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Abstract. The evolution of large clusters exposed to a super-
intense ultrashort laser pulse is considered. Cluster excitation
results from the interaction of its electron subsystem with the
laser field. Multiple ionization and X-ray emission followed by
explosion in clusters irradiated by a laser field are investigated.
The increase of the electron temperature in this process and of
the charge of the cluster ion are discussed. The reabsorption of
photons in such a plasma is found to be relatively small. The
optimal conditions are analyzed for efficient absorption of laser
radiation by large clusters. This absorption occurs on the sur-
face of the cluster only. The review is done of the works devoted
to X-ray emission and generation of high harmonics of the
incident radiation from a hot cluster ion. The optical density
of the cluster plasma is found to be relatively small for reso-
nance photons of multiply charged atomic ions produced inside
the cluster. Expansion and decay of the cluster during and after
the laser pulse are discussed.
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1. Introduction

The exposure of large clusters comprising several thousand
atoms or molecules to the field of an ultrashort superintense
laser pulse (about a hundred femtoseconds long or some 30
periods of laser field) produces highly excited matter [1, 2].
The heating of conduction electrons in the case of metal
clusters (or primary ionized electrons in the case of clusters of
inert gas atoms) on the one hand, and the absence of a fast
heat sink mechanism like that in an ordinary plasma on the
other, allow the achievement of a state of much greater
excitation of the electron subsystem as compared with the
excitation of isolated atoms and molecules. In this case
atomic ions remain practically unheated. Following the fast
initial multiple ionization, for the rest of the duration of the
laser pulse, the matter of the cluster ion is an ideal plasma
composed of electrons and multiply charged atomic ions. The
evolution of a cluster in a laser field was studied both
experimentally [3, 4] and theoretically [5, 6] using a variety
of numerical and analytical methods.

We shall consider models of cluster plasma that allow
analysis of the properties of this system in the course of
generation of dense plasma with a laser pulse. These models
describe heating of the cluster, when the mean energy of the
electron (that is, the electron temperature 7) increases to a
few keV. Then collision processes become very important.
Electron—electron collisions may result in a Maxwellian
distribution with a certain relation between the mean
thermal energy of electrons, 37/2, and their mean vibra-
tional energy U, = F?/40” in laser field, with the former
quantity being either greater or smaller than the latter. Notice
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that here and further we shall use, as a rule, the Hartree
atomic units: m, = e = h = 1. The electron temperature T
increases until the expansion of cluster ion becomes signifi-
cant.

Exposure to a laser pulse, apart from heating the
electrons, leads to some of the electrons leaving the cluster,
either forced out by the field of the laser pulse itself or by
thermal evaporation from the cluster surface. Accordingly,
the charge Z' of the cluster ion increases throughout the
duration of the laser pulse. Later we shall give a simple
relationship between the growth of the electron temperature
T and the cluster ion charge Z'.

Straightforward estimates confirm that the cluster plasma
is ideal. The condition of ideality is written as

NZ3 < T3,

where N is the concentration of atoms in the cluster, Z is the
mean charge of an atomic ion within the cluster (not to be
confused with the cluster charge Z'!), and T is the electron
temperature. When the electron temperature is high, this
inequality is usually satisfied, notwithstanding the high
density of cluster plasma (including metal clusters, whose
density is the same as that of liquid metal; see Table 1). For
example, for clusters of sodium atoms (Z = 11 when the atom
is completely stripped) and T =1 keV we have
NZ3/T3 ~ 1074,

Excited multiply charged atomic ions within the cluster
emit X-radiation. We shall demonstrate that the share of this
radiation in the energy balance of a cluster in the heating is
negligible. The power of radiation emitted by a cluster is
calculated. However, spontaneous and induced transitions in
multiply charged ions occur within times that decrease
quickly as the charge of the atomic ion increases. These
processes may considerably change the balance between the
atomicionsin a cluster. Therefore, an important role in such a
system may belong to the resonant reabsorption of this
radiation by other atomic ions within the cluster, which
affects the time of radiation transition. We shall study this
role as well.

2. Staging of experiments

Let us discuss the typical experimental setups used for
studying the interaction of clusters with short powerful laser
pulses. Most of the experiments were carried out with clusters
of atoms of inert (rare) gases or simple diatomic molecules.
The number of particles in the cluster varied up to one million.
Some experiments were done with metallic clusters containing
from a few to a thousand particles. The size of clusters
depended on the technique used for their production.

Let us describe here the methods of generation and
measurement of clusters of inert gas atoms. The typical
experimental installation is represented schematically in
Fig. 1. The cluster beam is formed as the gas expands during
its flow through a supersonic nozzle into vacuum. The
diameter of the nozzle is about 0.5 cm. The gas upstream of
the nozzle was maintained at a controllable pressure of
several tens of atmospheres and room temperature, and
passed through the nozzle into the high-vacuum chamber.
The quasi-stationary nuclei in the supersonic gas jet were
removed in front of the high-vacuum chamber by means of
the skimmer a few millimeters in diameter (in some experi-
ments the skimmer was not used). The feasibility of cluster
formation from atoms depends on the value of the empirical

Figure 1. Typical experimental configuration for production and measure-
ment of clusters: / — nozzle, 2 — skimmer, 3 — collimator, 4 — cluster
beam, 5 —cathode, 6 —electron beam, 7— Faraday cage, §—anode, 9 —
slit, /0 — X-ray spectrograph, // — X-rays, /2 — amplifier, /3 — data
processing.

dimensionless Hagena parameter [7, 8]

d \08
r=k L
tan o 3%

Here d is the diameter of the critical cross section of the
supersonic nozzle measured in um, 2« is the flare angle of the
nozzle, p is the pressure in mbar, k is the empirical coefficient
different for diverse atoms (for example, k = 2900 for
krypton, and k = 180 for neon). Finally, Ty is the initial
temperature of the gas. Clustering starts when the Hagena
parameter is I' > 300 [9, 10]. For I' > 50,000 each cluster
contains as many as 10,000 atoms and more.

The diameter of the outgoing cluster beam is from 0.5 to
2.0 cm. Measurements of clusters were made leaning upon
Rayleigh scattering. The range of powers and wavelengths of
laser radiation used in the experiments is very wide: from 1013
to 1020 W cm~2, and from 248 to 800 nm, respectively. The
duration of the laser pulse varied from several tens of
femtoseconds to tens of picoseconds.

The first series of experiments was carried out by the
Rhodes team [11, 12]. They used laser radiation with a peak
intensity from 10'¢ to 102° W cm~2, a wavelength of 248 nm,
and a pulse length of about 270 fs. The focal diameter was
about 0.3 mm. Laser radiation was focused in the region of
clustering 2 mm below the exhaust valve (no skimmer). The
number of particles in the cluster ranged up to about 30.
Clusters were made up of atoms of inert gases: xenon,
krypton, and argon.

Similar experiments were carried out with an alternative
source of laser radiation with an intensity of 10! W cm~2, a
wavelength of 800 nm, and a pulse length of 90 fs[13, 14]. The
focal diameter was about 0.6 mm. The main purpose of the
experiments consisted in studying the X-rays generated (see
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Section 7) by the radiative transitions in multiply charged
atomic ions in the clusters. The possible use of UV and visible
laser radiation for producing high-power X-ray emission was
discussed (see also Ref. [15]).

The next group of experiments [3, 6] is distinguished by its
especially deep treatment. Clusters made up of xenon and
krypton atoms, and of CO, molecules were studied. The
results include the energy spectra of ionization electrons and
atomic ions, data on the generation of harmonics, and the
efficiency of laser radiation absorption by clusters. The length
of the laser pulse comprised about 1 ps, the wavelength
800 nm, and the peak intensity from 10'% to 107 W cm™2.
The clusters contained from 103 to 10° atoms. The fraction of
atoms building up clusters in the gas jet was as large as 10%.
The region of interaction of the laser beam with the clusters
was situated 20 cm downstream of the exhaust valve, and
measured about 1 mm.

The main attention in Refs [16, 17] was focused on
measuring the energy spectra of ions after the explosion of a
cluster, and on the X-ray emission spectra. Like in the
previous set of experiments, the region of interaction was
removed from the nozzle, but the parameters of the laser pulse
were much different. First, a neodymium laser was used with
a wavelength of 1064 nm, a pulse length of 30 ps, and an
intensity of about 10'* W cm~2. Then the experiments were
done with a titanium—sapphire laser (wavelength 790 nm),
with the pulse length varying from 60 to 200 fs, and the peak
intensity ranging from 106 to 10’8 W cm 2.

A number of experimental works [18—20] dealt with the
interaction of metal clusters with high-intensity laser radia-
tion. The lasers had intensities up to 10'® W cm™2, a
wavelength of 800 nm, and pulse lengths from 100 fs to 1 ps.
The number of particles in the cluster varied from 20 to 1000;
clusters were made up of atoms of platinum, silver and lead.
The yield of multiply charged ions as a function of the length
of a laser pulse was measured, while the energy of the pulse
was kept constant. The yield exhibited a maximum at a
certain pulse length.

3. Properties of metal clusters

One of the key topics of this review is the evolution of large
metal clusters in the field of a superintense laser pulse. The
main properties of such clusters are described in the reviews
[21—25]. In metal clusters, like in common liquid metal, the
valence electrons are to a large extent delocalized. In the
case of alkaline elements, the only valence s electron is
completely delocalized. The description of the structure of
large metallic clusters, as a rule, is based on the so-called
Jellium model. In this model, the cluster is a spherical liquid
drop (whose size is small compared with the wavelength of
laser radiation) which has a sharp surface boundary for
positive ions. The ions are uniformly distributed in the bulk
of the cluster. The cloud of conduction electrons goes
slightly beyond this boundary, the less so the bigger the
cluster. As already indicated, the electron gas in the cluster
may be quite safely regarded as ideal. Accordingly, one may
apply the known bulk and surface parameters of liquid
metals to a large cluster. Of course, such an approach does
not allow the description, for example, of properties related
to the shell structure of small clusters.

Let R be the radius of cluster in such a model of a liquid
drop. The ionization potential of a large neutral cluster equals
the work function W for the corresponding metal. If we are

dealing with a cluster ion with the charge Z’ > 1, then to the
work function we must add the Coulomb energy of the
electron detachment. Assuming the excess charge Z’ of the
cluster ion is distributed over the surface of the cluster, this
energy equals Z’/R (see the review [22]). Then the ionization
potential J of the cluster ion is given by a simple relation

Z/
Jz = W+?

