
Abstract. We review the results of numerical and experimental
studies in quasi-two-dimensional (Q2D) turbulence.We demon-
strate that theoretical energy spectra with slopes ÿ5=3 and ÿ3
(Kraichnan ±Batchelor ±Leith) can be observed only for a spe-
cial set of external parameters. The bottom drag, beta effect,
finite Rossby ±Obukhov radius or vertical stratification, which
distinguish geophysical Q2D turbulence from its purely 2D
counterpart, determine the organization of a Q2D flow on a
large scale. Since the spectral energy flux in 2D turbulence is
directed upscale, the bottom friction takes on a special role. In
the absence of bottom drag the energy condenses on the largest
resolvable scale and flow equilibration is not attained.

1. Introduction

Strong rotation or a magnetic field (for electro-conducting
fluids) confine fluid motion to a plane, and there are
numerous examples of this kind in the natural world and
technology. When the driving force significantly exceeds the
critical value for stability, the fluid acquires a large number of
excited spatial and temporal modes, and we can treat such
systems as two-dimensional turbulence.

Under geophysical conditions rapid Earth rotationmakes
large-scale motions of the atmosphere and ocean nearly two-
dimensional, with a broad spectrum of temporal/spatial
scales; thus, 2D-turbulence is important in the case of
geofluids.

Here we shall review 2D turbulence from the stand point
of geophysical fluid dynamics, and distinguish between a
strictly two-dimensional one (governed by the 2D Navier ±
Stokes equation), and a quasi-two-dimensional one, where
the fluid motion is approximately two-dimensional, but is
influenced by additional factors (beta-effect, finiteness of the
Rossby ±Obukhov radius, stratification), that lead to new
features and phenomena (discussed below).

Strictly two-dimensional turbulence is an idealization,
since natural flows could sustain two-dimensionality only
for a limited range of scales, before other physical (environ-
mental) factors intervene. Nevertheless, understanding the
simplest two-dimensional case could give a good grasp of
more complicated systems.

A Kolmogorov type theory was formulated for 2D
turbulence in papers [1 ± 4] and became widely accepted,
particularly the notion of inverse cascade, which carries
energy from the source up to large scales (small wave-
numbers), in the opposite way to the direct (downscale)
cascade of 3D turbulence.

Large-scale geophysical flows, though approximately
two-dimensional, are not governed by equations of strictly
2D fluid dynamics. The gradient of the planetary vorticity
(latitudinal change of the Coriolis vector), called the beta-
effect, gives rise to anisotropic Rossby waves. The inclination
of isopicnal (ocean) or isentropic (atmosphere) surfaces is
responsible for the presence of the available potential energy
of the fluid. There are important dissipative factors, such as
bottom friction, radiative cooling, or orography, which could
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drive the system to a statistical equilibrium. Lastly, at very
large scales of motion, the horizontal compressibility, or
finiteness of the Rossby ±Obukhov deformation radius,
becomes important. It can screen the upscale energy fluxes.
For the meaning and significance of all these factors we refer
to standard geophysical texts, e.g. Refs [5 ± 7].

Such additional factors would typically set up external
scales of the system, which arrest the upscale energy flux, and
limit the typical size of the energy-carrying eddies. We shall
review them in Sections 4 ± 6.

The foremost of the extended 2D-theories is due toRhines
[8], who suggested the external (arrest) scale of geostrophic
turbulence, based on the beta-effect. Bottom friction can play
a similar role and create its own arrest scale [9 ± 11], so does
the combination of beta-effect and bottom friction [12]. If one
adds baroclinic effects, the resulting integral scales would
involve a complex interplay of several factors [13 ± 15]. Here
the problem of parametrization of the external scale (in terms
of the basic inputs) becomes more intricate (Section 5).

We start with a brief overview of the standard phenom-
enology and known results for strictly two-dimensional
turbulence. This classical subject was discussed in a number
of review articles and monographs, e.g. Refs [16 ± 21]. So we
do not attempt to present a complete survey and the historic
development of the subject, but rather focus on the aspects
relevant to more realistic quasi-two-dimensional fluids. We
shall also survey some less known recent results and
developments in the two-dimensional case, which challenge
the conventional view of universality of two-dimensional
turbulence.

2. Strictly two-dimensional turbulence

2.1 Energy spectra
Two-dimensional incompressible flows are described by the
vorticity equation

qt z� �c; z � � D� F : �1�

Here c designates the stream-field, whose velocity compo-
nents are

ux � ÿ qc
qy

; uy � qc
qx

;

and z � Dc is the vorticity, F the forcing, and D the
dissipation. The latter usually contains a viscous term,
D � nDz, with a kinematic viscosity coefficient n (New-
tonian fluid), but may include other dissipative factors.
Differential equation (1) should be augmented with proper
boundary conditions.

In the absence of forcing-dissipation dynamic equation (1)
conserves two integrals: kinetic energy

E � 1

2

�
�u2x � u2y� dxdy � ÿ

1

2

�
cz dx dy

(assuming a uniform fluid density of 1 and appropriate
boundary conditions), and enstrophy

O � 1

2

�
z2 dxdy :

Furthermore, Lagrangian conservation of vorticity (1) gives
rise to an infinite set of conserved integrals (moments, or iso-
level areas, of vorticity in the xy-plane), called Casimirs.

