
Abstract. The gravitational properties of gauge and global
relativistic cosmic strings in Abelian Higgs and scalar field
models are presented. A complete classification of the strings
is given and the ranges of the parameters allowing static con-
figurations are determined. Gravitational properties of cosmic
strings in the relevant limiting cases are treated analytically.

1. Introduction

There has been an upsurge of interest in cosmic strings and
other topological defects in the last two decades: on the one
hand, these defects may play a crucial role in the evolution of
theUniverse and, on the other, their physical properties differ
from those of ordinary matter. The reader interested in
learning more about the broad spectrum of the properties of
topological defects and about their possible role in the
Universe is referred to the monograph by Vilenkin and
Shellard [1]. The present review is dedicated to the specific
topic of the gravitational properties of relativistic cosmic
strings in the Abelian Higgs model.

According to the Standard cosmological model [2], the
Universe has been expanding and cooling from a split second
after the Big Bang to the present Ð and remained uniform

and isotropic overall in doing so. In the process of its
evolution, the Universe has gone through a chain of phase
transitions, including the GrandUnification (10ÿ35 s after the
Big Bang), the electroweak phase transition (10ÿ11 s), the
formation of neutrons and protons from quarks (10ÿ6 s),
recombination (4� 105 s), and so forth.

A state above the phase transition temperature usually
possesses a higher symmetry than a state below. Upon
cooling, a spontaneous breaking of symmetry occurs during
the phase transition. Regions with spontaneously broken
symmetry, which are more than the correlation length apart,
are statistically independent. At the interfaces between these
regions, so-called topological defects necessarily arise. The
particular types of defects Ð domain walls, strings, mono-
poles, or textures Ð are determined by the topological
properties of the vacuum [3]. The domain wall Ð a transition
zone at the interface between two domains in a ferromagnet
[4] Ð is a classical example of a topological defect.

The fundamental role of symmetry breaking in phase
transitions was elucidated by Landau [5]. Historically, the
notion of a spontaneous breaking of symmetry accompanied
by the formation of topological defects arose and has been
developed for studying phase transitions in condensed media.
In this context, the precursors (and nonrelativistic analogues)
of cosmic strings are magnetic vortices in type II super-
conductors [6] and quantized vortex lines in superfluid 4He
[7].

Spontaneous breaking of symmetry plays a fundamental
role in the modern theory of elementary particles. The
symmetry in this context may be `internal', i.e. not necessa-
rily associated with space ± time transformations. The Grand
Unification symmetry and the electroweak and isotopic
symmetries are examples of such internal symmetries.

A decisive step toward the application of the concept of
spontaneous breaking of symmetry to cosmology was taken
in 1972 by Kirzhnits [8]. He assumed that, as is the case for
solid substances, also in field theory a spontaneously broken
symmetry may be restored at a sufficiently high temperature.
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Thus it is believed that early in the evolution of the Universe,
as long as the temperature was sufficiently high, there existed
a symmetry between electroweak and strong interactions. As
the Universe expanded and cooled, the `Grand Separation'
phase transition took place, with the result that this symmetry
was spontaneously broken and the unified interaction broke
down into the strong and electroweak interactions.

In 1974, Weinberg [9] suggested that domain walls may
have formed at phase transitions early in the evolution of the
Universe. The first quantitative analysis of the cosmological
consequences of spontaneous breaking of symmetry was
given by Zel'dovich, Kobzarev, and Okun' [10]. The
increased interest in cosmic strings is due in large part to the
works of Zel'dovich [11] and Vilenkin [12] who analyzed the
possible role of cosmic strings as sources of the fluctuations
that later led to the formation of galaxies.

The theory of the Big Bang raises hopes that the
experimental check of new theories may be extended to
Planck energies, an energy range totally inaccessible under
laboratory conditions. This implies that the classical general
relativity must be extrapolated to distances of order 10ÿ33 cm,
even though the gravitational interaction has been checked
experimentally only to fractions of a centimeter. The
quantum theory of gravity has not yet been constructed.
Under these conditions, of particular significance are exact
analytical solutions of Einstein equations; in spite of the
complexity of the equations, such solutions prove to be
possible for a number of problems. One example is the
problem of a relativistic static cosmic string in the Abelian
Higgs model.

The physical properties of topological defects differ
greatly from those normally seen in ordinary matter. For
example, the gravitational mass of a global string is negative,
implying that its interaction with matter is repulsive. Cosmic
strings have become of major importance in connection with
the topological inflation idea [13 ± 15].

The relativistic theory of gravity has stringlike solutions
with a Kasner outer metric, which were absent in the
nonrelativistic theory. The presence of a singularity in the
Kasner metric prompts a temptation to declare these
solutions nonphysical [1]. In my view, one should not hasten
to do this, however. It is unclear at present precisely which
phase transitions caused spontaneous breaking of symmetry
during the inflation period. The lack of knowledge about the
physical mechanisms of inflation does not allow a unique
interpretation of a string-related metric singularity.

A theory based on the Abelian Higgs model is a
macroscopic one. In the absence of a microscopic theory,
the physical meaning of the order parameter is not specified.
This is reminiscent of the situation when the theory of
superconductivity was in the making. While in the early
1950s the Ginzburg ±Landau macroscopic theory of super-
conductivity already existed [16], nothing was yet known
about Cooper pairing [17], the phenomenon lying at the
basis of the microscopic theory of superconductivity.

2. Abelian Higgs model

Among the variety of theories with spontaneous breaking of
symmetry, gauge theories are of central importance.
Historically, the first example of a gauge theory with a
spontaneous breaking of symmetry is the Ginzburg ±
Landau phenomenological theory of superconductivity
[16]. The relativistic extension of this theory to cosmic

strings is often referred to in the scientific literature as the
Abelian Higgs model.

To take into account themutual influence of a topological
defect and the metric against each other, the total Lagrangian
density Ltot of the system is written as the sum

Ltot� L� Lgrav : �1�

Here,

L � DmfD mfÿ V�f� ÿ 1

4
Fmn F

mn �2�

is the Ginzburg ±Landau Lagrangian density written in a
general-covariant form, and

Lgrav � ÿ 1

16pG
R
�������ÿgp

is the Lagrangian density of the gravitational field (whereR is
the scalar spacetime curvature, and g the determinant of the
metric tensor gmn).

The complex order parameter f in formula (2) is a scalar
field also referred to as the Higgs field; Dm � qm ÿ ieAm (e
being the coupling constant); Fmn � qmAn ÿ qnAm is the
antisymmetric tensor of the vector gauge field Am, and V�f�
is a potential allowing a spontaneous breaking of symmetry.
The latter is most often taken to be of the `phi-to-the-fourth'
or `sombrero' (`Mexican-hat potential') form

V�f� � 1

4
l�ffÿ Z 2�2 �3�

(see Fig. 1). Here, l is a dimensionless constant, and the
quantity Z with the dimension of energy specifies the typical
energy scale of a spontaneous breaking of symmetry.

Varying the Lagrangian (1) with respect to gmn, f and Am

we obtain, respectively, the Einstein equations for the
gravitational field gmn, an equation for the wave function f,
and an equation for the gauge field Am. This simple model is
invariant under the action of the groupU(1) of the local gauge
transformations

f�x� ! exp
ÿ
ia�x��f�x� ; Am�x� ! Am�x� � 1

e
qma�x� : �4�

Theminimumof the potentialV�f� is attained at jfj � Z. The
expected vacuum value of the field f is nonzero at this point,
and the symmetry turns out to be spontaneously broken.

By choosing an appropriate gauge Am�x�, the function f
can be made real. Then, for small perturbations near the

V�f�

Ref

Imf

Figure 1. `Sombrero' potential (3).
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minimum:

f � Z� f1���
2
p ; f1 5 Z ;

the Lagrangian (2) takes the form

L � 1

2
�qmf1�2 ÿ

1

2
M 2

Hf
2
1

ÿ
�
1

4
Fmn F

mn ÿ 1

2
M 2

GAmA
m
�
� Lint ; �5�

where Lint contains cubic and higher-order terms in f1 and
Am.

The parameters

MH �
���
l
p

Z ; MG �
���
2
p

eZ ; �6�

we introduced in Eqn (5), can be identified with the masses of
the Higgs �MH� and gauge �MG� particles. The ratio of these
masses

b �MG

MH
�

���
2
p

e���
l
p �7�

is a fundamental dimensionless parameter of the theory. In
the theory of superconductivity [16], the parameter (7) is
identical to the Ginzburg ±Landau parameter to within a
factor of

���
2
p

: k � b=
���
2
p

, and f is the Cooper pair wave
function.

The second dimensionless parameter of the theory, viz.

g � 8pGZ 2 ; �8�

characterizes the magnitude of the gravitational field. In the
natural system of units, where the major fundamental
constants are equal to unity:

�h � c � kB � 1 ; �9�

theNewtonian constant of gravitationG � mÿ2Pl , wheremPl �
1:22� 1019 GeV is the Planck mass. Thus, the parameter g in
formula (8) is proportional to the square of the ratio between
the spontaneous symmetry breaking energy and the Planck
mass.

The properties of a static, infinitely long string can be
described by means of functions dependent on a single spatial
coordinate x1 Ð the `distance' from the symmetry axis.
Neither the time variable x 0 nor the two remaining space
coordinates x 2 and x 3 enter the relevant equations.

