
Abstract. Experimental and theoretical studies of convective
heat transfer from a heat-generating fluid confined to a closed
volume are reviewed. Theoretical results are inferred from
analytical estimates based on the relevant conservation laws
and the current understanding of the convective heat-transfer
processes. Four basic and one asymptotic regime of heat
transfer are identified depending on the heat generation rate.
Limiting heat-transfer distribution patterns are found for the
lower boundary. Heat transfer in a quasi-two-dimensional
geometry is analyzed. Quasi-steady-state heat transfer from
a cooling-down fluid without internal heat sources is studied
separately. Experimental results and theoretical predictions
are compared.

1. Introduction

BeÂ nard's experiment [1] and its theoretical interpretation
proposed by Lord Rayleigh [2] marked the beginning of the
century of research into natural convection in fluids (see Refs
[3 ± 13]). Commonly, investigators have concerned themselves
with convection controlled by external boundary conditions
(temperature differences), e.g. convection near a wall whose
temperature differs from that of the fluid well apart from the
wall. There is, however, a wide class of natural convection
flows caused by internal heat sources rather than external
conditions. For a long time such phenomena have received
little attention. Only in the last quarter of the twentieth
century interest in natural convection in fluids with internal
heat sources has been stimulated by the demands of nuclear
power engineering. The importance of this research became
especially evident after the accidents at the Three Mile Island
and Chernobyl atomic power stations; as a result, the
problem of safety in atomic power engineering became an
independent field of research.

In analyzing the scenarios and predicting the conse-
quences of severe accidents involving reactor core degrada-
tion in nuclear power plants, the problem emerges as to the
confinement of hot radioactive melt within the reactor vessel.
At present, the most acceptable solution to this problem for
low- and medium-power reactors is the cooling of the reactor
vessel externally, by boiling water [14]. In view of this, it
becomes extremely important to know the regularities of the
the distribution of heat release by a fluid with internal heat
sources that is confined to a closed volume. Such regularities
are mainly studied using laboratory modeling [15 ± 31] and
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numerical [32 ± 37] simulations. When the heat release is high
and corresponds to real situations related to the safety of
nuclear reactors, the convective flow of a fluid becomes highly
turbulent, and therefore numerical simulation techniques
encounter serious difficulties. This makes analytical
approaches especially important.

A consistent theory of turbulence is not yet available, and
the only way to derive the analytical laws governing
convection in fluids with a high heat release is to obtain
qualitative estimates from the general principles related to
symmetry properties, conservation laws, and similarity and
dimensionality considerations. The method of estimates
allows us to determine the type of a functional dependence,
but cannot accurately evaluate the numerical factors. In this
respect, this method is weaker than a direct computer
simulation. However, in contrast to the latter, this method
makes it possible to extend the research in natural convection
to the region of parameters where computer simulation is
helpless.

The method of analytical estimates in hydrodynamics in
general and in the theory of convective heat transfer in
particular traces back to the classical works of Prandtl [3, 4],
von KaÂ rmaÂ n [5], Kolmogorov [6], Landau [7], and Zel'dovich
[8]. All these researchers studied fluids without internal heat
sources. Only recently this approach came to use in studying
fluids with such sources [38 ± 44].

The aim of the present review is to give an idea of the
current state of experimental and theoretical (based on
analytical estimates) studies of convective heat transfer from
a one-component fluid with internal heat sources.

Several remarks concerning the layout of our presentation
are in order. The main characteristics of heat transfer from a
fluid with internal heat sources are the distribution of the heat
flux density at the boundary, q, and the maximum excess of
the bulk temperature of the fluid over the boundary's
temperature, DT. It is convenient to represent the laws
related to these characteristics in the form of dependences of
the dimensionless Nusselt and Rayleigh numbers (Nu and
Ra), defined as

q � lDT
H

Nu ; �1:1�

Ra � gaDTH 3

nw
; �1:2�

on the modified Rayleigh number

Ra i � gaQH 5

lnw
: �1:3�

Here l, n, w, and a are, respectively, the heat conductivity, the
kinematic viscosity, the thermal diffusivity, and the thermal
volumetric expansion coefficient of the fluid; H is the
characteristic vertical dimension (height) of the volume
occupied by the fluid; g is the acceleration due to gravity;
andQ is the power density of the internal heat sources, whose
distribution is assumed to be homogeneous. Naturally, the
Nusselt number Nu, which characterizes the heat flux
distribution over the boundary, is a function of coordinates
at the bounding surface, while the number Rai is actually the
dimensionless strength of internal heat release in the fluid.

Note that the number Ra for a fluid without internal heat
sources is an independent variable [here DT in (1.2) should be
interpreted as the characteristic temperature difference

related to the boundary conditions]. Accordingly, heat
transfer in such a fluid is a function of Ra, Nu=Nu(Ra). In
a heat generating fluid, however, Rai is an independent
variable, while Ra should be determined, being (together
with Nu, as noted earlier) a function of Rai, i.e.
Nu=Nu(Rai) and Ra=Ra(Rai).

The plan of the review is as follows. In Section 2 we
present the results of the most widely known experiments on
heat transfer by fluids with internal heat sources. Section 3
describes the analytical results for integral heat-transfer
characteristics, which determine the distribution of the
heat flux between the lower and upper boundaries of the
fluid volume. From the practical viewpoint, the relationship
between the heat fluxes through the upper and lower
boundaries is important due to the difference in the modes
of heat removal in severe accidents at nuclear power plants:
heat is removed by hot water from the lower part of the
reactor vessel, while the upper part is cooled through
radiative heat exchange. In Section 4 we discuss details of
the heat flux distribution over the lower boundary, which
are important in evaluating the possibilities for external
cooling. In most model experiments, the original, prototype
volume filled with a fluid is represented by a thin, plane
section passing through the vertical axis of this volume. This
section is called a quasi-two-dimensional, or slice volume.
The question of whether such a quasi-two-dimensional
volume can be used to model natural convection in the
prototype three-dimensional, axisymmetric volume is con-
sidered in Section 5. One approach to the experimental
modeling of heat transfer from a heat-generating fluid
consists in studying the quasi-steady-state process of cool-
ing of a fluid without internal heat sources. A theoretical
analysis of the heat transfer from such a fluid is presented in
Section 6. In Section 7 we summarize the results.

2. A review of experiments modeling heat
transfer

The experimental investigations in modeling heat transfer
from a heat-generating fluid confined to a closed volume
differ both in geometry and in the setup of the experiment.
Axisymmetric containers filled with a heat-generating fluid
and bounded by a horizontal upper surface are of interest
from the practical viewpoint.

In most experiments conducted so far, the bulk heat
release is brought about by passing a direct current or by
microwaving. However, these methods lead to difficulties in
ensuring homogeneity in heat release. A way to overcome
these difficulties is to make the linear size of the volume in one
of the three directions much smaller than the other two sizes,
i.e., to choose a thin, plane-parallel horizontal or vertical
layer. A thin vertical layer is usually interpreted as the central
vertical slice of the prototype three-dimensional volume. In
experiments using such geometry, the fluid is cooled through
the narrow sections of the boundary at a constant tempera-
ture, while the wide vertical sections are thermally insulated.
It is assumed that in such geometry the heat-flux distribution
over the cooled sections of the boundary of the container
reproduces the heat-removal distribution in the prototype
volume of the fluid with internal heat sources. The quasi-two-
dimensional model volume is characterized in this case by
three length parameters Ð the vertical size (height) H, the
larger horizontal size D, and the layer thickness (the smaller
horizontal size) L.
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A different experimental approach to modeling heat
removal from a fluid with internal heat sources consists in
studying quasi-steady-state heat transfer from a cooling-
down fluid without internal heat sources.

The experimental results discussed in the present review
can be divided into two groups. The first group consists of
experiments in which the heat-release rates are moderate and
correspond to modified Rayleigh numbers Ra i < 1012 or
Ra i � 1012 (Section 2.1), while the second group includes
experiments with extremely high heat-release rates,
Ra i > 1012 (Section 2.2).

2.1 Moderate heat-release rates
A plane horizontal layer with isothermal top and bottom
boundaries. Kulacki and Goldstein [15] modeled a natural
convective flow of a fluid in a rectangular parallelepiped with
a square horizontal base, under adiabatic conditions at all
sidewalls. The side length of the base was 25.4 cm, and the
height of the fluid layer in the container varied from 1.27 to
6.35 cm. An aqueous solution of silver nitrate with a
concentration of 0.02 mol % was used as the working fluid.
Bulk heat release was brought about by transmitting a direct
electric current through the salt solution. The upper and
lower sections of the boundary of the container were made of
copper plates. The vertical temperature profile was measured
by a laser interferometer, with the laser beam sent in the
horizontal direction perpendicular to the applied potential
difference. The dimensionless heat-transfer coefficient, the
Nusselt number, was determined from measurements of the
vertical temperature profile in the central section of the
container.

The results of these experiments were represented in the
form of empirical relations for the Nusselt numbers describ-
ing the heat transfer through the upper (up) and lower (dn)
sections of the boundary:

Nuup � 0:371Ra0:228i ; Nudn � 1:407 Ra0:095i ;

7:1� 104 4Rai 4 2:4� 107 ; 0:054
H

D
4 0:25 : �2:1�

The errors in the results were estimated to be �10%.
Mayinger et al. [16] studied heat transfer in plane

horizontal layers with a square 14� 14 cm2 base and height
varying from 0.5 to 6 cm. The results were represented as
follows:

Nuup � 0:345Ra0:233i ; Nudn � 1:389Ra0:095i ;

4:0� 104 4Rai 4 5:0� 1010 ; 0:054
H

D
4 0:43 : �2:2�

A plane horizontal layer with an isothermal top boundary
and a thermally insulated bottom boundary. Kulacki and
Emara [17] studied the heat transfer from a plane horizontal
layer with a cooled top boundary, adiabatic bottom bound-
ary, and adiabatic sidewalls, over a broad range of Rayleigh
numbers (up to 4:4� 1012), including a sizable interval
corresponding to turbulent convection. Two containers with
horizontal square bases were used, with side lengths of 25.4
and 50.8 cm. The results were given in the following form:

Nuup � 0:338 Ra0:227i ; 3:8� 103 < Rai < 4:3� 1012 ;

0:025 <
H

D
< 0:5 : �2:3�

Note that Kulacki and Nagle [18] also studied convection
in a plane horizontal layer with a thermally insulated bottom.