If the forcing and dissipation scales are spectrally
separated, two conserved integrals give rise to two inertial
intervals Ð the energy and enstrophy ranges [1 ± 3]. The basic
principle of the 2D-cascade theory states that the energy
should go up to large scales, while enstrophy moves in the
opposite direction. A simple spectral argument, used repeat-
edly (see e.g. monographs [6, 22]), amounts to estimating the
wave-number `centroids' k1; k2 of the isotropic energy and
enstrophy spectra

k1 �
�1
0 kE�k� dk�1
0 E�k� dk ; k2 �

�1
0 k3E�k� dk�1
0 k2E�k� dk :

Using the conservation laws of energy and enstrophy along
with the Cauchy inequality, one easily estimates

k1 4 k� ; k2 5 k� �
�
O
E

�1=2

in terms of the total energy E and enstrophy O.
Another important assumption is the spectral localness of

the cascades, meaning that the energy or enstrophy flux at a
given wave-number k should depend only on k, the local
energy density E k� �, and the local straining rate. Thus, using
simple dimensional arguments, one could get the following
isotropic energy spectra in two inertial intervals: in the
enstrophy range

E�k� � C1Z 2=3kÿ3

and in the energy range

E�k� � C2e2=3kÿ5=3 :

Here Z and e represent the constant dissipation rates of
enstrophy and energy, which should be equal to their fluxes
in their inertial intervals or to their production rates by the
source. Figure 1 gives a schematic view of the stationary
spectrum of 2D turbulence.
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Figure 1. Schematic view of the kinetic energy spectrum of 2D turbulence.

kf is the forcing wave-number. On the right is the enstrophy interval

characterized by the enstrophy flux Z, which transforms into the enstrophy

dissipation range at large kd � Z=n3
ÿ �1=6

. On the left is the energy interval

characterized by the energy flux e.
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It should be noted that any rigorous derivation of
enstrophy and energy spectra requires some closure hypoth-
esis on the third moments of random velocity (energy/
enstrophy spectral transfers), in terms of its second moments
(cf. Ref. [25]), and the localness narrows the possible class of
such closures.

In the energy-range, the spectrum is local because the
main contribution to the rate of strain at a given k

sk �
��k

0

�k 0�2E�k 0� dk 0
�1=2

comes from the upper limit of integration, k 0 � k.
Theÿ3 spectrum on the enstrophy side clearly violates the

localness, since each spectral octave gives an equal contribu-
tion to s, and the enstrophy flux, estimated to be Zk �
skkO k� � (O�k� � k2E�k� being the enstrophy spectrum), has
a logarithmic divergence. Precisely, picking the lower limit of
the sk-integral, at the low end of the enstrophy range k1 (e.g.
near the source), we get Zk � ln k=k1� �, i.e. a logarithmic
growth.

Kraichnan suggested a logarithmic correction to the ÿ3
spectrum, E�k� / kÿ3�ln�k=k1��ÿ1=3, which resolved the
divergence problem but did not make the enstrophy spec-
trum local (it depends on some external parameter k1). The
ÿ3 slope serves as a critical borderline separating local and
non-local spectra. Dropping the assumption of localness, one
could get an infinite number of `non-local' spectra with no
obvious selection criteria. [This refers to `universal selection
criteria'; as we shall see, real (physical) turbulence or
simulated turbulence exhibit a high degree of non-locality.]

The upscale energy flux in the 2D turbulence without
large-scale dissipation creates another problem. Here one
should expect the energy to accumulate at the largest
available scales (in a finite-size system), and grow unbound,
unless some dissipation mechanism could arrest this process
and bring the system to a quasi-stationary regime [26, 27].

No such mechanism is required for decaying turbulence
[4], since the energy is practically conserved (in the limit of
zero viscosity), while the enstrophy decays. To show it, we
remove the source from equation (1), multiply it by the
stream-field c and integrate over space, to get the energy
decay law

qE
qt
� ÿ2nO � ÿe ;

and a similar enstrophy decay law

qO
qt
� ÿnjHzj2

(the bar denotes area averaging). As the enstrophy decays, the
r.h.s. of the energy equation remains bound, hence negligibly
small in the limit of zero viscosity. So one could consider the
energy practically constant.

In such a limiting regime Batchelor postulated the energy
spectrum of the decaying turbulence to evolve according to
the law

E�k; t� � E 3=2t f �E 1=2kt� ;

defined in terms of a single parameter Ð the total (nearly
conserved) energy E Ð and the dimensionless function f (of
the only possible dimensionless combination ofE; k and t). By
the same argument we could get the decay law for the total

enstrophy

O / tÿ2 :

Once again, the dimensional arguments would give a slope of
ÿ3 for the energy spectrumof the decaying turbulence at large
k.

Unlike the 3D case, we have only very limited experi-
mental verification of the 2D turbulence laws. One could
simulate it (to some extent) in the laboratory environment,
but only within a limited range of scales (see Section 6.2).
Therefore, the bulk of 2D-turbulence results were obtained in
numerical simulations, with somewhat tenuous and specula-
tive links to experiments and observation.

There are also analytic theories [19, 28, 29], advanced in
the 60s and 70s and based on certain closure assumptions.
Their premises, however, are also hard to verify experimen-
tally or numerically. We shall not discuss them here.

