

a

Figure 8.Distribution of atoms over sites for the lattice gas model: (a) the

ordered (solid) state, and (b) the disordered (liquid) state. Crosses indicate

the positions of lattice sites, and filled circles correspond to atomic

positions.

lnZ

1 2

v

Figure 9. The dependence of the partition function logarithm for a system

of bound atoms with a pair interaction on a number of vacancies. The

group of states 1 corresponds to the solid state, the group of states 2 relates

to the liquid state, and the arrow indicates the beginning of interaction

between voids [72, 73].

Table 16. Parameters of the solid and liquid states of condensed rare gases
[44, 71, 72].

Parameter Ne Ar Kr Xe Average

vsol=n, 10ÿ5

n=vliq
g

U�vliq=n�=D
U�vmin=n�=D
ÿ lnZ�vmin=n�=n
gliq
rex=rliq
DHrel=D
sR2

e=D

3.1
3.14
64
3.10
1.20
0.7
2.90
0.879
0.49
0.76

1.5
3.12
71
3.41
1.32
0.39
2.91
0.866
0.47
0.77

1.3
3.11
73
3.44
1.35
0.40
2.92
0.876
0.48
0.76

1.4
3.12
77
3.35
1.30
0.40
2.91
0.871
0.48
0.79

1.9� 0.8
3.12� 0.01
71� 5
3.32� 0.15
1.29� 0.06
0.39� 0.01
2.91� 0.01
0.873� 0.006
0.48� 0.01
0.78� 0.01
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and the form of the partition function logarithm in Fig. 9. In
Table 16 we used the following notation: vsol is the number of
vacancies for the solid state, vliq is the number of voids for the
liquid state at the melting point, gv is the statistical weight of
an individual void, vmin is the number of voids at which the
partition function Z of the system has a minimum, and U is
the decrease in the energy of void formation for a given
number of voids, this quantity being considered as an
effective interaction potential of voids. Indeed, the energy
consumed on formation of one void is esub ÿU�v=n�, where
esub is the specific energy of solid sublimation or the energy of
formation of one vacancy in the solid. Defining an individual
void as a result of development of a vacancy formed in the
crystal lattice, we really give the parameters of the crystal with
vacancies, which is created at the initial instant and then
relaxes to the liquid state. In Table 16, gliq is the average
number of nearest neighbors of a test atom, which are then
removed at creation of the liquid state, rex is the density of the
system at the beginning, rliq is the density of the liquid state,
and DHrel is the energy per atom which is released as a result
of relaxation. These data are added to the model of the liquid
state and we relate these parameters to a bulk system of
classical bound atoms with a short-range interaction.

This microscopic approach provides the method for
extracting configuration excitations in a system of bound
atoms in aggregate states of this system. Fulfilling this
operation for clusters where the phases can coexist, we
obtain additional information about the system in a transi-
tion region, and this finding is useful for the analysis of such
systems [74].

Thus, a simplemodel allows us to describe the character of
the melting process for a bulk system of atoms with a short-
range interaction, i.e. when nearest neighbors only partake in
the interaction. This scheme considers the melting as the
configuration excitation of the atomic system, and models
such excitations by means of the formation of voids inside the
system as a result of their relaxation after removal of some
internal atoms from the crystal outside. The absence of
equilibrium with respect to a number of voids allows us to
continuously vary the number of voids, and in this way one
can transit from the solid state of this atomic system to the
liquid one. Condensed rare gases are real bound-atom
systems with a short-range interaction between atoms, and
the thermodynamic parameters of their solid and liquid states
at the triple point deliver the parameters for the microscopic
description of the melting process and configuration excita-
tion of the system under consideration.

Of course, this model does not describe the variety of
properties of the liquid state [57, 62 ± 66, 75], but it allows us
to understand the microscopic structure of the liquid. Within
the framework of this microscopic description, we consider
the liquid state of a system of interacting atoms as a group of
excited states near the second maximum of the curve in Fig. 9
under the condition (4.4), when the time of observation is
small in comparison to the lifetime of an excited state with a
given number of voids inside the system (we are dealing with
the configuration excitation of the system). This lifetime is
connected with the transport of voids from the system's
interior to its surface or vice versa. A higher time corre-
sponds to the solid ± liquid or liquid ± solid transition,
namely, the lifetime of supercooled liquid or superheated
solid. While we ignore these transitions, one can consider the
solid and liquid phase states as independent thermodynamic
states [76, 77]. In this manner, one can continue the liquid

phase state to low temperatures, and the solid state to high
temperatures, considering them as `cool' and `hot' branches
of the system's state [76, 77] in a wide range of parameters,
including such a range where the existence of these states is
not profitable thermodynamically.

Thus, the scaling analysis of the solid ± liquid phase
transition for condensed rare gases together with the general
character of this phenomenon allows one to describe the
nature of this phase transition with the use of accessible
numerical parameters. Indeed, from the data of Table 5 it
follows that the mechanical work done in the process of
expansion during the phase transition is relatively small near
the triple point, i.e. the solid ± liquid transition is only
determined by configuration excitation of condensed rare
gases. The degree of configuration excitation is characterized
by an empty space Ð voids inside the system. Within the
framework of this consideration, the liquid state includes a
group of states with different energies of configuration
excitation, if the free energy of these states is close to the
corresponding minimal free energy (see Fig. 9). In this way,
one can understand the microscopic nature of the phase
transition. Of course, this picture only relates to systems
with a short-range interaction of atoms and does not reflect
all the peculiarities of the phase transitions [28, 78, 79].

4.2 Phase transitions in clusters
The solid ± liquid phase transition is described in the frame-
work of classical thermodynamics, and the above statistical
model permits us to understand what the aggregate state is
from themicroscopic standpoint. In due course, newmethods
and new objects arise in respect to this problem. Most
progress was achieved by studying the phase transitions in
clusters on the basis of computer simulation. The reason is
that a cluster as a system of a finite number of bound atoms
admits computer analysis better than a macroscopic system.
Next, the phase transition constitutes a collective phenom-
enon with the participation of many atoms, and numerical
computer methods are able to take them into account, in
contrast to analytical methods based on a one-particle
approach. In addition to this, clusters make a convenient
model for a macroscopic system. Below we shall briefly
describe the phase transitions in clusters.