In the Abelian Higgs model, the cosmic string is described
by the vortex solution of the form

f�x1; x 2� � Z f �x1� exp �inx 2� ; A2�x1� � n

e
a�x1� : �10�

If the azimuthal coordinate x 2 varies from zero to 2p, the
number n of flux quanta should be an integer. The state of the
system (10) depends on x 2, whereas the Lagrangian (2) does
not (provided of course that the metric tensor gmn depends on
x1 alone):

L � Z 2
�
g11f 0 2 � n2g 22�1ÿ a�2f 2

�ÿ n 2

2e2
g11g 22a 0 2 ÿ V :

�11�

The string's energy ±momentum tensor

T n
m � ÿd n

m L � 2g ln qL
qg ml �12�

is diagonal, so that

T 0
0 � T 3

3 � ÿL ;

T 1
1 � Vÿ n2

2e 2
g11g 22a 0 2 � Z 2

�
g11f 0 2 ÿ n2g 22�1ÿ a�2f 2

�
;

T 2
2 � Vÿ n2

2e 2
g11g 22a 0 2 ÿ Z 2

�
g11f 0 2 ÿ n2g 22�1ÿ a�2f 2

�
:

�13�

The equality T 0
0 � T 3

3 ensures that the system is invar-
iant under Lorentz translations along the string. By analogy
with a static macroscopic body, for which T 0

0 � e, T 3
3 � ÿp

(e and p are the energy and pressure, respectively), the relation

p � ÿe �14�

is sometimes treated as the `equation of state' of a string.
Clearly, in the strict sense of the word the equality T 0

0 � T 3
3

is a microscopic characteristic of the string and has no
relevance to the macroscopic equation of state of a statistical
system.

In the presence of a static gravitating string, the spacetime
remains invariant under arbitrary transformations of the time
variable x 0 as well as under translations x 3 along the string,
rotations x 2 about its axis, and Lorentz translations along the
string. The metric tensor gmn defined as

ds 2 � gmn dx
m dx n �15�

may be considered diagonal, namely

gmn � diag
ÿ
exp �2F0�;ÿ exp �2F1�;ÿ exp �2F2�;ÿ exp �2F3�

�
:

�16�

The gravitational field is described by the four functions F0,
F1, F2, and F3.

The general covariance of the equations of general
relativity enables an arbitrary choice of the coordinate x1. In
solving cylindrically symmetric problems, one usually
employs the simple cylindrical coordinate system defined by
x1 � r. For the metric (15) to be of the form

ds 2 � g00
ÿ
dx 0

�2 ÿ dr 2 ÿ g22
ÿ
dx 2

�2 ÿ g33
ÿ
dx 3

�2
;

the coordinate x1 is chosen in such a way as to satisfy the
condition F1 � 0. However, for cylindrically symmetric
systems the Einstein equations assume a simpler form if the
coordinate x1 is chosen by imposing the Bronnikov condi-
tion1 [18]

F1 � F0 � F2 � F3 : �17�

To see which value the coordinate x1 in this frame of
reference takes on the axis of the string and which at infinity,

1 The coordinate system defined by condition (17) was used in the

equilibrium analysis of strong current channels in the general theory of

relativity [19].
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we go over to the Galilean metric and set x 0 � t, x 2 � j,
x 3 � z. Then one finds

F0 � F3 � 0 ; exp
ÿ
F2�x1�

� � r ; exp
ÿ
F1�x1�

�
dx1 � dr ;

�18�

with F1 � F2 by virtue of Eqn (17). From this we see that in
the Galilean limit the Bronnikov coordinate x1 and the radius
r are related by

x1 ÿ x0 � ln r ; g � 0 ; �19�

where x0 is the constant of integration.
Thus, in the coordinate system defined by condition (17)

we have x1 � ÿ1 on the axis of the string, and x1 !1 as we
go in the radial direction away from it. It is convenient to
regard x0 � ln r0 as the boundary of the core of the string in
some sense. Then x1 4 1 outside of the string.

In the coordinate system determined by condition (17), we
obtain�������ÿgp � ÿg11 � exp �2F1� :

The Ricci tensor takes the simple and transparent form

R 0
0 � ÿg11F 000 ;

R 1
1 � ÿg11

�
F 001 ÿ 2�F 02 F 03 � F 03 F

0
0 � F 00 F

0
2 �
�
; �20�

R 2
2 � ÿg11F 002 ;

R 3
3 � ÿg11F 003 :

The energy ±momentum tensor T n
m appears in the Einstein

equations

R n
m � 8pGS n

m �21�

in the combination

S n
m � T n

m ÿ
1

2
d n
m T ; T � T m

m : �22�

It follows from the Einstein equations (21) subject to the
Bianchi identity that the covariant derivative of the energy ±
momentum tensor (13) vanishes: T n

m ; n � 0. A direct calcula-
tion of the covariant derivative gives

2g11f 0
�
f 00 ÿ n2g11g

22�1ÿ a�2f� g11
2Z 2

qV
qf

�
� n2

e 2
g11a 0 2

�
Zÿ2
ÿ
a 0 exp�ÿ2F2�

�0
ÿ 2e 2g11g

22�1ÿ a� f 2
� � 0 : �23�

The expressions in square brackets in Eqn (23) are identical to
those in the left-hand sides of the equations for the order
parameter and the gauge field:

f 00 ÿ n2g11g
22�1ÿ a�2f� g11

2Z 2

qV
qf
� 0 ; �24�

Zÿ2
ÿ
a 0 exp�ÿ2F2�

�0 ÿ 2e 2g11g
22�1ÿ a� f 2 � 0 : �25�

Equations (24) and (25) are the Euler ±Lagrange equa-
tions for the Lagrangian (11). The presence of a linear relation
in Eqn (23) means that not all equations in the system (21),

(24), and (25) are independent. The Einstein equations in fact
contain the equations of motion in themselves [20]. If in the
coupled system containing the Einstein equations one of the
equations, say Eqn (24), is regarded as independent, then Eqn
(25) will, for a 0 6� 0, be a consequence of the remaining
equations.

Notice here that the symmetries involved in the theory of
elementary particles and in astrophysics do not necessarily
relate to space ± time transformations. They may equally well
be internal symmetries, such as the isotopic and electroweak
symmetries, the Grand Unification symmetry or even super-
symmetry, whose transformations turn bosons and fermions
one into another. Internal symmetry transformations do not
affect the space ± time characteristics of the transformed
states and hence are independent of coordinates and time.
The topological defects related to the spontaneous breaking
of internal symmetries are called global.

From a physical standpoint, gauge and global strings are
inherently different objects, and the equations that describe
them are also different. The Abelian Higgs model describes
gauge strings. Global strings are governed by the Higgs scalar
field model, in which there is no gauge field at all. The
Lagrangian density in the scalar field model has the form

L � qmf q mfÿ V�f� : �26�

The Abelian Higgs model (2) involves gauge symmetry,
and the model (26) global symmetry. Accordingly, the strings
in model (2) are called gauge, and in model (26) global.

3. Gauge strings

3.1 Equations
In the absence of ordinary matter the expressions for F 000 and
F 003 are identical, and we can set 2 F0 � F3. Shifting the origin
of coordinates for the functions F1 and F2:

F1;2 ! F1;2 ÿ ln �eZ� ; �27�
the complete set of equations for a static gauge string can be
reduced to the formÿ

a 0 exp �ÿ2F2�
�0 � 2�1ÿ a� f 2 exp �4F0� � 0 ;

f 00 ÿ n2�1ÿ a�2f exp �4F0� ÿ bÿ2 exp �2F1� q
eV

qf
� 0 ;

F 000 � g
�
2 eV
b 2

exp �2F1� ÿ n2

2
a 0 2 exp �ÿ2F2�

�
� 0 ; �28�

F 002 � g
�
2 eV
b 2

exp �2F1� � n2

2
a 0 2 exp �ÿ2F2�

� 2n2�1ÿ a�2f 2 exp �4F0�
�
� 0 ;

F1 � F2 � 2F0 :

Here eV is the dimensionless potential causing spontaneous
breaking of symmetry. In the sombrero model (3), the
potential is eV � �1=4��1ÿ f 2�2. The string and the gravita-
tional field are described by four functions f, a, F0, and F2,

2 The regularity condition on the axis implies F 00 � F 03 . The equality

F0 � F3 is achieved by an appropriate choice of the units of measurement

for the coordinate x 3.
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and three dimensionless parameters n, b, and g [see Eqns (7)
and (8)].

The shift (27) defines the unit of measurement for the
radius r. For a nonrelativistic vortex in a superconductor,
d � eZ� �ÿ1 is the magnetic penetration depth. In discussing
gauge strings below we use r0 � eZ� �ÿ1 as a measurement unit
for the radius r in a cylindrical coordinate system.

3.2 Energy integral
The energy per unit length of the string is equal to

E � 2p
�
dx1

�������ÿgp
T 0
0 :

Using Eqns (11) and (16), the integrand is found to consist of
four positive terms, viz.