Vertically oriented containers: rectangular geometry.
Mayinger et al. [16, 20] and Jahn [19] measured the heat
transfer in a rectangular parallelepiped that is thin in one
horizontal direction. The width of the container in the other
horizontal direction was D � 2ÿ6 cm. All the four narrow
faces of the parallelepiped were cooled, while the two broad
vertical walls were thermally insulated. The heat transfer
through the upper face, narrow sidewalls (sd), and lower
face was found to be of the form:

Nuup � 0:345Ra0:233i ; Nusd � 0:6Ra0:19i ;

Nudn � 1:389Ra0:095i ;

3� 107 < Rai < 5:0� 1010 ; 0:05 <
H

D
< 0:5 : �2:4�

Note that the additional cooling of the sidewalls did not
change the heat-transfer coefficients Nuup and Nudn [cf.
(2.2)]. The dependence of the heat transfer on the thickness
of the parallelepiped was not studied, but was assumed to be
very weak.

In their experiments, Stainbrenner and Reineke [21]
studied heat transfer in thin, square-shaped vertical layers.
The side of the square was 80 cm, and the layer thickness was
L � 3:5 cm. The wide vertical walls were made of glass and
were thermally insulated. The optical probing of the fluid was
done along the normal to these walls. Boundary conditions of
two types were used: they corresponded to the cooling of
either only the narrow sidewalls or all the narrow sections of
the boundary. The same temperature was maintained at all
the cooled surfaces. The heat transfer through the sidewalls
(sd) was approximated as follows:

Nusd � 0:85Ra0:19i ; �2:5�
5� 1012 4Rai 4 1:0� 1014 ;

H

D
� 1 ;

L

H
� 0:044 :

The data on the heat transfer through the upper and lower
boundaries proved to be in good agreement with Jahn's
results [19] [see (2.4)].

Vertically oriented containers: semicylindrical geometry.
Mayinger et al. [16, 20] and Jahn [19] also studied the heat
transfer in the geometry of a short semicylinder with a
horizontal axis and a plane horizontal upper boundary. The
radius of the cylindrical segment was R � 2:5ÿ28 cm. The
upper horizontal boundary and the lower curved boundary
were cooled. The broad vertical thermally insulated sections
of the boundary were used as electrodes for electric current.
The researchers studied the heat transfer as a function of the
heightH of the fluid in the cylindrical segment. The results led
to the following relationship between the Nusselt number and
the modified Rayleigh number:

Nuup � 0:36Ra0:23i ; Nudn � 0:54Ra0:18i

�
H

R

�0:26

;

107 < Rai < 5:0� 1010 ; 0:3 <
H

R
< 1:0 : �2:6�

The researchers also studied the heat-transfer distribution
over the lower section of the boundary. They found that the
heat transfer in the vicinity of the lowest point of the
boundary differs substantially from purely molecular heat
transfer (i.e. without convection), while in the upper part of
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the lateral surface it is close to that at the upper horizontal
boundary.

2.2 Very high heat-release rates
Experiments with the BAFOND facility. Alvarez et al. [22]
studied heat removal from a weak aqueous solution of salt
that filled a vertical cylinder at whose boundary the
temperature was maintained constant. The heat release in
the solution was maintained transmitting an electric current
between the upper and lower round horizontal bases of the
cylinder. The measurements were carried out at heat release
rates up to a level corresponding to Rai � 1016. It was found
that a simple model could describe the experimental data.
According to this model, the distribution of the heat flux to
the vertical section of the boundary is determined by the well-
known formulas [45] that describe the behavior of a laminar
boundary layer at fairly small Rayleigh numbers, with
Nu � Ra1=4, and of a turbulent boundary layer at larger
Rayleigh numbers, withNu � Ra1=3. For intermediate values
of the Rayleigh number (Ra i � 1013) both formulas describe
the results of measurements quite well. On this basis, Alvarez
et al. [22] claim that at Rayleigh numbers Ra i � 1013 the flow
regime in the boundary layer near the vertical section of the
boundary changes from laminar to turbulent.

Experiments with the UCLA facility. Asfia and Dhir [23]
and Frantz and Dhir [24] studied heat and mass transfer in a
three-dimensional hemispherical geometry. The inner dia-
meters of the hemispheres were 44.21 and 15.2 cm. Bulk heat
release was produced by applying a microwave field.The
uniformity of heat release was controlled by recording the
growth of temperature at different points inside the hemi-
sphere. The measurements were done at modified Rayleigh
numbers Ra i91014.

It was found that under adiabatic conditions at the upper
horizontal section of the boundary the heat transfer through
the lower boundary satisfies a relationship close to that
obtained by Mayinger et al. [16, 20] [see (2.6)]:

Nudn � 0:5Ra0:2i

�
H

R

�0:25

: �2:7�

Here H is the level of the fluid in the hemisphere.
Experiments with the COPO facility. KymaÈ laÈ inen et al.

[25, 26] used the COPO facility to study heat transfer at large
Rayleigh numbers (up to 1:7� 1015) in a quasi-two-dimen-
sional geometry. On a 1 : 2 scale, the facility reproduces the
VVER 440 reactor vessel with a semielliptical bottom and a
vertical cylindrical section. The slice thickness amounted to
10 cm. The wide vertical sections of the boundary were made
of polycarbonate with holes for optical measurements. The
height of the fluid varied from 60 to 80 cm, and the width D
was 1.77 m. An aqueous solution of zinc sulfate was used as
the working fluid. Bulk heat release was produced by
transmitting a direct electric current through the salt solu-
tion. The peak voltage amounted to 30 kV and the peak
power to 6 kW. The maximum operating temperature was
80 �C. Fifty-seven cooling elements were used to cool the
narrow lateral and bottom sections of the boundary. The
temperature was controlled using thermocouples. These
experiments made it possible to determine the heat transfer
and compare it to the results of earlier studies, e.g. those done
by Stainbrenner and Reineke [21].

The researchers found that about 70% of the energy
input was removed by heat transfer through the upper

horizontal boundary, while the remainder was removed
through the lateral and bottom sections of the boundary.
They also found that the heat transfer through the vertical
walls obeys Stainbrenner and Reineke's formulas [21]
extrapolated to larger Rayleigh numbers, the heat transfer
through the upper boundary is somewhat larger, and the
heat transfer through the bottom section of the boundary is
much smaller than the value predicted by Stainbrenner and
Reineke's formulas [21] if the height of the fluid level is
assumed to be the characteristic height. For this reason, in
analyzing the heat transfer through the lower boundary, the
height of the curved part of the container, Hc, was taken as
the length scale. As a result, the formulas describing the
experimental data gathered by KymaÈ laÈ inen et al. [25, 26]
assume the form

Nuup � 0:345Ra0:233i ; Nusd � 0:85Ra0:19i ;

Nudn � 0:54Ra i
0:18

�
Hc

R

�0:26

;

4� 1012 < Rai < 1:7� 1015 : �2:8�

Helle et al. [27] conducted additional experimental studies
using the COPO±COPO II facility. An important modifica-
tion consisted in cooling the outer boundary with liquid
nitrogen, which led the to formation of a crust on the inner
boundary of the volume and thus ensured ideally isothermal
boundary conditions. Containers of two different geometries
were used. The first container had a semielliptical bottompart
with a vertical cylindrical section (this corresponded in shape
to the bottom of a VVER 440 reactor) and the second one had
a hemispherical bottom part (corresponding in shape to the
AP 600 reactor vessel). In both cases the facility reproduces
the vessel on a 1 : 2 scale. The results were compared with
those obtained in the first series of experiments (COPO I; see
Refs [25, 26]) and with the empirical relationships known
from earlier studies. The average heat transfer through the
upper boundary proved to be close to the value obtained from
Stainbrenner and Reineke's correlation [21] and to the COPO
I results, irrespective of the container shape. However, the
average heat transfer through the lower boundary in the
COPO II experiments was higher than in the first series of
experiments. Moreover, the COPO II experiments revealed a
strong dependence of the heat flux at the lower boundary on
the polar angle y (this angle gives the angular distance along
the boundary from the lowest point, the pole, measured
upward; see Section 4 below).

Experiments with the BALI facility. The BALI program,
initiated by Bonnet et al. [28], is intended for studying heat
and mass transfer in large volumes of water and for modeling
convection in a reactor on a 1 : 1 scale. The facility
corresponds to a semicircle with a quasi-two-dimensional
geometry, 2 m in radius and 0.15 m thick. The Rayleigh
number in these experiments varied from 1015 to 1017,
covering the region most important for the problem of safety
of nuclear reactors. The results were represented by the
following relationships:

Nuup � 0:383Ra0:233i ; Nudn � 0:116Ra i
0:25
�
H

R

�0:32

:

�2:9�
In addition to measuring the heat flux distribution at the

boundary, the researchers recorded the temperature distribu-
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tion along the axis of the modeling cavity. It was found that
this distribution is uniform in the upper part of the container
when averaged over time, while in the lower part the time-
averaged distribution is stably stratified. For very large values
of Rai the thermally uniform upper region occupies less than
one-third of the entire volume in height.

Note that the dependence of Nudn onH=R in (2.9) agrees
with the earlier result of Mayinger et al. [16, 19] for a quasi-
two-dimensional volume, (2.5), and with Asfia and Dhir's
result [23] for a hemisphere, (2.7); these relationships contain
the ratio H=R to the powers 0.26 and 0.25, respectively.

Experiments with the mini-ACOPO facility. The mini-
ACOPO facility designed by Theofanous and Liu [29] exists
in two versions (A and B) and is used to verify the main laws
governing natural convection, which were established in
earlier experiments for smaller Rayleigh numbers, and also
to establish the role of the Prandtl number Pr � n=w. The
shape of the model container was hemispherical. The
approach used in these experiments differs substantially
from the earlier approaches. Instead of a fluid with a bulk
heat release, the heat transfer from a cooling fluid without
internal heat sources was studied. It was assumed that at each
moment the quasi-steady state of the cooling fluid reproduced
exactly the corresponding steady state of a fluid with internal
heat sources. This assumption was based on the fact that the
boundary-layer processes that determine the characteristics
of heat transfer are much faster than the cooling itself. The
working fluid in version A was Freon 113, with which a
hemispherical container of radius 22 cm was filled. Ten
cooling elements were used to maintain the required tempera-
ture conditions. In version B the working fluid was water.
Studies of the local heat flux distributionwere not planned for
this version, so that the cooling system was simpler in this
case.