(observe that when Z' is rather small, ~ 1, the Coulomb
energy is different from this estimate. For example, the
Coulomb energy for the charge Z' = 1, distributed over the
surface of the cluster ion, amounts to 1/2R).

By assumption (which will be verified later), the fraction
of escaping electrons is small, i.e.

VARSI

where n’ is the total number of free electrons inside the
cluster. In addition, in the framework of the model of a
liquid drop we suppose that the cluster density is the same as
that of liquid metal. Therefore, the radius of the cluster is

1/3
R:rwn/ ,

where rw is the Wigner— Seitz radius, and n is the number of
atoms in the cluster. At the beginning of the laser pulse, this
number coincides with the number of conduction electrons n’
(for alkali atoms). In the course of the laser pulse, the number
of free electrons n’ grows considerably because of the internal
ionization of atoms in the cluster.

The Wigner—Seitz radius in the drop model can be
expressed in terms of the density p of liquid metal and mass
M of an individual atom:

30\ 13 3 \!/3
rw=|-— =|— .
W (4Tcp) (4nN)
Here N is the atomic concentration in the cluster.
Table 1 presents the values of the work function W, the
Wigner —Seitz radius rw, the concentration of atoms N, and

the Fermi energy Er of valence electrons for a number of
univalent metals at melting point.

Table 1. Basic parameters of liquid metals, used for description of clusters
[26, 27].

Metal Z N,102cm™3 Ep,eV  rw,A  1/(rwEp) W,eV
Li 3 4.44 4.72 1.75 1.8 2.9
Na 11 2.44 3.23 2.14 2.2 2.75
Al 13 5.33 11.63 1.65 0.75 4.28
K 19 1.27 2.12 2.65 2.7 2.30
Cu 29 7.50 7.00 1.47 1.4 4.65
Mo 42 5.86 8.73 1.60 1.0 4.6
Ag 47 5.20 5.48 1.66 1.6 4.26
Cs 55 0.84 1.58 3.05 3.1 2.14
A\ 74 5.80 8.67 1.60 1.0 4.55
Au 79 5.29 5.51 1.65 1.6 5.1

From Table 1 it follows that the Coulomb electrostatic
energy 1/rw of interaction of nearest neighboring electrons
with one another is comparable with the Fermi energy for
conduction electrons. Accordingly, the exchange interaction
which is responsible for the establishment of the Fermi level
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and the direct Coulomb interaction between electrons are of
the same order of magnitude. Because of this, the electrons in
the cold cluster form an essentially quantum subsystem.
However, the role of exchange effects decreases as the charge
of the cluster ion and the concentration of free electrons both
increase.

4. Structure of large clusters

4.1 Cold clusters and cluster ions

Kresin [21] proposed using the numerical Thomas— Fermi
model for the description of the quantum-mechanical elec-
tron distribution in cold metallic clusters (7' = 0). This model
does not reflect the shell properties of small clusters. The
dynamics of interacting electrons are most commonly
described with the Kohn—Sham mean field model [22, 23].
This model is validated by the theory of time-dependent
density functional [24, 28], whereby the calculations are
carried out in the approximation of time-dependent local
density [29]. It is also employed for analyzing the collisions of
clusters with high-energy ions using the quasi-classical
representation of the electron subsystem, based on the
Vlasov equations [30, 31]. The emission of electrons by
metallic clusters for processes of fast excitation is considered
in Ref. [32].

4.1.1 Neutral clusters. We start with the description of large
spherical cold neutral clusters (7 =0). In this case the
Thomas— Fermi model can be simplified [33, 34]. The jellium
model mentioned above gives the distribution of positive ions.
We denote the radius of the ion sphere by R, and the number
of atoms in the cluster (or ions in the case of univalent metallic
clusters) by n > 1. The Poisson equation for the electrostatic
potential ¢(r) for r < R — that is, within the ion sphere — is
written (recall once again that we are using the system of
Hartree atomic units, me = e =h = 1) as

_ o 2dp_ 4

3n
32
T dr2 rdr 3m (20) ’ (1)

Throughout most of the ion sphere (with the exception of
narrow region beneath the surface) this potential is constant,
@ = ¢,. Accordingly, there is no electric field here. The
constant ¢, can be found from Eqn (1) by equating the
right-hand side to zero:

~ O 9m)*? o
P0 = TR T 27,

since R = rwn'/?, with the Wigner—Seitz radius rw being

equal to about 1 a.u. (see Table 1). Hence, the value of the
potential ¢, is also of the order of 1 a.u. For example, for a
cluster of sodium atoms we get ¢, = 3.1 eV.

Now we seek the solution of Eqn (1) with r < R in the
form

@(r) = @ [1 —a <%) k

Here a ~ 1 and k > 1 are the constants whose values will be
deduced shortly. Note that this solution differs from a
constant ¢, only near the surface of the cluster. Substituting
solution (3) into Eqn (1) and taking Eqn (2) into account, we

3)

find the value of constant k:

3\2/3
K =(=) Ri'?~0452Rn'?> 1. (4)
1'[2

The electron cloud goes slightly beyond the ion sphere.
We seek a diminishing solution for the electrostatic potential
@ atr > R in the form

o(r) = %b(R)l. (5)

r

Here b ~ 1 and / > 1 are the constants which will be defined
below.

Matching the potentials (3) and (5) together with their
derivatives at r = R gives us two equations for finding the
constants:

a+b=1, ak=>nl. (6)
The additional equation follows from the condition that the
number of electrons in a neutral cluster equals the number of
ions n:

1

n= QJO (2@)3/2r2 dr. (7)

Substituting Eqns (3) and (5) into (7), we expand the
integrand in a Taylor series for r < R:

3/2 ( (R k
() o
0
0 3172
-I-J b3/2(1—1?> rzdr}. (8)
R

Taking the simple integrals and using Eqn (2) and inequalities
k,l > 1, we rewrite this equation in the following form

9al = 4b3k . )

From Eqns (6) and (9) it follows that the constant a is
found from the solution of the transcendental equation

9612 2/5
— =1.
a+(4)

Solving this equation, we find the universal values of the
constants @« = 0.372 and, according to Eqn (9), b = 0.628.

To calculate the characteristic values of constants k and /,
we consider a typical example of a cluster of n = 103 sodium
atoms. For this purpose we use the data from Table 1: a
Wigner —Seitz radius rw = 2.14 A, and a cluster radius
R =rwn'? =99 A = 188 a.u. According to Eqn (4), we find
that k = 62.77, and from Eqn (6) one gets / = 37.16. Thus, we
may conclude that the distribution of electrons very closely
follows a stepwise pattern, and is practically the same as the
distribution of ions.

Indeed, the difference between the electrostatic potential
¢ inside the cluster and the constant ¢, is only significant
within a small distance J from the cluster surface. According
to Eqn (3), we have

(10)

R R
0=R—r~=—=

— < R.
k 63<
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Outside the ion sphere, the electron concentration rapidly
decreases. The distance ¢’, at which the potential ¢(r)
declines practically to zero, can be found from Eqn (5):

R R
5/:”—RN7:ﬁ <R

When the number of particles is large, the Thomas— Fermi
model becomes the model of a liquid drop with a sharp
boundary.

4.1.2 Cluster ions. Let us consider a cold cluster ion with the
charge Z’. Solutions (3) and (5) keep the same form, but the

constants are different. The number of electrons is now
n — Z', and the condition (8) is replaced by

7' = (2(/70)3/2 {r {1 — 3_a (L)k}ﬂ dr
To3m 2 \R
00 31/2
+J b3/2<§> rzdr} .
R r

Taking the integrals, in place of Eqn (9) we get the equation

z (1)

9al = 4b3?k + 2ki =

n b
which must be solved jointly with Eqn (6). Eliminating b and /,

we arrive at the transcendental equation for finding the
constant « [in place of Eqn (10)]:

92 Z'ak\*?
+(—— ) Y

4 2n (12)

We consider the same example of a cluster of n = 10°
sodium atoms, but the degree of ionization of the cluster ion
this time is Z’/n = 0.05. According to Eqn (4), we again have
k =62.77. Then from Eqn (12) it follows that a = 0.723.
Accordingly, b = 0.277 and / = 164. We see that the ‘tail’ of
electron concentration outside the cluster is much smaller
compared to a neutral cluster with the same number of atoms.
From Eqn (12) it also follows that the electron ‘tail’ outside
the cluster disappears at a certain (relatively small) degree of
ionization of the cluster ion Z’/n = 0.07 altogether. Then
a=1,and b =0.

On the whole, one may conclude that the electron ‘tail’
outside the cluster decreases with increasing number of atoms
n in the cluster and with increasing charge Z' of the cluster
ion.

4.1.3 Time-dependent Thomas—Fermi approximation. The
time-dependent Thomas—Fermi approximation as applied
to three-dimensional cluster dynamics was developed in Ref.
[35]. We shall discuss a simplified version of this approxima-
tion.

Consider natural oscillations of the electron cloud within
the cluster. We use the same method as was applied in Ref. [36]
when calculating the static polarizability of atoms and ions in
the Thomas—Fermi approximation. We define a small
monochromatic perturbation of the electric potential
@ — @y +0p, d¢p < @y. Then the first iteration of the
Thomas—Fermi equation (1) for r < R becomes

4
AB(P:E\Q(PO d¢. (13)

Here

2
w
=1 — p 0
o=1- () <

is the dielectric constant created by free electrons of the
cluster, and Q is the eigen-frequency. The plasma frequency
wy is given by the known relation (here we assume that the
field of laser radiation is homogeneous throughout the entire
cluster)

wp = \/4nN, ,

where N, is the electron concentration.

Observe that the appearance of the permittivity of the
cluster in the electrostatic Poisson equation (13), in contrast
to Eqn (1), is due to the fact that the quantity d¢(r, ) is treated
as an external perturbation with respect to the stationary
distribution of charges in the cluster, which imparts dielectric
properties to the material of the cluster.

Introducing the notation

4
K= —a\/Zq)O >0,

we rewrite Eqn (13) in spherical coordinates for r < R:

(14)

(15)

e\ .,

%8p 2 038¢ 1 0/,
2 i mme@(sm

The solution of this equation is sought in the form of dipole
oscillations (for r < R):

d3¢(r,t) = u(r)cosOcos Qt. (17)

Substituting Eqn (17) into (16), we get the ordinary differ-
ential equation in the function u(r):

d*u 2du 2u

Qdu 2du  2u o,
dr?  rdr 2 keu. (18)

Its solution, regular at the origin of the coordinates, has a
simple analytical form

u(r) = A(smkr_ coskr) . r<R.

ki? r (19)

Here A is an arbitrary constant that defines the amplitude of
natural oscillations.