A new property of the phase transition in clusters
compared to macroscopic systems is the coexistence of solid
and liquid phases [80 ± 87]. This is shown in Fig. 10 where the
distribution is given for the total kinetic energies of atoms
composing the Lennard ± Jones cluster. This cluster involves
13 atoms and has a completed icosahedral structure [88],
which is illustrated in Fig. 11 [89]. An excited liquid state of
the cluster is formed as a result of an atomic transition from
the occupied shell to the cluster surface. Coexistence of phases
means that for a certain part of the time the cluster is found in
the solid state, and it spends the other part of time in the liquid
state.

It is essential that cluster melting is accompanied by a
change of some correlations in the cluster, which are analyzed
simultaneously with an atomicmotion, and these correlations
are used as the characteristics of the phase transition in
computer simulations. Therefore, this phenomenon is fixed
reliably during the process of computer modeling. The phase
transition in clusters is more complex than in ordinary
macroscopic systems, and the caloric curves, i.e. the tempera-
ture dependences of the current cluster internal energies,
enable one to extract several types of phase transitions
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related to the melting of different cluster shells (see, for
example, Ref. [86]). As the number of cluster atoms increases
and the cluster is transformed into a macroscopic system,
only two types of phase transitions remain, so that the first
relates to internal atoms, and the second involves surface
atoms. In considering the melting of macroscopic systems, we
shall concentrate on the bulk phase transition involving
internal atoms.

Formation of the liquid aggregate state of a macroscopic
system of atoms results in configuration excitation of the
system, which consists (in the macroscopic case) in the origin
of vacancies and voids inside the system. One can analyze the
configuration excitation starting from the behavior of the
electron energy of the system. We assume that the processes
under consideration proceed without transitions between
electronic states, i.e. atoms move across one electron energy
surface or electron energy `landscape'. The peculiarity of the
cluster energy landscape was understood at the first stage of
the numerical studies of clusters. Based on the monotonic
dependence of the electron energy, one should use a simple
method for the numerical evaluation of the optimal config-
uration of cluster atoms and the maximum binding energy of
cluster atoms if, starting from an arbitrary configuration of
atoms, we move atoms towards an increase in the binding
atomic energy. One can expect the global minimum of the
electron energy to be found in this way.

The first calculations have shown that this scheme is not
realized because there are many local minima of the electron
energy. For example, one of the first analyses of the
Lennard ± Jones cluster consisting of 13 atoms showed the
existence of 988 local minima of the electron energy [90].
More detailed analysis of this system [91] revealed 1478 local
minima and 17357 saddles relevant to this cluster. The
number of local minima grows in an exponential fashion
with an increase in the number of cluster atoms [92]. Hence,
the development of a system of bound atoms as a result of
motion of this system over the electron energy surface is
determined by its passage through saddles and local minima
of this electron surface [92, 93].

Since the electron energy surface has many local minima,
and the transitions between them result from the passage
through saddle points, a special formalism was developed for
the analysis of the system's evolution along the electron
landscape. Figure 12 illustrates the disconnectivity graph
approach [94, 95] which simplifies the analysis of the cluster
evolution along the electron landscape. Figure 13 gives an
example of the transition between two minima of the electron
energy [95]. This figure depicts the optimal path for transition
between the lowest and second minima of the electron energy
for a cluster consisting of 75 atoms with the Lennard ± Jones
interaction potential between them. As a result of the
transition between these minima, the cluster passes through
many local minima and saddle points of the electron energy
landscape. These examples demonstrate the general character
of transitions in clusters between states of configuration
excitation, and these transitions result in overcoming the
barriers which are saddle points of the electron energy
landscape, i.e. it is convenient to consider the evolution of
this system in terms of the so-called saddle-crossing dynamics
[96].

Simultaneously, the above analysis throws light on the
nature of the liquid state of a system of bound atoms, if
the liquid state results from the configuration excitation
of the solid state. Due to the saddle points of the electron
energy landscape, atoms are locked between its barriers
for a long time, and this character of evolution of such
systems explains the short-range order for atoms in bulk
liquids.

Thus, a study of the phase transitions in clusters by means
of computer simulation is in progress, allowing one both to
understand the nature of this phenomenon and to evaluate
numerical parameters related to the thermodynamic para-
meters of specific clusters.

Figure 11. Icosahedral cluster consisting of 13 atoms [89].

76543

Ekin=D

E=D � 12:88
c

76543

Ekin=D

E=D � 16:23
e
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Ekin=D

E=D � 14:13
d

Ekin=D
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E=D � 7:59
a

76543

Ekin=D

E=D � 11:01
b

Figure 10.Distribution function for the total kinetic energy of atoms in a Lennard ± Jones cluster consisting of 13 atoms. The range near the left maximum

corresponds to the liquid state, and the rightmaximumand the range close to it relate to the solid state [80]:E is the total binding energy of atoms, andEkin

is the total kinetic energy of atoms.
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4.3 Liquid state of a system of particles with
a pair interaction potential
Formation of the liquid state of a system of interacting
particles results from collective phenomena in this system.

The liquid state can be described by various models [62 ± 66]
depending on the properties under consideration. Above we
analyzed the structure of a system of interacting particles in
the liquid state within the framework of a rough model (see
Section 2.4): we considered the liquid state as a result of
formation of vacancies at sites of a crystal lattice, and this
model gave a proper connection between the specific fusion
energy and a jump in the atomic density as a result of the
phase transition. Of course, this model is not capable of
describing the structure of the liquid state.