E � 2pZ 2

�
dx1

�
f 0 2 � n2�1ÿ a�2f 2 exp �4F0�

� n2

2
a 0 2 exp �ÿ2F2� � 2 eV

b 2
exp �2F1�

�
: �29�

The gravitational mass per unit length of the string is
given by the Tolman formula 3 [20, p. 425]:

M � 1

4pG

��
dx1 dx 2 �������ÿgp

R 0
0 �

m 2
Pl

2
F 00 �1� : �30�

3.3 Boundary conditions
The physical requirement that the energy per unit length of
the string be finite (which implies that the integral (29)
converges), together with the necessary condition for its
regularity on the axis determine the boundary conditions

F 00 �ÿ1� � 0 ; F 02 �ÿ1� � 1 ; f �ÿ1� � 0 ; a�ÿ1� � 0 ;

�31�ÿ eV exp �2F1�
�
x1!1 � 0 ; f 0�1� � 0 ; a�1� � 1 : �32�

Units for measuring the `time' coordinate x 0 can be chosen
such that

F0�ÿ1� � 0 : �33�
Equations (28) do not explicitly involve the coordinate x1;

it enters only through the derivatives. As a result, all the
functions depend on x1 through the combination
x � x1 ÿ x0, where x0 is the constant of integration. In
accordance with Eqn (31) we can set

F2�x1� � x ; x1 ! ÿ1 : �34�

Because F1 is a growing function of the coordinate x1, the
conditions

ÿ eV exp �2F1�
�
x1!1 � 0 and f 0�1� � 0 are both

satisfied if eV�1� � 0. For the sombrero potential (3) we then
have

f �1� � 1 : �35�

The boundary condition (35) has been in common use
thus far. If gravitation is of no significance, this condition is
doubtless valid. If gravitation is included, however, the
universal boundary condition for x1 !1 is not relationship
(35) but rather the weaker condition

f 0�1� � 0 : �36�

f �1� itself may be an arbitrary constant, not necessarily unity
[21]. It will be shown below that f �1� < 1 for supermassive
gauge strings and also for global strings. Using the boundary
condition (35) outside the range of its validity makes it
impossible to correctly determine the range of physical
parameters for which static string solutions exist.

3.4 General properties of gauge strings
3.4.1 First integrals. The Ricci tensor (20) is a linear function
of the second derivatives F 00i . By introducing a linear
combination of the Einstein equations and using the
Bronnikov condition (17) it is possible to eliminate the
second derivatives and thus to obtain a érst integral, namely

F 00 �F 00 � 2F 02 � � ÿg
�
2 eV
b 2

exp �2F1� ÿ n2

2
a 0 2 exp �ÿ2F2�

� n2�1ÿ a�2f 2 exp �4F0� ÿ f 0 2
�
: �37�

The right-hand side of Eqn (37) contains the same terms as
in Eqn (29) but with different signs. The boundary conditions
(32) require that the right-hand side of the first integral (37)
vanishes as x1 !1. Therefore, one obtains

F 00 �1�
�
F 00 �1� � 2F 02 �1�

� � 0 : �38�

Equations (28) yield one more first integral, viz.

F 02 ÿ F 00 � 1ÿ gn2
�
B� �aÿ 1�a 0 exp �ÿ2F2�

�
: �39�

Here the notation was used:

B � ÿa 0 exp �ÿ2F2�
�
x 1!ÿ1 : �40�

The physical meaning of the constant B is obvious: this is the
strength of the gauge field on the axis of the string. In the
nonrelativistic case of a superconducting vortex line this is the
magnetic field on the axis. The constant B is an unknown
function of the parameters n, b, and g, which determines the
gravitational field outside the string.

3.4.2 Gravitational field outside the string.Relation (38) shows
that gauge strings are of two types, namely

F 00 �1� � 0 ; F 00 �1� � 2F 02 �1� 6� 0 �41�
or

F 00 �1� � 2F 02 �1� � 0 ; F 00 �1� 6� 0 : �42�
From the boundary condition (32) and relation (39) we

have

F 02 �1� ÿ F 00 �1� � 1ÿ gn2B : �43�

For cases (41) and (42), the metric outside the string is
determined by the constant (40).

3 Mass per unit length has dimensions of mass per length. In units of Eqn

(9), mass has the dimensions of inverse length. As a result, mass/length has

the dimensions of mass squared; m 2
Pl � 1:35� 1028 g cmÿ1. Note that

Tolman's formula for the total mass of an object is derived by assuming

that far from the object spacetime is asymptotically flat. This is by no

means the case with strings. The integral (30) converges, however, and the

constant F 00 �1� is a physical characteristic of the string. The relation of

this characteristic to the mass per unit length can be established in the

Newton limit.
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Both the solutions (41) and (42) degenerate to one and the
same solution if the functions F 00 and F 02 vanish as x1 !1.
The solutions become identical along the line defined by the
condition

F 02 �1� � 0 : �44�

Conic metric. From relationships (41) and (43) we find

F 00 �1� � 0 ; F 01 �1� � F 02 �1� � 1ÿ gn2B ; �45�

and, hence, the following relation holds for x1 !1:

F1�x1� � F2�x1� � �1ÿ gn2B�x1 � const : �46�

By making the substitution

dt � dx 0 ; dr � exp
ÿ
F1�x1�

�
dx1 ; dj � dx 2; dz � dx 3;

�47�

the metric outside the string can be reduced to the form

ds 2 � dt 2 ÿ dr 2 ÿ �1ÿ gn2B�2r 2 dj2 ÿ dz 2 : �48�

The metric (48) differs from the Galilean metric only by
the constant coefficient �1ÿ gn2B�2 < 1 of r 2 dj 2. The angle
j varies from zero to 2p. In a space withmetric (48), the length
of a circle with the center on the string axis and of radius r is
2pr�1ÿ gn2B� < 2pr. The string cuts out a wedge in the plane
�r;j� as shown in Fig. 2a, creating what may be called an
`angle deficiency'

D � 2pgn2B : �49�

If the remaining part of the circle is glued along the cutting
lines, a cone will form as shown in Fig. 2b. The metric (48) is
therefore called `conic' 4. The constant B depends on the
parameters n, b, and g. To find this dependence, it is
necessary to solve Eqns (28).

The gravitational mass (30) of a conic string is zero. This is
an off-beat example of a macroscopic body with zero mass
[23]. At distances larger than the string core radius, such a
string has no influence on matter.

In deriving Eqns (47) and (48) it was tacitly assumed that
1ÿ gn2B > 0. However, as g increases, so does the angle (49)
of the cut out wedge, implying that in analyzing supermassive
strings the case 1ÿ gn2B4 0 should also be considered. For
1ÿ gn2B < 0, all the space outside the string turns out to be

cut out, with the result that the radius r does not go to infinity
but only to a certain limiting value rmax

5:

r � rmax ÿ �gn2Bÿ 1�ÿ1 exp �ÿ�gn2Bÿ 1�x1 ÿ const
�
;

1ÿ gn2B < 0 :

The outer metric for 1ÿ gn2B < 0 takes the form

ds 2 � dt 2 ÿ dr 2 ÿ �rmax ÿ r�2�1ÿ gn2B�2 dj2 ÿ dz 2 ;

1ÿ gn2B < 0 : �50�
The Kasner metric. For the solutions of the type (42) we
obtain

F 00 �1� � ÿ
2

3
�1ÿ gn2B� ;

F 01 �1� � ÿ�1ÿ gn2B� ; �51�

F 02 �1� �
1

3
�1ÿ gn2B� :

After substituting Eqn (47) we arrive at the outer metric of a
Kasner type [24]:

ds 2�

��1ÿ gn2B��rmax ÿ r��4=3�dt 2 ÿ dz 2� ÿ dr 2ÿ
ÿ��1ÿ gn2B��rmax ÿ r��ÿ2=3 dj2 ; F 02 �1� > 0 ;��gn2Bÿ 1�r�4=3�dt 2 ÿ dz 2� ÿ dr 2ÿ
ÿ��gn2Bÿ 1�r�ÿ2=3 dj2 ; F 02 �1� < 0 :

8>>>>><>>>>>:
�52�

The fact that the outer metric may be either conic or of a
Kasner type was established by Vilenkin [25]. A solution with
an outer Kasner metric was found by Laguna and Garfinkle
[26].

3.5 Properties of solutions near the degenerate line
For a fixed value of the azimuthal number n, the degenerate
line (44), along which the solutions (41) and (42) are the same,
is defined in the plane of �b; g� parameters by the equation

1ÿ gn2B�n; b; g� � 0 : �53�

In the region of 1ÿ gn2B > 0, solutions with a Kasner outer
metric, unlike conic metric solutions, do not extend beyond
the limiting radius rmax. Conversely, in the region of
1ÿ gn2B < 0, the Kasner metric is not limited in radius, but
the conic one is. This does not happen by chance.

This situation is reminiscent of the electronic term cross-
ing [27, æ 79], when any arbitrarily small perturbation
breaking the symmetry of the system removes the degener-
acy. The electronic terms no longer cross, and the two
branches become isolated, with one possessing a limiting
radius and the other not.

To illustrate this point, consider the case of a string in the
presence of an arbitrarily small amount of ordinary matter
with p5 e, where p and e are the pressure and energy of
matter, respectively. We shall assume that the distribution of
matter in space has the same cylindrical symmetry as the

a b

Figure 2. Conic string cuts out a wedge in the �r;j� plane.

4 Conic metrics had been studied [22] long before their relevance to cosmic

strings was recognized.

5 The appearance of a limiting radius hints that the usual cylindrical

coordinate system is not the most suitable one for the present problem.