A comparison of the heat transfer through the boundary
with the calculations of the total variation of the thermal
energy within the volume of the cooling fluid showed that in
most tests an energy balance held to an accuracy of no less
than 10%. The typical duration of one series ofmeasurements
was 15 to 30 min, depending on the cooling rate.

In eight tests with setup version A, the initial Freon
temperature was approximately 40 �C, while the tempera-
ture at the boundary was close to 3 �C. In the course of one
cooling cycle, the modified Rayleigh number corresponding
to the given experiment varied from 2� 1013 to 7� 1014 and
the Prandtl number from 7 to 11. In the three tests with
version B, the initial temperature of the cooling fluid (water)
was close to 100 �C, the cooling circuit operated at 3, 26,
and 66 �C, the range of variation was
2� 1012 < Rai < 3� 1013 for the modified Rayleigh num-
ber and 2:5 < Pr < 11:0 for the Prandtl number.

The measured heat transfer through the upper boundary
were found to agree very well with Stainbrenner and
Reineke's correlation [21] over the entire range of modified
Rayleigh numbers. The heat transfer through the lower
boundary was represented by the following formulas:

Nudn � 0:048Ra0:27i ; Nudn � 0:0038Ra0:35i ;

1012 4Rai 4 3� 1013 ; 3� 1013 4Rai 4 7� 1014 :

�2:10�

An important feature of these results is that at Rai � 3� 1013

a transition to larger exponents takes place.

The measured local polar-angle distributions of the heat
flux at the lower boundary were represented as follows:

Nudn�y�
Nudn

� 0:1� 1:08

�
y
yp

�
ÿ 4:51

�
y
yp

�2

� 8:61

�
y
yp

�3

;

0:14
y
yp

4 0:6 ;

�2:11�
Nudn�y�
Nudn

� 0:41� 0:35

�
y
yp

�
�
�

y
yp

�2

;

0:64
y
yp

4 1:0 ; yp � p
2
:

An important consequence of these results is that the heat
transfer is independent of the Prandtl number within the
interval from 2.5 to 10.8.

Experiments with the ACOPO facility. Theofanous et al.
[30, 31] conducted their experiments with the ACOPO facility
using the same approach as in the case of the mini-ACOPO
facility. However, owing to the larger size of the model
container (a diameter of 2 m, i.e., half the reactor diameter),
it was possible to reach a Rayleigh number of 1016. The
working fluid in these experiments was water with an initial
temperature of 100 �C, and a temperature of 0 �C was
maintained at the boundary. The following correlations for
heat transfer (different from those known from earlier
experiments) were obtained:

Nuup � 1:95Ra0:18i ; Nudn � 0:3Ra0:22i : �2:12�

3. Integral laws governing heat transfer

3.1 General physical picture
Let the container of volume V filled with a heat-generating
fluid (depicted schematically in Fig. 1) have the shape of a
body of revolution about a vertical axis and a plane upper
(horizontal) section of the boundary with an area of Sup. We
denote the remaining (lower) part of the boundary by Sdn.
The entire boundary S of the volume is assumed to be rigid
and isothermal. The vertical size (height) of the volume is
denoted byH.

The general picture of convective heat transfer can be
described as follows.

Sdn

Sup

Tmax

V�

Vÿ

H�

H

Figure 1.Central vertical section of the volume filledwith the fluid:Sup and

Sdn are, respectively, the upper horizontal boundary and the lower curved

boundary; Tmax designates the horizontal plane that passes through the

point of the highest temperature in the volume;V� andVÿ are the parts of

the volume above and below the plane Tmax; H is the vertical size (height)

of the entire volume; andH� is the height of V�.
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The horizontal plane passing through the point of the
highest time-averaged temperature separates the volume V
into two portions. In the region V� of height H�, in view of
the inverse temperature distribution, the situation resembles
the conditions needed for Rayleigh ±BeÂ nard (RB) convection
to set in [1, 2]. A natural RB convective flow transfers heat to
the horizontal section of the boundary, Sup. The heat
transport to the lower boundary Sdn is determined by a
boundary layer, thin compared to H, where the fluid flows
downward. A slow reverse flow of the fluid under conditions
with a positive vertical temperature gradient does not prevent
the system from the formation of a stable temperature
stratification outside the boundary layer in the lower part of
the volume, Vÿ.

In this section we will discuss the integral laws that govern
heat transfer, i.e. the heat fluxes averaged over Sup and Sdn.
We derive these laws on the basis of the general condition for
energy balance and from the fragmentary similarity in heat
transfer between fluids with and without internal heat
sources.

3.2 Condition for energy balance
The condition for steady-state energy balance in a fluid with
uniformly distributed heat sources of volume power densityQ
can be written as

lDT
H

�
S

dSNu � QV ; S � Sup � Sdn : �3:1�

We express DT and Q in terms of the ordinary and the
modified Rayleigh number [equations (1.2) and (1.3)] to
arrive at the following relationship:

RaNu � Rai : �3:2�
Here Nu is the Nusselt number averaged over the entire
boundary and is given by the formula

Nu � H

V
�SupNuup � SdnNudn� ; �3:3�

where

Nui � 1

Si

�
Si

dSNu ; i � up; dn �3:4�

are the Nusselt numbers averaged over the upper and the
lower boundary.

Usually the theoretical laws for heat transfer and the
corresponding results of experiments and numerical simula-
tions are represented by power functions. We define the
exponents gi, bi (i � up; dn), b, and e as follows:

Nui / Ra
gi
i ; Nui / Rabi ;

Nu / Rab ; Ra / Raei ; �3:5�
where we have omitted the numerical factors of order unity.

The substitution of (3.5) into (3.2) leads to the following
important relations between various exponents:

e � �1� b�ÿ1 ; �3:6�
gi �

bi
1� b

: �3:7�

We should now determine the exponents gup, gdn, and e,
abstracting from the numerical factors of the power laws
(they are of order unity; determining these factors is

impossible within the framework of the semiquantitative
theory discussed here). We assume that the Prandtl number
is greater than or of order unity, Pr5 1.

Note that the laws (3.5) with constant exponents are valid
within restricted intervals of Rai that correspond to certain
combinations of regimes of heat transfer through Sup andSdn.
Transitions between these regimes result in changes (abrupt
or gradual) in the exponents.

3.3 Basic heat-transfer regimes
When analyzing heat transfer in heat-generating fluids, we
use similarities to the case of a fluid without heat sources.
Firstly, there is an analogy between convection in volume V�
and RB convection. Secondly, there is close similarity
between the boundary layers in the problem at hand and
near a cooled surface. These analogies can be substantiated by
the following ideas. In the region of large Rayleigh numbers,
Ra4 1, we are interested in, most of the heat resistance in the
process of heat transfer to the boundary is due to thin thermal
boundary layers. The thickness of these layers is much smaller
than the characteristic linear size of the entire fluid volumeÐ
the heightH. Hence the power of heat release in these layers is
negligible compared to the heat fluxes passing through them.
This implies that heat generation in these layers has virtually
no effect on their structure and, accordingly, on the heat-
transfer characteristics. Below we list the main characteristics
of heat transfer regimes for a fluid without internal heat
sources (RB convection and a boundary layer), which are
prototypes of the characteristics for a heat-generating fluid.

RB convection in a plane horizontal fluid layer of height
H�, heated from below, exhibits the following heat-transfer
regimes, which differ in the exponent bRB in the relationship
for the Nusselt number:

NuRB / Ra
bRB� ; �3:8�

where Ra� � Ra�H! H��. Within the interval
Rac1 < Ra < Rac2, convection is laminar and bRB � 1=4
[46]. In the interval Rac2 < Ra < Rac3, soft turbulence is
present and bRB � 1=3 [47]. Finally, for Rayleigh numbers
Ra > Rac3 we have hard turbulence with bRB � 2=7 [47]. The
critical values Rac1, Rac2, andRac3 depend on the aspect ratio
A � D=H�, where D is the horizontal size of an RB cell. For
A > 1, Rac1 � 103. For A � 1, we have Rac2 � 2� 105 and
Rac3 ' 4� 107 [47]. If A � 6:5, Rac3 ' 104 [48]. In view of
this, we can assume that, at sufficiently high aspect ratios, as
Ra+ is increased, at Ra+>Rac1 the laminar flow regime in an
RB layer undergoes a transition directly to the hard
turbulence regime, skipping the soft turbulence regime,
which is not realized in this case.

The boundary layer at the vertical wall in a fluid without
internal heat sources, which is a prototype for the boundary
layer at the sectionSdn of the boundary of a cavity filled with a
heat-generating fluid, may be in two heat-transfer regimes,
which differ in the value of the exponent of the power law for
the Nusselt number:

Nubl / Rabbl : �3:9�

These are the laminar regimes with bbl�1=4 [13] and the
turbulent regime with bbl � 1=3 [49]. The transition between
these two regimes occurs at the critical value of the Rayleigh
number, Ra � Ra�, which depends on the Prandtl number.
According to theoretical estimates made by Bejan and
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Gunnington [50], for Pr>1 this dependence has the form
Ra� / Pr2. At the same time, as suggested by experiments, the
numerical factor in this relationship varies from one experi-
ment to another by two orders of magnitude [51, 52]. This
may even out the dependence if the variations of the Prandtl
number are not too wide. Note that according to experi-
mental data, the value of the critical Rayleigh number for the
transition between regimes in the boundary layer proves to be
larger than the critical Rayleigh numbers for the transition
from soft turbulence to hard turbulence in RB convection, i.e.
Ra� > Rac3.

In what follows, we will assume that each regime of heat
transfer in the entire volume V of heat-generating fluid is a
combination of convection regimes that take place in region
V� and in the boundary layer. Hence, in view of the definition
of the number Nu, we have

Nuup / H

H�
Ra

bRB� �
�

H

H�

�1ÿ3bRB

RabRB ; �3:10�

Nudn / Rabb l : �3:11�

Since the interface betweenV� andVÿ corresponds to the
maximum of the average temperature, the difference between
H� and Hÿ is closely related to the difference between Nuup
and Nudn. If we take into account the inequalities��bRB ÿ bbl

��5 bbl ; 1ÿ 3bRB 5 1 �3:12�
and the fact that at modified Rayleigh numbers
Rai 4 1013ÿ1014 the case of bRB > bbl and the opposite one
are realized alternately, we can assume that within this range
H� � H=2 and, accordingly, set Ra� � �1=8�Ra. In this
range of Rai we have, in view of (3.3) and (3.5), the following
relationship:

b � bup � bdn
2

� jbup ÿ bdnj
2

: �3:13�

Relationships (3.10), (3.11), and (3.13) and the above
information about the characteristics of heat transfer in a
fluid without internal heat sources enable us to specify four
basic regimes, which differ in the type of convection inV� and
the boundary layer and, accordingly, in the exponents b, e,
and gi given by (3.5).