The more realistic model of the previous section (see
Section 4.1) considers the liquid state as a mixture of
interacting atoms and free voids. The parameters of each
void vary in the course of its evolution, but all the voids are
identical on average. In this way we describe an individual
void by the average void volume, the energy consumed on
formation of one void, and the statistical weight of an
individual void. The formation of voids increases the volume
which is accessible to classical motion of atoms, and this fact
is taken into account by the void statistical weight. Though
voids are independent on average, their parameters depend
on the relative number of voids, and we define an individual
void strictly as a result of relaxation of a vacancy. In this way
on the basis of parameters of the liquid state of rare gases and
from the fact of existence of the liquid state we restore the void
parameters (see Table 15), and they testify about the structure
of the liquid state of rare gases. As one more example, in
Fig. 14 we depicted the caloric curves for argon, i.e. the
temperature dependences of the specific internal energy of
atoms for two aggregate states of argon. As is seen, the
supercooled liquid cannot exist below the freezing tempera-
ture T�, where the liquid maximum of the argon free energy
disappears.

We now use this model for determination of the liquid
surface tension. We define the surface tension s as the specific
energy which is spent in order to divide a condensed system
into two parts [89, 90]. Then we represent this energy as the
difference between the energy of breaking the bonds for
atoms which belong to different parts of the drop cut and
the energy which is released as a result of destruction of
surface voids. Assuming atoms of the condensed system to be
distributed randomly, on the basis of formula (3.23) we have
for the surface tension

s � 1:9D

a2
q

12
ÿ ev
2a2v
� 1

2a2

�
3:2Dÿ ev

�
v

n

�2=3 �
: �4:5�

E=D

20 40 60 80 1000

Number of transitions
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ÿ393
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Figure 13. Shortest path for the transition between the second lowest

electron energyminimumand globalminimum for the cluster consisting of

75 atoms with the Lennard ± Jones interaction potential [89]. This

transition occurs through 65 local minima of the electron energy land-

scape.
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Figure 14. Caloric curves for argonÐ the temperature dependences of the

internal energy of aggregate states.
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Figure 12. Method of construction of disconnectivity graphs on the basis

of minima and saddle points of the electron energy surface as a function of

a generalized coordinate [95]. These graphs include the principal informa-

tion about the properties of the electron energy landscape.
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Here, a is the average distance between nearest-neighbor
atoms, av is the same quantity for voids, so that
av � a�n=v�1=3, ev is the energy of formation of a void, n, v
are the numbers of atoms and voids, respectively, q is the
number of nearest neighbors of an internal atom for the liquid
state (see Table 6), and the factor q=12 accounts for the
decrease in the number of bonds for an internal atom. In
preparing Table 16 we used the relationship (4.5) with
a � Re�r0=rliq�1=3, where the required parameters were
taken from Table 5. The difference between evaluated values
of the surface tension and those measured (see Table 6)
testifies that the accuracy of the approach under considera-
tion is 20 ± 40%. Formula (4.5) can be utilized for the
determination of critical parameters if, as a definition of the
critical point, we assume that at this point the surface tension
is zero [89 ± 91].

4.4 System of repulsing particles
Above we were dealing with a condensed system of interact-
ing atoms, when the solid state or the ordered state of the
atomic system arises as a result of attraction of neighboring
atoms. We now consider the case of a high external pressure,
so that the typical distance between nearest atoms meets the
region of their repulsion (see Fig. 1). This corresponds to high
external pressures satisfying to the criterion

p4 p0 ;

and we shall consider now the pressure range which is
reciprocal to that analyzed in Section 2. We shall approx-
imate the interaction potential U�R� of two nearest atoms in
the range of distances R between them which is responsible
for the phase transition by the formula

U�R� � A

Rk
; �4:6�

and the parameters of this formula for rare gas atoms are
given in Table 1. The unit of length for the system of repulsing
atoms is defined as

d �
�
A

T

�1=k

; �4:7�

where T is the temperature in the melting curve. Introducing
the pressure p, the specific volume jump DV as a result of
melting, and the density rsol for the solid state in the melting
curve, we obtain the following scaling laws correct in the
melting curve [101]:

p � T

d 3
; DV � d 3 ; rsol �

1

V
� 1

d 3
: �4:8�

Note that according to the data of Table 5, the mechanical
work ptrDVtr done in the course of melting near the triple
point (ptr is the pressure at the triple point, and DVtr is the
specific volume jump at the triple point) differs from the
fusion enthalpy change DHfus by almost four orders of
magnitude. In the case of a system of repulsing particles
these quantities are comparable, and the system of interest is
supported by an external pressure which compels the particles
to be concentrated in a restricted volume. Then, depending on
the parameter values, the particles have a random or ordered
distribution which conforms to the liquid or solid phase state
of the system.

In Table 17 are tabulated the parameters in the melting
curve for a system of particles with the interaction potential
(4.6) for different k, and in this table p, T are the pressure and
temperature in the melting curve, respectively,DV, DS are the
jumps of the specific volume and entropy as a result of
melting, Nsol, Nliq are the number densities of particles in the
solid and liquid states in the melting curve which are reduced
to that of the close-packed structure (

���
2
p

=d 3). According to
these data, the mechanical work pDV done during melting is
comparable with the melting heat or the fusion enthalpy
DHfus � TDS. However, in the limit k!1 the melting
becomes a reversible process, so that the fusion energy is
compensated by the energy released in the course of the
system's expansion.