In the next sectionwe shall review the alternative language
of structure functions, widely used in the description and
study of turbulence. We recall that Kolmogorov cast his
original theory in this language, and later (Obukhov) it was
converted into the more common `spectral language'.
Structure functions proved useful in the analysis of experi-
mental results [30, 31], and in the study of intermittency [27,
32, 33].

2.2 Structure functions
The cornerstone of the Kolmogorov theory in the 3D case is
the 4=5 law for the third-order structure function, which links
it to the dissipation rate of the kinetic energy [36]

hduLduLduLi � ÿ 4

5
er : �2�

Here du � u 0 ÿ u denotes the difference of velocities between
x and x 0 separated by r, angular brackets mean ensemble
averaging over realizations, and subscript L (T) denotes the
longitudinal (transverse) components of velocity relative to r.

The derivation of the 4/5 law can be found in many
publications, e.g. in Refs [34, 35]. It corresponds, in the
Fourier formulation, to a positive energy flux in the inertial
interval [35] and is exact for homogeneous, isotropic
turbulence.

A similar relation holds for 2D-turbulence. We shall
derive it here, following Ref. [31] (it was also reported in
some earlier works, see, for example, Ref. [30]). The velocity
of a 2D incompressible fluid obeys the Navier ± Stokes
equation

qtu� �uH�u � ÿ 1

r
Hp� nH2u� f ; �3�

with driving force f. To derive the two-point correlator
hu�x�u 0�x 0�i, we sum the u-equation multiplied by u 0 with
the u 0-equation multiplied by u, which yields after a few
simple transformations (similar to those for the 3D case [34,
35])

qthuu 0i � 1

2
Hhdudu � dui � 2nH2huu 0i � huf 0i � hfu 0i : �4�

Here all correlators depend on t and the space separation r.
Applying the Laplacian, we transform it into the evolution
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equation for the vorticity-correlator for z � �H� u�z,

ÿqthzz 0i � 1

2
H2
ÿ
Hhdudu � dui�� 2nH 4huu 0i

� H2huf 0i � H2hfu 0i : �5�

When two space points x, x 0 collapse to a single x, we obtain
the enstrophy equation, for O � hzzi=2
qtO � ÿZ�Q ; Z � nhHz � Hzi ; Q � ÿH2hu � f i; �6�

with the enstrophy dissipation rate Z, and production rate Q.
The two rates must be equal in a stationary regime.

Subtracting twice the enstrophy equation (6) from the
vorticity correlation (5), dropping the time derivative and
inverting the Laplacian (in view of homogeneity), we get [31]

Hhdudu � dui � �ZÿQ�r2 � 4Pÿ 2huf 0i

ÿ 2hfu 0i ÿ 2nhdzdzi : �7�

Here P � huf i measures the rate of energy production. The
first term on the r.h.s. is zero in the stationary state, but we
leave it here in the general form.

If forcing is confined to scale lf, smaller than the outer
scale, but much larger than dissipation scale ld, then we
approximate

ÿQr2 � 4P � 2huf 0i � 2hfu 0i

on the r.h.s. of Eqn (7) in the intermediate range ld 5 r5 lf
(since the l.h.s. gives the first two terms of Taylor expansion of
the r.h.s.).

Taking into account that Zr2 4 2nhdzdzi in this range, we
get

Hhdudu � dui � Zr2 ; �8�

whence follows

hduLduLduLi � hduTduTduLi � 1

8
Zr3 : �9�

Thus in the enstrophy interval, ld 5 r5 lf, the third-order
structure function is proportional to the enstrophy dissipa-
tion rate Z (or production rate Q).

On the other side of the source lf 5 r, we can drop all
terms of (7) but P, hence the structure function becomes

hduLduLduLi � 3hduTduTduLi � 3

2
Pr �10�

in the energy interval.
Notice the opposite sign in the r.h.s. of (10), compared to

the 3D case (2), which reflects the opposite sense of the energy
cascade. Let us remark, however, that the energy interval in
2D feels (practically) no viscous dissipation. So equation (10)
should be understood as quasi-stationary, and valid until the
energy reaches the gravest modes of the system. The existence
of such a quasi-stationary flow was confirmed by numerical
experiments [27].

Another interpretation would require going beyond the
strict 2D turbulence and imposing an artificial large-scale
dissipation, that would bring the system to a stationary state.
If the large-scale dissipation resides far above the forcing

scale, one can still get relation (10) by augmenting (4) with the
large-scale friction term. But the role ofP is now played by the
energy dissipation rate. The third-order structure function is
most important, since it is proportional to the energy/
enstrophy flux with an explicitly computed coefficient.

Let us note that the Kolmogorov similarity hypothesis
[37] could be formulated for structure functions of any order.
For longitudinal functions in the energy range it takes on the
form

hdun
Li � �Pr�zn ; zn �

n

3
; �11�

which follows from the dimensional analysis, assuming local,
homogeneous and isotropic turbulence. Such structure
functions depend only on the energy flux and separation r.
Without localness the coefficient should be a function of the
ratios r=lf, r=lext, so the system would remember its outer
(external) scales, via nonlocal transfers.