Now we find the solution outside the ion sphere (for
r > R). The dipole solution of Laplace equation

%8¢ 2 08¢ 1 0 (. 08¢
o *?ﬁﬂzsmm(s‘“@@)—o’ (20)
regular at infinity, takes the form
B
d¢(r,t) = — cosfcos Qt. (21)

72

Here Bis also a constant.
The potential 3¢ must be continuous at the boundary of
the ion sphere, »r = R. From Eqns (19) and (21) it follows that

(sin kR cos kR) B

wRT TR )R @)
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The second boundary condition requires continuity of the
normal projection of electric displacement vector atr = R —

that is, one obtains
cos kr 2
_) __p2t
r=R

d /sinkr
Ag & (SET .
¢ ( kr? r R3

23
dr (23)
Dividing Eqn (23) by Eqn (22) term by term, we eliminate the
constants 4 and B. This gives us the implicit relationship for
the eigen-frequency Q of dipole oscillations of the cluster
electron cloud in the Thomas — Fermi approximation:

0=yl +Z(chotkf -1 .
(kR)

(24)

In the limit of a very small cluster kR < 1, from Eqn (24)

we get
@p

Q 7’
which is the well-known Mie frequency of surface dipole
oscillations of a small (compared with the wavelength ¢/Q)
metallic sphere. From Eqn (24) it follows that, as the radius R
increases, the frequency of natural oscillations decreases in
comparison with the Mie frequency. In the opposite limit of a
very large cluster (kR > 1), after some algebra from Eqn (24)
we find

(25)

Wp

J1+031(R/?

Here we introduced the so-called Thomas— Fermi screening
length

l= (2400)71/4-

Q= (26)

If R/l <1, then from Eqn (19) it follows that u(r) ~ r for
r < R.Thus, in this limit the quantum screening is absent, and
the electric field strength inside the cluster is uniform. This is
the classical surface dipole oscillations of an electron cloud as
a whole (without change of density) at the Mie frequency
(similar to Goldhaber—Teller oscillations in the case of
nuclear dipole resonance). Solutions (19), (21) in this limit
coincide with the solution obtained in the classical random
phase approximation [21]. The Thomas— Fermi screening is
important when R// > 1. Obviously, it cannot be obtained in
the classical random phase approximation [21].

Equation (24) also admits a trivial solution Q = w,
(k*R? — —00), which corresponds to classical bulk plasma
oscillations (with density variations). Similar oscillations
known as Steinwedel —Jensen oscillations in atomic nuclei
are only realized in superheavy elements.

Observe that in the case of a stepwise distribution of
electron concentration, the classical random phase approx-
imation [21] yields two frequencies: Q = wp/\/§ and Q = w,.
However, the dynamic polarizability of a cluster for a
stepwise electron concentration distribution does not exhibit
a resonance at Q = w,,, because the corresponding oscillator
strength is zero [21]. According to our quantum approach,
based on the Thomas—Fermi approximation, there also are
two modes, but the lower frequency decreases with respect to
the Mie frequency Q = wp/\/§ as the size of the cluster
increases, because of the effect of Thomas— Fermi screening.

Consider a typical example of a cluster of n = 40 sodium
atoms. In this case R//=9.5> 1. From Eqn (24) it follows
that Q = 0.18wy,. Thus, the frequency of natural oscillations
of metallic clusters is lower than the Mie frequency
Q= wp/\/§ For sodium, the plasma frequency equals
wp = 5.80 eV, and therefore Q2 = 1 eV. The true value of the
eigen-frequency, examined experimentally, is somewhat
higher. This is attributed to the fact that the calculations
disregarded the electron distribution diffusivity. The diffusive
boundary of the electron cloud weakens the effect of
Thomas—Fermi screening. Taking the diffusivity into
account is only possible with numerical calculations.

So we may conclude that the quantum metallic cluster is
essentially different from a small metallic sphere: the eigen-
frequency of surface oscillations of the cluster is lower than
the Mie frequency because of Thomas— Fermi screening.

4.1.4 Dynamic polarizability of a cluster. In the preceding
section we looked into the natural dipole surface oscillations
of the electron cloud in a metallic cluster. Now we shall
consider induced dipole oscillations caused by the external
electromagnetic (laser) field of strength Fcos wt. In place of
Eqn (21), the solution of differential equation (20) outside the
ion sphere (for » > R) takes the form

M?) (27)

dp = F[—r—l——] cosfcoswt,

r

where o(w) is the dynamic polarizability of the cluster.
The solution of Eqn (16) is similar to solution (19), but this
time with a fixed constant 4 and with the replacement Q — w:

in k. kr
dp=4A4 ST coskr cos 0 cos wt .
kr? r

According to (15) we have

40y

e e —

(@} — »?)/?

and/ = (2%)7'/4 is the Thomas — Fermi screening length.
Matching together the electric potentials at r = R gives us

the equation

sinkR coskR o(w)
A(Se - ) — r| - 5

(28)

Next we match the normal components of the vector of
electric displacement:

d (sinkr coskr 20(w)
Ao —(— -2 =—F(1 .
¢ ar ( kr? r >,,:R < + R3 )

(29)

Dividing (28) by (29) term by term, we eliminate F and 4 and
find the dynamic polarizability

3(1 —kRcotkR) 2] . (30)
2(¢ = 1)(1 —kRcotkR) — ¢(kR)

a(w) = R? [1 +

As ought to be expected, the dynamic polarizability goes
to infinity at eigen-frequencies given by Eqn (24). Equation
(30) is an extension of Eqn (25) from Ref. [21] with due
account for Thomas— Fermi screening.
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Let us consider some extreme cases of the general
expression (30). First we take the limit of very small clusters
R < [ (no Thomas—Fermi screening). In the high-frequency
limit w > w, from Eqn (30) we find

4R> 1 (w,)°
_p3 )
o) =R\ 15 3<w) } (31
If R/l < wp/w < 1, then from Eqn (31) it follows that
n

This agrees with the well-known high-frequency limit of
dynamic polarizability [26] for n = (4nR3/3)N. free elec-
trons of the cluster.

If w,/w < R/l < 1, then Eqn (31) predicts that

a(w)—iR3<§)2 <R. (33)

15m /

In the static limit @ — 0, ¢ — —oo, from Eqn (30) we get

a(0) = R3.

This is the well-known classical expression for the static
polarizability of a small metallic sphere. Of course, if we
take into account the diffusive nature of the electron cloud,
then the static polarizability will increase compared with this
value.

Finally, according to Eqn (31), we have o = 0 when the
frequency equals

(34)

Figure 2 shows the dynamic polarizability «(w) as a function
of frequency at R/l = 0.5 (weak Thomas— Fermi screening).
In this limit, the resonance frequency is equal to the Mie
frequency wp/\/§, in accordance with the results of the
preceding section.

a(w)/R> |

1.5 -

1.0

0.5

—0.5 +

-1.0

Figure 2. Dynamic polarizability of a small cluster (R = 0.5/) in units of
the cube of the cluster radius vs. the ratio of the laser field frequency to the
plasma frequency. Mie resonance is also shown.

Further we shall consider the limit of large clusters,
R/I> 1, which corresponds to all real metallic clusters with
the number of atoms n > 1. From Eqn (30) it follows that
near the resonance frequency w = Q [see Eqn (26)] the
dynamic polarizability exhibits a resonance behavior

const
QP — w2

a(w) = (35)

The static polarizability in all cases is R?.

The approximation of time-dependent local density,
which is more complicated compared with the Thomas—
Fermi approximation, was used for expressing the optical
response in silver clusters [37]. The excitation energy of
surface plasma oscillations was found to be about 4 eV, in
agreement with the experimental data [38].

In Ref. [39], the imaginary part of the dynamic polariz-
ability for a cluster containing about 100 atoms was
calculated. The treatment was based anew on the time-
dependent local density and the random phase approxima-
tion.

As the cluster expands after being acted on by a laser
pulse, the frequency of surface plasma oscillations decreases
with time. As shown in Ref. [20] in the framework of a
random phase approximation, over 350 fs after the onset of
expansion of a cluster comprizing 18 platinum atoms, this
frequency decreases down to 1.5 eV, and as a result the
resonance is attained with the frequency of the exciting laser
pulse (Fig. 3).

Plasmon energy, eV

100 200 300

Expansion time, fs

Figure 3. Plasmon energy vs. time for an expanding cluster consisting of 18
platinum atoms with the charge Z’ = 9 [20]. The horizontal straight line
indicates the energy of a photon of laser radiation.

Observe that the time-dependent Thomas— Fermi
approximation can be derived from Vlasov equations by
integrating the distribution function with respect to
momenta [24]. As a result, the hydrodynamic equations of
the electron concentration N,(r, t) and the local field of mean
electron velocities v = Vi (where ¥ is the velocity potential)
are written in the form

ON,

aze +div(Nev) =0, (36)
oy 1, SH
E+§(Vl//) +6Ne—0. (37)
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Here H is the functional of total energy in the approximation
of local density.

4.2 Hot cluster ions

Recently, the Thomas — Fermi model for an atom at arbitrary
electron temperature was studied in detail by Pert [40].
Instead of using the stepwise distribution corresponding to
zero temperature, the calculation of electron number density
is based on the Fermi— Dirac distribution. In the general case,
however, such calculations can only be numerical. Here we
are going to consider the limit of high temperatures 7'> Ef,
which is realized when the clusters are exposed to the field of a
superintense laser pulse (the values of the Fermi energy Ef are
compiled in Table 1).