(i) Ra
�1�
i < Rai < Ra

�2�
i :

laminar convection in V� and the boundary layer,

b � 0:25 ; e � 0:8 ; gup � gdn � 0:2 ; �3:14�
(ii) Ra

�2�
i < Rai < Ra

�3�
i :

soft turbulence in V� and laminar flow in the boundary
layer,

b � 0:290� 0:040 ; e � 0:775� 0:025 ;

gup � 0:263� 0:008 ; gdn � 0:195� 0:005 ; �3:15�
(iii) Ra

�3�
i < Rai < Ra

�4�
i :

hard turbulence in V� and laminar flow in the boundary
layer,

b � 0:270� 0:020 ; e � 0:790� 0:030 ;

gup � 0:225� 0:004 ; gdn � 0:197� 0:003 ; �3:16�

(iv) Ra
�4�
i < Rai < 102Ra

�4�
i :

hard turbulence in V� and a combination of laminar and
turbulent flows in the boundary layer,

b � 0:31� 0:025 ; e � 0:765� 0:015 ;

gup � 0:218� 0:004 ; gdn � 0:255� 0:005 �3:17�

(the exponents given for regime (iv) correspond to the
endpoint of the interval of Rayleigh numbers for this regime).

In accordance with the above characteristics of heat
transfer in a fluid without internal heat sources and in view
of (3.13), (3.5), and (3.6), we can define the boundaries
between regimes (i) ± (iv) as follows:

Ra
�1�
i ' 105 ; Ra

�2�
i ' 15�Rac2�1:25 ;

Ra
�3�
i ' 15�Rac3�1:29 ; Ra

�4�
i ' 15�Ra��1:27 : �3:18�

Here, Ra
�2�
i andRa

�3�
i depend on the aspect ratioA forV� and

Ra
�4�
i on the Prandtl number. At sufficiently high aspect ratios

A regime (ii) may not occur, in which case regime (i) is directly
followed by regime (iii). As noted above, there is some
ambiguity in the dependence of the critical value Ra� on the
Prandtl number Pr. Accordingly, this ambiguity affects Ra

�4�
i .

To illustrate this point, we note that for a fluid with thermal ±
hydrodynamic characteristics corresponding to water,
Ra
�4�
i ' 2:5� 1013 [53].
The Rai interval from 1013 to 1017 is of most interest from

the viewpoint of reactor safety. Regime (iv) falls within this
interval, where turbulent flows replace laminar flows in the
boundary layer. At Rai > 102Ra

�4�
i , the turbulent part of the

boundary layer becomes predominant. If we take into
account the numerical factors in the dependences Nu(Ra)
for the laminar and turbulent boundary layers in a fluid
without internal heat sources [13, 49], we can approximately
represent the dependence Nudn (Ra) in regime (iv) for a heat-
generating fluid as follows:

Nudn � 0:68�Ra��1=4 � 0:15
�
Ra1=3 ÿ �Ra��1=3 � : �3:19�

The flow-regime transition in the boundary layer makes
the dependence Nudn (Ra) much stronger. As before, we
describe this dependence by a formula like (3.5), to obtain the
exponent gdn as the logarithmic derivative of (3.19). This
exponent will be a function of Rai.We define the averaged gdn
as follows:

�gdn �
D lnNudn
D lnRai

; �3:20�

where D lnNudn is the variation of ln Nudn over the averaging
interval from Ra

�4�
i to Ra

�4�
i exp�D lnRai�. We assume that

Ra
�4�
i � 2:5� 1013 corresponds to a fluid with thermal ±

hydrodynamic properties typical of water and that
D lnRai � ln 102; and then, in view of (3.19), we use (3.20)
to estimate �gdn on the interval where the flow regime in the
boundary layer changes:

�gdn � 0:36 : �3:21�

3.4 Asymptotic regime
The interface between V� and Vÿ is determined by the
position of the maximum of the average temperature of the
fluid in volume V. Therefore, as Rai increases, at bup 6� bdn,
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this interface moves ensuring a minimum increase in the
temperature difference DT. Up Rai� Ra

�4�
i , we have

bup 5bdn, so that the interface gradually moves downward
as Rai increases. After the transition to the turbulent regime
in the boundary layer is completed, bdn becomes larger than
bup, and a further increase in Rai does not change this
relationship between the two exponents. This implies that,
at this stage of increase of Rai, the interface between regions
V� and Vÿ monotonically moves upward. This finally leads
to an asymptotic situation in which V�5V and H�5H
and the heat generated in V� leaves this volume through the
upper boundary Sup almost completely. In these conditions,
relationships (3.5) ± (37), (3.10), (3.11), and the relationship
that follows from the condition for energy balance in V�
yield

b � 1

3
; e � 3

4
; gdn �

1

4
; gup �

7

32
� 0:219 : �3:22�

These exponents specify the characteristics of the asymptotic
regime of heat transfer in a heat-generating fluid. This regime
takes place at

Ra
ÿ1=32
i 5 1 : �3:23�

Note that the asymptotic behavior of the heat transfer
for a plane horizontal fluid layer with internal heat sources
was studied by Cheung [54], who assumed that, at
asymptotically large Rayleigh numbers, a soft-turbulence
convection regime occurs (hard turbulence was discovered
later) and found bup � 1=4 for the heat transfer through the
upper boundary.

3.5 Comparison with experiment
We begin with an important remark concerning the aspect
ratio for volume V� containing a heat-generating fluid. As
noted above, at moderate Rayleigh numbers and provided
the entire boundary is cooled, we have the estimate
H� � H=2. On the other hand, in all known experiments
the ratio of the horizontal size of the model volume to its
height is about two or more. Hence the aspect ratio A than
for V� is no less four. At the same time, the lower limit of
the interval of Rayleigh numbers in experiments was no less
than 104. Comparison of these facts leads to the following
conclusion. Over the entire range of Rayleigh numbers
corresponding to the known experiments on heat transfer
in fluids with internal heat sources, according to Wu and
Libchaber's results [48], hard turbulence occurs in V�. This
means that regimes (i) and (ii), as classified in Section 3.3,
did not occur in these experiments.

We start our comparison between theoretical and experi-
mental results with the experiment of Kulacki and Emara
[17], since it is most suitable for testing the theory. We recall
that these researchers studied heat transfer through the upper
boundary of a plane horizontal layer of fluid with internal
heat sources and a thermally insulated lower boundary. The
aspect ratio of the model volume (A � D=H) varied from 2 to
40, and themodifiedRayleigh number ranged from 2� 104 to
4� 1012 [see (2.3)]. Since small values of Rai corresponded to
large values of the aspect ratio, the above remark implies that
the entire range of Rayleigh numbers in Kulacki and Emara's
studies [17] corresponded to the hard turbulence regime for
RB convection. Hence we should substitute bRB � 2=7 into
the formula for the exponent that determines the heat transfer
through the upper boundary in the given experiment, which,

according to (3.7), has the form

gup �
bRB

1� bRB

: �3:24�

Thus, we obtain btheorup � 0:222. This result is in good
agreement with the experimental value of this exponent [9]
[see (2.3)], b exp

up � 0:227.
It goes without saying that such close results can also be

interpreted as experimental evidence for the analogy between
the mechanisms of heat transfer in V�, which belongs to the
volume containing the heat-generating fluid, and RB convec-
tion.

Two other experiments described, respectively, in Refs
[16, 19] and Ref. [21], were carried with isothermal boundary
conditions and a modified Rayleigh number of about 1013, so
that, by the classification of Section 3.3, these experiments
belong to regime (iii). In Table 1 we compare the experimental
and theoretical values of the exponents that refer to the given
experiments.

In their experiments with the ACOPO facility, Theofa-
nous and Liu [29] found that, as the Rayleigh number was
increased, the rate of heat transfer through the lower
boundary grew substantially, which was described by a
power-law dependence with an exponent gdn � 0:35. Note
that the explored range 3� 1013 < Rai < 7� 1014 may
correspond to heat-transfer regime (iv), with a change from
laminar to turbulent flow in the boundary layer on Sdn. If this
is the case, the theoretical estimate (3.21), gtheordn ' 0:36,
completely agrees with the results of Theofanous and Liu
[29]. We also note that the change of regime in the boundary
layer at the vertical section of the boundary in the same range
of Rai values was also recorded by Alvarez et al. [22] in their
experiment with the BAFOND facility.

Particular attention should also be given to the experi-
ment by Bonnet and Seiler [28], who used the BALI facility
and extremely high modified Rayleigh numbers,
1015 < Rai < 1017. They obtained exponents that corre-
spond to gup � 0:216 and gdn � 0:25. Actually, these values
agree almost perfectly with the theoretical exponents for the
asymptotic heat-transfer regime [formula (3.22)];

g theorup ' 0:219 ; g theordn � 0:25 :

Theofanous et al. [30] used the ACOPO facility and
obtained empirical relationships for heat transfer through
the upper and lower boundaries with exponents that differ
from those of Bonnet and Seiler [28]. However, in both cases
the relation between the exponents is characteristic of
extremely high rates of heat generation:

gdn > gup ; Rai > 1014 ; �3:25�

Table 1. Comparison of theoretical results and the results of experiments
on heat transfer for totally isothermal boundary conditions and moderate
modified Rayleigh numbers.

gup gdn

Experiment Theory Experiment Theory

0.23 [16, 19]
0.225� 0.004

0.18 [16, 19]
0.197� 0.003

0.233 [21] 0.19 [21]
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which confirms the presence of a tendency toward the
asymptotic regime with heat removal occurring predomi-
nantly through the lower boundary.

To summarize, we can note that agreement between
theory and experiment in relation to the integral character-
istics of heat transfer is quite satisfactory.

4. Regularities of the local-heat-flux distribution

4.1 Statement of the problem
In the previous section we obtained analytical estimates for
heat-transfer characteristics averaged separately over the
upper and the lower section of the boundary. However, to
solve problems related to reactor safety, one must know in
greater detail the distribution of heat transfer from a fluid
with internal heat sources. This, in particular, refers to the
lower part of the boundary, where special conditions for the
external cooling by boiling water are present [55].

In this section we consider the regularities of the heat-
flux distribution and the characteristics of convection in the
lower part of a volume containing a fluid with internal heat
sources.