From the data of Table 17 follows that the parameter
T=�pV� is small for a sharply varied repulsion interaction
potential of atoms, thus allowing one to neglect the
temperature effects in the first approximation. We shall use
this fact below when establishing the connection between the
pressure and the nearest neighbor distance for a given
aggregate state of a system involving repulsive atoms, if we
characterize this state by the average number q of nearest
neighbors surrounding internal atoms. Let us use the
equation of state for this atomic system, which is based on
the virial theorem and has the following form [24, 28]

T � pVÿ k

3
�U ; �4:9�

where V is the volume per atom, and �U is the average
interaction potential per atom. In the mean field approxima-
tion we arrive at the following relationships

V � a3���
2
p 12

q
; �U � q

2
U�a� : �4:10�

where a is the nearest neighbor distance, and the pair
interaction potential U�a� is defined by formula (4.6). In the
limiting case pV4T, this equation gives for the pressure

p � 2
���
2
p

k

�
q

12

�2
U�a�
a3

: �4:11�

Let us show the validity of this formula in the case when
the atoms form the close-packed crystal lattice. Let us draw a
plane which is parallel to the symmetry plane of this lattice, so
that the pressure represents the force per unit area acting

Table 17. Melting-curve parameters of the phase transition between the
dense and rarefied aggregate states of a system involving repulsing
particles with the interaction potential (4.6) [100, 101]. Here, Vd, Vr are
the volumes per atom of the dense and rarefied aggregate states,
correspondingly, DV � Vd ÿ Vr, DS are the jumps of the specific volume
and the entropy per atom at the melting point.

k 4 6 6 12 1

T=�pVd� 0.011 0.026 0.036 0.053 0.091

Vd

���
2
p

=d 3 0.254 0.641 1.030 1.185 1.359

Vr

���
2
p

=d 3 0.255 0.649 1.060 1.230 1.499

DV=Vd 0.005 0.013 0.030 0.038 0.103

pDV=T 0.45 0.50 0.63 0.72 1.16

DS 0.80 0.75 0.84 0.90 1.16
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between atoms which are located on the different sides of the
cut plane. Then the pressure is written as

p � m fx
s
� m f cos y

s
; �4:12�

where m is the number of nearest neighbors for a test surface
atom, which reside on the other side of the separation plane, s
is the surface area per atom, fx is the force projection onto the
perpendicular to the intersecting plane, so that this force acts
between a test atom and its nearest neighbor on the other side
of the separation plane, f is the force itself, and y is the angle
between the line connecting interacting atoms and the
perpendicular to the intersecting plane. From this we have
for the f100g cut plane (m � 4, s � a2, cos y � 1=

���
2
p

):

p � 4f �a����
2
p

a2
� 2

���
2
p

a2

���� dU�a�da

���� � 2
���
2
p

a3
kU�a� : �4:13a�

In the case of the f111g direction of the intersecting plane we
find (m � 3, s � ���

3
p

a2=2, cos y � ��������
2=3

p
)

p � 3f �a����
3
p

a2=2

���
2

3

r
� 2

���
2
p

a2

���� dU�a�da

���� � 2
���
2
p

a3
kU�a� ; �4:13b�

i.e. the pressure is the same as in the previous case and
coincides with that defined by formula (4.11) for q � 12.

4.5 Phase transition in a system of hard spheres
Let us take a look at the limiting case k!1, which
corresponds to the hard sphere model for interaction of
atomic particles. In this model, the particle interaction is
contact in character that simplifies the analysis, and the
relative volume per atom where a particle interacts strongly
with surrounding particles is small compared with the free
volume per particle. Therefore, one can model atoms in this
system by hard spherical particles. It is convenient to
characterize the state of the particles' system by the packing
density j, and this parameter is defined as

j � 4p
3

r3N ; �4:14�

where r � d=2 is the particle radius, and N is the number
density of particles. Evidently, the maximum of this
quantity corresponds to the crystal close-packed structure
(face-centered cubic or hexagonal structure), when each
particle-ball touches 12 nearest neighbors, and this para-
meter is equal to

jcr �
p
���
2
p

6
� 0:7405 : �4:15�

As a result of computer modeling at large pressures, the
packing density in this limit runs into [102 ± 104]

jd � 0:644� 0:005 �4:16�
and the packing density at low temperatures and high
pressures tends to this limit as jd ÿ j � 1=p [105]. Approxi-
mately the same result follows from plain experiments [106 ±
108] on filling a container with hard balls. By way of
illustration Fig. 15 exhibits the packing density as a result of
filling a container of volume V with steel balls. There are two
ways of performing this operation. In the first case, the balls
occupy out initial positions, and the character of such a filling
is called random loose packing [109]. In the second case, the

container is shaken, and the balls combine into a more
compact configuration. This operation may be improved by
addition of lubricating oil to the container, and the distribu-
tion of balls is then called random dense packing [109] or the
random dense configuration. Evidently, to obtain the values
of the packing density for a bulk system it is necessary to take
a container volume V ultimately large because surface effects
may be neglected in this case. But one can also make use of
several containers of finite sizes and extrapolate the packing
density to an infinite size of the container. This approach is
represented in Fig. 15 and gives for the packing density of a
macroscopic system of balls the valuesj � 0:64 andj � 0:60
for the states of random dense packing and the random loose
packing, correspondingly. Of course, the accuracy of this
extrapolation is inferior to that of computer modeling.
Nevertheless, this modeling may be added to the results of
computer simulation and it shows the reliability of the results
obtained.

The system of hard spheres admits a phase transition
between its aggregate states [110, 111]. This transition is made
between two random atomic distributions, which are termed
as the random dense state and random loose state [109], and
we will denote them by the subscripts rd and rl, correspond-
ingly. These states are characterized by the values of the
packing density jrd � 0:545 and jrl � 0:494 at the phase
transition. Let us compare them with the data of Table 17
[101] that give in the limit k!1:

jd �
pd 3

6Vd
� 0:545 ; jl �

pd 3

6Vl
� 0:494 : �4:17�

As is seen, in both cases we obtain identical results.
Along with the above-mentioned random states of the

system of hard balls, the glassy state of the latter system is also
discussed [112 ± 114] for the density of packing above the
freezing density of the system. It is assumed that the glassy
state of this system is stable thermodynamically [75]. The
analysis [104, 105] revealed that this state can be realized only
in a system with a small number of particles and, therefore,
the glassy state is absent for a macroscopic system of hard
particles.