Second-order structure functions (n � 2) of 2D turbu-
lence in the enstrophy interval were studied in papers [31, 38].
Based on dimensional arguments one should expect

hdu2Li � Z 2=3r 2f

�
r

ld

�
;

with some dimensionless function f �r=ld�, where ld is the
viscous dissipation scale. The latter in the 2D case depends on
the enstrophy dissipation rate Z as

ld � �nZÿ1=3�1=2 :

Since the ratio r=ld is large in the enstrophy interval, one may
like to replace f by its limiting value at infinity. But the ÿ3
spectrum precludes the existence of such a limit, since
f �z� � ln z at large z. Paper [31] argued that the observed
departures of the computer simulated spectra from ÿ3 could
be attributed to such an inconsistency in f.

The second-order correlation function is related to the
energy spectrum

E�k� � pk dhuu 0i ; �12�

via the Fourier (`hat') transform

dhuu 0i � 1

�2p�2
�
huu 0i exp�ÿikr� dr : �13�

Hence one can derive the relation between spectra and
structure functions taking into account that

huu 0i � huui ÿ 1

2
hdudu 0i :

Then one can easily show that the 2=3 law for structure
functions (in the energy range) corresponds to a ÿ5=3 law in
the Fourier representation.

For nonlocal spectra in the enstrophy range there is no
direct relation between spectra and structure functions [38].
In that case everything depends on the infrared cutoff of the
inertial interval, and all such nonlocal spectra would give
structure functions with an r2-dependence. We shall come
back to the topic of the structure function in 2D-turbulence
later on.
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3. Non-universality in two-dimensional
turbulence

Equation (1) for a double-periodic flat domain is usually
solved by pseudo-spectral methods, though earlier works
used finite-difference schemes, e.g. Refs [9, 39, 40]. Another
commonly used geometry, the sphere, exploits spherical
harmonics.

In a flat geometry, one expands the vorticity (and related
fields) in a Fourier series (integral) with coefficients

zk �
1

4p2

�
z exp�ÿikx� dx

labeled by 2D wave vectors k � kx; ky
ÿ �

. The infinite Fourier
expansion is further truncated to a finite grid, hence its x-
representation is discretized accordingly, and the Fourier
integrals turn into (finite) sums. Thus we take a coordinate
rectangle 2p� 2pwithN grid points along each axis, and vary
the wave numbers in the range ÿN=2;N=2� �.

In the Fourier representation (discrete or continuous)
equation (1) takes on the form

d

dt
zk � Jk � Dk � Fk : �14�

Here Jk denotes the kth Fourier mode of the Jacobian J c; z� �,
which in spectral methods is implemented via fast Fourier
transform (going back and forth between the k and x-spaces,
and replacing convolutions with products). It has a Fourier
expansion

Jk �
X
p; q

akpqc
�
pc
�
q ; �15�

with structure coefficients

akpq � 1

2
�q2 ÿ p2��pxqy ÿ pyqx�dk�p�q�0 ;

where c� denotes complex conjugation.
Forced 2D turbulence can attain a statistically stationary

state, if the energy and enstrophy injected by a source are
balanced by the dissipation. Though standard viscosity could
in principal dissipate sufficient enstrophy, in numerical
simulations one often uses steeper hyper-viscous dissipation,
D � �ÿ1�n�1nnDnz, n > 0. It has the advantage that the
inertial (enstrophy) interval may be pushed to higher k
without increasing the computational grid.

A number of papers have studied the effect of short-wave
dissipation on the spectral laws in the enstrophy interval and
on other turbulent statistics (see Refs [41, 42]). They all
conclude that there is some hyper-viscosity-type effect on
spectral slopes or inertial intervals, but it is not significant.
Moreover, the qualitative change, if any, could be understood
through changes in the effective Reynolds number, for given
forcing and spectral resolution.

As we mentioned, to arrest the inverse cascade of forced
2D turbulence and prevent infinite energy accumulation at
low k, one needs an artificial infra-red dissipation, absent in
strictly two-dimensional fluids. Numerically, it could be
obtained in several ways. One could impose Rayleigh friction
on the lowest modes of the system (see, e.g., Refs [41, 43])Ð a
procedure easily implemented in the pseudo-spectral code.
Another scale-dependent dissipation, called hypo-friction, is

defined via negative powers of the Laplacian, ÿD� �ÿn (see,
e.g., Refs [44 ± 46]). Some papers avoid the problem of large-
scale dissipation altogether by studying non-stationary
(quasi-stationary) turbulence [26, 27, 47].

Following Lilly [9], the forcing term is typically modeled
by a random Markov process, localized within a narrow
spectral band. Paper [41] suggests the following finite-
difference scheme in time steps n:

Fk; n�1 � Ak�1ÿ r2�1=2 exp�iy� � rFk; n :

Here Ak is the dimensionless amplitude, the parameter r
defines the time correlation radius, and y, the random phase
uniformly distributed over 0; 2p� �. Other authors [44, 48, 49]
use a Gaussian white noise process as the source.

The space resolution of 642 in early works (e.g. Ref. [39])
was lately pushed to 40962 (see Refs [28, 48, 50]). But so far
most papers dealing with the statistical properties of 2D
turbulence have a typical resolution of 256 or 512 grid points.

Figure 2 illustrates the vorticity distribution and spectra
for stationary (a, b) and decaying (c, d) turbulence, simulated
on a 2562 grid. For stationary turbulence the source is located
in the range k 2 58; 62� �, while the decaying turbulence has an
initial spectrum confined near wave number 45.

