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However, in the case of the teleportation of a light field
distributed in space and time, such a definition runs into a
fundamental difficulty. This difficulty is associated with the
nature of the field as a system with a large number of degrees
of freedom, and can be understood from the following simple
consideration. Let the fidelity of the quantum teleportation of
the state of the field confined within a certain space—time
region be less than unity by a small but finite increment. If we
now consider a system with the parallel teleportation of many
volumes of the field in the same state, then the fidelity defined
according to (14) equals a high power of the fidelity found
earlier — that is, in the limit of a large system, it will always be
zero. In this way, in the case of quantum holographic
teleportation, one should use not the fidelity defined by (14)
(which may be referred to as ‘global fidelity’), but rather the
reduced fidelity defined for the reduced set of degrees of
freedom that is of interest for us.

If we assume that, in our example, the relevant degrees of
freedom correspond to n=1,2,... volumes of averaging
(pixels) as defined above, then, for the important special
case of the input field A4i,(p,?) in the multimode Glauber
coherent state, quantum calculations yield [11]

1
Fr= et (6, +(1/2)C )}

(15)

Hence we see that the fidelity of teleportation of the quantum-
field state for n pixels depends on both their number and the
correlations of the noise field on the pixels of interest. The
correlations lose their importance if the area of averaging S'is
much larger than the coherence area S, and the correlation
matrix becomes diagonal. Then, as in the case of a spatially
single-mode field, quantum holographic teleportation exhi-
bits high fidelity with efficient squeezing and deep EPR
correlations in the quantum channel.
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Action of optical radiation on the boundary
of a rarefied resonant medium.
New possibilities and problems

T A Vartanyan

The reflection of resonant optical radiation from the
boundary of a gaseous medium has long been considered a
trivial illustration of the laws of physical optics [1]. The use of
this effect for studying the interactions of atoms with one
another and with the solid surface became possible only after
the experimental discovery [2] and theoretical interpretation
[2, 3] of narrow resonances in reflection spectra, free of
Doppler broadening. First of all, the resonant collisional
broadening in the centers of atomic lines, inaccessible to the
standard absorption spectroscopy because of self-absorption
effects in optically dense atomic vapors, was determined [4].
The constants of the Van der Waals interaction between a
solid surface and a resonantly excited atom, for which other
measurement techniques are not known, were also measured
[5]. At the same time, inadequacies of the theoretical
treatment gave rise to certain problems and paradoxes with
interpreting experimental data without proper account for
such attendant circumstances as the nonexponential absorp-
tion in the medium, deviation of the local field from the mean
field, the saturation of atomic transitions, and the interplay of
various factors causing shifts, broadening, and deformation
in the spectral contours of the lines of selective mirror
reflection.

This communication deals with solving certain theoretical
problems that impede the more extensive use of the diagnostic
capabilities of the reflection spectroscopy of rarefied gaseous
media. Special attention will be paid to the nonlinear optical
processes associated with the reflection of resonant optical
radiation from the boundary of a rarefied gaseous medium [6]
and effects of the second order with respect to the optical
density of the medium.