In the case of a hot cluster ion with n > 1 ions and n — Z’
electrons (where Z' is the charge of cluster), in accordance
with the results of preceding section we start with the
homogeneous bulk distribution of the charge in the cluster.
Then the electric potential inside the ion sphere (r < R) can be
found from the Gauss electrostatic law

2n

o(r) = 0(0) =5 pr’. (38)
Here p = Z'/(4nR?/3) is the homogeneous charge density in
the cluster ion. The potential (38) decreases on the cluster
surface at r ~ R. Calculating the electron number density
according to the classical Boltzmann equation (where 7'is the
electron temperature)

@(l‘)}

Nelr) ~ exp [T

we find that a redistribution of electrons occurs: their
concentration decreases at the cluster surface and accord-
ingly increases in the bulk. Consequently, the density of the
combined charge p of electrons and ions decreases inside the
cluster and increases at its surface. This equalizes the
electrostatic potential. As a result, one may suggest that the
potential is a very smooth function of the radial coordinate r
with the exception of a narrow region near the cluster
boundary, where the potential falls off rapidly. The self-
consistent electron distribution is given by the Poisson
equation. Let us calculate this distribution under the assump-
tion that Z’ < n, i.e. the degree of ionization of the cluster is
low.
For r < R, the Poisson equation reads as

d%e 2dp 3

adoe 249 S =P\
dr2+r dr ry {exp( T ) 1]'

Here, the constant quantity ¢, is the analog of the chemical
potential. We express the boundary conditions in the form

(39)

dp, = 7 dp, =~ Z
Wipooy=0, om=2. We-m--Z.

dr
(40)

Assuming that the cluster is large, we disregard the difference
between the radii of electron and ion spheres. For r > R, the
solution is the Coulomb potential of the cluster ion with the
charge Z":

The number of electrons inside the cluster can be
expressed in terms of the potential, thus giving

R —
n—2' :;J exp<w>r2dr.

ol T (41)
This expression also follows from Eqn (39), if we multiply it
by % and integrate with respect to r with due account for the
boundary conditions (40). By this means, condition (41) is not
new, since it follows from equation (39) and boundary
conditions (40).

To simplify our calculations, we introduce the notation

r

X=g o(r) E%lp(l)

Then equation (39) becomes (for x < 1)

v 2y 2 g2 0] 1)

RT (42)

Here Y, = (R/Z")p,. The boundary conditions (40) are
written in the form

Y'0)=0, yl=1, y'(1)=-1 (43)
The solution for x > 1 is given by
1
TOEES (44)

Obviously, we have y(x) ~ 1 everywhere over the region of x
variation.

Now we consider the boundary layer near the cluster
surface, x = 1. The right-hand side of Eqn (42) can be
expanded in a Taylor series, because in the neighborhood of
x = 1 one finds

20 ] < 1.

Then we get a simple linear differential equation

l////Jr%lp/:%[lﬁ(x)*l//O]'

We introduce a new function
D(x) = (x) — ¥

and substitute it into the previous equation:

2 3n
'+ =—— .
+x TR

(45)
It should be recognized that the inequality 3n/RT > 1 always
holds for large clusters. We seek a solution of Eqn (45) in the
form

o sinhkx

&(x) =B .

X

The factor k is given by

k:,/i”.
RT
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From boundary conditions (43) it follows that @'(1) =
W'(1) = —1. Therefore, we have for the constant

B= —% exp(—k) <1

and the function @ is small compared to unity. Hence, one
obtains

2 inh
W) = Yo — 2 exp(—k) TIEY
Since (1) = 1, from the previous equation it follows that
1
=1+-.
Yo=1+7¢

We write out the final solution as

Y(x) =1 +% {1 — 2exp(—k) sinhkx} .

X

This solution satisfies all three boundary conditions in Eqn
(43). The electric potential that complies with all the
boundary conditions for » < R takes on the form

o(r) = %/{1 +% {1 — 2Rexp(—k) M]} . (46)

One may conclude that the electron distribution inside the
cluster is quasi-homogeneous with a high accuracy, and
deviates from such only near the cluster surface.

Let us verify condition (41) for the total number of
electrons. Substituting Eqn (46) into Eqn (41) and expanding
the integrand in a Taylor series, with due account for the
inequality k£ > 1 we get

R —
n—2' :éj (] +7q)(r)T %>r2 dr
0

! _ R
:n_wj sinh (%" v ar
kTr%V 0 R

Taking the integral, we arrive at
3Z'n

li
N ST

n—2",
which ought to be expected.

The distribution of electron concentration inside the
cluster is

o\r)— @
Ne(r) :4”%\/ exp{ ()T 0}
_ 3n 27" exp(—k) . . (kr
aPryE [1 T MR

The electron concentration at the cluster surface itself
(r = R) assumes the form

_ 3n 1 A
~ 4nR3 kTR) "

As this takes place, the quantity

Ne(R)

Z/ Z/Z

7R~ \ R <

For example, with T=1 keV, n=10%, Z' =10% and
R =100 A we find that this quantity amounts to 0.22.

Earlier we assumed that the spherical shape of the cluster
is not affected by the laser pulse. This is true, however, only in
the case of large clusters. Small clusters built up of polarizable
particles in the field of laser radiation may form other
equilibrium configurations, whose shape will depend con-
siderably on the frequency of radiation [41].

5. Tonization of clusters

5.1 Internal ionization

For analysis we take a large cluster comprizing 10 atoms.
The kind of atoms incorporating into the clusters exposed to
superintense laser radiation is not important. Take, for
example, sodium atoms (Z = 11), and a linearly polarized
laser radiation field with peak intensity 7= 10> W cm™2,
radiation frequency w = 1¢V, and pulse length ¢ = 50 fs. The
radius of such a cluster is R = 100 A.

At first the laser pulse induces dipole excitation, which
causes the center of mass of the cloud of valence electrons to
oscillate about the ion sphere. These oscillations are surface
plasma Mie oscillations (see previous section). The period of
such oscillations for the cluster of sodium atoms is 1.5 fs. Very
soon, however, the collective oscillations are perturbed
because of the ionization of cluster atoms. The decay of the
surface plasmon is similar to Landau damping. For clusters of
50—-1000 atoms, the time of such relaxation of plasmon is
about 10 fs. As the number of atoms # in the cluster further
increases, this time decreases as n~!/3.

The collisions of electrons with one another occur so often
that there are no temperature gradients or other gradients in
the cluster. The electron temperature in the cluster during the
laser pulse may be as high as 1 keV (see the next section). The
temperature field is uniform because of a good heat conduc-
tion. The energy distribution of electrons is isotropic and is
described by the classical Maxwellian distribution. The
regions where the Maxwellian distribution holds are schema-
tically indicated in Fig. 4. Here, vy = VT is the thermal
velocity of electrons, and vr = F/w is the field velocity. The

ur

0 vp

Figure 4. Ranges of applicability (hatched) of the Maxwellian distribution
for the case Z = 11 [42]. The abscissa axis shows the field velocity of
electron oscillations in the laser field; the ordinate axis shows the thermal
velocity of electrons.




910 V P Krainov, M B Smirnov

Physics— Uspekhi 43 (9)

Maxwellian distribution of electrons holds good for weak
laser fields, vy > vpv/Z, and for very strong laser fields,
vp > Zur [42]

The heating of an electron subsystem occurs mainly due to
elastic electron—ion collisions (inverse bremsstrahlung), and
because of other processes as well (see the next section). We
shall see that the atoms in a cluster are completely ionized
because of inelastic electron—ion collisions. Then the con-
centration of electrons becomes N. = ZN, whereas the
atomic number density for liquid metallic sodium is
N = 2.44 x 10*2 cm 3 (see Table 1).

The plasma in the cluster very soon comes to thermal
equilibrium, because the characteristic time between the
electron—electron collisions is small compared with the
length of the laser pulse. This time may be estimated as [43]

3T3/2

=—— ~1fs. 47
421 NeIn A (47)

‘CCC

HereIn A ~ 10is the typical value of the Coulomb logarithm.
Such collisions represent one of the damping mechanisms,
which bring the electron subsystem to the state of thermal
equilibrium.

In all the above estimates we assume that the cluster is a
small plasma sphere. Such an assumption is reasonable as
long as the cluster radius R is large compared with the Debye
screening radius rp. At T =1 keV, for the cluster of sodium
atoms the Debye length is about

T
4N,

In this section we consider the so-called internal ionization,
when the electrons leave their atoms but remain within the
bulk of a cluster. Internal ionization in clusters is mainly
caused by inelastic electron—ion collisions. The equilibrium
concentration N of different atomic ions with the charge Zis
given by the statistical Saha equation (if the equilibrium only
depends on collisions) [44]

) -

, 7\ 32 Es
(&) o=
Here, E,_; is the ionization potential of an atomic ion with
the charge Z — 1.

The condition of complete removal of electrons from all
atomic shells may be approximated by the expression
Nz = Nz_; = N/2, where Z is now the charge of an atomic
nucleus (Z = 11 for our case of sodium atoms). Then the
hydrogen-like ionization potential E, | ~ Z2/2, and the
condition of complete stripping of all electron shells becomes
(N. = ZN)

T\ 32 72
ZN = 2(%> exp<—2T*> .
In our case of sodium atoms, from this equation we get
T* =0.34 keV. Table 2 gives the values of temperature 7*

=45A.

I'p =

NzN.
Nz

(49)

required for complete internal ionization of atoms in different
metallic clusters, calculated according to Eqn (49).

In addition to inelastic electron—ion collisions, the
internal ionization may be also due to the above-barrier
ionization of atomic ions in the field of laser radiation.

Rhodes and colleagues [11, 45] suggested another
mechanism of internal ionization of clusters comprizing
inert gas atoms by the field of a superintense laser pulse. The
pulse produces multiple ionization of simultaneously one or
several valence shells (or the entire electron cloud of the atom
depending on the pulse intensity). This takes place near the
cluster surface, where the laser field is not shielded. The
resulting n free electrons are regarded as one quasi-particle
with the mass nm. and charge ne, because it is compact
enough compared with the distance to the nearest atoms in
the sufficiently loose cluster of atoms of inert gas. This quasi-
particle oscillates as a whole under the action of a laser field.
In the course of such oscillations it collides with the adjacent
atomic ions, and because of this the cross section of inelastic
collisions is n > 1 times greater than that in the case of
collisions of one electron. Further internal ionization of the
cluster occurs through stripping of the internal atomic
electrons by such a quasi-particle. This creates vacancies in
the internal electron shells of atoms, and produces hard X-ray
emission [12].

Tons with high multiplicity of charge (like Xe?** or Kr'8+)
are actually observed when clusters of inert gas atoms are
exposed to superintense laser radiation (with intensity of
order 10'> W cm~2) [46]. This is not much different from the
case of metallic clusters, since the initial ionization can be
caused directly by the field of laser radiation. Figure 5
illustrates the production of multiply charged ions up to
X620+.

Xet 4
6 2
> 15
RS 10
He*
M

| | | |
10 15 20 25 30

Flight time, ps

Figure 5. Time-of-flight spectrum of multiply charged cluster xenon ions
produced by a laser with wavelength 624 nm [46].

5.2 Ionization by inelastic electron—ion collisions
Complete internal ionization of all atomic shells of the cluster
discussed in the previous section takes a certain time, which

Table 2. Electron temperature T* required for complete internal ionization of atoms in a cluster, and the exponent u(T*) = Z2/2T*.