The stationary turbulence exhibits strong localized
vortices, whose size remains close to the forcing scale
(Fig. 2a). No clearly identified structures appear at the
energy peak scale (Fig. 2b). But the stream-field (not shown)
exhibits elongated circulation zones, whose size may exceed
the forcing scale many times and come close to the energy
peak.

In these simulations the stationary turbulence was
equilibrated by Rayleigh friction ÿlz with l � 0:03. The
forcing was of uniform amplitude in the spectral band
k 2 58; 62� � and developed (for a chosen time-step) an energy
flux of 0.0009. The spectral slope comes close to ÿ5=3 on the
left of kf and is steeper than the expectedÿ3 on the right of kf.

The decaying turbulence evolves into well developed and
broad vortices, whose life spans over many eddy turnover
periods.While the turbulent energy changes slowly during the
decay phase, the enstrophy drops significantly. The spectral
slope for large k grows steeper than ÿ3 after some initial
phase. The initial energy in the above experiment was 1. The
vorticity field in Fig. 2c is shown at the dimensionless time

tv �
�t
0

O�t 0�1=2 dt 0 � 124 :

This time measures the number of eddy turnovers. The
spectra of Fig. 2d show the shift of the spectral peak at times
tv � 0:5, 40, 70, 124, during the evolution.

3.1 Forced stationary turbulence: enstrophy range
In most works the observed enstrophy spectra are steeper
than the theoretically predicted kÿ3. Though some early
papers reported a theoretical value for the spectral slope,
their spectral resolution and the Reynolds number were too
low. A brief overview of the early results can be found in
monograph [22].

Subsequent work [41, 51, 52] reported significant depar-
tures from the ÿ3 law (steepening) for the stationary 2D
turbulence. Such steep spectra should be nonlocal, so the
system would feel the width of the enstrophy range resolution
and retain the memory of forcing-dissipation.
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In the language of triad-interactions k; p; q� �, `localness'
means that the principal contribution to the k-mode comes
from nearby p � q � k. So one needs to study the effect of
nonlinear triad interactions on energy and enstrophy trans-
fers.

Papers [25, 43, 48, 53] set up such a task and found large
contributions to the enstrophy transfer into the k-mode
coming from elongated (nonlocal) triads with two legs in the
enstrophy interval and one short leg near the energy peak.We
shall briefly describe this following paper [43].

To get the energy balance for the k Fourier mode,
Ek � ÿ�1=2�c�kzk, we multiply relation (14) by c�k, and write

d

dt
Ek � Tk � F k �Dk ; �16�

Here F k � ÿR�c�kFk�, Dk � ÿR�c�kDk�, R denotes the real
part and

Tk �
X
p; q

Tkpq ; Tkpq � R�akpqckcpcq� ; �17�

denotes the total transfer to the kth mode. A positive T
corresponds to an incoming energy flux; a negative T, to an

outgoing flux. Each Tkpq measures the energy transfer to k
due to p; q-interaction.

The enstrophy transfer is obtained bymultiplyingT by k2,

Skpq � k2Tkpq ; Sk � k2Tk :

Figure 3 reproduces Fig. 2a of paper [43]. It shows
enstrophy transfers Skp obtained by averaging Skpq over all q
and over all directions of k and p. The numerical resolution
was 5122 with the forcing range at 10 ± 14. The wave-number
k � 70 in the plot of the transfer function lies within the
enstrophy interval. The solid line shows time-averaged
transfer; the dotted lines show standard deviations from the
mean.

The authors, Maltrud and Vallis, made several observa-
tions. First, they noted that the enstrophy transfers look
almost local in the p-variable, as the main contribution to Skp

comes from p � k (which automatically implies small q).
Furthermore, the shape and amplitude of the transfer
function remained almost constant as k varied (we do not
show this here). Finally, the area under the curve Skp was
approximately zero, which means vanishing net transport to
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Figure 2. Vorticity and energy spectra in stationary (a, b) and decaying (c, d) turbulence. (a) Realization of vorticity field at the quasistationary stage of

evolution, (b) time-averaged energy spectrum, forced at wave numbers k 2 �58; 62� and stabilized by the bottom friction; (c) Realization of vorticity field

at the late stage of the decay process, tv � 124; (d) Evolution of the energy spectrum during the decay phase (tv � 0:5, 40, 70, 124). The initial spectral peak
at k � 45, and initial energy equals 1.
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the wave number k, as expected in the inertial interval. Thus
the principal enstrophy exchange proceeds between close
wave numbers p; k, but a short leg q should complement the
triad.

Paper [43] illustrates the triad structure through the map
of

Skp �
X
q

Skpq

(for a fixed k) in the p-plane. It clearly exhibits the principal
contribution to Skp coming from the wave modes p � ÿk.
Our Fig. 4, similar to Fig. 4b of Ref. [43], shows the input of
various Skpq (obtained from Skpq by averaging over all
triangles p; q; k with fixed q and p < k) for 3 different values:
k � 50 (solid), 70 (short dashed), and 90 (long dashed). The
total flux to k is zero in the equilibrium state, and the range
p < k corresponds to positive flux (cf. Fig. 3). Figure 4 also
shows that the largest contribution to the flux comes from q
below the forcing range, near the energy peak (numerical
experiments [43] have the forcing confined to the range of
10ÿ14 located on the right to the peak of the histogram in
Fig. 4).