0.30.20.10
0.56

0.58

0.60

0.62
Random dense

packing

Random loose
packing

Vÿ1=3

j

Figure 15. Dependence of the packing density on the reciprocal container

size (V is the container volume) in circumstances where this volume is

occupied by hard balls of identical radius for two methods of filling: with

and without shaking [107].
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We use the approach of the mean field for a system of
atoms with a strongly varied potential of atomic repulsion.
The state of such a system may be characterized by the
coordination number q, i.e. the average number of nearest
neighbors for an internal test atom, which is connected with
the density r of a given system in any aggregate state by
analogy with formula (2.12) as [37]

q � 24ÿ 12
rcr
r
;

where rcr is the crystal density. We may avail ourselves of
q � 12 for the crystal state. Evidently, in the limit k!1, i.e.
for the system of hard balls, the coordination number q is
connected with the packing density j by the formula

q � 24ÿ 12
jcr

j
� 24ÿ 8:89

j
; �4:18�

where jcr, j are the packing densities for the crystal state and
the aggregate state under consideration, respectively, and we
made use of the fact that for the crystal state
jcr � p

���
2
p

=6 � 0:7405. Hence to the left of the melting
curve at high pressures we have (the state of random dense
packing) j � 0:545 which corresponds to q � 7:7, and to the
right of the melting curve (the state of random loose packing)
where j � 0:494 we obtain q � 6:0. Far from the melting
curve for a dense, strongly compressed rare gas we find
q � 10:1, i.e. this coordination number coincides with that
for the liquid state of rare gases at low pressures, when such a
system of bound atoms is supported by attractive forces
between atoms. In addition, from the data of Table 17
follows the equation of state for a system of hard spheres
(k!1) if the pressure tends to infinity at a given
temperature (the packing density is equal to j � 0:64 in this
limit):

pV

T
� 9:4 ; �4:19�

where V is the volume per atom.
We intend now to prove the suggestion that the crystal

state is not realized for a system with a strongly repulsive
interaction potential between atoms [115]. Let us compare
the energy parameters for the crystal state of the system of
repulsing atoms and a random atomic distribution which is
characterized by a coordination number q. We shall analyze
the possibility of the phase transition between these states
taking into consideration that the number of repulsing
atoms is conserved at the phase transition as well as the
pressure and temperature do. Then the condition of the
phase transition is formulated for the variation of the free
energy: DF � 0, where

DF � DEÿ TDS ;

and DE, DS are the changes of the internal energy and
entropy. Because p � const, we have from formula (4.6):

DE � n�D �U� pDV� ; �4:20�

where �U � qU�a� is the average interaction energy per atom,
U�a� is the pair interaction potential (4.6), a is the nearest
neighbor distance, and V is the volume per atom. From
formula (4.11) follows the relationship governing the transi-
tion from the crystal state with q � 12 to another state which

is characterized by a coordination number q:

DE
n
�
�
1� k

3

�
� �Ucr ÿ �Ud�

�
�
1� k

3

��
6U�acr� ÿ q

2
U�ar�

�
� 6U�acr�

�
1� k

3

��
1ÿ q

12

U�ar�
U�acr�

�
;

where acr, ar are the nearest neighbor distances for the crystal
state and the state with a random distribution of atoms,
correspondingly. Using the pressure conservation condition
p�acr� � p�ar� we arrive at

DE
n
� 6U�acr�

�
1� k

3

��
1ÿ

�
12

q

��kÿ3�=�k�3��
: �4:21�

From this it follows that the transition from the crystal state
to any random state of the system of repulsing atoms, which is
accompanied by a decrease in the nearest neighbor distance,
corresponds to the situation where DE < 0. Evidently, the
transition from the crystal (ordered) state of atoms to any
random (disordered) state of atoms leads to an entropy
increase, DS > 0. Hence, the crystal state of a system of
repulsing atoms with a sharply varied interaction potential
(k > 3) is not stable thermodynamically with respect to the
transition into a disordered state, i.e. the state with a random
distribution of atoms.

On the basis of these data we may construct the phase
diagrams for rare gases [115] (see Fig. 16). At low pressures
(p5 p0), the Clapeyron law gives for the melting curve near
the triple point:

dp

dT
� DS

DV
� 14� 1

R3
e

; p5 p0 : �4:22�

Abovewe used the data of Table 5 for parameters of rare gases
near the triple point. This part of the melting curve
corresponds to the phase transition from the crystal state
(q � 12) to the liquid state (q � 10:1), and the crystal state is
realized to the left from the melting curve. Another portion of
themelting curve at p > p0 is determined by the repulsion part
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Figure 16. Phase diagram for condensed rare gases over a wide pressure

range. Squares relate to the pressure range where atoms are attracted, and

the parameters for this region are taken from Ref. [44]. Experimental

results for argon are used in the repulsive region of the phase curve:

circles Ð [116], up triangles Ð [117], down triangles Ð [118], and

diamonds Ð [119].
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of the interaction potential between atoms, which is approxi-
mated by formula (4.6), and for k4 1 the phase transition
takes place between the states of random dense packing
(q � 7:7) and random loose packing (q � 6:0). We used the
experimental results [116 ± 119] for argon on this part of the
melting curve.As is seen, in the transition regionof themelting
curve the structure of the atomic system varies both to the left
and to the right of the melting curve. To the left of the melting
curve, the crystal state is realized at low pressures, and the
random atomic distribution takes place at high pressures.
Evidently, the transition between these states proceeds
continuously, because in the opposite case we should obtain
a jump in various thermodynamic parameters of the system in
the course of variation of the pressure off the melting curve.
This relates to the regions positioned both to the right and left
of themelting curve. The above results show the complexity of
the phase transition making even in simple atomic systems.

5. Condensed and dense molecular gases

5.1 System of ball-like molecules
One can expand the scaling analysis elaborated for the case of
dense and condensed rare gases to molecular systems. As for
rare gases, one can construct a similar scaling law for round
molecules. This was made for a bound system of fullerene
molecules C60 in paper [120]. The fullerene molecule has the
form of a truncated icosahedron, so that the molecular
surface is made up of 12 pentagons and 8 hexagons [121,
122]. If these molecules form a crystal, the phase transition
proceeds at the temperature 257 K [123, 124] and above this
temperature the bound molecules can freely rotate being
located at sites of the crystal lattices. Then the interaction
between fullerene molecules is governed by a pair interaction
potential averaged over molecular orientations. In this case
we face a full analogy with the case of condensed rare gases
[125]. This analogy allowed the restoration of the unknown
parameters of condensed and dense fullerene systems on the
basis of the scaling analysis [120].