Atom Li Na Al K Cu Mo Ag Cs w Au
T*, keV 0.046 0.34 0.50 0.78 2.06 3.77 4.54 4.90 10.2 11.4
u(T*) 2.66 4.84 4.60 6.30 5.55 6.36 6.62 8.40 7.30 7.45
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must be less than the length of the ultrashort laser pulse. Let
us get some estimates for this time.

Multiple internal ionization is caused by inelastic colli-
sions of hot electrons with multiply charged cluster ions. The
cross section of this process (in atomic units) is given by the
well-known semiempirical Lotz formula [47]

In(E/Ey)

o=217q TE
z

(50)

Here, E is the kinetic energy of the striking electron, E7 is the
ionization potential of the atomic ion with charge Z, and ¢ is
the number of electrons in the atomic shell being ionized.
Further we shall use the hydrogen-like value E; = Z2/2.
Therefore, the rate of the process in question is expressed
from Eqn (50) as

17.34N . v

w= Nvg = 7 lnz. (51)

Here, v is the velocity of the striking electron, N, is the
electron concentration, and N is the number density of atoms
in a cluster (all measured in atomic units).

The velocity of the electron has two components: the
thermal velocity /7, and the induced field velocity F/w.
Typically, v/T > F/w (see estimates at the end of Section 2)
and Eqn (51) ought to be averaged over a Maxwellian
distribution. Assuming that 7 < Z2?/2 (see Table 2), we
find

NVT ( 22>

w=13.8 —xp| — 55 (52)

In the opposite limit of /7 < F/w, we may simply substitute
the value of v = F/w into Eqn (51):

_ 730N F

w 77 n (,U—Z .

(53)

Naturally, we assumed above that the impact ionization takes
place at the maximum of the electric field strength Fcos wt.
From Eqn (53) it is seen that this regime requires that the field
strength should be limited from below: F/w > Z. This
condition is stronger than the above condition F/w > /T.

In our example of cluster of sodium atoms at 7= 1 keV,
the intensity of laser radiation 7= 10'> W cm™? (or field
strength F = 0.166 a.u.), and the frequency of laser radiation
w=1 eV, we find that the ratio a)\/T/F: 1.35. Since
F/w =4.5 < Z =11, the mechanism of ionization is ther-
mal, and is governed by Eqn (52). For complete ionization of
all atomic electron shells in the cluster made of sodium atoms,
from Eqn (52) we get w =022 fs~!. This implies that
electron—ion collisions occur very often during the ultra-
short laser pulse.

5.3 Penetration of laser radiation into the cluster

The electromagnetic field of laser radiation penetrates into
the cluster and decays there. The depth of penetration 9,
associated with the excitation of plasma oscillations, may be
identified with the imaginary part of the wavelength inside the
cluster [48]:

(54)

The permittivity in this expression is given by

4dnZN

e=1
02

<0. (55)

In our case of a cluster of sodium atoms, for the visible
spectral range we have |¢| = 370 and 6 = 100 A. Accordingly,
this component of the damping of laser radiation is not
important. We may conclude that plasma oscillations can
only be excited under resonance conditions.

The other component of damping is due to the electron—
ion collisions. In the rt-approximation, the steady-state
Boltzmann kinetic equation is written as (for @ < vj)

d
Fcoswt o = —vif'.
do,

(56)
Here, /' is the small perturbation of the equilibrium
Maxwellian distribution function fy; x is the direction of the
electric vector of linearly polarized laser radiation, and v, is
the rate of elastic electron—ion collisions per unit time. The
latter has a well-known form [43] [see also Eqn (47) above]

42n Z2*N

spar mA=2567"

(57)

Vei =

We see that this quantity is on the order of the laser radiation
frequency o ~ 2 fs~!.

It should be emphasized that Eqn (57) holds good in the
case of fast electrons (7' > Z?). In the event of slow electrons
(T < Z?), the situation is more complicated [49]. Expression
(57) only holds when the laser radiation frequency complies
with the condition Zw < T'3/2, when the electrons are mainly
scattered through small angles. In the opposite case of
Zw > T3/, the rate of electron—ion collisions depends on
the laser frequency and may be written as [49]:

42N T(1)3) (222)2/3
Vei = - .
15 x 356,27 I'(2/3) \ o

In this limit the scattering of electrons through large angles is
important, and therefore the Coulomb logarithm is absent.

Let us calculate the mean energy received by the electron
per unit time from a laser radiation field (recall the condition
W < Vi)

dE F? Ux dfO
& F (™ .
d¢ (veFeos i) 2 <Vei dvx>

(58)

Here we have made the replacement (cos” wt) — 1/2. Taking
in Eqn (58) the simple integral with the Maxwellian distribu-
tion function fy and considering Eqn (57), we find the specific
power P, = N.dE/dt absorbed per unit volume of the
cluster:

2 3/2
p— L (2T\
ZlnA\ n
The intensity of laser radiation / = ¢F2/8r decreases with the

field penetration depth z into the cluster. The corresponding
equation is written as

32
ar_ p 8 2T\,
dz cZlnA\ &

(59)

(60)
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Its solution corresponds to exponential damping of radiation:

1(z) =1y CXP(-%) ;

where the penetration depth / of laser radiation into the
cluster is given by

I—CZIHA n\?
T8t \2T7)

In the event of a cluster of sodium atoms and the temperature
T =1keV, we have / = 1.7 A. This depth is small compared
with the cluster radius R.

In the opposite limit @ > v, the specific power absorbed
by unit volume of the cluster is given by the known relation-
ship in the theory of induced bremsstrahlung at electron—ion
collisions [50]:

(61)

F? 32n/2n Z3N?
Pa:EveiNe:]WhlA- (62)

Observe that the quantity F2/w? is defined as the energy
acquired by the electron from electromagnetic field at each
collision with the ion. In this limit, the depth of laser radiation
penetration into the cluster is

) 3ca? T3

- =15A.
32nv2n Z3N2In A

(63)

We see that in both limits, @ < ve; and w > v, the depth of
penetration of laser radiation into the cluster is small
compared to its radius. The above results hold for homo-
geneous plasmas.

Multiple internal ionization can also be caused by free
electrons near the cluster surface: these electrons receive from
the electromagnetic field an energy on the order of the
ponderomotive energy F2/4w?. Such a mechanism is effi-
cient in the case of long-wave laser radiation [51].

Therefore, we may conclude that the laser radiation does
not go deep inside the cluster, and is absorbed in a thin layer
near the surface (of course, most of the laser radiation is
reflected from the cluster). Absorption is caused by the
effective electron—ion collisions.

5.4 External ionization
Consider ionization of the entire cluster — that is, removal of
electrons from the cluster to infinity with the formation of a
cluster ion. In the case of a metallic cluster initially there are
the conduction electrons of the cluster. The first mechanism
of ionization consists in the removal of these electrons from
the surface of the cluster by an external electromagnetic field
(coldionization). This process ends when the force of electron
attraction to the resulting cluster ion exceeds the force acting
from the side of the electromagnetic field. The charge of
cluster ion Z’ corresponding to the end of this process can be
found from the Coulomb law:
Z' = FR*. (64)
For example, for an intensity of laser radiation
I=10 W cm™? (field strength F = 8.5 x 108 V cm™') and
R=215A, we find Z’ =27,200. The number of electrons
released by this mechanism is small compared with the total

number of electrons in the hot cluster of sodium atoms (the
latter is Zn = 1.1 x 107).

The authors of Ref. [52] studied the initial multiple
ionization of large clusters made up of noble gas atoms
through suppression of the electrostatic potential barrier by
a superstrong electromagnetic field. It is assumed that such
electrons leave both the parent atom and the cluster within
characteristic atomic time. In the framework of the one-
dimensional model, the example of ionization of a cluster
consisting of 1100 xenon atoms in a laser field of intensity
106 W cm~2 was considered. It was found that the above-
barrier ionization results in the formation of a cluster ion with
the charge Z’ = 1200. Further ionization follows an alter-
native mechanism. The equilibrium state of the resulting
cluster ion may be regarded as a conducting sphere with the
charge concentrated in a thin surface layer (see Section 4). The
superstrong Coulomb field in this layer knocks out additional
electrons from atomic ions in the direction of the cluster
center. These electrons accelerate to a high velocity and then
leave the cluster. As a result, the charge of the cluster ion
increases to Z' = 2600. This is the so-called ignition mechan-
ism [53]. For example, the electric field strength at the surface
of a cluster comprizing 25 neon atoms, when all atoms are
singly ionized, is on the order of F= 5 x 10> V cm~!. The
above-barrier ionization in such a field is very strong, and in
turn leads to a further increase of the field strength (hence the
name of the mechanism). Thus the fields created at the early
stage of ionization ‘ignite’ the cluster and cause further
ionization.

In the case of clusters of noble gas atoms the situation is
rather similar to that with the metallic clusters. Of course, in
the cluster made up of atoms of noble gases there are no
conduction electrons prior to exposure to laser radiation.
However, the above-barrier ionization of noble gas atoms
and atomic ions by the field of laser radiation quickly gives
rise to conduction electrons. The Bethe condition for above-
barrier ionization has a simple form [54, 55]

£

F=z—=,
4z

(65)
where E is the ionization potential of an atomic ion, and Z is
the charge of this ion. For example, for neon atoms
E, =21.5¢V, and single ionization of all atoms in the cluster
takes place when the field strength reaches
F=28.0x10% Vcm™!. Such ionization occurs very fast (on
the atomic time scale, i.e. about 0.01 fs). However, according
to Eqn (65), the above-barrier ionization of the resulting
atomic ion Ne™t by such a field is not possible, because the
ionization potential of this ion is 41.0 eV, which corresponds
to a field strength F = 1.5 x 10° V. cm~!. Of course, tunnel
ionization is still possible, but it takes a very long time.

Using Eqns (64) and (65) we can find the degree of
external ionization of the cluster Z’, feasible through the
‘ignition’ mechanism. Eliminating the field strength F from
these equations, one finds

1 RE
4z
For example, for a cluster of 1000 xenon atoms we get
R =25A, and for total double ionization of xenon atoms
we have Z' = 330.
Experimental data for clusters of CH,I molecules exposed
to the radiation of a femtosecond titanium —sapphire laser
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with the wavelength 795 nm [56] indicate that ionization of
these clusters may be explained both by the ignition
mechanism and by the model of coherent electron motion
[11].

One further mechanism of electron emission from the
cluster surface is a common thermal emission. It is described
by the known Richardson—Dashman formula for the
thermionic current from the spherical surface of the cluster
(in atomic units) [57, 58]:

dz’ Jz
TR AoT?4nR? exp (—%) .