The authors conclude that the nonlinear interactions
responsible for enstrophy transfer are highly nonlocal, and

lowmodes in the vicinity of the energy peak can play an active
role in the enstrophy range. The principal transfers still look
mostly local, confined to close wave-numbers, while small
modes k serve mainly to catalyze the transport of enstrophy.

Since the transfer is symmetric with respect to p; q triads,
q � k4 p can also give a significant input, reflected in Fig. 3,
for small p. Those are precisely the energy peak values
corresponding to q � k.

In the physical space, the non-universal behavior of the
forced two-dimensional turbulence is associated with the
appearance of coherent structures Ð vortices on the forcing
scale. A typical realization of the vorticity field is shown in
Fig. 1a of paper [41], and in our lower resolution experiments,
Fig. 2a. The reader should not confuse the coherent structures
of forced turbulence with the coherent vortices of decaying
turbulence (McWilliams [54]). Unlike the decaying turbu-
lence, typical vortices in the forced stationary case do not
grow in size far above the forcing scale (with some exceptions
discussed in Ref. [44], and examined below).

Maltrud and Vallis [41] observed that vortex production
could be suppressed under special conditions, like strong
frictional dissipation on the forcing scale. The presence of
strong vortices makes turbulence intermittent and nonlocal,
as they strain small eddies and strongly influence the transfer
(cascade) of enstrophy in their vicinity to ever decreasing
scales.

Paper [25] proposed a conceptually simple model of
coherent structures in physical space and their spectral
characteristics based on the ensemble of elliptic vortex
patches in the mean-field background. If the vorticity level z
is sufficiently high, such a vortex patch can survive under the
conditions of a mean shear, defined via the symmetric part of
the rate-of-strain tensor:

s2 � ÿdet
�
qui
qxj
� quj
qxi

�
:

(the antisymmetric part gives the vorticity).
For z less than a critical value (for a given shear) the vortex

is strained, and its width (perpendicular to the straining
direction) goes down exponentially in time (we recall that a
uniform elliptic vortex patch is unstable to the shear strain s,
provided s=z > g � 0:15).

Each vortex patch is subject to the mean straining field,
formed by the background, and the vortices around it. Since
the vortex intensity typically decreases with its size, only large
vortices can survive, while smaller ones should be strained
and dissipated.

Thus we draw a dividing line between strong vortices and
the background, so the enstrophy range would contain two
spectral intervals, separated by a transition zone. The large
vortices (in the enstrophy range) have a long life span, and
effectively block, or curtail, the direct energy cascade to small
scales [55, 56]. Hence, one gets steep spectral slopes in the
enstrophy range, well below the theoretical prediction.

This also means that the main contribution to shear strain
comes from `large vortex patches', while the small scale
background field is carried over, as a passive tracer. The
theory predicts a spectral slope of ÿ1 for passive tracers (see,
e.g., Ref. [57]). Hence, we could expect the enstrophy
spectrum to be nearly kÿ1 for large k (corresponding to ÿ3
energy slope).

This similarity between the enstrophy and passive scalar
cascades was already noted by Kraichnan [2]. He also
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noted the dominant role of large scales in the enstrophy
cascade.

The theory [25], based on the spectral parameter a Ð the
reciprocal of the vortex sizeÐ predicts enstrophy spectra aÿ1

for both the coherent vortices and the background flow, but
with different amplitudes, and a sharp transition between the
two regions. The kÿ1-spectrum in the `coherent zone', due to
the aÿ1-distribution of vortex sizes, is masked by a steeper
k ÿ2-spectrum, due to the vortex shape. Since in real
numerical simulations coherent vortices occupy only a small
fraction of the spectral range (near the source), the true
enstrophy spectrum is steeper than ÿ1.

The theoretical model of Ref. [25] shows qualitative
agreement with the numerical simulations described therein,
as well as the numerical results of Ref. [48]. The latter show
the enstrophy slope ÿ1 (and the corresponding energy slope
ÿ3) to be an asymptotic limit obtained by taking the
Reynolds number large enough. Low spectral resolution can
practically eliminate the kÿ1 range. Numerical simulations
[48] estimate the Kraichnan±Batchelor constantC1 in the kÿ3

enstrophy range to be somewhere between 1.5 and 1:7.
To estimate the contribution of coherent vortices, paper

[25] introduced a parameter equal to the ratio of the
enstrophy flux Z to the product of the enstrophy at the
forcing scale by the mean shear. For small values of this
parameter the system maintains a low enstrophy flux, so the
bulk of enstrophy is concentrated in coherent vortices. Hence,
one can expect strong intermittency and a departure from the
ÿ3 law (the limit of small Z corresponds to the decaying
turbulence). The specific value of this parameter depends on
the details of the forcing, dissipation and resolution.

Paper [58] utilizes flow scale separation into large-scale
and small-scale components. The latter moves as a passive
tracer and could be modeled by wave packets Ð quasiparti-
cles in the external large-scale velocity field. This method
allows one to increase the space resolution in the enstrophy
range, though the separation into large-scale and small-scale
components is somewhat arbitrary, given the continuous
spectrum of scales in the well developed turbulence. In some
ways, the basic ideas of Ref. [48] are similar to those of Ref.
[25], that we have just outlined.

To conclude this section we reiterate the main points: the
interactions and transfers in the enstrophy range are highly
nonlocal, with one (short) leg of the triad lying near the energy
peak. This agrees with the physical space view of the
enstrophy cascade: straining of small scale structures by
large vortices at the forcing scale. Clearly, such systems
should carry information about the source, down the
spectrum [43], and thus invalidate the idea of the inertial
interval.