A specific feature of rarefied resonant gas as a dispersive
optical medium is that, even though the proper geometric
dimensions of the atom are small compared to the radiation
wavelength, the response of an atom is essentially nonlocal if
the free path of the atom without changes in polarization
exceeds the radiation wavelength. This condition is equiva-
lent to requiring that the Doppler broadening of the resonant
transition in the atom be greater than its homogeneous width.
The latter is the sum of the radiation and the collisional width.
The radiation width of an allowed optical transition is about
10 MHz, which is much less than the characteristic magnitude
of the Doppler broadening (500 MHz). Therefore, the
Doppler broadening exceeds the homogeneous width right
up to concentrations of order 10'*cm™3. For higher concen-
trations, the resonant transmission of excitation upon the
collision of an excited atom with a nonexcited one reduces the
free path of the atom without changes in polarization to a
value that is less than the wavelength of the radiation
resonant to the atomic transition. In this case, the polariza-
tion of the atom is mainly determined by the field acting upon
the atom at the point where the atom is currently located. If,
however, the concentration is less than 1014 cm—3, the optical
response of the resonant gas is essentially nonlocal.
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The description of homogeneous media with a nonlocal
response mainly consists in taking into account the spatial
dispersion of the dielectric permittivity. Then the propagation
of additional light waves becomes possible in the medium.
The ordinary boundary conditions are not sufficient to
calculate the coefficients of reflection and transmission at
the boundary of such a medium, and it becomes necessary to
formulate additional boundary conditions. A similar situa-
tion has been considered in detail in the optics of crystals [8].
In the case of a rarefied resonant gas, the additional solutions
of the dispersion equation correspond not to propagating
waves but rather to heavily damped waves whose contribu-
tions can be neglected. The spatial structure of the main wave
is then very complicated and does not reduce to a simple
exponential dependence on the coordinates. The additional
boundary conditions that should be specified to determine
this structure have the simple microscopic meaning of the
initial polarization of atoms bounced off the wall that
confines the gas, but they can hardly be formulated in
macroscopic terms.

If the field inside the medium does not vary exponentially,
the concept of the refractive index becomes meaningless.
Nevertheless, the coefficient of reflection for normal inci-
dence can be calculated using the conventional Fresnel
formulas with the refractive index replaced by the surface
admittance of the gas defined by analogy with the anomalous
skin effect in metals, as the logarithmic derivative of the field
at the boundary divided by the wave number and the
imaginary unit. The surface admittance can be calculated
using the Maxwell—Bloch set of equations [9]. In the
conventional theory of dispersion, the coordinate depen-
dence of the field is assumed to be exponential, and the
motion of atoms is taken into account by inclusion of the
Doppler shift of the resonant frequency in the expression for
the steady-state polarization of the atom. If the Doppler
broadening is strong, the polarization of the majority of the
atoms that have bounced off the boundary reaches a steady
state at distances from the boundary that are much larger
than the wavelength. The replacement of the actual behavior
of the polarization in the surface layer of such a considerable
thickness with the steady-state polarization leads to essen-
tially wrong results. The proper approach consists in solving
the set of Maxwell — Bloch equations with due account for the
boundary conditions for the density matrix of the atoms that
bounce off the boundary. In most cases, we can assume that a
collision with the surface completely quenches the electron
excitation [10], so that the atom recedes from the boundary in
the electron ground state. The boundary condition for atoms
approaching the boundary consists in delimiting the polariza-
tion at large distances from the boundary. In the first order
with respect to the optical density of the gas, this condition is
equivalent to taking into account only the steady-state
polarization of the atoms approaching the boundary. In
Fig. 1, the shape of the spectral line of the selective mirror
reflection from the boundary of a rarefied resonant gas
(curve 1) is compared with the results of the conventional
theory of dispersion, obtained without taking into account
the transient process of the establishment of the steady-state
polarization of the reflected particles (curve 2). In the region
of anomalous dispersion of vapor, instead of a odd contour
corresponding to the variation of the refraction index in a
Doppler-broadened gas, we can see a narrow peak of the
reflection coefficient free of Doppler broadening. The reason
for such a sharp change in the shape of the reflection line is
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Figure 1. Spectral contour of a resonance, free of Doppler broadening, in
the reflection spectrum from the glass —rarefied gas interface in the region
of anomalous dispersion. The Doppler width is 100 times the homoge-
neous linewidth (curve /). For comparison, curve 2 represents the result of
the conventional theory of dispersion neglecting the transient process of
the establishment of the steady-state polarization of the particles that
bounce off the interface.