(66)
Here Ay = 1/(2n?) is the so-called Richardson parameter.
The quantity Jz» = Z'/R is defined as the ionization
potential of a cluster ion with the charge Z’ > 1, when the
work function may be disregarded.

This result is confirmed by the experimental data [59]
(Fig. 6). According to Eqn (66), the logarithm of the electron
emission rate for small anion clusters of tungsten with a
number of particles from 4 to 20 is a linear function of the
inverse temperature 1/7.

Inw
7_
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6_
A n==6
vin=7
O n=2_8
S+ + n=9
g n=18
e n=19
4 a n=20
0 1.0
1/T, 1073 /K

Figure 6. Experimental values of the probability of electron emission per
unit time vs. inverse electron temperature for cluster tungsten anions with
different numbers of particles n [59]. The rate of electron emission is
measured in units of s~

Integrating Eqn (66) over the time 7 of action of the laser
pulse, we obtain the final charge of the cluster ion (with due
account for the inequality Jz» > T):

2TRz

Z'=TRIn > TR.

(67)

For the above example of a cluster of sodium atoms, we have
Z' = 240,000. It follows that thermal electron emission is a
much more efficient mechanism of cluster ionization than the
field (cold) emission. With a field intensity 7 = 101> W cm ™2,
we find that from a sodium cluster of 10 atoms (containing a
total of 1.1 x 107 electrons) about 270,000 electrons are
emitted. The degree of ionization of the cluster is nonetheless
low: for the tungsten cluster above itis as low as 2.4%. Similar
simple calculations can be done on the basis of above
relations for other metallic clusters and clusters of inert gas
atoms with an arbitrary number of particles and other
parameters.

The ionization of small clusters (n < 100) exposed to
intense laser pulses was studied in Ref. [60] using the time-
dependent density functional method based on the Boltz-
mann distribution. Notice that the Vlasov equations are a
quasi-classical approximation to this method.

In the framework of the same method, it was demon-
strated in Ref. [30] that most of the emitted electrons leave the
cluster at the initial stage of the laser pulse, namely, 5 to 10 fs
after the pulse is switched on.

According to the experimental findings of Ref. [18],
increasing the duration of the laser pulse leads to a more
efficient external ionization of metallic clusters. The addi-
tional ionization is due to the removal of electrons from
atomic ions in the course of the Coulomb explosion of the
cluster. A certain contribution may come from the tunnel
ionization by long laser pulses. The calculation of its
probability may be done with the Ammosov—Delone—
Krainov model [61].

The energy spectra of photoelectrons were calculated in
Ref. [62] for the metallic clusters containing about 100 atoms.
Similarly to the atomic case, the number of photoelectrons
decreases exponentially as their kinetic energy increases.

Yet another mechanism of external ionization of clusters
was proposed in Ref. [63]. Here, the intensive Mie resonance
was studied for a spherical cluster ion of Nag;, excited by a
femtosecond laser, which resulted in the external ionization of
this cluster ion. The dimensions of cluster ions and their
charge distributions were measured. The yield of a large
number of doubly and triply charged cluster ions was
observed. At the same time, this effect was absent when the
cluster was exposed to a nanosecond laser pulse with the same
wavelength and pulse energy. The process of efficient external
ionization by a short laser pulse is attributed to autoioniza-
tion associated with the excitation of the Mie resonance. A
simple estimate of the lifetime of Mie resonance gives
something like 10 fs.

We close this section with the following remarks:

(1) The ionization of large clusters exposed to intense
ultrashort laser pulses occurs through thermal electron
emission from the cluster surface;

(2) The degree of ionization is low;

(3) The laser radiation does not penetrate inside the cluster
because of the strong absorption on the surface: the electrons
absorb electromagnetic energy in the course of elastic
collisions with ions.

6. Radiation absorption by a cluster

In this section we shall consider the process of absorption of
electromagnetic radiation by a heated cluster. The observed
absorption cross section may be approximated with the
Lorentz curve [64, 65] (in some cases its shape will be more
complicated [66, 67]):

F2

O'a(w) Omax (w7w0)2+]"2 .
Here, w is the frequency of radiation, w, is the resonance
frequency, I' is the width of the resonance curve, and oy 1S
the maximum absorption cross section.

There are two mechanisms of radiation absorption. The
first depends on the surface plasma oscillations, and
wy = wp/ V/3 is the Mie frequency [5]. The second mechanism
is associated with transitions between the states of individual
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atomic ions in the cluster [68]. Then wy is the frequency of
such a transition. In both cases the absorption cross section is
proportional to the number n’(T) of conduction electrons in
the cluster at the given (high) electron temperature. For
example, for the cluster of potassium atoms we have

Omax = (3.4 +0.6) x 10770 cm?.

The number n’ increases with a rise in temperature. Hereafter
we shall not specify the mechanism of radiation absorption,
assuming simply that its cross section does not depend on the
intensity of laser radiation.

The energy balance equation for a heated cluster ion with
charge Z' is written as

d 3d(n'T)

a(Z’Jz/)JrE T = Ig,(n')n.

(68)

Here, n is the number of atoms in the cluster, 7 is the intensity
of laser radiation, and Jz. is the ionization potential of a
cluster ion (see Section 2).

The first term on the left-hand side of Eqn (68)
corresponds to the energy of electrons leaving the cluster per
unit time, while the second describes the heating of cluster
electrons. The right-hand side of Eqn (68) is defined as the
energy of laser radiation absorbed by the cluster per unit time.
It is well to bear in mind that the exchange of energy between
two electrons therewith occurs much more readily than the
exchange of energy between the electron and ion. Because of
this, the electrons obey the Maxwellian distribution, and it is
possible to define the electron temperature 7. The thermal
energy of electrons is much higher than the Fermi energy (see
Table 1). As a consequence, the thermal energy of electrons is
the classical 377/2.

As indicated above, the evaporation of electrons is
similar to the well-known thermionic emission [57, 58],
while the field emission may be neglected. For the
thermionic current one may use the well-known Richard-
son—Dashman formula (66). From Eqn (67) it follows that
the following relationship holds with a logarithmic accu-
racy:

Jy =CT, (69)
where Jz = Z'/R, and the quantity
2TR
C= ln< n T) (70)

with a logarithmic accuracy may be regarded as constant. Up
to the logarithmic accuracy we also replaced the current time ¢
by the duration of the laser pulse . We emphasize once again
that the work function is neglected in the ionization potential.
Finally, we find

Z' = CRT. (71)

Thus, the energy balance equation (68) can be rewritten as

d /3 ’ 2 2\ ! _ /
a(En T+ C°RT" | =lIo,(n")n=Io,(n)n".

Integrating this equation with respect to time, for the
electron temperature 7" after cessation of a laser pulse we
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Figure 7. Experimental energy spectrum of electrons for the cluster of 2100
xenon atoms [6].

get

T(l 42 C2RT) = § Io,(n)t. (72)

3n’

Consider an example of a cluster of n = 10° sodium atoms
exposed to a laser pulse of length t = 50 fs and peak intensity
I=10"> W cm~2. In this case the absorption cross section is
6a(n) = 0.7 A2, and R = 100 A. From Eqn (70) we find that
the constant C = 12. Getting ahead we assume that the cluster
is heated so strongly that each sodium atom loses all of its 11
electrons (see Table 2), and son’ = 1.1 x 10°. From Eqn (72)
then it follows that after a laser pulse ceases the electron
temperature is 7 = 1 keV. This estimate is confirmed by the
experiment [6] (Fig. 7).

In Ref. [69], the electrons were observed with tempera-
tures from 1 to 2 eV, emitted by clusters made up of
n = 1000—2000 xenon atoms. These clusters were exposed
to laser pulses with a peak intensity / = 10'® W cm=2.

Coulomb collisions of high-energy electrons with cold
ions may be accompanied by the transfer of thermal energy
from electrons to ions. The time of equalization of electron
temperature 7 and ion temperature 7; is given by

M (T+ 1 T)3/2
Teq = — T .
‘4 2r NZ21In A M; !

Here M; is the mass of an ion. From this expression it follows
that, for example, for a cluster of argon atoms with Z = 8 and
electron temperature 7= 1 keV (the ions are assumed to be
cold from the start), the time of equalization of the two
temperatures is about 30 ps. Thus, this mechanism of energy
transfer is entirely irrelevant to clusters heated by femtose-
cond laser pulses. The predominant mechanism of energy
transfer from electrons to ions is associated with the radial
expansion of the cluster (see Section 9).

7. X-ray emission

7.1 Statistical equilibrium with X-ray emission taken into
account

Emission by multiply charged ions changes the statistical
equilibrium between atomic ions with different charges Z. Let
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us consider a simplified scheme of this emission process
together with the collision excitation and ionization:

A+(Z—l)+e_>A+(Z—l)*_,’_e7

ATZD fe 5 417 4 2e,

ATEDT g+ 2D (73)
Here A7 characterizes the ground state of the atomic ion
with a charge Z, and 414" the excited state of this ion. The
decay of an excited state may take either of two channels:
further ionization or emission of an X-ray photon and return
to the ground state.

The probability of excitation [the first line in Eqn (73)] at
electron—ion collision may be expressed from the known
semiempirical relations [70]. In particular, the probability of
excitation of multiply charged ions from the ground hydro-
gen-like state to the first excited state is (a.u.)

Kexe = 462 yu(l +u/4) exp (— 3—“) ln<16 + %) . (74)

=727 1 +3u2 4

Here we used the notation

ZZ

= (75)

u=

The rate constant for the backward process of excitation
quenching can be found from Eqn (74) on the basis of the
detailed balance principle, assuming that the concentrations
of ions in the ground state and in the excited state obey the
Boltzmann distribution law

20 3u

kq = kexe — —.
d o 8exc exp( 4 )
The ratio of statistical weights for the hydrogen-like 1s—2p

transition is gexc/go = 3. Substituting Eqn (74) into Eqn (76)
we find

kq—1’547\w(lﬂlmln<l6+ 4)‘

T 73 143u)2 3u

(76)

(77)

Now we intend to analyze the process [second line in
Eqn (73)]

A+(Z—l)*+e_)A+Z+2e’

taking into account only the first excited 2p state considered
above. The Saha equation of statistical equilibrium for this
process is given by

NsN. 2(T 3/26 T,
=== xp| ——=—) .
Ny, 3\2n PUTTT

In this equation, the numeral 3 comes from the statistical
weight of the 2p state, and the numeral 2 is that of the electron
with two spin projections. The quantity N is the concentra-
tion of atomic ions with charge Z in the ground 1s state, N, is
the electron concentration, and N _, is the concentration of
ions with charge Z — 1 in the excited 2p state. The ionization
potential of these ions is approximately equal to
Jh  ~Z%/8.