The same scheme can be used for the systems composed of
round molecules if the interaction between these molecules
weakly depends onmolecular orientations. This takes place at
not too low temperatures, when molecules can freely rotate in
a system of bound molecules. Table 18 contains the para-
meters of dense and condensed systems of tetrafluoride
molecules which are an example of ball-like molecules. The
values which were found on the basis of the scaling laws are
given in parentheses. Though the accuracy of the scaling law
in this case is worse than in the case of dense and condensed
rare gases, it is estimated as about 10%. This figure also
characterizes the accuracy of the parameters restored. In
addition, the ratio of quantities of an identical dimension-
ality for these molecular systems may differ from that of rare
gas systems.

One more peculiarity of molecular systems relates to the
boiling point which is defined as the temperature at which the
saturated vapor pressure reaches 1 atm. But the reduced
pressure depends on the parameters of the system consid-
ered, and therefore usage of the boiling point as a scaling
parameter of the system becomes problematic. Nevertheless,
in the case of rare gases this approach is valid because the
triple point pressure is significantly less than 1 atm. But in the
case of molecular gases this rule can be violated.Moreover, in
the cases of SF6 and UF6 systems their melting points are
higher than the boiling points, i.e. the boiling takes place from
the solid phase. Note also the absence of the scaling law for
the fusion energy DHfus of these systems, thus indicating a
different character of the phase transition for these systems.

We consider tetrafluoride molecules as ball-like mole-
cules, so that the systems consisting of these molecules must
be identical to those of rare gas atoms. But comparison of the
data from Table 9 and Table 18 shows that the identity
between these systems is only partial. In particular, the ratio
Vcr=Vliq � 2:70� 0:06 for rare gas systems corresponds to
Vcr=Vliq � 2:8� 0:1 for systems of tetrafluoride molecules,
and the parameter combination Tcr=�pcrVcr� � 3:4� 0:1 for
rare gas systems coincides with the value of Tcr=�pcrVcr� �
3:6� 0:1 for systems of tetrafluoride molecules within the

Table 18. Parameters of dense and condensed systems of metal ± tetrafluoride and SF6 molecules.

Parameter MoF6 SF6 UF6 WF6 IrF6 ReF6 Average

Tm, K
Tb, K
Tcr, K
eev, meV
eliq, meV
DHfus, meV
pcr, MPa
Vcr, cm3 molÿ1

a, 105 MPa cm6 molÿ2

b, cm3 molÿ1

rliq, g cm
ÿ3

Vliq, cm3 molÿ1

Tcr=Tm

Tcr=Tb

eev=Tb

eev=eliq
eev=Tcr

Tcr=�pcrVcr�
Vliq=b
Vcr=b
Vcr=Vliq

DHfus=eev

291
307
473
282
350
45
4.75
226
(13)
(100)
2.6
81
1.62
1.54
10.7
0.81
6.9
3.66
ì
ì
2.8
0.16

223
209
319
236
247
52
3.77
199
7.86
88
1.9
77
1.43
1.52
13.1
0.96
8.6
3.53
0.87
2.26
2.6
0.22

338
330
506
394
442
200
4.66
250
16.0
113
4.7
75
1.50
1.53
13.8
0.89
9.0
3.61
0.85
2.21
3.3
0.51

276
290
444
268
274
42
4.34
233
13.2
106
3.4
88
1.61
1.53
10.7
0.98
7.0
3.65
0.83
2.20
2.7
0.16

317
327
(500)
316
357
87
(8)
(140)
(9)
(63)
6.0
51
(1.58)
(1.53)
11.2
0.88
ì
ì
ì
ì
ì
0.27

292
307
(470)
293
364
ì
(4.6)
(240)
(14)
(110)
3.6
83
(1.61)
(1.53)
11.1
0.80
ì
ì
ì
ì
ì
ì

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
1.54� 0.09
1.53� 0.01
12� 1
0.89� 0.07
8� 1
3.6� 0.1
0.85� 0.02
2.22� 0.03
2.8� 0.3
0.26� 0.14
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limits of the accuracy of these values. This means that the
expansion of the systems in the course of their transition from
the triple point to the critical point is identical for these system
types. But the ratio eev=Tcr is different for these systems,
which indicates a different character of interaction accom-
panying these phenomena. Notice that the data used in
Table 18 have a restricted accuracy, which speaks for
increasing the error in the scaling analysis.

5.2 System of diatomic molecules
Constructing the scaling laws for rare gases, we based our
consideration on two parameters of the pair atomic interac-
tion potential: Re and D. Because the interaction potential
between molecules is anisotropic and depends on the
orientation of molecules, the number of base parameters
increases, and the usage of scaling laws for molecular systems
is problematic. The accuracy of this operation can be found
using the results of the analysis itself. In contrast to the rare
gas systems, it is convenient to take the parameters of these
systems as basic parameters for the scaling analysis of
molecular systems instead of the parameters of the pair
interaction potential between molecules. The reliability of
such a scaling scheme shows an increase because the number
of physical parameters used for molecular systems is more
than three, i.e. the number of dimensional parameters which
form the basis of the dimensional analysis. Next, we divide the
molecular systems into groups with identical structures of
molecules, and analyze the scaling laws inside a separate
group. This increases the accuracy of the analysis. In
addition, using the scaling analysis for molecular systems,
we can find unknown parameters for some systems on the
basis of the same parameters for other systems. This inference
is more important now than in the case of rare gas systems.