The ideal kÿ3 spectrum can be obtained in the limit of
large k, at sufficiently high resolution and high Reynolds
number. It corresponds to the `passive scalar' dynamics of
small scales, driven by large eddies. The contribution of small
scales to the mean shear grows logarithmically with k (for
spectra with ÿ3 slope), and can become the dominant factor
in the asymptotic limit k!1. In that case one can get a
logarithmic correction to kÿ3 [48], predicted by Kraichnan in
Ref. [2].

We should however note that experiments [48], as well as
[25, 43], were carried out for hyperviscous dissipation.
Regular viscosity should have a similar effect, but would
require a much higher cut-off k, hence the higher resolution.
Indeed, recent work [59] combined theoretical analysis and

numeric experiments on a 40962 grid, to show that the energy
spectrum approaches

E�k� � C1Z2=3kÿ3
�
k

kd

�ÿd�
ln

�
k

kf

��ÿ�2ÿd�=�6ÿd�
;

where kd � �n3=Z�ÿ1=6 and kf are the dissipation and forcing
wave-numbers, and d a small parameter slowly decreasing
with increasing Reynolds number. For themaximal Reynolds
number explored in Ref. [59],

Re � u0
nkf
� 9:2� 104 ; kd � 414 ; d � 0:355

and the departure from the logarithmic spectra [2] is quite
significant.

However, the numerical experiments by Lindborg [60] at
the same resolution as in Ref. [59] showed no departure from
ÿ3. He also claimed that the logarithmic corrections of Ref.
[2] are redundant. We have no explanation of the discrepancy
between [59] and [60], except possibly different regimes of
forcing, and the somewhat broader forcing interval in Ref.
[60].

3.2 Forced stationary turbulence: energy range
Most numerical experiments on turbulent spectra in the
inertial energy range came close to the theoretical kÿ5=3 law
(see, for instance, Refs [41, 55, 61]), but different authors
report different values of the Kolmogorov constant C2,
ranging from 5.8 to 7:0.

The nonlinear triad interactions in the energy interval
were analyzed in paper [43], discussed in the previous section.
It showed that the triad interactions of the energy range are
also nonlocal, as in the enstrophy range considered above.
The energy transfer function Tkp for k in the energy range
looks similar to the enstrophy range Skp (Fig. 3), with extrema
near p � k. Energy comes to the k mode from the interval
p < k and, conversely, is transferred to p for p > k. This
suggests the energy-range transfer to be directed toward
larger k, in apparent contradiction to the idea of `inverse
cascade'. The contradiction, however, could be resolved by
balancing the contributions of various spectral components
to the energy flux past k, whereby large (direct) local transfers
cancel each other, and yield a positive net balance into small
k.

The histogram of relative contributions of wave-numbers
q, obtained by summing transfers Tkpq over all p > k (for k in
the energy interval), shows the dominant role of small q, at the
energy peak. Unlike a similar histogram for the enstrophy
transfer (see Fig. 4), this histogram reveals a significant flux
coming from large q. While small q imply k � p, i.e. an energy
transfer to small scales, the large ones q � p4 k do the
opposite, and give an overall negative cumulative energy flux.

Analysis of Ref. [43] found the elongated triads with one
(long) leg in (or above) the forcing range kf to carry the bulk
of the energy transfer. This implies highly nonlocal processes
in the inverse cascade that proceed directly from the source to
the energy peak-range. According to Ref. [43] vortex merging
should play an important role here, but the details of such a
vortex dynamics have not yet been explored. The prevalence
of nonlocal transfers put into question the universality of the
ÿ5=3 spectrum observed in many numerical studies and calls
for further validation and explanation of it.

Our discussion of stationary turbulence does not apply
directly to the non-stationary case. Indeed, paper [27] showed
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the principal energy carrying triads to be local in the absence
of infrared dissipation. The localness here means that the flux
across k comes primarily from triads whose p; q legs obey the
inequality

k < p ; q4 4k :

To establish such estimates one needs high resolution
simulations.

Borue's paper [44] cast further doubt on the standard
notion of universality and cascade in the energy range. He
used a 5122 spectral resolution with the source at
k 2 �100ÿ102�, and a yet higher 10242 spectral resolution
with two sources at k 2 �250ÿ252�, or at [350 ± 352]. The
long-wave modes were dissipated by hypo-friction expressed
via the operator

Dk � ÿni kÿ16zk :

He ran his numerics over a sufficiently long time interval to
bring the system to a statistically stationary state, and
observed kÿ5=3 energy spectra during intermediate stages. In
the long run, however, they evolved much steeper slopes close
to ÿ3. (The departure from a ÿ5=3 slope may not look too
surprising, as nonlocal triads in the energy range shouldmake
energy spectrum sensitive to the flow organization in physical
space and the infrared dissipation mechanism.)

The change of the slope was accompanied by the growth
of coherent vortices of various sizes and intensities. Borue
proceeded by dividing the vorticity field into a background
and a (strong) vortex component (using z > 2zrms criteria for
vortices). He found the classical kÿ5=3 energy spectrum for the
background field, while the vortex component carried 80%of
the energy and had much steeper slopes. Moreover, the
statistical distribution of strong vortices by their size and
intensity was consistent with the ÿ3 spectral slope. Thus
Borue found strong vortices to be the prime reason for the
departure from the conventional phenomenology.