(78)

Finally, in the case of the process

ATEZN g+ 2D

[third line in Eqn (73)], the linkage between the concentra-
tions of these components at statistical equilibrium is again
given by the Saha equation

N3  NPh Jz 1 —J3

Z—1 eh _ 3exp<— Z-1 Z—l) ) (79)
NZ—lNe{) T

Here, J,_1 =~ Z?/2 is the ionization potential for the ground

Is state, the quantity

NPP = Nekqgt,

is the number of photons absorbed in the 1s state of the
atomic ion, and 1, is the radiative lifetime for the spontaneous
2p— 1s transition. Finally, the quantity

NPP = Nekgt, + 1

is defined as the number of photons emitted from the 2p state
(according to the Einstein relation). In the hydrogen-like
approximation, the spontaneous emission lifetime is given by

To

:?7 'L'():l.6nS.

Tr
In all the cases considered here the following inequality
NP < 1 s satisfied.

Multiplying equations (78) and (79) term by term, we find

NN, 1 T\ > Js-
2 (4 =2(— exp( —21L).
Nz-i Nekqt, 2n T
The condition of total ionization of all atomic shells of atomic
ions in the cluster, with due account for the resonant-excited
state, is written as Ny = Nz_;, where Z is now the charge of

an atomic nucleus. This gives us the equation for the
temperature 7T, required for achieving the total ionization:

1 2 (Ty\Y? Tz
l+———=—|(=— i

T Nekqw Ve <2n> P\,
For example, in the event of a cluster of molybdenum atoms,
we find T}, = 28 keV. This magnitude is much greater than 7
(see Table 2). The same applies to clusters of other atoms.
This allows us to conclude that in the case under considera-

tion the collisional excitation is not efficient, and it is the
direct ionization that works.

(80)

7.2 Reabsorption of resonant photons

Let us consider the reabsorption of resonant photons in
cluster plasmas. Owing to reabsorption, the effective lifetime
of resonance-excited states of atomic ions is increased. We
shall calculate the line broadening caused by the resonance
radiative transitions according to Holtzmark. Such broad-
ening is produced by the static Coulomb fields of the
surrounding atomic nuclei with charge Z. Then for the
absorption cross section we find

2
o (TC) Zexe 1
a o) g TAw’
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Here the spectral linewidth according to Holtzmark is [70]

Aw = 12.5(n"* = *)N?? = 37.5N?3 .

The frequency of the 2p—1s transition is @ = 3Z2/8; n = 1
and n’ = 2 are the principal quantum numbers of the states
participating in the radiative transition.

Thus, the absorption cross section for such a transition
may be represented as

8ne 2 1
Oy =|——| —/m/m——=
a 3 ) 12.5tyN%/3

(the charge Z of the nucleus is eliminated from this
expression). As before, 19 = 1.6 x 10~? s. This expression
for the absorption cross section may be used in calculating
the universal probability of reabsorption of a resonant
photon in the center of the spectral line on a spherical cluster
of radius R:

8nc\ > rwN'/
n=0,RN = Gal’wn1/3N= Ore) I'w nl3 =1073,1/3.
3 12.579

Here, rw is the Wigner — Seitz radius (see Table 1), and n, as
before, is the number of atoms in the cluster. The quantity N
does not enter this expression. We see that even for clusters
with n = 10° we have # = 0.1. In this way, reabsorption of
resonant photons is not an important process for the cluster
plasmas in question.

The effective excitation of the upper level in the atomic ion
with X-ray emission taken into account was considered in
Ref. [71]. It was shown that the reinforcement of X-ray
emission may be accomplished as a result of Coulomb
explosion of the cluster.

7.3 Emission of resonant photons
From Eqn (79) it follows that the equilibrium number of
atomic ions excited to a resonance state is

. Nph 3u
N271 :ﬁ:;NZ,IEXp(—T), (81)
e

Here (as before) we used the notation u = Z2/2T. The power
of resonant photon emission in a cluster plasma takes the
form

* ph
_ N;_ NP'haw
T ’

P

where fio = 3Z7/8 is the energy of a photon emitted in the
2p— Is transition. This power is reduced to the unit volume of
cluster plasma. Substituting Eqn (81) into this expression, we
get

9

Py = — Z>N%kqexp (— 3_u) . (82)

16 4

As before, we assume that the ionization of atomic ions in the
cluster is complete — that is, Ne = ZN, Nz_ = N/2.

Substituting Eqn (77) into Eqn (82), we represent the
emitted power as

osern: YEEWA ( 3u 4
P = 0867N? T exp( — 5 In{ 1645+ (83)

Now we can calculate the maximum emitted power as a
function of the electron temperature 7 (that is, as a function
of the variable u). Such a maximum is attained at u = 0.24.
Finally, we find (in atomic units)

PM = 0.81N?2.
Table 3 gives the values of the maximum emitted power and

the corresponding electron temperature for different metallic
clusters.

Table 3. Parameters of cluster plasma, corresponding to the maximum
power of emission by resonance-excited hydrogen-like ions.

Metal Li Na Al K Cu
T, keV 0.5 6.9 9.6 20.5 47.7
PR 10 Wem™ 4.8 1.23 6.0 0.33 12.0

We see that the emitted specific power is sufficiently large.
According to the results of the preceding section, the
reabsorption of these resonant photons inside the cluster is
not efficient, and so the photons are emitted outside the
cluster.

7.4 Experimental results

The experiments proving the role of clusters in the emission of
X-rays (with the photon energy of a few keV) were done with
clusters of krypton atoms [72]. Transitions originating in the
L shell were observed (wavelengths about 5 to 7.5 A). The
generation of instantaneous X-rays during the action of the
laser pulse is attributed to the formation of vacancies in the
inner shells of cluster atoms.

The results of measurements of the absolute yield of X-ray
emission produced when the clusters of xenon atoms are
exposed to 2-ps laser pulses are described in Ref. [73]. It was
found that a laser pulse energy of 300 mJ corresponded to
about 10-uJ energy of X-ray emission (per pulse) with a
frequency above 1 keV. Some correlation between the yield
of X-ray emission and the size of clusters was also observed.

Finally, the X-rays generated when large clusters of
krypton atoms were exposed to high-intensity ultrashort
laser pulses with an intensity above 5 x 107 W cm~? were
studied in Ref. [17]. It was found that the X-ray emission is
isotropic, and the highest conversion factor of the energy of
IR laser radiation into X-ray emission amountsto 1.7 x 1078,
The generation of X-rays was attributed to the appearance of
strongly stripped atomic ions resulting from impact ioniza-
tion of the atomic L shells by electrons in the laser-heated
cluster plasma. Figure 8 shows the measured yield of X-ray
emission as a function of the peak intensity / of laser
radiation. We see that the signal of X-ray emission grows as
1372, Such behavior is explained simply by the increase of the
focal volume with increasing intensity 7, as soon as the yield of
ions with a given multiplicity comes to saturation.

Strong X-ray emission was also found in Ref. [74], where
large clusters with a radius of about 100 A were exposed to
high-power laser pulses. In this work it was found that
resonant absorption is important in the process of the cluster
interaction with the superintense laser radiation. For a given
size of the cluster, there is an optimal length of the laser pulse
that corresponds to the maximum absorption of laser
radiation. The maximum absorption coefficient correlates
with the maximum yield of soft X-ray emission. The authors
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Figure 8. Measured yield of X-ray emission vs. peak intensity of a laser
pulse [17]. X-rays are produced in radiative transitions to the L shell of
atoms entering large krypton clusters.

of Ref. [74] were able to control the efficiency of conversion of
laser radiation into X-ray emission by varying the length of
the laser pulse.

X-ray emission by atomic clusters considerably depends
on the wavelength of laser radiation. According to Ref. [75],
the yield of X-ray emission (for the L shell, again) is
approximately 3000 times greater when the clusters of xenon
atoms are exposed to a UV pulse with wavelength 248 nm as
compared with exposure to an IR pulse with wavelength
800 nm and the same intensity.

8. Generation of harmonics

A two-dimensional model for calculating the enhanced
generation of harmonics by cluster argon ions exposed to an
ultrashort (about 25 fs) laser pulse with moderate peak
intensity (about 104 W cm~2) is presented in Ref. [76]. The
intensity of lower harmonics (below the 15th) in the cluster
was found to be about two orders of magnitude higher than
that for atomic argon. Besides, the plateau in the curve of
harmonic intensity vs. harmonic number is much longer for
the argon cluster as opposed to the atomic argon. This is
because the ionized clusters have not only a high ionization
potential, but also a higher polarizability compared with the
atomic ions.

A simple model of generation of harmonics in atomic
clusters was proposed in Ref. [77]. The time-dependent
Schrodinger equation was solved for a simplified one-
dimensional system. The cluster was regarded as a one-
dimensional chain of atoms aligned with the direction of
polarization of laser radiation, whose intensity was varied in
the range from 10'3 to 10'* W cm™2. The atoms in the chain
were equidistant and were assumed to be one-electron atoms.
The field of the atomic core was represented by a smoothed
one-dimensional Coulomb potential. The main result of
numerical calculations consists in that the clusters are a
medium in which the generation of harmonics is much more
efficient than in a medium of isolated atoms of the same kind.
For not-too-high harmonics (9th—13th) and for moderate
laser intensities, the enhancement factor was about 10.
Another general result is that the range of intensities
corresponding to efficient generation of harmonics in
clusters is much narrower than that for isolated atoms.
However, when the intensity of laser radiation is high, the

generation of harmonics in a medium of isolated atoms is
comparable or even stronger than in a medium of clusters.

This is confirmed by the experimental results reported in
Ref. [78]. It is demonstrated that a medium of intermediate-
sized clusters of a few thousand atoms of inert gas is much
better at generating the higher harmonics than a medium of
isolated atoms of the same density. The enhancement factor
for the 3rd —9th harmonics is about 5. Also, the dependence
of the efficiency of generation of harmonics on the intensity of
laser radiation is much more articulate for clusters than for
isolated atoms. The highest harmonic number for clusters is
higher than that for the isolated atoms.

The authors of Ref. [79] provided arguments in favor of an
N3 law for the intensity of harmonics in clusters (N is the
mean concentration of atoms), as opposed to the N2 law for
atomic gases.