We will now look at the systems consisting of diatomic
molecules which contain identical atoms. These molecules
can form gases under certain conditions. We shall exclude
hydrogen as a quantum system from the consideration and
restrict ourselves to classical systems only, where the scaling
analysis is simpler. Table 19 contains parameters of dense and
condensed molecular systems involving diatomic molecules.
We use the same notation for parameters of molecular

systems as for the parameters of dense and condensed rare
gases. From the data of Table 19 one can estimate the degree
of validity of the scaling laws for the systems under
consideration and ascertain the peculiarities of this analysis
as applied to molecular systems.

It should be emphasized that diatomic molecules form
crystal lattices of other structures than the close-packed ones,
so that the properties of crystals of diatomic molecules differ
from those of the close-packed structure. In particular, as
follows from Table 19, the scaling law for the fusion energy
DHfus relevant to systems of diatomic molecules is character-
ized by an accuracy of one order of magnitude worse than in
the case of rare gas systems or for other parameters of
Table 19. Thus, it is better to use the parameters of liquid
and gaseousmolecular systems for the scaling analysis, i.e. the
parameters of liquids and dense gases along with critical
parameters.

5.3 Dense and condensed freons and halomethanes
The systems of bound molecules can have additional proper-
ties which influence the structure and parameters of their
condensed systems. As an example, we shall consider a bound
system of halomethane molecules. The basis of these
molecules is formed by the methane molecule having a
carbon atom in the center and where the hydrogen atoms
compose a tetrahedron. Some or all the hydrogen atoms can
be replaced by fluorine or chlorine atoms in the halomethane
molecules under consideration.We assume thesemolecules to
be classical in a bound system and different halomethane
molecules to have an identical structure in condensed
molecular systems.

This inferencemay be violated because some halomethane
molecules have a dipole moment, and the interaction between
dipole moments of molecules can change the structure of the
crystal lattice consisting of these molecules. In the limiting
case when the dipole ± dipole interaction of molecules dom-
inates, these molecules form a body-centered cubic crystal
lattice. Below we shall consider this limiting case and,
assuming molecules to form the body-centered cubic crystal
lattice, evaluate the binding energy per molecule due to the
dipole ± dipole interaction between molecules in such a

Table 19. Parameters of dense and condensed systems of diatomic molecules.

Parameter F2 N2 O2 Cl2 Br2 I2 Average

Tm, K
Tb, K
Tcr, K
eliq, meV
eev, meV
DHfus, meV
rliq, g cm

ÿ3

rsol, g cm
ÿ3

pcr, MPa
pliq, 103 MPa
Vcr, cm3 molÿ1

a, 105 MPa cm6molÿ2

b, cm3 molÿ1

Tcr=Tm

Tcr=Tb

Tcr=�pcrVcr�
eev=eliq
V=b
eev=Tcr

Vcr=b

53.53
85.03
144.1
76
67.9
53
1.52
ì
5.18
3.5
66
1.17
29.0
2.69
1.70
3.5
0.89
ì
5.5
2.28

63.29
77.34
126.2
62
57.8
7.5
0.88
1.03
3.39
1.1
90
1.37
38.7
2.00
1.63
3.4
0.93
0.35
5.3
2.32

54.36
90.2
154.6
78
70.6
4.6
1.14
2.00
5.04
2.5
73
1.38
31.9
2.84
1.71
3.5
0.90
0.25
5.3
2.29

172.1
239.1
416.9
232
211
66
1.51
2.03
7.99
9
123
6.34
54.2
2.43
1.74
3.5
0.91
0.32
5.9
2.27

265.9
331.9
588.1
330
311
112
3.12
4.05
10.3
11
127
9.75
59.1
2.21
1.77
3.7
0.94
0.33
6.1
2.15

386.0
457.5
819.1
468
432
158
(2.7)
4.93
(12)
15
155
ì
(70)
2.12
1.79
ì
0.92
ì
6.1
ì

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
2.4� 0.3
1.72� 0.06
3.5� 0.1
0.92� 0.02
0.31� 0.04
5.7� 0.4
2.26� 0.06
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crystal. Comparing this value with that of eliq, following from
the temperature dependence of the saturated vapor pressure
(2.6), one can ascertain the role of the dipole ± dipole
interaction in the formation of a crystal lattice.

Evidently, in the limiting case under consideration it is
profitable for each molecule to have nearest neighbors with
the opposite direction of the dipole moment on the plane
which is perpendicular to the direction of the dipole moments
as illustrated in Fig. 17. The same positions of molecules and
directions of their dipole momenta relate to neighboring
planes which are parallel to this one. The interaction
potential between the dipole moments of two molecules is
equal to

V�r� � d1d2 ÿ 3�d1n��d 2n�
r 3

; �5:1�
where d1, d2 are the dipole moments of molecules, r is the
distance between molecules, and n is the unit vector along the
line connecting molecules. Let us take a test molecule and
evaluate the total energy of its interaction with other
molecules. This quantity will determine a contribution to the
binding energy per molecule due to the dipole ± dipole
interaction between molecules, and according to formula
(5.1) it is equal to

Udip � 1

2

X
k

nkV �rk� : �5:2�

Here we distributed molecules of the crystal lattice over shells
around a test molecule similar to the approach taken in
Section 3.1 for other lattice types; rk is the distance of a test
molecule frommolecules of the kth shell, and nk is the number
of molecules for the kth shell. One can represent this formula,
in view of relationship (5.1), in the form

Udip � 1

2

X
k

ck
d 2

r3k
; �5:3�

where d is the molecular dipole moment, and the values of ck
are given in Table 20 together with some other parameters.
The molecular shells are conveniently divided into subshells,
so that for molecules of one subshell all the parameters of
formula (5.2) are identical. Each shell in Table 20 is denoted
by the reduced coordinates x, y, z of molecules fallen into this
shell, where x5 y5 z, and the unit of length is the lattice
constant a, i.e. the nearest neighbor distance of the body-
centered cubic lattice.