We assume that, near the lowest point (the pole), the
curvature radius R of the boundary is finite. We also assume
that the heightH of the fluid volume is comparable to R. The
position of a point at the boundary is specified by the angle y
between the normal to the boundary and the vertical axis (so
that y � 0 at the pole). We denote the coordinate measured
from the pole upward by z. What we are interested in are the
characteristics of convection in the region where y5 1 and
z5H. The geometry of the lower part of the volume is
schematically depicted in Fig. 2.

Heat transfer through the lower boundary is determined
by the characteristics of the boundary layer that forms there.
For angles y � 1, this layer, as noted in Section 3, is similar to
the well-studied natural-convection boundary layer at a
vertical wall in a fluid without internal heat sources [13]. As
the pole is approached (y5 1), the properties of the boundary
layer change dramatically. Here the boundary layer becomes
convergent, as evident from geometric conditions. This fact
leads to the important condition that the longitudinal

component of the boundary-layer velocity must vanish at
the pole:

u�y � 0� � 0 : �4:1�

The condition means that, for y5 1, the boundary layer
decelerates rather then accelerates, in contrast to the case of
y � 1. Moreover, in contrast to the region y � 1, where the
boundary layer `sucks' the fluid from the bulk of the volume,
at y5 1 the layer returns the fluid to the bulk. Another
important property of the boundary layer at y5 1 is that the
buoyancy in the longitudinal direction is weakened.

The flow velocity and the temperature of the fluid in the
bulk of the volume (outside the boundary layer) are, due to
condition (4.1), strongly z-dependent if z5H. This fact, in
turn, has a strong reverse effect on the characteristics of the
boundary layer itself. Hence problems concerning the
boundary layer and the flow and temperature distributions
outside the boundary layer should be solved in conjunction
with the matching conditions at the free surface of the
boundary layer (i.e. the surface facing the bulk of the fluid).
These are continuity conditions for the temperature and the
normal component of the velocity:

T � Tb ; y � d ; �4:2�
v � vb ; y � d ; �4:3�

where T and Tb are the temperatures in the boundary layer
and bulk, respectively, v and vb are the components of the
flow velocity normal to the boundary in the boundary layer
and in the bulk, u is the longitudinal component of the
velocity, y is the coordinate measured from the boundary
and normal to it (see Fig. 2), and d is the thickness of the
boundary layer. Note that, since y5 1, the component vb is at
the same time the vertical component of the velocity in the
bulk of the fluid.

In the next section we discuss the relationships between
the boundary-layer characteristics and the distributions of
temperature and flow velocity in the bulk of the volume. We
examine the cases of laminar and turbulent boundary layers
separately.

4.2 Relationships for a convergent boundary layer
Laminar boundary layer. In the region where the polar angle
satisfies the condition

d
R

5 y2 5 1 ; �4:4�
the system of equations expressing the conservation of mass,
longitudinal component of momentum, and energy for the
fluid in a laminar boundary layer assumes the form

ÿ 1

Ry
q
qy
�yu� � qv

qy
� 0 ; �4:5�

ÿ 1

Ry
q
qy
�yu2� � q

qy
�vu� ÿ n

q2u
qy2
� ga�Tb ÿ T�y ; �4:6�

ÿ 1

Ry
q
qy
�yuT� � q

qy
�vT� � w

q2T
qy2

: �4:7�

In deriving the system of equations (4.5) ± (4.7), pressure was
eliminated by employing the equation of balance for the
transverse component of the boundary-layer momentum.
The left inequality in (4.4) made it possible, in particular, to

u

BL

y

z

y

v

z; y � 0

pole

R

BL

Figure 2.Geometry of the lower part of the cavity filled with a fluid: y is the
polar angle, z is the vertical coordinate measured from the lowest point

(the pole) upward, R is the curvature radius of the boundary at the pole

(y � 0), and u and v are the longitudinal and transverse components of the

velocity in the boundary layer, respectively.
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neglect the contribution of bulk heat emission in equation
(4.7) and the inertia force due to the transformation to the
curvilinear coordinate system in equation (4.6).

For our further discussion, we need to determine the
shape of the transverse temperature profile in the boundary
layer. In an ordinary natural-convection boundary layer near
the vertical wall, if the temperature of the fluid is coordinate-
independent, the temperature profile in the bulk volume is
monotonic [13]. A different situation arises if a thermal
inhomogeneity is present due to a stable stratification in the
bulk. Since the temperature at the outer side of the boundary
layer must coincide with the ambient temperature [see
equation (4.2)], then, as we move downstream, the tempera-
ture inside the boundary layer becomes higher than at the
outer side due to convective transport from the upper, hotter
sections. As a result, the buoyancy force is directed oppositely
to the longitudinal velocity in the boundary layer, so that the
fluid in the boundary layer slows down and, ultimately, the
boundary condition (4.1) is met. Since the temperature
distribution in the bulk is formed by the backflow from the
boundary layer, the maximum excess of temperature inside
the boundary layer over the ambient temperature should be of
the same order of magnitude as the latter is:

max�Tÿ Tb� � Tb : �4:8�

The temperature profile inside a convergent boundary layer is
depicted schematically in Fig. 3.

Note that a nonmonotonic temperature profile in the
boundary layer near the vertical wall of a stratified fluid was
reported in [56] based on numerical simulations and experi-
ments.

Now we derive the relationships between the character-
istics of the boundary layer and those of the bulk. Combining
equations (4.5) ± (4.7), the estimate (4.8), and the matching
conditions (4.2) and (4.3) yields the following relationships:

u

Ry
� vb

d
; �4:9��

u

Ry

�2

� gaTb

R
; �4:10�

vb � w
d
: �4:11�

Another relationship follows from the very definition of
the heat flux at the boundary:

q � lTb

d
: �4:12�

Eliminating the velocity u from (4.9) ± (4.11) and using (4.12),
we arrive at important formulas that link the vertical
component of velocity and the heat-flux density to the bulk
temperature:

vb /
�
w2gaTb

R

�1=4

; �4:13�

q / l
�
gaT 5

b

w2R

�1=4

: �4:14�

We now dwell on the case of very small polar angles,

y2 5
d
R
: �4:15�

The mass balance condition (4.5) in this region yields the
following estimate:

u � u�
y
y�
; �4:16�

where u� is the value of u at y � y�, with the angle y� defined as

y2� �
d�y��
R

: �4:17�
In view of (4.16), it follows from the balance condition for the
longitudinal component of momentum that, for angles
defined by (4.15), the temperature in the boundary layer is
polar-angle-independent. Then, in accordance with the
estimate (4.16), we can neglect the first term in the energy
balance equation for this range of angles. At the same time,
we must restore the term responsible for volumetric heat
generation in this equation. This results in the equation

v
qT
qy
� w

q2T
qy2
� Q

rC
; �4:18�

where C is the specific heat of the fluid. This implies that, for
very small polar angles y5 y�, the thickness of the boundary
layer and the temperature do not depend on the polar angle
and the estimates for these quantities are

d � d� � w
v�
; T � T�y�� � Qd2�

l
; �4:19�

where v� is the velocity v at y � y�. Finally, it follows from
(4.19) and (4.12) that for such angles (y5 y�) the heat flux
density at the boundary is also virtually constant. At the pole
(y � 0) this flux density is minimal, and its value can be
estimated as

qmin � q� � q�y�� � hqiy2� ; �4:20�

where hqi � QR is the heat flux averaged over the entire
boundary.

Turbulent boundary layer. In order to derive relationships
for a turbulent boundary layer similar to those for a laminar
boundary layer, we note that most part of the temperature
drop corresponds to the viscous conductive sublayer, where

Tmax

Tb

T

y

Figure 3. Temperature profile for a convergent boundary layer: T is the

temperature, y is the coordinate normal to the boundary, Tmax is the

maximum temperature inside the boundary layer, and Tb is the tempera-

ture in the bulk region adjacent to the boundary layer.
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the mass, momentum, and energy balance conditions are
local. Hence the estimate that relates the heat-flux density at
the wall to the ambient temperature for a convergent
turbulent boundary layer coincides with the estimate for a
turbulent boundary layer at the vertical wall in the case of an
isothermal ambient [49]:

q / l
�
gaT 4

b

w2

�1=3

: �4:21�

To relate the vertical component of velocity vb to the
temperature Tb in the bulk volume, we turn to the turbulent
core of the boundary layer, where viscosity and heat
conductivity are insignificant. In this region the relationship
between the longitudinal component of velocity averaged
over the turbulent pulsations (for which we retain the
notation u) and the vertical component of velocity in the
bulk volume coincides, according to the mass balance
condition and the matching condition (4.3), with the estimate
(4.9). The momentum and energy balance conditions for the
turbulent core lead to the following estimates:�

u

Ry

�2

� gaDT
R

; �4:22�

v 0 2 � gaT 0d ; �4:23�
q � rCv 0T 0 ; �4:24�

where DT is the characteristic averaged excess of temperature
in the turbulent core over the temperature of the adjacent
regions of the bulk volume, and v 0 and T 0 are the character-
istic values of the turbulent pulsations of velocity and
temperature, respectively. Since v 0 � vb and T 0 � DT, we
obtain the following estimates from (4.9) and (4.22) ± (4.24):�

ud
Ry

�3

� ga
q

rC
d ; �4:25�

u3 � ga
q

rC
R2y3

d
; �4:26�

vb �
ÿ
wR3�gaTb�4

�1=9
; �4:27�

q � l
gawR

v3b : �4:28�

4.3 Bulk temperature and flow velocity
In the bulk volume (outside the boundary layer), since
viscosity and heat conductivity are insignificant there, the
momentum and energy balance conditions become

�vb grad�vb � ÿ grad p

r
� gaTbn ; �4:29�

�vb grad�Tb � Q

rC
: �4:30�

Here, vb � vh � vvn is the velocity vector in the bulk, n is the
unit vector along the z axis, and vv and vh are the vertical and
horizontal components of velocity.

Compared to the flow in the boundary layer, the bulk flow
is much slower. In view of this, the buoyancy force resulting
from the inhomogeneity of the temperature distribution is
almost completely balanced by the pressure gradient. This

means that a nearly hydrostatic situation emerges in this
region, in which case, as is known [7], the temperature
depends on only one variable, the z coordinate, and the
stratification is stable if the temperature gradient is directed
along the z axis. Let us estimate the corrections to the
stratified temperature distribution due to the presence og a
slow motion.