The coordinate x1 defined by condition (17) varies from ÿ1 to1.
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string. Now, however,T 0
0 6� T 3

3 , and the system as a whole is
no longer invariant with respect to the Lorentz translation in
the direction of the string. As a result, the Einstein equations
with F 000 and F 003 are no longer identical:

F 000 � ÿg
�
2 eV
b 2

exp �2F1� ÿ n2

2
a 0 2 exp �ÿ2F2�

�
� 4pGe exp �2F1� ;

F 003 � ÿg
�
2 eV
b 2

exp �2F1� ÿ n2

2
a 0 2 exp �ÿ2F2�

�
ÿ 4pGe exp �2F1� ;

so that

F 00 �1� ÿ F 03 �1� � 4GM ; �54�

where

M� 2p
�1
ÿ1

dx1e exp �2F1�

is the mass of matter per unit length.
In the presence of matter, the combination

F 02 F
0
3 � F 03 F

0
0� F 00 F

0
2 does not reduce to a product of two

factors, and instead of Eqn (38) we obtain a quadratic
equation in w � F 00 �1�:

w 2 � 2w
�
F 02 �1� ÿ 2GM�ÿ 4GMF 02 �1� � 0 :

IfM! 0, then for F 02 �1� > 0 the solution

F 00 �1� � 2GMÿ F 02 �1� �
�
F 0 22 �1� � �2GM�2

�1=2
tends to zero, i.e. it goes over into Eqn (41). For F 02 �1�
negative, one obtains

F 00 �1� ! ÿ2F 02 �1�
in accord with relations (42).

The classification of string solutions in the presence of
matter differs from that without matter. The change in the
systematics of string solution is illustrated in Fig. 3, which
shows that in this case the solutions can no longer be classified
into a conic and a Kasner type. Solutions in the presence of

matter should not be classified according to the sign of F 02 �1�
but rather according to whether or not a limiting radius exists.
The conic solution with F 02 �1� > 0 and the Kasner solution
with F 02 �1� < 0 form one branch, while the conic solution
with F 02 �1� < 0 and the Kasner solution with F 02 �1� > 0
form the other. In the presence of matter, the two branches
split (the upper and lower curves), and between them a gap of
order M=m 2

Pl appears. With this systematics, one (lower)
branch of the curve possesses a limiting value for the radius
rmax, whereas the other (upper) does not.

As one can see, the presence of an arbitrarily small
amount of ordinary matter makes it impossible to classify
stringlike solutions into purely conic and purely Kasner
solutions. One therefore should not hurry up to conclusions
and declare solutions with a Kasner singularity to be
nonphysical.

3.6 (b; c) plane
When numerically integrating Eqns (28) it is important to
correctly choose the boundary condition for x1 !1. For
nonrelativistic vortex structures, the boundary condition (35)
has traditionally been used. Attempts of Christensen et al. [28]
to use the boundary condition f �1� � 1 for finding the
upper bound for the domain of existence of static relativistic
strings have been untenable. For the correct determination of
the upper bound, the weaker boundary condition (36) should
be chosen.

For supermassive conic strings, F1�x1� � �1ÿ gn2B�x1�
const when x1 !1 [see Eqn (46)], with 1ÿ gn2B < 0. The
convergence of the integral of the term �2 eV=b 2� exp �2F1�
entering into the energy (29) close to the upper bound is
ensured by the exponentially decreasing factor exp �2F1�. The
limiting value of the order parameter f should be a constant
[otherwise a divergence of the integral due to the term f 0 2

would arise in the string energy (29)] Ð but not necessarily
unity. Integrating Eqns (28) subject to the boundary condi-
tion (36) yields the bounds for the domains of existence of
static solutions [21]. The map of string solutions in the �b; g�
plane is shown in Fig. 4 for n � 1.

The numerical integration in recent work [21] for the
degenerate line (53) at b � 1 gave, within the accuracy of the
calculations, the dependence

g � b 0:535 ; �55�
to which corresponds the curve g0�b� in Fig. 4. The solutions
above and below the degenerate line (55) exhibit radically
different properties.

0.96 0.98 1.00 1.02 1.04
0

ÿ0.01

0.01

0.02

0.03

ÿ0.02

ÿ0.03

ÿ0.04

gn2B

F
0
0�1�

Figure 3. Intersection of solutions with conic and Kasner outer metrics for

the example of F 00 �1� as a function of gn2B. In the absence of matter, the

conic metric coincides with the x-axis, F 00 �1� � 0, and the Kasner metric

is given by F 00 �1� � ÿ�2=3��1ÿ gn2B�. In the presence of matter, the two

branches split, giving rise to a gap of orderM=m 2
Pl between them.
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Figure 4. `Map' of string solutions in the �b; g� plane.
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Over the entire region below the line (55), both conic and
Kasner solutions exist. For both the conic and Kasner
solutions below the line (55), the limiting value of the order
parameter f �1� � 1, and the radius r in the usual cylindrical
coordinate system varies over the interval �0;1�. But whereas
for the conic solutions we have F 01 �1� > 0, for the Kasner
solutions, on the contrary, F 01 �1� < 0.

Also above the degenerate line (55) there are regions of
static stringlike solutions. Here, for both types of solutions,
the radius r in the usual cylindrical coordinate system does
not go to infinity but rather has a certain finite limiting value
rmax. For conic solutions above the line (55) we have
F 01 �1� < 0, whereas for Kasner solutions, on the contrary,
F 01 �1� > 0. Above (but close to) the degenerate line, the
limiting value of the order parameter f �1� decreases with
increasing g for both types of solutions.

Depending on the value of b, there are two possibilities.
For conic strings at low b4 1, the limiting value of the order
parameter, f1 � f �1�, decreasesmonotonically with g and at
a certain g � gcr�n; b� vanishes in such a way that the
derivative jdf1=dgj ! 1. In the region of not small
b > bbif 5 1, the derivative jdf1=dgj becomes infinite at
g � gcr�n; b� for finite f1 values. Exactly where f1
approaches zero or jdf1=dgj becomes infinite (whichever is
earlier) determines the upper bound

g � gcr�n; b� �56�
for the domain of existence of static supermassive gauge
strings. For conic strings Ð this is the curve g1�b� in Fig. 4,
whereas for Kasner strings Ð this is the curve g2�b�. For
b! 0, the upper bounds g1�b� and g2�b� merge at one point:
g1�0� � g2�0� � 1:067 . . .

For conic strings at n � 1, the variation of the limiting
values of the order parameter f1�g� for b � 1 and b � 2 is
illustrated in Fig. 5. In the case of b � 1, f1 vanishes and
jdf1=dgj becomes infinite at the same value of the parameter
g � gcr�n; 1�. This is an analytically exact result, as discussed
below. As to the case of b � 2, there jdf1=dgj becomes infinite
at a finite value of f1. Hence, in the region b5 1, a
bifurcation point bbif must exist above which, as g increases,
the derivative jdf1=dgj for a conic string becomes infinite
earlier than the order parameter f1 vanishes. To this day, the
bifurcation point bbif has not been found.

3.7 The Bogomol'ny|̄ degenerate case
The general property (45) of conic solutions for gauge strings
has the implication that the gauge and Higgs fields compen-

sate each other integrally for any value of the parameter b in
the interval �0;1�. The gauge string problem with potential
(3) and a conic outer metric is possessed of internal symmetry
associated with the possible interchange of Higgs and gauge
particles. A consequence of such a hidden symmetry is that
there exist a certain value b, namely

b � 1 �57�

[when the masses (6) of the Higgs and gauge particles are the
same], for which the fields compensate each other at any point
x1, not only integrally. In this degenerate case the system (28)
considerably simplifies. For ordinary nonrelativistic vortices
[6, 29], Bogomol'ny|̄ [30] showed that in the special case (57)
the equations for an order parameter and gauge field are
actually of first order, rather than of second as in the general
case with Eqns (24) and (25).

For the sombrero potential (3), in the Bogomol'ny|̄
degenerate case (57) the energy integral (29) reduces to the
form

EB � 2pZ 2

�
dx1

��
f 0 ÿ n�1ÿ a� f exp �2F0�

�2
� 1

2

�
na 0 exp �ÿF2� ÿ �1ÿ f 2� exp �F1�

�2
ÿ n
��1ÿ f 2��1ÿ a��0 exp �2F0�

�
: �58�

It turns out that those solutions of the equations

f 0 ÿ n�1ÿ a� f exp �2F0� � 0 ;
�59�

a 0 exp �ÿ2F2� ÿ 1

n
�1ÿ f 2� exp �2F0� � 0

that minimize the energy functional (58) satisfy the system
(28). From Eqns (59) and the boundary conditions (31) and
(32), the energy (58) is minimum and equals

E � 2pnZ 2 : �60�

In view of Eqns (59), the third equation of the set (28)
reduces to F 000 � 0 and allowing for Eqn (33) it is found that
for b � 1 we have

F 00 �x1� � 0

for any x1 in the interval �ÿ1;1�. From the second equation
of the set (59) we see that for b � 1 the constant B in Eqn (40)
is independent of the parameter g and is given by

BB � 1

n
: �61�

3.7.1 Point of double degeneracy. In the �b; g� plane of Fig. 4,
the Bogomol'ny|̄ case corresponds to the vertical line b � 1. It
intersects the degenerate line (53) at the point with coordi-
nates

b � 1 ; g � 1

n
: �62�

This is a point of double degeneracy: both in terms of the
symmetry of the Higgs and gauge particles and in the sense
that solutions with conic and Kasner outer metrics are
identical here.