From the data of Table 20 we obtain for the binding
energy per molecule due to the dipole ± dipole interaction the
following result:

Udip � 2:6
d 2

a3
� 2:6Nd 2 ; �5:4�

whereN is the number density of molecules in the crystal, and
a is the nearest neighbor distance. Table 21 contains the
values of the interaction energy per molecule Udip for the
body-centered cubic lattice with the directions of molecular
dipole moments introduced according to Fig. 17. As is seen,
this quantity is small compared to the real binding energy eliq
for these molecules, where the binding energy was obtained
on the basis of formula (2.6) for the temperature dependence
of the saturated vapor pressure. Though this binding energy
relates to the liquid state of the molecular systems, it can be
used for estimates. As a result of comparison, for all the cases
one finds eliq > Udip. Of course, we make use of the dipole
moments of isolated molecules, while in condensed systems

Table 20. Parameters of shells of the body-centered cubic lattice and
dipole ± dipole interaction between molecules of these shells and a test
molecule.

Shell r2k=a
2 Layer nk Parity* ck

100

110

111
200

210

1

2

3
4

5

0
�1
0
�1
�1
0
�2
0
�1
�2

4
2
4
8
8
4
2
8
8
8

ÿ
+
ÿ
+
ÿ
+
+
ÿ
ÿ
ÿ

ÿ4
ÿ4
+4
+4
0
ÿ4
+4
ÿ8
ÿ16=5
56/5

* The parity has sign �, if the molecular dipole moment direction
coincides with that of a test molecule, and sign ÿ for the opposite
direction.

210 200

100110210

200 100 000 100 200

210110100110210

210 200 210

110 210

210

Figure 17. Positions and directions of molecular dipole moments in the

crystal lattice of the body-centered cubic structure which is established due

to the dipole ± dipole interaction ofmolecules. The shell is indicated, where

a given molecule is located. The molecular dipole moments are directed

perpendicular to the drawing plane, and their two directions are indicated

by filled and open circles. The other lattice layers are parallel to this picture

and have the same positions of molecules and directions of their dipole

moments.

Table 21. Binding energy and dipole ± dipole interaction in halomethane
crystals.

Molecule eliq, meV r, g cmÿ3 N, 1022 cmÿ3 d, D Udip, meV

CF4

CF3Cl
CF2Cl2
CFCl3
CCl4
CHF3

CH2F2

CH3F
CH4

CH3Cl
CH2Cl2
CHCl3

140
163
227
273
348
191
223
206
102
247
340
424

1.62
ì
1.64
1.50
1.59
1.52
0.91
0.58
0.466
0.92
1.33
1.48

1.34
ì
0.82
0.66
0.62
1.31
1.05
1.03
1.75
1.10
0.94
0.75

0
0.50
0.51
0.46
0
1.65
1.98
1.86
0
1.89
1.60
1.04

0
ì
35
23
0
58
84
58
0
64
39
13
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they can increase as a result of atomic displacement by virtue
of interaction. In any case, for freons, i.e. halomethane
molecules with fluorine and chlorine atoms substituting the
hydrogen atoms, the dipole ± dipole interaction is relatively
small, and we consider separately the systems of these
molecules in Table 22.

Collecting the parameters of halomethane molecules in
Table 22, we consider them as an example of ball-like
molecules, so that in crystals they form a lattice of close-
packed structure.Molecules containing simultaneously fluor-
ine and chlorine atoms have different sizes in the direction of
the dipole moment and perpendicular to it, but we neglect this
fact. Parameter values obtained on the basis of the scaling
analysis are given in parentheses. One can see that the reduced
parameters of systems involving these molecules coincide
within the limits of their accuracy with those of Table 18 for
the systems of tetrafluoride molecules.

Summing up the results of this section, we notice that the
scaling analysis allows us to restore unknown parameters of
molecular systems on the basis of known parameters. The
accuracy of this operation for liquid and gaseous systems is
about 10%. As for the solid molecular systems, their scaling-
based results require additional analysis and in some cases
may be not correct. In addition, the scaling analysis of
molecular systems uses the parameters of these systems as
the basic ones.

6. Conclusions

The scaling analysis made for rare gas and molecular systems
allows us to express the parameters of these systems through
three basic parameters. In the case of rare gases, the basic
parameters comprise the atomic mass m, the equilibrium
distance Re between atoms and the depth D of the potential
well in the pair interaction potential. The analysis of rare gas
systems shows that their properties near the triple point and
critical point, some parameters of the solid and liquid states,
the properties of a dense gas and the parameters of a saturated
vapor above the solid and liquid surfaces can be expressed
through these basic parameters of rare gases with an accuracy
of several percent. This means that all these properties are
determined by the attractive part of the interaction potential
of atoms, and the long-range interaction between atoms gives

a minor contribution to various parameters of dense and
condensed rare gases, as also are quantum effects.

Being spread to molecular systems, the scaling analysis
conserves the main conclusions drawn for systems of rare gas
atoms. As basic dimensional parameters, along with the
molecular mass, it is convenient to employ the parameters of
the gaseous and liquid phases, in particular, the parameters of
the critical point. The scaling approach allows one to restore
unknown parameters of molecular systems on the basis of
three basic parameters for a given molecular system. The
statistical error of this operation is estimated at� 10% if one
relies on the above analysis for molecular systems.

The scaling analysis can be spread to various molecular
systems where the molecules conserve their individuality. The
requirements for the character of interaction in these systems
are such that a long-range interaction between molecules is
not important, and one can neglect the quantum effects. The
experience acquired from the above analysis proves the
validity of these requirements for real molecular systems
within the limits of the accuracy peculiar to these data. But
if the molecular systems of a given group are characterized by
different structures of the crystal lattice, the scaling analysis is
valid only for the liquid and gaseous parameters of such
systems.

The scaling method lends aid in the choice of suitable
models for the description of real systems of interacting atoms
or molecules. In addition, it helps to develop the existing
models for these systems and to understand more deeply the
nature of some properties and phenomena inherent in the
systems under consideration. Some examples of this
approach were considered above, and a variety of other
properties can also be analyzed in this way.
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