We denote the characteristic pressure variation over the
horizontal cross section of the bulk volume at a fixed z
coordinate by Dph. In view of the horizontal component of
equation (4.29), we have

Dph � rv2h :

With the use of the vertical component of equation (4.29), we
obtain the characteristic temperature variation in the same
cross section:

�DTb�h �
v2h
gaz

: �4:31�

If we allow for the fact that the linear size of the horizontal
cross section in the case of z5R considered here is of order������
Rz
p

, the mass balance equation for the bulk volume leads to
the following relationship between the horizontal (vh) and
vertical (vv) components of velocity:

v2h �
R

z
v2v : �4:32�

We substitute (4.32) into (4.31) and use formulas (4.13) and
(4.11) to obtain the estimate

�DTb�h �
�
d
z

�2

Tb : �4:33�

This implies that for values of height z much larger than the
thickness of the boundary layer d, the corrections due to the
dependence of temperature on the horizontal coordinates are
small and

Tb ' Tb�z� : �4:34�

Therefore, br virtue of (4.3), we find that a similar statement
holds for the vertical component of velocity under the same
condition z4 d:

vv � vv�z� : �4:35�

If we take into account (4.34) and (4.35), equation (4.30)
becomes

vv
dTb

dz
� Q

rC
: �4:36�

In particular, this implies that in the bulk region adjacent to
the boundary layer, where, for y5 1, we have the approxima-
tion z ' Ry2=2, the following estimate is valid:

Tb � Q

rC
Ry2

2vv
: �4:37�

4.4 Limiting relationships
In the region of polar angles specified by inequality (4.4),
equations (4.5) ± (4.7) do not contain any scale for the polar
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angle y. Hence the dependences of the parameters of the fluid
on the angle y and the height z should be of power-law form.
We define the exponents a, b, f, and d through the following
relationships:

q / ya ; Tb /
�

z

R

�b

; u / y f ; d / yd : �4:38�

As earlier, we discuss the cases of laminar and turbulent flow
regimes in the boundary layer separately.

Laminar boundary layer. The substitution of the defini-
tions (4.38) into equations (4.9) ± (4.12) and (4.37) and the
elimination of vv, yield the following system of linear
algebraic equations for the exponents:

f � b� 1 ; f � 1ÿ 2d ; 2b� f� d � 3 ; a � 2bÿ d :

�4:39�

The solution of this system leads to the following result:

a � 2 ; b � 4

5
; c � 9

5
; d � ÿ 2

5
: �4:40�

Turbulent boundary layer. By analogy to the preceding
case, we substitute the definitions (4.38) into equations (4.21),
(4.25), (4.26), and (4.37) to obtain

3f� 2dÿ a � 3 ; 3f� dÿ a � 3 ;

2b� f� d � 3 ; a � 8b

3
: �4:41�

The solution of this system yields

a � 24

13
; b � 9

13
; c � 21

13
; d � 0 : �4:42�

Equations (4.38), (4.40), and (4.42) describe the behavior
of the heat flux at the boundary and the distribution of
thermal ± hydraulic characteristics in the lower part of the
volume containing a fluid with internal heat sources. Note
that the exponent b responsible for the temperature distribu-
tion in the bulk volume, is smaller than unity. Hence,
according to (4.38), we have the inequality

q2Tb

qz2
< 0 : �4:43�

4.5 Discussion and comparison with experiment
For small polar angles, y5 1, the heat-flux density at the
boundary decreases very rapidly with the decrease of the
angle, due to the thickening of the boundary layer and to the
temperature stratification in the bulk. As a result [see
equation (3.43)], the pattern of horizontal isotherms
becomes denser as we approach the lower boundary of the
bulk volume. The asymptotic behavior of the heat flux at the
boundary and the bulk temperature distribution depend on
the flow regime in the boundary layer. For a laminar
boundary layer, the asymptotic dependences for y�5 y5 1
and d5 z5R are given, according to (4.38) and (4.40), by the
expressions

q / y2 ; Tb /
�

z

H

�4=5

: �4:44�

At y � y�, where the angle y�5 1 is defined by (4.17), the
decrease of the heat-flux density with the decrease of the polar

angle slows down and becomes almost constant for y5 y�,
reaching a minimum at the pole (y � 0).

The asymptotic dependences for turbulent flow regimes in
the boundary layer are, according to (4.38) and (4.42), as
follows:

q / y24=13 ; Tb /
�

z

H

�9=13

: �4:45�

The turbulent flow regime in a convergent boundary layer
is possible if this regime develops at an earlier (upstream)
stage at angles y � 1. In this case, according to (4.38) and
(4.42), the Reynolds number for angles y5 1 varies according
to the law

Re � ud
n
/ y21=13 : �4:46�

If the threshold of the laminar ± turbulent transition in the
boundary layer is not exceeded very strongly, the Reynolds
number rapidly falls below the critical value with the
decreases of the polar angle, and we return to the asymptotic
dependences (4.44).

We estimate the minimum heat-flux density attained at
y � 0 and the threshold angle y� below which the angular
dependence of the heat flux-density weakens substantially.
According to (4.38) and (4.40), the angular dependence of the
boundary layer thickness is determined by the formula

d�y� � d0y
ÿ2=5 ; �4:47�

where d0 is a quantity of the order of the boundary-layer
thickness at y � 1. The substitution of (4.47) into (4.17) yields
the sought estimate for y�:

y� �
�
d0
R

�5=12

: �4:48�

In accordance with (4.12) and the results of the preceding
section, the dependence of d0 on the modified Rayleigh
number is given by the estimate d0=R � Ra

ÿgdn
i , where

gdn ' 0:2. This result with equations (4.48), (4.17), and
(4.20) taken into account gives an estimate for the ratio of
the minimum to the average heat-flux density and for the
angle y�:

qmin

hqi � Ra
ÿ1=6
i ; y� � Ra

ÿ1=12
i : �4:49�

To conclude this section, we compare the above results with
experiment. First, we note that all experimental data demon-
strate a rapid decrease in the heat-flux density with the
decrease of the polar angle for y5 1. They also point to the
presence of a temperature stratification in the bulk of the
volume for z5H. The theoretical results described by
equations (4.44) and (4.49) and the experimental data
obtained by Frantz and Dhir [24], KymaÈ laÈ inen et al. [25],
and Bonnet and Seiler [28] are listed in Table 2. We see that
there is qualitative agreement between theory and experiment
in what concerns the angular dependence of the heat-flux
density and the ratio of the minimum to the average value of
this density. At the same time, a more detailed comparison
would require higher accuracy and spatial resolution in
measurements of the heat-flux density.

Jahn [19] used optical methods to record the temperature
distribution within the volume of a fluid with internal heat
sources. Figure 4 depicts a typical hologram, taken from Ref.
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[19], that describes the pattern of isotherms. One can clearly
see the temperature stratification and an increase in the
density of horizontal isotherms as the lower boundary is
approached. Such behavior agrees with the theoretical
formula (4.43). In Fig. 5, we quantitatively compare the
theoretical results with the results of Jahn's experiment [19]
for the temperature distribution within the bulk volume at a
heat-generation rate in the fluid corresponding to
Rai � 1:04� 108. The theoretical dependence of the reduced
temperature on the dimensionless reduced height was
specified, in accordance with formula (4.44), by the relation-
ship Tb / z4=5, while the experimental points were obtained
by numerically processing the hologram in Fig. 4.

The theoretical curve was found to coincide with the
experimental results to an error of no greater than 2.7%.

Thus, one can note satisfactory agreement between theory
and experiment with respect to the limiting behavior of the
characteristics of convection for the lower part of a container
filled with a fluid with internal heat sources.

5. Natural convection of heat-generating fluids
in a quasi-two-dimensional geometry

In this section we discuss the characteristics of heat transfer
from a heat-generating fluid confined to a model quasi-two-
dimensional volume (Fig. 6). As in the case of the prototype
volume, we denote the upper and lower boundaries of the
quasi-two-dimensional volume by Sup and Sdn, respectively.
The wide, plane vertical walls (whose size is of order � R) of
the model volume are assumed to be thermally insulated. The
thickness L of the quasi-two-dimensional container satisfies
the inequality

L5R : �5:1�

Strictly speaking, the heat-transfer distribution over the
narrow section of the boundary of the quasi-two-dimensional
volume differs from the corresponding distribution over the
boundary of the original volume. Nevertheless, we can expect
that, in certain conditions, these two distributions will be
similar, at least qualitatively. In this section we will assess the
maximum possible similarity in the heat-transfer distribution
between the two types of volumes and establish the conditions
in which such a similarity can be realized.

5.1 The best possible similarity in heat transfer between
the quasi-two-dimensional model volume and the prototype
volume
In view of inequality (5.1), the model slice volume is also close
to a transverse slice of a long horizontal cylinder with the
same cross-sectional area. We will widely use this fact in our
further analysis, considering the long cylinder as an object
intermediate between the original volume and its quasi-two-
dimensional counterpart.

The thickness of the model volume is finite, thus limiting
the convective motion of the fluid. This limitation is not
important if the maximum thickness of the free-convection
boundary layers that form in such a volume (at the wide
vertical walls in particular) is small compared to the thickness
of the cavity itself:

dmax 5L : �5:2�

Table 2.Heat-flux distribution at the boundary: comparison of theory and
experiment.

Experiment Theory

UCLA [24],
Rai � �3ÿ8� � 1013

qmin=hqi ' 0;1
q y=hqi � a� by2

qmin=hqi � 10ÿ2

q�y�=hqi � a� by2

COPO [25],
Rai � 1014ÿ1015

qmin=hqi ' 0 qmin=hqi ' 10ÿ3

BALI [28],
Rai � 1015ÿ1017

qmin=hqi < 10ÿ2 qmin=hqi � �1ÿ5� � 10ÿ3

Figure 4. Typical hologram from Ref. [19] describing the distribution of

isotherms in the main volume: the dark lines correspond to isotherms.

5 100

5

10

15

20

Tb

z

Figure 5. Temperature distribution in the main volume: comparison of

theoretical results (solid curve) and experimental data taken fromRef. [19]

(circles).

L

Figure 6. Model quasi-two-dimensional volume: L is the thickness of a

vertical slice.
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In the opposite limit, the constrained volume dramatically
changes the structure of convective flow and, correspond-
ingly, substantially modifies the characteristics of convective
heat transfer in the quasi-two-dimensional volume compared
to the cases of a long cylinder and, naturally, the prototype
volume.