1.2 1.4 1.6 1.8 2.0 2.21.0
0

0.2

0.4

0.6

0.8

1.0

g

f1 b � 2

b � 1

Figure 5. Variation of the limiting values of the order parameter f1�g� at
b � 1 and b � 2 for conic strings.
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The expression for the first integral (39) at b � 1 can be
transformed to the total differential:

F 02 � 1ÿ gn� g
�
ln fÿ 1

2
f 2

�0
: �63�

Now the function F2�x1� can be expressed in terms of the
order parameter f �x1�, so that

F2 � �1ÿ gn��x1 ÿ x0� � g
�
ln fÿ 1

2
f 2

�
� C ; b � 1 ;

�64�

whereC is the constant of integration. This constant is related
to the amplitude of the order parameter f for x1 ! ÿ1:

f �x1� � exp

�
n�x1 ÿ x0� ÿ C

g

�
; x1 ! ÿ1 : �65�

The dependence C �g; n� can be found by solving the equation
for f, viz.

�ln f � 00� �1ÿ f 2� f 2g exp�2�1ÿ gn��x1ÿ x0� ÿ gf 2� 2C
� � 0:

�66�

The corresponding equation in cylindrical coordinates was
derived by Linet [31].

At the point (62) of double degeneracy the explicit
dependence on x1 drops out of Eqn (66), so it can be solved
in quadratures. For n � 1 we have

2�x1 ÿ x1� exp
�
Cÿ 1

2

�
�
� f 2 dz

z
�
1ÿ z exp �1ÿ z��1=2 ;

b � 1 ; g � 1 : �67�

Here x1 is yet another constant of integration. The solution
(67) must coincide with Eqn (65) for x1 ! ÿ1. This
requirement determines the constant C at the point of double
degeneracy:

C � 1

2
; b � 1 ; g � 1 :

3.7.2 Analysis near the upper bound.Above the point of double
degeneracy, i.e. for gn > 1, the limiting value f1 of the order
parameter decreases with increasing g. In the case of the
validity of relation (57), the order parameter f vanishes for
gn � 2, i.e.

gcr�n; 1� �
2

n
: �68�

Near the upper bound (68), equation (66) can be solved
analytically [21].

Let us introduce the function

W � ln f �69�

which satisfies the equation

W 00 � �1ÿ exp �2W��
� exp

�
2gW� 2�1ÿ gn��x1 ÿ x0� ÿ g exp �2W� � 2C

� � 0

�70�

together with the boundary conditions

W 0�ÿ1� � n ; W 0�1� � 0 : �71�

Near the upper bound (68) one has expW5 1, and Eqn
(70) can be solved by successive approximations in expW5 1
�W �W0 �W1�:

W 00
0 � exp

�
2gW0 � 2�1ÿ gn��x1 ÿ x0� � 2C

�
; �72�

W 00
1 � 2gW 00

0 W1 � �1� g�W 00
0 exp �2W0� : �73�

The solution to Eqn (72), which goes over to the solution (65)
as x1 ! ÿ1, has the form

expW0 � fm exp

��
nÿ 2

g

�
�x1 ÿ x0�

�

�
�
1� 4

g
exp
ÿÿ2�x1 ÿ x0�

��ÿ1=g
; �74�

where

fm �
�
4

g

�1=g

exp

�
ÿC

g

�
: �75�

Relationship (75) clarifies the physical meaning of the
constant C: this constant relates to the limiting value of the
order parameter. A solution (74) to Eqn (72) with an
arbitrarily small fm 5 1 exists for any g. The energy (29) of
such solutions, however, is finite only if gn < 2. For gn > 2,
the order parameter (74) exponentially grows as x1 !1, and
the integral governing the energy in Eqn (29) diverges.

The zeroth approximation (74) does not satisfy the
boundary condition (71) when x1 !1. However, if we are
close to the upper bound (68) then, for �2=g� ÿ n5 1, this
`incorrect' dependence of the zeroth-order solution (74) for
x1 !1 can be corrected by including first-order terms. For
this it is necessary to solve equation (73) with the boundary
conditions

W1�ÿ1� � 0 ; W 0
1�1� �

2

g
ÿ n : �76�

Equation (73) is a linear, inhomogeneous, second-order
differential equation. The corresponding homogeneous equa-
tion belongs to the Legendre class:

L̂Z� n�n� 1�Z � 0 ; L̂ � d

dz
�1ÿ z 2� d

dz
: �77�

The eigenvalues in this case are n1 � 1, n2 � ÿ2, and the two
linearly independent solutions of the homogeneous equation
are expressed by the Legendre functions

P1�z� � z ; Q1�z� � z
2
ln

1� z
1ÿ z

ÿ 1 : �78�

The independent variable z is related to the coordinate x1 in
the following way

z � tanh �x1 ÿ x �� ; x � � x0 � 1

2
ln

4

g
:
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The general solution of Eqn (73) takes the form

W1 � A1z� A2Q1�z�

� f 2
m z

2n�1�n� 1�
� z

ÿ1
dz
�1� z�n�nzÿ �1ÿ z��

z 2�1ÿ z� : �79�

From the boundary condition (76) for x1 ! ÿ1 it follows
that A1 � A2 � 0. The behavior of the solution W1 as
x1 !1 is determined by the third term in formula (79):

f 2
m z

2n�1�n� 1�
� z

ÿ1
dz
�1� z�n�nzÿ �1ÿ z��

z 2�1ÿ z�

� ÿ n f 2
m

n� 1
�x1 ÿ x �� � . . . �80�

Comparing formulas (76) and (80) we find

f 2
m � �n� 1�

�
1ÿ gn

2

�
; 2ÿ gn5 1 : �81�

Because f 2
m must be nonnegative, we conclude that the

domain of existence of static vortex solutions in the
Bogomol'ny|̄ case (57) is limited by the inequality gn < 2.
Close to this bound, the order parameter is found to be

f �x1� �
�
�n� 1�

�
1ÿ gn

2

��
1� 2n exp

ÿÿ2�x1 ÿ x0�
��ÿn�1=2

;

b � 1 ; 2ÿ gn5 1 : �82�

For the gauge field we obtain

a � �1� 2n exp
ÿÿ2�x1 ÿ x0�

��ÿ1
; b � 1 ; 2ÿ gn5 1 :

�83�

The constant C grows logarithmically as the bound is
approached:

C � ln �2n� ÿ 1

n
ln

�
�n� 1�

�
1ÿ gn

2

��
; b � 1 ; 2ÿ gn5 1 :

�84�

The gravitational field for 2ÿ gn5 1 is equal to

F1 � F2 � 1

2
ln

 
n

2

�
cosh

�
x1 ÿ x0 ÿ 1

2
ln �2n�

��ÿ2!
:

By making the substitution (47) we find the metric in
cylindrical coordinates:

ds 2 � dt 2 ÿ dr 2 ÿ 1

4
sin2�2r� dj2 ÿ dz 2; 2ÿ gn5 1 : �85�

In the metric (85), the radius r varies from zero to the
maximum value rmax � p=2. Close to the string axis �r! 0�,
the metric (85) is Galilean, and for r! rmax it goes over into
formula (50) with B � 1=n as in Eqn (61) and gn � 2.

For Bogomol'ny|̄ gauge strings �b � 1�, the dependence
Zmax�n� takes the form

Zmax�n�
mPl

� �4pn�ÿ1=2 � 0:282 nÿ1=2

in accord with formula (68). The numerical computations
done by De Laix et al. [15] yielded a different result:

Zmax�n�
mPl

� an p ; p � ÿ0:56 ; a � 0:16 :

Themain reasonwhy the authors ofwork [15] underestimated
Zmax�n� is that they used the boundary condition f � 1 for
r!1. This condition is valid only in the region gn4 1Ð so
long as the angle deficiency is less than 2p. In reality, the
boundary condition valid over the entire range 0 < g < gcr is
f 0�1� � 0. Curiously, the estimate p � ÿ0:5 which the
authors of Ref. [15] call `naive' actually proves to be exact in
the Bogomol'ny|̄ case �b � 1�.