Instead of generation of harmonics in small metallic
clusters, the amplification of the incident femtosecond laser
pulse was observed. Such amplification is due to the
excitation of a surface plasma Mie resonance. Calculations
based on the method of the density functional indicate that
this effect does not depend on the size of the cluster. The same
approach was used in Refs [80, 81] to show that the plasma
Mie resonance is rather a sinusoidal oscillation, and so the
generation of the higher harmonics of this resonance owing to
anharmonicity of oscillations is not efficient.

9. Expansion of clusters

There are different mechanisms of expansion pertaining to
clusters of noble gases when exposed to a laser pulse [3]. While
an argon cluster may expand because of the Coulomb
repulsion of its constituent atomic ions, the clusters of
xenon atoms expand both because of the Coulomb repulsion
of'ions and the gas-dynamic expansion owing to the increased
pressure inside the cluster. In particular, the kinetic energies
of ions in the case of gas-dynamic expansion of large clusters
of xenon atoms allow the assumption that the electron
temperature is about 1.5 keV. However, the highest-energy
ions are produced by electrostatic repulsion. The observed
energy —charge dependences for the ions do not fit in with the
conventional coronal plasma theory [82]. At the same time,
the simple model of Coulomb explosion agrees well with the
experiment [3].

The results of an experiment on the photoionization of
clusters of inert gas atoms by a high-intensity femtosecond
laser pulse (above 10'® W cm™2) are presented in Ref. [6]. The
energies of electrons and ions were measured after explosion
of the cluster; they turned out to be fairly large. The energy
distribution of electrons in the exploding cluster includes
electrons with kinetic energies up to 3 keV, which is several
orders of magnitude greater than the energies observed in the
case of above-threshold ionization of individual atoms or
molecules [61]. The average energies of ions produced in
explosion of a cluster are tens of kiloelectron-volts, while the
maximum energy of an ion was as large as 1 MeV (Fig. 9).
Ions with charge numbers as high as Xe*** were observed.

These experimental results are adequately explained by a
theoretical model that regards the cluster as a small plasma
ball. The cluster is ionized by the laser field and internal
collisions (see above), and then starts to expand. As the
cluster expands, the electron concentration decreases, and at
some point in time the frequency of the laser field comes into
resonance with the frequency of the surface Mie resonance.
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Figure 9. Experimental energy spectrum of ions for a cluster of 2500 xenon
atoms [6] with a peak laser pulse intensity of 2 x 10'® W cm™2.

This leads to a rapid transfer of electromagnetic energy to the
electrons, causing a sharp peak in the electron temperature.
At this instant the atomic ions of the cluster are vigorously
stripped to high charge numbers by the hot electrons, and the
cluster explodes. Such collective phenomena are very impor-
tant in the case of a cluster, while being absent in the event of
interaction of a laser field with individual atoms.

Explosions of clusters consisting of hundreds or thou-
sands of atoms under the action of a superstrong laser pulse
release ions with high energies and charges. The phenomenon
is very similar to the expansion of solid-state laser-heated
plasma into the vacuum. By contrast, the Coulomb explo-
sions of small molecules and small clusters in strong laser
fields only give rise to ions with small energies and charges.

In the framework of the classical two-fluid plasma model,
one may ignore the inertia of electrons as compared with the
inertia of the much more massive ions. Then the equations for
the ionic liquid become [83]

oN;

a_tl + diV(NiVi) =0 s (84)
aVi Z
§+ (viV)v; = — VN, Vpe . (85)

Here, N; is the concentration of atomic ions, v; is their
velocity, M, is the mass of an ion, Z is the charge of an ion,
and p. is the pressure of the electron subsystem. The first
equation states the conservation of the number of ions, the
second is defined as the momentum conservation law. The
two equations describe the motion of an ionic liquid under the
action of electron pressure. The high-temperature electrons
produce the ambipolar potential that may accelerate the ions.
The appropriate force stands on the right-hand side of Eqn
(85).

To calculate this force, one needs to know the equation of
state for the electrons. The simplest approximation takes
advantage of the high heat conduction in cluster plasma and is
expressed by the isothermal equation of state [6]. Notice that
the actual expansion of a cluster is not isothermal: the
electron temperature is a rather complicated function of
time. From calculations made in Ref. [6] it follows that the
explosion of a large cluster of xenon atoms is caused by the
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Figure 10. Theoretical evaluation of the evolution of cluster of 1800 xenon
atoms (radius 30 A) exposed to a laser pulse of length 140 fs and intensity
2 x 10" W cm~2 [6]: (a) envelope of laser pulse; (b) radius of expanding
cluster; (c) concentration of electrons, and (d) electron temperature.

gas-dynamic force represented by the right-hand side of
Eqn (85) rather than by the Coulomb repulsion between the
multiply charged atomic ions. A typical time history of the
expanding cluster is shown in Fig. 10. The curve in Fig. 10d
proves the above assumption of the high heat conductivity of
cluster plasmas.

The measurement results on the kinetic energy of ions in
large clusters of HI molecules (at room temperature) exposed
to a strong femtosecond laser pulse are presented in Ref. [4].
Explosions of clusters give rise to protons with energies of a
few keV, and iodine ions with energies of about 100 keV. It
was demonstrated that clusters of heteronuclear diatomic
molecules absorb the energy of laser radiation more effi-
ciently than clusters of atoms or diatomic molecules contain-
ing two atoms of the same kind.

As indicated above, the laser field does not penetrate into
the cluster, being absorbed on its surface. When the cluster
explodes, however, its density is much reduced, and more of
the laser radiation gets into the cluster. This leads to
additional internal ionization in the expanding cluster [84].
For clusters of 1000 xenon atoms, the charge Z of xenon
atomicions produced in Coulomb explosion was from 8 to 18.

The stepwise explosion of atomic clusters in a strong laser
field was considered in Ref. [85] in the context of the
Thomas—Fermi model (detailed calculations for the one-
dimensional case can be found in Ref. [86]). The explosion
reveals the shell structure of the clusters, so the separate layers
of the cluster explode in succession. The first ions have rather
large kinetic energies because of Coulomb repulsion and the
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efficient energy transfer from hot electrons to the outer layer
of the cluster.

The multiply charged atomic ions produced by the
Coulomb explosion lose the remaining electrons in the
course of continued interaction with laser radiation, and
their charge is increased. The results of experimental
investigation of this process can be found in Ref. [87].

As shown in the recent experimental work [88], the
explosion of clusters is enhanced when the clusters are
exposed to two successive laser pulses of high intensity. In
this work the energies of atomic ions resulting from the
explosion of a cluster of xenon atoms were measured. The
cluster was exposed to two femtosecond laser pulses: first at
the frequency of the second harmonic (wavelength 390 nm),
and then at the fundamental frequency (wavelength 780 nm).
The intensity of each pulses was about 10'5 W cm~2. At some
optimal lag between the two pulses the maximum energy of
ions was increased twofold — from 100 to 200 keV. The laser
pulse energy required to obtain a particular kinetic energy of
the atomic ion turned out to be much smaller when the cluster
was exposed to two pulses of different wavelengths as
compared with the exposure to only one pulse. This effect is
attributed to a much increased heating of cluster when the
concentration of electrons (which decreases as the cluster
expands) corresponds to the Mie resonance frequency for the
field of the second harmonic: wy = 1/4TN(2)/3 = 2w. At
some later pointin time ¢’ > ¢ the cluster is heated again when
the Mie frequency occurs in resonance with the fundamental
frequency of a laser: wy = /41N (t')/3 = w. As a matter of
fact, in the course of expansion of cluster we have
Ne(t') < Ne(1).

Figure 11 shows four snapshots of an argon cluster of 55
atoms at different instants of time in the course of exposure to
a laser pulse with peak intensity 10'> W cm™2 [89]. Ions are
represented by large circles, and the electrons by black dots.
The cluster starts to expand 15 fs before the maximum
intensity of the laser pulse is reached. By this time there are
427 free electrons resulting from the ionization of argon
atoms (internal ionization). As follows from the figure, inside
the cluster there are still about 100 electrons. The cluster itself
expands isotropically. At the peak of laser intensity (at instant
of time ¢ = 0) there are still many electrons in the neighbor-
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Figure 11. Snapshots of a cluster of 55 argon atoms at different times in the
course of exposure to a 200-fs laser pulse [89]. The maximum of intensity
corresponds to 1 = 0.

hood of the expanding cluster. Twenty femtoseconds later the
concentration of electrons in the cluster decreases, and the
cluster proceeds to expand isotropically due to Coulomb
repulsion of ions.

10. Conclusions

The recently published detailed review covers the properties
of cluster plasma [25]. The present article deals with the
evolution of large clusters exposed to superintense ultrashort
laser pulses. The cluster is excited because of the interaction of
the electron subsystem with the field of the laser pulse.

Both experimental and theoretical studies of the evolution
of clusters exposed to superintense ultrashort laser pulses are
currently still at their initial stage. Many issues discussed in
this review call for further investigation, which may lead to
revision of some of the results presented here. For example,
the treatment of electron evaporation from the surface of a
hot cluster is based on the well-known Richardson—Dash-
man formula which disregards the cluster charging in the
course of evaporation. Such charging will certainly reduce the
thermionic current from the cluster ion as its charge increases.

The role of the surface of cluster ion in the heating of
electrons must also be studied in detail. The energy of a free
electron in the cluster, which elastically bounces off the cluster
surface back into the bulk in the presence of laser field, is
augmented at each reflection by an increment of the order of
the vibrational energy F?/w?. Elastic reflection is due to the
large charge of the cluster ion, caused by the strong external
ionization. Today it is not clear how this effect competes with
the induced inverse bremsstrahlung.

Recent studies of the photoionization of atomic clusters
by high-intensity femtosecond laser pulses (10'¢ W cm~2 and
higher) indicated that by exciting large clusters it is possible to
obtain a superheated microplasma, which will emit atomic
ions with a kinetic energy of up to 1 MeV. In particular, using
deuterium clusters it is possible to produce plasma with a
mean energy of ions sufficient for nuclear fusion. The
observation of such a reaction in the explosion of deuterium
clusters heated by a powerful laser with a high rate of pulse
repetition was reported recently in Ref. [90]. As observed, the
yield is about 10° neutrons per 1 J of incident energy of laser
radiation (according to the nuclear reaction d+d —
He? + n). These results ought to stimulate further studies of
thermonuclear fusion using small-size powerful lasers. A
tabletop source of neutrons may have extensive applications
in materials science.

This work was partly supported by the Russian Founda-
tion for Basic Research (Grant #99-02-17810). One of the
authors (M S) thanks the Max Born Institute in Berlin for
support. Our thanks are due to W Becker for stimulating
discussions of problems treated in this review.
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