The general qualitative features of heat transfer inside a
long horizontal cylinder are the same as for the prototype
volume. For sufficiently large Rayleigh numbers, which
correspond to well-developed convection, the temperature
distribution over volumeV� (see Fig. 1), bounded frombelow
by the horizontal plane passing through the point of the
maximum time-averaged temperature and from above by the
plane section of the boundary, proves to be uniforms, due to
turbulentmixing, irrespective of the shape of the volume. This
implies that the character of the dependence of the Nusselt
number for heat transfer through the upper boundary on the
ordinary Rayleigh number is the same for the two geometries
considered.

The situation is somewhat different for heat transfer
through the lower boundary. Here the geometrical differ-
ences between the two types of volumes considered play an
important role. Discrepancies are observed in the large-scale
characteristics of the temperature and flow distributions
within the boundary layer and the inner region Vÿ. Although
these distributions are two-dimensional for both types of
volumes, they are axisymmetric in the original volume and
planar in the long horizontal cylinder. At the same time, these
differences are quantitative rather than qualitative and may
not affect the shapes of the dependences of the Nusselt
number Nudn on the Rayleigh number and on the polar
angle y for y! 0. In other words, the exponents in these
dependences should be the same, although the numerical
factors may differ. For the same reason, the critical Rayleigh
numbers, which determine the transition from the laminar to
the turbulent regime in the boundary layer (and, accordingly,,
from one type of the dependence Nudn (Ra) to another) may
also be different. The same refers to the characteristic values
of the polar angle at which the limiting angular dependences
established in Section 4 become valid. Finally, after we
replace the ordinary Rayleigh number as the argument of
the functional dependence of the Nusselt number by the
modified Rayleigh number (Ra! Rai), the difference
between these two types of geometries also manifests itself in
the numerical factors at the power laws for the heat transfer
through the upper boundary.

Distinctive features of convection in the quasi-two-
dimensional volume compared to the cases of the original
volume and its cylindrical analog are, as noted above, the fact
that the flow is restricted in the direction normal to the slice
and the presence of viscous friction between the fluid and the
vertical thermally insulated walls.

The adequacy of the heat-transfer model is conditioned by
the distorting effects of these factors on the boundary-layer
structure at the cooled sections of the boundary and on the
heat- and mass-transfer patterns in the inner regions V� and
Vÿ. These patterns, in turn, affect the characteristics of the
boundary layers themselves.

If the effect of these two factors is insignificant (while
condition (5.1) is satisfied), the heat-transfer characteristics in
the two-dimensional geometry are close to those for the
corresponding long cylinder, since the time-averaged convec-
tion is two-dimensional (planar) in both cases, whereas it is, as
noted above, axisymmetric for the prototype volume.

This implies that the maximum possible similarity (in
terms of heat transfer) between the model quasi-two-dimen-
sional volume and the original volume reduces to the
similarity between the long horizontal cylinder and the
original volume. The necessary condition for such a similar-
ity is given by inequality (5.2). Belowwe discuss this condition
in greater detail.

5.2 Conditions for the best possible heat-transfer
similarity between the model quasi-two-dimensional
volume and the prototype volume
According to Section 4, the maximum thickness of the
boundary layer at the cooled part of the boundary, dmax, is
attained at the pole. An estimate of this thickness, valid for
Rai < 1017 and therefore important for the problem of
nuclear-reactor safety, is given [according to equations
(4.17) and (4.49)] by the expression

dmax

R
/ Ra

ÿ1=6
i : �5:3�

An estimate of the thickness of the shear boundary layer
at the vertical thermally insulated walls in region V� follows
from the general theory of shear boundary layers [7]:

d�
R
/

���������
n

Ru�

r
: �5:4�

Here, u� is the characteristic value of the large-scale pulsating
flow velocity inside region V�. This velocity is related to the
characteristic amplitude of large-scale temperature pulsations
in the same region via the estimate

u2� � gadT�R ; �5:5�

which follows from the momentum balance condition.
One more relationship follows from the energy balance in

the region V�:

Cru�dT� � QR : �5:6�

Combining (5.4) ± (5.6), we arrive at an estimate for the
thickness of the boundary layer at the thermally insulated
walls in region V�:

d�
R
� Ra

ÿ1=6
i : �5:7�

The slowest flow in the entire volume is observed in the
stable-stratification region Vÿ. Hence it would seem that the
boundary layers that form at the thermally insulated walls
should be the thickest ones and that such layers would lead
to a strong distortion of the temperature distribution.
However, the mechanism of formation of such boundary
layers is quite different from the ordinary mechanism and
therefore requires a special consideration. The point is that
the internal sources additionally heat the fluid near the
thermally insulated wall, where the viscous drag slows down
the flow. The corresponding local rise in temperature leads,
in turn, to an increase in the buoyancy force, which largely
balances the viscous drag and acting as a feedback, limits
the local rise in temperature. As a result, a peculiar
temperature boundary layer is formed, which differs
dramatically from the boundary layers considered above.
Let us estimate the thickness of this layer, dÿ, and the
temperature perturbation in it, dTÿ.
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If we allow for the balance between the viscous and
buoyant forces, we get

nvv
d2
� gadTÿ ; �5:8�

where vv is the vertical component of the velocity outside the
boundary layer in region Vÿ. Next, the requirement for
energy balance in the boundary layer yields the estimate

ldTÿ
d2ÿ
� Q : �5:9�

Eliminating dTÿ from (5.8) and (5.9) yields

dÿ �
�
lnvv
gaQ

�1=4

: �5:10�

We substitute the estimate that follows from equation
(4.36),

rCvv
T

z
� Q ; �5:11�

into (5.10) to obtain

dÿ �
�

nwz
gaT

�1=4

: �5:12�

Finally, using the estimate

T � Tmax

�
z

H

�4=5

�5:13�

that can be obtained from (4.44) and expressing Tmax in terms
of the thickness d of the boundary layer at the cooled wall for
vertical coordinates z � H, we arrive at an estimate for the
thickness of the temperature boundary layer at the vertical
thermally insulated walls in the region Vÿ of the quasi-two-
dimensional volume:

dÿ � d
�

z

H

�1=20

< dmax : �5:14�

From (5.9) and (5.10), in the same manner as in deriving
(5.14), we obtain an estimate for the temperature perturba-
tion in the boundary layers at the vertical thermally
insulated walls in the region Vÿ of the quasi-two-dimen-
sional volume:

dTÿ � T
d
H

�
H

z

�7=10

: �5:15�

This estimate suggests that temperature perturbations are
small at z > d.

From a comparison of the estimates (5.3), (5.7), and
(5.14), we see that the maximum thickness of the boundary
layer in the quasi-two-dimensional volume is attained in the
cooled part of the boundary at the pole. Hence, in accordance
with the requirement (5.2) and the estimate (5.3), we finally
arrive at the condition for the maximum similarity in heat
transfer between the quasi-two-dimensional volume and the
prototype volume:

L

R
4Ra

ÿ1=6
i : �5:16�

This inequality should be considered a criterion for the
maximum possible similarity between the model quasi-two-
dimensional volume and the prototype volume.

In the range of modified Rayleigh numbers most
important for the problem of safety of nuclear reactors,

Rai � 1012ÿ1017, condition (5.16) corresponds to the
requirement L=R4 10ÿ2, which, as a rule, can be satisfied in
practice without difficulties.

Table 3 lists the minimum values of the L=R ratio, the
ranges of variation of the number Rai, and the maximum
value of Ra

ÿ1=6
i realized in the four known quasi-two-

dimensional experiments. Clearly, the most favorable para-
meter ratio [in terms of the satisfaction of criterion (5.16)] was
achieved in the BALI experiments and the least favorable in
Stainbrenner and Reineke's experiment.

6. Particularities of convection in a cooling-down
fluid without internal heat sources

6.1 Preliminary analysis
Since the thickness of the boundary layer at large Rayleigh
numbers is much smaller than the characteristic size of the
volume occupied by the fluid, the flow velocities in the
boundary layer are, as follows from the mass-balance
condition, much higher than the velocities in the bulk of the
volume. However, it is the latter that determine the character-
istic cooling time. Hence the rate of the convective processes
in the boundary layer (which determine the heat resistance to
the heat flux at the boundary) is much higher than the cooling
rate; therefore, the process can be assumed to be quasi-steady-
state. Thus, Theofanous and Liu [29] suggested that the heat
removal from a cooling-down fluid without internal heat
sources is equivalent to the heat removal from a fluid with
uniformly distributed heat sources (in a steady-state regime).
In this section, we analyze this suggestion more thoroughly.

We retain all assumptions on the shape of the fluid volume
adopted in Sections 3 and 4 (and also in Figs 1 and 2).We also
use the previously introduced notation.

The changes in the thermal energy of a cooling-down fluid
are largely similar to the effects of internal heat sources.
Formally this is reflected by the fact that, for quasi-steady-
state processes, the term with the time derivative in the
energy-balance equation, when taken with the opposite sign,
can be regarded as the effective power density of heat release:

eQ � ÿCr qT
qt

: �6:1�
This is sufficient to conclude that the effective power

density is distributed uniformly only in that part of the
volume where the time average of the fluid temperature is
also uniform. This part is regionV� (see Fig. 1) situated above
the maximum of the time-averaged temperature in the fluid
volume. On the other hand, in region Vÿ (below the
maximum of the time-averaged temperature), the thermal
stratification is stable, and there the effective source-power

Table 3. Parameters of experiments carried out in a quasi-two-dimensional
geometry.

�L=R�min Rai �Ra
ÿ1=6
i �max

Mayinger et al.
[16, 19, 20]

0.13 107ÿ5� 1010 5� 10ÿ2

Stainbrenner
and Reineke [21]

0.044 5� 1012ÿ1:0� 1014 0:8� 10ÿ2

COPO [25, 26]
BALI [28]

0.125
0.1

3� 1014ÿ2� 1015

1015ÿ1017
3:8� 10ÿ3

0:32� 10ÿ2
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density eQ is definitely nonuniform, in accordance with (6.1).
This, in turn, means that the temperature distribution in Vÿ
should be different for fluids of the two types. Alternatively,
this can be ascertained by means of qualitatively considering
the mechanisms of the formation of the temperature distribu-
tion in the region at hand.

In a heat-generating fluid, the heating-up of particles
traveling between two points situated at different heights in
Vÿ is proportional to the traveling time. In contrast, in a
cooling-down fluid without internal heat sources, where heat
and mass transfer is time-dependent, the temperatures at two
analogous points coincide provided they refer to different
moments separated by the time interval taken by these
particles to travel between the points. Naturally, differences
in the temperature distributions in the bulk of volume Vÿ for
fluids of the two types leads to differences in the heat-flux
distribution over the lower boundary (see Fig. 1). Below we
concentrate on the special features of the distribution of the
heat transfer from a cooling-down fluid without internal heat
sources over the lower boundary at polar angles y5 1 (see
Fig. 2), where the difference between the two types of fluids is
especially significant. As in the case of a heat-generating fluid,
this distribution is a solution to the combined problem on
convection in the boundary layer and in the adjacent region of
the bulk volume.