3.8 Solutions with Kasner asymptotics for c5 1
In the region of small g, namely for

g5 1 ; �86�

the gravitational field of gauge strings with Kasner type outer
asymptotics can be determined analytically. The main
simplifying factor in the case of inequality (86) is that the
regions where the order parameter and the gauge field show
the most change are separated in space. Under condition (86),
the typical scale of a spontaneous breaking of symmetry is
very small, so that the effect of the order parameter on the
metric is of no significance. The gauge field, in contrast, plays
a dominant role in a Kasner type metric. The constant B
introduced by expression (40) is large for small g:B � 1=g4 1
[see Eqn (91)]. For this reason, terms of order gn2B and gn2B 2

in equations (28) cannot be neglected even for small g.
Under condition (86), the gauge field a grows from zero to

unity in the region where the order parameter f is still very
small. And as long as f5 1, changes in a and F2 are described
by the equations

a 0 exp �ÿ2F2� � B � const ; �87�

F 002 � ÿ
1

2
gn2B 2 exp �2F2� : �88�

The solution satisfying the boundary conditions (31) has the
form

F2 � ÿ ln
�
cosh �x1 ÿ x0�

�ÿ 1

2
ln

�
1

2
gn2B 2

�
; �89�

a � 2

gn2B

�
1� tanh �x1 ÿ x0�

�
: �90�

Employing the boundary condition (32) we may now
obtain the constant B:

B � 4

gn2
; g5 1 : �91�

The remaining functions determining the gravitational
field are as follows

F0 � ln
�
1� exp

ÿ
2�x1 ÿ x0�

��
;

�92�
F1 � ln

�
exp �x1 ÿ x0� � exp

ÿ
3�x1 ÿ x0�

��ÿ 1

2
ln

2

gn2
:
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The region where the gauge and gravitational fields varymost
significantly is jx1 ÿ x0j � 1. For x1 ÿ x0 4 1 we have

F1 � 3�x1 ÿ x0� ÿ 1

2
ln

2

gn2
; x1 ÿ x0 4 1 : �93�

The order parameter f mainly varies in the region where
exp�2F1� becomes of order unity, i.e.����x1 ÿ x0 ÿ 1

6
ln

2

gn2

���� � 1 :

Since �1=6� ln �2=gn2�4 1, the regions of variation of the
functions a and f are separated in space.

In region (86), the metric for solutions with Kasner
asymptotics (42) may be written in the form

ds 2 � �1� exp �2x��2��dx 0�2 ÿ �dx 3�2�
ÿ gn2

2

�
exp x� exp �3x��2�dx1�2 ÿ gn2

8 cosh2 x
�dx 2�2: �94�

The cylindrical coordinate r is related to x � x1 ÿ x0 by the
formula

r �
�
gn2

2

�1=2�
exp x� 1

3
exp �3x�

�
: �95�

Close to the axis (x1 ! ÿ1�, metric (94) reduces to the
Galilean form:

ds 2 � �dx 0�2 ÿ dr 2 ÿ r 2�dx 2�2 ÿ �dx 3�2 :

Outside the string (as x1 !1), relation (94) goes over into
the Kasner type metric (52) with B � 4=gn2 defined by
Eqn (91).

4. Global strings

4.1 The Goldstone boson
In the simplest scalar field model, the global string is
described by the Lagrangian density (26). In the absence of a
gauge field, the wave function near the minimum of the
potential (3) is complex, namely

f � Z� 1���
2
p �f1 � if2� ;

and we have, instead of formula (5), the expression

L � 1

2
�qmf1�2 �

1

2
�qmf2�2 ÿ

1

2
M 2

Hf
2
1 � Lint �96�

for the Lagrangian density (26) near the minimum of the
potential (3). Now Lint contains cubic and higher-order terms
in f1 and f2. As before, the field f1 in sum (96) represents a
Higgs particle of massMH �

���
l
p

Z [see Eqn (6)]. In the case of
global symmetry, the field f2 is massless, and the correspond-
ing scalar particle is called a Goldstone boson.

The fundamental difference between global and gauge
strings relates to the Goldstone degree of freedom. The term
distinguishing the Goldstone boson in the energy ±momen-
tum tensor of the global string decreases very slowly away
from the axis [1]. If the curvature of spacetime is neglected, the

energy per unit length of an infinite global string diverges.
This is a general property of spontaneously broken global
symmetry. However, in the general theory of relativity, the
greater energy, the more curved is spacetime, with the result
that the integration over the cross section of the string yields a
finite result.

The gravitational interaction leads to the self-localization
of a string. The weaker the gravitational field of the string, the
larger the self-localization radius rL [see below Eqn (111)]. In
the limit of the Galilean metric, the self-localization radius
becomes infinite. If the global string has a finite lengthL, then
Ð depending on the relation between the gravitational self-
localization radius rL and the string length L Ð two limiting
cases are possible.

In the limit of L5 rL, self-localization is unimportant,
and the gravitational properties of the global string may be
analyzed using linearized Einstein equations [32]. In the
inverse limit, i.e.

L4 rL ; �97�

the string is localized at distances from the axis much less than
the string length. In case (97), the string may be considered
one-dimensional, with all its characteristics dependent on a
single coordinate Ð the distance from the axis. In the
intermediate case L � rL, the string is not one-dimensional,
and its gravitational properties cannot be described by
linearized Einstein equations.

From the point of view of the gravitational properties of
the static global cosmic string, the most interesting case is that
given by Eqn (97), and to this we now proceed. For g > 0, the
order parameter f of the global string is a monotonically
decreasing function of g. If g! 0, the order parameter f! 1,
while remaining less than unity.

The vanishing of the order parameter of the global string
occurs at

g � gcr�n; 0� ; �98�

where gcr�n; b� is the function (56) which determines the
limiting value of g for the gauge string [36]. Attempts of
several authors [33 ± 35] to determine the upper bound on g
using the boundary condition f � 1 could not be successful
because the order parameter f corresponding to this upper
bound vanishes. The behavior of the gravitational field and
order parameter can be determined analytically in the limiting
case g5 1 and also near the upper bound (98).

4.2 Equations for the global string
For the global strings a � 0, and the complete set of equations
can be written in the form

f 00 ÿ n2f exp �4F0� � 1

2
f �1ÿ f 2� exp �2F1� � 0 ; �99�

F 000 �
g
4
�1ÿ f 2�2 exp �2F1� � 0 ; �100�

F 001 � g
�
3

4
�1ÿ f 2�2 exp �2F1� � 2n2f 2 exp �4F0�

�
� 0 : �101�

Here the notation is the same we have used before for gauge
strings. However, instead of the shift (27) we employ

F1 ! F1 ÿ ln �
���
l
p

Z� : �102�
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In the Galilean limit �g! 0�, the coordinate x1 is related
to the radius r by the same relation x1 ÿ x0 � ln r, but this
time, due to the translation (102), the radius r is measured in
units of the characteristic radius of the global string core,
namely

r0 � �
���
l
p

Z�ÿ1 : �103�

The energy per unit length of the global string is expressed
as

E � 2pZ 2

�
dx1

�
f 0 2 � n2f 2 exp �4F0�

� 1

4
�1ÿ f 2�2 exp �2F1�

�
: �104�

The gravitational mass is given by the same formula (30) as
was used for the gauge string.

From equation (100) and the boundary condition (31) it
follows that if g > 0 then for a global string we have
F 00 �1� < 0:

F 00 �1� � ÿ
g
4
I1 < 0 ; I1 �

�1
ÿ1

dx1 �1ÿ f 2�2 exp �2F1� :
�105�

The mass (30) of the global string is negative, and its
interaction with ordinary matter is repulsive.

Without a gauge field there is nothing by which to
compensate for the Higgs field. Therefore, there is no
analogue of conic solutions for the global string, and the
only possibility left is a Kasner type solution.

4.3 Self-localization
The term f 2 exp �4F0� falls off exponentially as x1 !1, and
owing to gravitation the energy integral (29) converges.
Without gravitation �g � 0� this integral diverges. An arbi-
trarily weak gravitational interaction eliminates the Gold-
stone divergence and ensures the self-localization of a global
string.

Having regard to a � 0 and Eqn (17), the first integral (37)
takes the form

F 00 �2F 01 ÿ 3F 00 �

� ÿg
�
1

4
�1ÿ f 2�2 exp �2F1�� n2f 2 exp �4F0� ÿ f 0 2

�
: �106�

Since for a global string we have F 00 �1� < 0, from equation
(106) it follows that as x1 !1 one arrives at

F 01 �1� �
3

2
F 00 �1� : �107�

This means that F 01 1� � is also negative, and that the term
exp �2F1� tends exponentially to zero as x1 !1.

From Eqn (101) and the boundary condition (31) one
finds

F 01 �1� � 1ÿ g
�
3

4
I1 � 2n2I2

�
; I2 �

�1
ÿ1

dx1 f 2 exp �4F1� :
�108�

Comparing Eqns (105), (107), and (108) we obtain the
following relation between the integrals I1 and I2:

3

8
I1 � 2n2I2 � 1

g
: �109�

For g � 1, the main contribution to the energy integral
(104) comes from the region jx1 ÿ x0j � 1. When g5 1, the
numerical integration of equations (99) ± (101) reveals two
typical scales in the structure of the string. The order
parameter f grows from zero to near unity over the range
jx1 ÿ x0j � 1, and the main contribution to the energy
integral (104) comes from the region jx1 ÿ x0j � gÿ1 4 1.

For small g, the curvilinear coordinate x1 near the string
core is proportional to ln r:

x1 ÿ x0 � ln
r

r0
; g5 1 ; �110�

where r0 is the string core radius (103). From this the
following upper bound is derived for the characteristic self-
localization radius:

rL � r0 exp
1

g
: �111�

Relationship (110) is valid in the string core region. At great
distances, this linkage between x1 and r breaks down even for
small g. For this reason, the self-localization radius rL is
actually even smaller: anyway, it cannot exceed the limiting
radius rmax occurring in expression (129).