that, on account of the transient process of the establishment
of the steady-state polarization, the receding particles do not
give a resonant contribution to the blue wing of the line,
where it could be expected in accordance with the sign of the
Doppler frequency shift. At the same time, in the red wing of
the line, where the polarization amplitude of the reflected
particles does not exhibit any resonance-specific features, the
contribution of the particles that bounce off the boundary to
the coefficient of reflection exhibits a resonant increase
because the spatial structure of the transient polarization
precisely matches the spatial structure of the reflected wave.
The steady-state polarization of the atoms approaching the
boundary exhibits a resonant increase in the red wing of the
absorption line in complete agreement with the sign of the
Doppler frequency shift. Thus, the receding atoms that are
seeking a steady polarization state give exactly the same
contribution to the coefficient of reflection as the atoms in
the steady state that approach the boundary with an equal
and oppositely directed velocity. As a result, averaging over
velocities effectively reduces to the integration over one half
of the Maxwell distribution, corresponding to the velocities of
only the approaching particles. Such an abrupt termination of
the velocity distribution at zero velocity gives rise to a narrow
peak in the reflection coefficient.

If the resonant gas forms a thin layer between two
dielectric media, we encounter two new circumstances at
once. Firstly, the polarization of the atoms approaching the
front boundary does not have time to reach a steady value
after being bounced off the rear boundary, and secondly, the
collision with the rear boundary leads to the quenching of
polarization for atoms with velocities of either sign. The
shape of the spectral reflection line depends in this case on
the thickness of the gas layer. If the thickness of the layer is
one and a half times the wavelength, we see a even spectral
contour, and the amplitude of the field reflected from the thin
layer is four times larger than that of the field reflected from a
thick layer [11].
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If the saturation effects are taken into account, the atoms
moving in opposite directions give different contributions to
the coefficient of reflection. If the longitudinal and the
transverse relaxation time differ considerably, then the
power of saturation is considerably different for atoms
approaching the boundary and atoms receding from the
boundary [12]. The relatively low power of radiation at
which the saturation effect becomes noticeable for the
reflection of resonant radiation from the boundary of
rarefied vapor, facilitates the use of such a boundary [13]
and a narrow layer of vapor [14] for nonlinear optical control
of light beams, and for image processing. The transient
process of the establishment of the steady-state polarization
and population difference for the energy levels of the atoms
receding from the boundary also leads to the appearance of
longitudinal periodic structures near the reflecting surface. Of
special interest is the possibility of controlling the period and
depth of oscillations in the population difference by adjusting
the intensity or frequency of radiation [15].

In the first order with respect to the optical density of the
vapor, the maximum of the narrow Doppler-free contour of
the selective mirror reflection coincides with the frequency for
the transition in an isolated atom. However, a more efficient
use of the diagnostic capabilities of selective reflection
requires calculating the position of the maximum at least to
terms quadratic with respect to the density of the gas. Such a
calculation poses considerable mathematical difficulties
because the boundary conditions for the atoms moving in
opposite directions are posed in different regions. The exact
solution obtained in Ref. [3] using the Wiener — Hopf method
is very cumbersome, and can hardly be extended to more
complicated cases. We succeeded in developing a simpler
method that allows the calculation of the coefficient of
reflection in the second order with respect to the optical
density of the medium. The explicit analytical expression for
the shift of the reflection maximum [16] implies that this shift
is proportional to the product of the densities of the atoms
moving in opposite directions. This circumstance, as well as
the above-mentioned easy saturation of the particles
approaching the boundary, explains the experimentally
noted absence of a strong blue shift of the reflection
maximum predicted in Ref. [3]. The same method was used
to express the analytical correction to the position of the
reflection maximum due to the deviation of the local field
from the mean field [17]. The magnitude of this correction
greatly exceeds the estimates derived from the intuitive
physical assumption of the smallness of the Lorentz— Lorenz
correction in a nonuniformly broadened medium [18], and
helps to understand the earlier numerical results [19].

The narrow resonances of selective mirror reflection will
certainly find wide practical application, and will be used to
study various physical processes on the gas—solid interface,
to which they are extremely sensitive. In this context, the
further development of the theory, which will help in
extracting much information about the processes on and
near the surface and also give an adequate description of
devices based on the effect of selective reflection from rarefied
resonant vapor, seems very expedient [20].
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support of the Russian Foundation for Basic Research and
the State Program ‘Fundamental Metrology’.
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