The main qualitative features of the boundary layer for a
cooling-down fluid without internal heat sources at the lower
section of the boundary at y5 1 coincide with those for a
heat-generating fluid examined in the preceding section. The
boundary layer is convergent, it slows down and satisfies the
same boundary condition (4.1) and the conditions of
matching to the characteristics of the bulk volume, (4.2) and
(4.3). In view of the quasi-steady-state nature of the
boundary-layer processes in a cooling-down fluid, the
relevant equations of motion coincide with those for the
boundary layer in a heat-generating fluid. Hence most
relations obtained from the analysis of the boundary layer in
the preceding section remain valid for a cooling-down fluid,
including (4.13), (4.14), (4.27), and (4.28), which we will use in
our further analysis.

6.2 Convection in the bulk volume and the heat flux
distribution over the boundary
In the bulk volume, where viscosity and heat conduction are
insignificant, the momentum and energy balance conditions
for a cooling-down fluid without internal heat sources assume
the form

qvb
qt
� �vb grad�vb � ÿ grad p

r
� gaTbn ; �6:2�

qTb

qt
� �vb grad�Tb � 0 : �6:3�

Specific features of these equations are the absence of terms
representing heat sources in equation (6.3) and the presence of
time derivatives in both equations.

The analysis of the system (6.2), (6.3) that completely
reproduces the analysis given in Section 4 for the system
(4.29), (4.30) suggests that, at z4 d, the temperature and the
vertical component of velocity in the bulk volume are
virtually independent of the horizontal coordinates. As a
result, equation (6.3) becomes

qTb

qt
� vv qTb

qz
� 0 : �6:4�

It follows from (4.13) and (4.27) that the dependence ofvb on
the z coordinate is much weaker than the dependence of the
function Tb�z; t�, and can be neglected. Then the solution of
equation (6.4) obtained by the method of characteristics can
be written as

Tb�z; t� � T0

�
tÿ z

v0�t�
�
; �6:5�

where T0�t� and v0�t� are, respectively, the temperature
(measured from the temperature at the boundary) and the
vertical component of velocity in the bbulk volume at the
vertical coordinate z � d.

The time dependence of T0�t� can be described by the
equation

qT0

qt
� ÿ T0

t�t� ; �6:6�

which follows from the energy balance condition for the
entire fluid volume. The reciprocal of the cooling time,
tÿ1�t�, is proportional to the Nusselt number averages over
the boundary in a way, Nu � Ras, where the exponent s is
much smaller than unity (1=4 < s < 1=3). Since Ra � DT, the
function t�t� in (6.6) satisfies the inequality

dt
dt

5 1 : �6:7�
In view of (6.7), equations (6.5) and (6.6) imply that the
temperature distribution in the bulk volume can be written as

Tb�z; t� � T0�t� exp
�

z

v0�t�t�t�
�
: �6:8�

It follows from (4.13), (4.27), and (6.8) that

vb�z; t�
v0�t� � exp

�
z

mv0�t�t�t�
�
; �6:9�

where m � 4 for the laminar boundary-layer regime, and
m � 9=4 for the turbulent regime.

Expressions (6.8) with (4.14) and (4.28) taken into account
allow us to represent the distributions of temperature in the
bulk volume and of the heat-flux density at the boundary in
the form

Tb�z; t� � T0�t� exp
�
k
z

R

�
; �6:10�

q�y; t� � qmin�t� exp �py2� ; �6:11�
where k and p are dimensionless quantities and qmin is the
minimum heat flux density at the boundary (realized at
y � 0). Since

vb�R; t� ÿ v0�t�
v0�t� � 1

we conclude from (6.9) that the product v0�t�t�t� is much
smaller than R; therefore, k and p in (6.10) and (6.11) should
be much larger than unity. Moreover, these quantities for the
turbulent regime in the boundary layer should be smaller than
for the laminar regime.

6.3 Discussion and comparison with experiment
According to equations (6.10) and (6.11), for moderate values
of the arguments, the temperature in the stable-stratification
region as a function of height and the heat-flux density as a
function of the square of the polar angle are of exponential
form. The scale of the height dependence of temperature is
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much smaller than the curvature radius of the boundary near
the pole, and the scale of the polar-angle dependence of the
heat flux density is much smaller than unity. Hence, even at
y5 1 and z5H (H � R is the height of the fluid volume), the
exponential nature of the dependences is quite pronounced.
The rate of the exponential growth depends on the flow
regime in the boundary layer: it is higher for the laminar
regime. Since at small values of the polar angle the boundary-
layer flow slows down, the flow regime finally becomes
laminar there, and the exponential dependence becomes
steeper. Let us now compare the theoretical result obtained
here for the heat-flux distribution q�y� with experiment.

In their experiments with the ACOPO facility, Theofa-
nous and Liu [29] measured the heat-flux-density distribution
over the boundary. The experimental data were represented
in the form of a dependence of the reduced heat-flux density

Y � q�y�
qdn

�6:12�

on the reduced angle

X � y
y0
; �6:13�

where qdn is the heat-flux density averaged over the lower
boundary and y0 is the angular position of the upper
boundary to which the fluid fills the model container. The
experimental dependence Y � Y�X� in Ref. [29] was inter-
polated by polynomials separately in two regions: by a third-
power polynomial for 0:1 < X < 0:6 and by a second-power
polynomial for 0:6 < X < 1. Let us compare theoretical and
experimental results.

If we assume that equation (6.11) is valid for X < 0:6, the
theoretical relationship between the reduced heat flux density
and reduced polar angle can be written as

Y � a exp�bX 2� ; �6:14�
where a and b are constants (adjustable parameters). The
choice

a � 0:1658 ; b � 4:987 �6:15�

led to agreement between the theoretical dependence and
experimental data with a discrepancy of about 3.4%. Note
that b in (6.15) obtained by comparison with experiment
proved to agree with the above-presented theory, according
to which the parameter p in equation (6.11) should be much
larger than unity. The results of the comparison are depicted
in Fig. 7.

Note that, in contrast to the exponential dependence
(6.14) theoretically obtained here, the polynomial interpola-
tion used by Theofanous and Liu [29] does not seem to be
natural, since the numerical factors in the polynomials
alternate in sign and are large in absolute value [see formulas
(2.11)].

In conclusion, we note that, irrespective of similarities
between convection in a cooling-down fluid without internal
heat sources and convection in a heat-generating fluid, there
is a substantial difference between these two cases in what
concerns the heat-flux distribution at the boundary and the
temperature distribution in the bulk volume. As we have seen,
for a cooling-down fluid these distributions are exponential,
while for a heat-generating fluid they are power functions, in
accordance with the theoretical and experimental results (see
Section 4).

7. Conclusion

The ideas formed on the basis of theoretical and experimental
studies of the structure of natural convection in a one-
component fluid with internal heat sources confined to a
closed volume are as follows.

There are four basic and one asymptotic heat-transfer
regime. They differ in the type of convection in the upper part
of the volume and in the boundary layer at the lower section
of the boundary. Each regime corresponds to a certain
combination of exponents in the power dependences of the
Nusselt numbers for heat transfer through the upper and
lower boundaries on the dimensionless strength of heat
generation Ð the modified Rayleigh number.

In the range of strengths (Rai � 104ÿ1017) in which
experiments were conducted, convection regimes of hard
turbulence are realized in the upper part of the volume. In
the range of moderate strengths of heat generation
(Rai � 104ÿ1012), a laminar regime sets in in the boundary
layer at the lower boundary. In this case, the fraction of heat
transfer through the upper boundary increases slowly with
the power of heat generation (gup > gdn). At very high powers,
the type of convection changes in the lower boundary layer
from laminar to turbulent. As a result, as the power increases
at Rai > 1013ÿ1014; a tendency for an increase in the lower-
boundary fraction of heat transfer appears if gdn > gup.

For Rai 4 1, the power of heat release within the
boundary layer as a whole is much smaller than the heat
fluxes passing through the layer. Hence, if we restrict
ourselves to the heat-transfer distribution between the upper
and lower boundary, we find that in both fragments of the
volume of the heat-generating fluid Ð the upper part of the
volume and the lower boundary layerÐ convection is similar
to that in a fluid without internal heat sources. This fact and
the use of the energy balance condition made it possible to
determine the numerical values of the exponents gup and gdn
for all heat-transfer regimes, which proved to be close to the
experimental results.

The situation changes dramatically if we examine the
detailed characteristics of the heat-transfer distribution over
the lower part of the boundary. Here, as the lowest point of
the boundary (the pole) is approached, the boundary layer
acquires properties that have no simple analogs in the
convection of a fluid without internal heat sources. The
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Figure 7. Polar-angle dependence of heat flux: comparison of theory (solid

curve) and experiment (dotted curve).
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boundary layer becomes convergent, it slows down, and
returns the fluid to the bulk of the volume. The temperature
distribution in the bulk, outside the boundary layer, proves to
be stably stratified. The characteristics of convection in the
convergent boundary layer and in the adjacent bulk are
interrelated. Solutions to the corresponding self-consistent
problem led to the experimentally corroborated conclusion
that the height dependence of the heat-flux density at the
boundary on the polar angle measured from the pole and the
height dependence of the bulk temperature bulk are power
functions, generally, with fractional exponents.

The characteristics of heat transfer in a vertically oriented
axisymmetric volume and in a thin central vertical slice of
such a volume may closely correspond to each other for a
certain limitation from below on the thickness of the slice; this
restriction weakens as the power of heat generation increases.

In many respects, the characteristics of heat transfer in a
cooling-down fluid without internal heat sources are similar
to those for a heat-generating fluid. However, there is a
fundamental difference in the distribution of heat transfer
through the lower boundary between the two types of fluids:
the polar-angle dependence of the heat-flux density for the
cooling-down fluid is an exponential rather than a power
function typical of a heat-generating fluid. This difference
imposes certain limitations on the use of experiments with a
cooling-down fluid without internal heat sources for simulat-
ing heat transfer in a heat-generating fluid.

The authors express their gratitude to A M Dykhne and
A I Leont'ev for interesting discussions of the material of the
present review.
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