The properties of a stringmay be considered dependent on
a single coordinate only if the string structure forms at
distances from the axis much shorter than the length L.
Therefore, for finite length strings the condition for the
applicability of Eqns (99) ± (101) is set by the inequality

g ln
L

r0
4 1 : �112�

4.4 Order parameter
If gravitation is taken into account, the boundary condition
f 0�1� � 0 ensures the convergence of the energy integral
(104). We emphasize once more that f �x1���

x1!1� f1�g� is a
constant, but not necessarily unity. The order parameter
f1�g� tends to unity only when g! 0. To impose correctly
the boundary condition for x1 !1 is important, in
particular, in connection with the recent development of the
topological inflation idea [13 ± 15]. Topological inflation may
take place if the energy Z of spontaneous symmetry breaking
exceeds a critical value Zmax, and then only nonstationary
solutions are possible. The sensitivity of topological inflation
to Zmax is indicative of how important it is to have the values
of Zmax�n� exact.

The g-dependence of the limiting order parameter f1,
found numerically in Ref. [40], is shown in Fig. 6. The order
parameter f1�g� is a monotonically decreasing function
which vanishes at a certain g � gmax�n�. For n � 1, the
critical value 6 gmax � 1:067 . . . Accordingly, the maximum
energy of spontaneous symmetry breaking is equal to

Zmax �
����������
gmax

8p

r
mPl � 2:514� 1018 GeV ; n � 1 : �113�

6 The same value gmax�n� limits the interval of g values in which static

solutions for gauge strings exist in the limit b! 0.
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As numerical calculations indicate, the critical value gmax�n�
decreases with increasing n (see Table 1).

4.5 Analysis for c5 1
For many cosmological applications, the energy of a
spontaneous breaking of symmetry is small compared to the
Planck mass, and the gravitational field of a string is weak.
The limiting value of the order parameter in this case is very
close to unity.

The deviation of the limiting order parameter from unity
may have major cosmological implications. This deviation is
equivalent to the appearance of a nonzero cosmological
constant in the Einstein equations. At the Grand Unification
energy scale (Z � 1016 GeV) this `cosmological constant' is
very small. However, topological inflation scenarios during
(and immediately after) the Planck epoch may prove sensitive
to the cosmological constant effect due to the limiting value of
the order parameter differing from unity. Therefore, the
analytical study of the order parameter and the gravitational
field of a weak global string is of keen interest [40].

Notice that for g5 1 the deviation of the limiting order
parameter from unity exhibits an exponentially small effect
which cannot be obtained by expanding in powers of g.

4.5.1 The limit c � 0. In the Galilean limit �g � 0�, the
coordinate x1 is related to the radius r by the expression

x1 ÿ x0 � ln
r

r0
;

where r0 is the string core radius (103). For g � 0, the order
parameter f � f0 satisfies the equation

f 000 ÿ n2f0 � 1

2
�1ÿ f 2

0 � f0 exp �2x� � 0 �114�

and the boundary conditions

f0�ÿ1� � 0 ; f0�1� � 1 : �115�

With g � 0, integral (105) remains convergent, viz.

I1 � 2n2 ; g � 0 ; �116�

whereas integral (108) diverges. Outside the string core, for
x4 1, the order parameter is exponentially close to unity:

f0�x� � 1ÿ n2 exp�ÿ2x� ; x4 1 ; g � 0 : �117�

The structure of the nonrelativistic quantum vortex
governed by Eqn (114) has been treated by many authors
(see, for instance, Refs [1, 7, 37]).

4.5.2 Gravitational field of a global string for c5 1. In defining
F1�x� for x4 1, use has been made of the fact that the order
parameter f1�g� is exponentially close to unity for g5 1 [see
Eqn (141)]. For g5 1, in the peripheral region �x4 1�
equations (100) and (101) reduce to

F 000 � 0 ; F 001 � ÿ2gn2f 2 exp �4F0� :

On the strength of Eqns (105) and (107) we have

F0�x� � ÿ 1

4
gI1�xÿ x �� ; �118�

F 01 �x� � ÿ
3

8
gI1 � 2n2

I1
exp

ÿÿgI1�xÿ x ��� ; �119�

where the integral I1 is defined in Eqn (105), and

x � � 1

2n2

�1
ÿ1

dx x�1ÿ f 2
0 �2 exp �2x� �120�

is a constant of order unity, which can be found numerically.
For n � 1, we have x � � 0:53.

Equation (119) integrates to the following expression

F1�x� � Cÿ 3

8
gI1�xÿ x �� ÿ 2n2

gI 21
exp

ÿÿgI1�xÿ x ��� : �121�
In the region 15 x5 gÿ1, function (121) reduces to

F1�x� � C� xÿ x � ÿ 2n2

gI 21
;

and we find the constant of integration C:

C � x � � 2n2

gI 21
: �122�

Thus, in the region x4 1, g5 1, the function sought is given
by

F1�x� � 2n2

gI 21

�
1ÿ exp

ÿÿgI1�xÿ x ����ÿ 3

8
gI1�xÿ x �� � x �:

�123�

Formulas (118) and (123) determine the gravitational field
of a global string in its major region of variation, where
x � gÿ1 4 1.

4.5.3 Maximum radius rmax. Let us evaluate rmax for a global
string at g5 1. In the region x4 1, the relation between the
coordinate x and the radius r is obtained by substituting

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

g

f1

n � 3

n � 2 n � 1

Figure 6.Dependence f1�g� for n � 1; 2; 3. The dashed lines represent the

analytical asymptotics given by Eqn (141).

Table 1.

n 1 2 3 4

gmax�n� 1.067 0.456 0.269 0.183
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Eqn (123) into Eqn (47) giving

dr � exp

�
2n2

gI 21

�
1ÿ exp

ÿÿgI1�xÿ x ����
ÿ 3

8
gI1�xÿ x �� � x �

�
dx ; x4 1 :

In the region x5 gÿ1, the linkage between x and r has the
form

r � exp x ; x5 gÿ1 : �124�
Let ex be any point that satisfies the inequalities

15 ex5 gÿ1 : �125�
In view of Eqn (124) we have for x � ex:

r � er � exp ex : �126�

We next use formula (126) as the boundary condition for
determining the relation between x and r in the region x4 1
to obtain

r � exp ex� �xex dx exp

�
2n2

gI 21

�
1ÿ exp

ÿÿgI1�xÿ x ����
ÿ 3

8
gI1�xÿ x �� � x �

�
; x4 1: �127�

By virtue of inequalities (125), ex drops out from expression
(127), and if we make the substitution

u � exp

�
ÿ 3

8
gI1�xÿ x��

�
;

we find that

r � exp x � ÿ 8

3gI1
exp

�
1

2n2g
� x �

�

�
� exp ÿ3

8 gI1�xÿx ��� �
1

du exp

�
ÿ u 8=3

2n2g

�
; x4 1 : �128�

Letting x!1 in this relation, we find that to within a pre-
exponential factor of order unity rmax is given by

rmax � gÿ5=8 exp
1

2n2g
; g5 1 ; n � 1 : �129�

4.5.4 Order parameter in the region x � ccÿ1 4 1. The major
region of variation of the order parameter f is the core of the
string, where x � 1. In the exterior region x � gÿ1 4 1, the
order parameter is very close to unity. To find the deviation of
the limiting value of order parameter fromunity for g5 1, it is
necessary to find the solution of Eqn (99) for the far
peripheral region. We are faced here with the problem of a
small parameter in front of the higher derivative 7. The term
f 00 entering into Eqn (99) is very small compared to the two
other terms. From the equality of these two terms one
determines the coordinate dependence of the order para-

meter f on the periphery of the string:

f � 1ÿ n2 exp �4F0 ÿ 2F1� ; x � gÿ1 4 1 :

With allowance made for Eqns (118) and (123) we obtain

f � 1ÿ n2 exp

�
ÿ 1

4
gI1�xÿ x ��

ÿ 4n2

gI 21

�
1ÿ exp

ÿÿgI1�xÿ x ����ÿ 2x �
�
; x � gÿ1 4 1 :

�130�
For gÿ1 4 x4 1, the order parameter (130) reduces to f0
defined byEqn (117), while in the inverse limit x4 gÿ1 it takes
the form

f � 1ÿ n2 exp

�
ÿ 1

4
gI1�xÿ x �� ÿ 4n2

gI 21
ÿ 2x �

�
; x4 gÿ1 :

�131�

4.5.5 The limiting value of the order parameter. Formula (131)
would hold as long as 1ÿ f �x�4 1ÿ f1. In the region where
1ÿ f �x� � 1ÿ f1, the two last terms in Eqn (99) depend
differently on x. Considering that

1ÿ f1 � exp

�
ÿ 4

3gn2

�
[see below Eqn (141)] and comparing

n2 exp �4F0� � exp �ÿ2n2gx�

with

1

2
�1ÿ f 2� exp �2F1� � exp

�
ÿ 1

3gn2
ÿ 3

2
n2gx

�
;

we see that the two last terms in Eqn (99) may compensate
each other only for x5 gÿ2. (In this estimate it is assumed
that n � 1.) In the outlying region x4 gÿ2, the last term in
Eqn (99) dominates. In the region x � gÿ2, the order
parameter makes a transition from the exponential beha-
vior, as indicated by Eqn (131), to the limiting value f1. In
order to find f1, it is necessary to solve Eqn (99) in the far
peripheral region, where x � gÿ2.

In the region x � gÿ2, equation (99) assumes the form

f 00 � f

�
1

2
�1ÿ f 2� exp

�
4n2

gI 21
ÿ 3

4
gI1�xÿ x �� � 2x �

�
ÿ n2 exp

ÿÿgI1�xÿ x ���� � 0 :

This equation can be simplified to

d

dt

�
t
dc
dt

�
ÿ c � 1ÿ bÿ1t 1=3 ; �132�

by linearizing it in f1 ÿ f5 1 and introducing the change of
variables:

c � f1 ÿ f

1ÿ f1
; �133�

t �
�

4

3gI1

�2

exp

�
4n2

gI 21
ÿ 3

4
gI1�xÿ x �� � 2x �

�
: �134�

7 An analogous situation arises in a dense plasma, when the Debye radius

is small compared to the characteristic dimensions of the problem. In this

case, the higher derivative can be neglected, and the coordinate depen-

dence of the plasma density is determined by the quasi-neutrality

condition.
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The region x5 gÿ2 corresponds to t � exp �1=g�4 1;
t � exp �ÿ3=2g�5 1 corresponds to the inverse limit
x4 gÿ2. Thus, we are interested in that solution of Eqn
(132) which satisfies the boundary conditions

c! 0 ; t! 0 ; �135�
c! 1ÿ bÿ1t 1=3 ; t!1 : �136�

All the physical parameters of the problem enter into
Eqn (132) and the boundary conditions (135) and (136) in
the unique combination

b � 1ÿ f1
n2

�
4

3gI1

�2=3

exp

�
4

3

�
4n2

gI 21
� 2x �

��
: �137�

The general solution of Eqn (132) has the form

c�t� � C1I0�2
��
t
p � � C2K0�2

��
t
p �

� I0�2
��
t
p �

� t

0

dt 0

t 0I 20 �2
����
t 0
p �

� t 0

0

dt 00 I0�2
�����
t 00
p
��1ÿ bÿ1�t 00�1=3�;

�138�

where I0�x� and K0�x� are the modified Bessel functions. To
satisfy the boundary condition (135), it is necessary to set
both constants of integration equal to zero:C1 � C2 � 0. The
second boundary condition set by Eqn (136) requires that�1

0

dt

tI 20 �2
��
t
p �

� t

0

dt 0 I0�2
����
t 0
p
��1ÿ bÿ1�t 0�1=3 � � 0 :

From this relationship one obtains the constant b entering
into Eqn (137).

Considering that�1
0

dt

tI 20 �2
��
t
p �

� t

0

dt 0 I0�2
����
t 0
p
� � 1 ;

we have

b �
�1
0

dt

t
�
I0�2

��
t
p ��2

� t

0

dt 0 �t 0�1=3I0�2
����
t 0
p
� � 0:7974 . . . �139�

Relations (137) and (139) determine the limiting value f1 of
the order parameter:

1ÿ f1 � bn2
�
3gI1
4

�2=3

exp

�
ÿ 4

3

�
4n2

gI 21
� 2x �

��
; g5 1 :

�140�
To correctly determine the n-dependence of the pre-

exponential, it is necessary, in the exponent appeared in
equation (140), to expand the integral I1 defined in Eqn
(105) up to terms of the first order in g. Since equation (114)
cannot be solved analytically, the common multiplier can
only be found numerically. The final result is as follows [40]

f1 � 1ÿ m�n�g 2=3 exp
�
ÿ 4

3gn2

�
; g5 1 : �141�

The numerically determined dependence m�n� is presented
in Table 2. Within the accuracy of the calculations, this

dependence can be approximated by the formula

m�n� � a� bn2

n 4=3
; a � 0:394 ; b � 0:215 :

If one takes a closer look at how the order parameter
approaches its limiting value, three Ð instead of two Ð key
regions of variation of the functions f, F0, and F1 are
recognized. The major region of variation of f and F0 is the
core of the string, where x � 1. Here the order parameter
varies from zero to near unity. The negative Tolman mass of
the string, governed by Eqn (30), is also localized within the
core. The derivative F 01 varies from unity on the axis to the
limiting value (107) outside of the string, in the region
x � gÿ1 4 1. In the outlying region gÿ1 5 x5 gÿ2, the
order parameter approaches unity much more slowly Ð but
still exponentially in accordance with dependence (131). And
finally, in the farthest peripheral region x � gÿ2, the
exponential behavior of f gives way to its flattening out to
f1. The function ln

ÿ
1ÿ f �x�� shown in Fig. 7 illustrates the

three regions of variation of the order parameter f �x� for
n � 1 and g � 0:1.

When g5 1, many properties of global strings can be
investigated by means of linearized Einstein equations [32].
Some of these properties, however, do not show up in any
order of the expansion of the Einstein ±Higgs equations in
powers of g. The exponentially small deviation of f1 from
unity, seen from Eqn (141), is a typical example.

The deviation of the limiting value f1 of the order
parameter from unity distorts the physical vacuum over the
entire space outside the string, effectively leading to the
nonzero `cosmological constant' 8

L � lg 2

8pG
�1ÿ f1�2 : �142�

As discussed inmonograph [1], an estimate of the fluctuations
needed for a galaxy formation process to proceed leads to the
constraint l4 10ÿ12. On the Grand Unification scale
(Z � 1016 GeV), the parameter g introduced by Eqn (8) is of
order 10ÿ5, and the `cosmological constant' L is small.
However, the `cosmological constant' of a string nature,
governed by Eqn (142), may be of importance in topological

Table 2.

n 1 2 3 4 5 6 7 8 9 10

m�n� 0.594 0.484 0.536 0.607 0.677 0.748 0.817 0.885 0.951 1.015

0 20 40 60 80 100 120 x

ÿ16
ÿ14
ÿ12
ÿ10
ÿ8
ÿ6
ÿ4
ÿ2
0

ln
ÿ
1ÿ f �x��

Figure 7. Function ln
ÿ
1ÿ f �x�� for n � 1 and g � 0:1.

8 The possibility of there being a link between the cosmological constant

and elementary particles has been pointed out by Zel'dovich [41]. In the

present case, the global string plays a similar role. The `equation of state' of

the form p � ÿe is mentioned in Ref. [41].
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inflation scenarios if a phase transition with a spontaneous
breaking of symmetry took place in the Planck epoch.

4.6 Metric for cc ! ccmax

Near the critical value, viz.

gmax ÿ g5 1 ; �143�

the metric can be found analytically. Here, the order
parameter f is very small, and Eqns (100) and (101) reduce to

F 000 � ÿ
gmax

4
exp �2F1� ; �144�

F 001 � ÿ
3gmax

4
exp �2F1� : �145�

The solution of Eqn (145) is given by

F1 � B ÿ ln cosh �x1 ÿ x0 ÿ x �� ; �146�

where x0 is the constant of integration, and B �
ÿ�1=2� ln �3gmax=4� and x � � B � ln 2 are chosen in such a
way as to satisfy the boundary condition F1 � x1 ÿ x0,
x1 ! ÿ1.

At n � 1 we have

B � 0:11142 . . . ; x � � 0:80457 . . .

For F0 we then obtain

F0 � 1

3

�B ÿ x1 � x0 ÿ ln cosh �x1 ÿ x0 ÿ x ��� : �147�

The coincidence of the analytical solutions (146) and (147)
with the results of the numerical integration of Eqns (99) ±
(101) is illustrated in Fig. 8, in which F0�x� and F1�x� are
plotted as functions of x � x1 ÿ x0 for n � 1 and
g � gmax � 1:067.

After substitution of Eqn (47), the metric assumes the
form

ds 2 � g00�r��dt 2 ÿ dz 2� ÿ dr 2 ÿ g22�r� dj2 : �148�

Here the following notation was used:

g00�r� � cos 4=3
ÿ
r exp �ÿx ��� ;

g22�r� � exp �2x �� sin2ÿr exp �ÿx ��� cosÿ2=3ÿr exp �ÿx ��� :

The radius r in the cylindrical coordinates is related to x1

by

r � exp x � arctan
�
exp �x1 ÿ x0 ÿ x ���

and varies from zero to its limiting value rmax � �p=2� exp x �,
whereas x1 varies fromÿ1 to�1. Near the axis �r! 0�, the
metric (148) is Galilean:

ds 2 � dt 2 ÿ dr 2 ÿ r 2 dj2 ÿ dz 2 ;

and as r! rmax � �p=2� exp x � it becomes of a Kasner type
[24]:

ds 2 � �rmax ÿ r�4=3 exp
�
ÿ 4

3
x �
�
�dt 2 ÿ dz 2� ÿ dr 2

ÿ �rmax ÿ r�ÿ2=3 exp
�
8

3
x �
�
dj2 : �149�

5. Concluding remarks

At the critical point (143), the order parameter f of the global
string vanishes. It becomes evident that in the Abelian Higgs
model with potential (3) not only theKasner singularity at the
bound r � rmax [38] but also the curvature of the entire metric
(148) is generated by the vacuum which is `spoiled' by the fact
that the potential V�f� stimulating spontaneous breaking of
symmetry does not vanish outside the string. The deviation of
the limiting value of the order parameter from unitymay have
major cosmological consequences because it is equivalent to
the appearance of a nonzero cosmological constant in the
Einstein equations.

The hypothesis of cosmic `censorship' [39] forbids the
development of bare singularities from regular original states.
The formation of global strings and supermassive gauge
strings in the early Universe can be reconciled in a natural
way with the cosmic censorship hypothesis by assuming that
the original state of nonbroken symmetry was not a regular
state.

The author would like to thank V A Rubakov for his
constructive critical comments.
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