Borue also claimed the energy cascade to proceed mostly
through vortex merging, whereby large vortices absorb
smaller ones, but he didn't elaborate this nonlinear process,
nor produced direct evidence. Strong vortices appear after
long integration, when local vorticity fluctuations grow
sufficiently high and intense to sustain the background shear
strain. For a relatively short integration time, and strong
infrared and ultraviolet dissipation, vorticity extrema would
remain small, and keep the spectrum close to kÿ5=3, as
observed in other works.

Paper [44] did not discuss the specific role of long wave
(hypo-frictional) dissipation in the formation of strong
vortices, but speculated that such phenomena should arise
for any infrared dissipation law, including Rayleigh friction,
D � ÿlz, given sufficient spectral resolution.

Paper [44] raised many questions on the structure of
nonlinear interactions and the universality of 2D turbulence,
and vortex growth processes. Subsequentworks [26], [27], and
more recently [62] brought some clarity in this issue. The
former two study forced 2D turbulence in the absence of
infrared dissipation, with resolution ranging from 5122 to
20482. As long as the energy spectrum does not reach the
gravest modes of the system in its `upscale climb', the spectral
slope remains close toÿ5=3, no coherent vortices appear, and
the normalized even structure functions of the velocity field
remain nearly Gaussian.

As soon as the cascade reaches box-size scales, the
vorticity field starts to condense into two strong vortices,
and its energy spectrum develops a steep non-universal slope.
The velocity structure functions also depart from the
Gaussian state at large scales. Paper [62] attributes these
features to termination of the inverse cascade at the lowest
modes, and claims that uninhibited cascade should proceed
according to theoretical predictions (while conceptually
possible, such a scenario is unrealistic for finite physical
systems).

Long-wave dissipation arrests the inverse cascade and
thus can lead to large deviations from the classical kÿ5=3

spectrum. Such a spectrum, strictly speaking, requires some
special arrestmechanism to sustain it. Thismechanism should
absorb the energy flux from k above some small cut-off value
kl s, without producing backscatter into large k. Paper [62]
suggests the large scale dissipation coefficient,

nl s�kl sjk� � ÿSk�kl sjk�
2k2Ok

; �18�

where the summation in Sk is implemented over all triads
k; p; q, satisfying

jkÿ pj < q < k� p ; p; q < kl s :

Here the enstrophy transfer function Sk is computed, using
the quasi-normal approximation (QNM), with relaxation
times of triple correlators (need for QNM) derived via
renormalization group methods. This yields

nl s�kl sjk� � 0:0974e2=3kÿ4=3l s F

�
k

kl s

�
; �19�

where the dimensionless function F obeys F 1� � � 1, and

F�x� � xÿ2:58 ;

for large x (in the sense of least square approximation).
Formula (19) corresponds to a (scale-dependent) hypo-
frictional law,

l /
�

k

kl s

�ÿ0:58
;

which is much shallower than Borue's law kÿ16 of Ref. [44].
Paper [62] runs simulations on 10242-grid, with a forcing

scale k 2 215; 222� �, and high order hyperviscosity / k 14 in
the enstrophy range. It describes three experiments. The first
one has no long-wave friction, but all wave numbers below
k � 8 are quenched (made zero at each computational step).
Formally, it corresponds to a step-wise hypo-friction: l � 1,
for k < 8, and zero, for k > 8. The second one uses hypo-
friction Dk / kÿ10zk, and the third one the friction (19), with
kl s � 8, and the same cut-off of modes below k � 8 as in the
first case.

Figure 5a taken from Ref. [62] shows a Kolmogorov
constant

C2 � E�k�k5=3eÿ2=3

(and the compensated spectra) in all three cases. The last case
comes closest to the theoretical predictions, while the hypo-
frictional case features the largest departure.
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The former two cases take a long time to saturate energy,
and the figure shows an intermediate stage. In the second
case, Ref. [62] reports the formation and growth of strong
vortices, completely absent in the third case. Figure 5b shows
normalized energy fluxes in all 3 cases. All three have a
sufficiently long inertial interval, however the hypo-fric-
tional turbulence exhibits a local increase of the energy flux
at small k (it must be local, since the flux goes to zero as
k! 0).

Paper [62] has thus demonstrated that the departure from
the Kolmogorov law (due to strong coherent vortices)
depends on the type of frictional dissipation. Large hypo-
friction (high negative power of the Laplacian) suppresses low
modes, but becomes negligible above a certain wave number
ki. The limiting case removes friction above some integral
scale ki, and completely suppresses all modes below ki. It
leads, according to Ref. [27], to energy condensation at the
lowest allowed modes, or `crystallization' of the flow into a
quasi-regular vortex lattice with step p=ki. In the hypo-
frictional case, one could estimate ki by comparing time
scales: eddy-turnover ek2i

ÿ �ÿ1=3
with `hypo-frictional'

k2ni =nÿn. For large power n, it has only a weak dependence
on the energy flux (or dissipation rate).

When the inverse cascade reaches the integral scale of the
system, the energy condensation should modify its spectra, as
one could expect, based on nonlocal transfers (above), and
should change the flow organization at the energy carrying
modes. But the precise role of the frictional dissipation in such
an organization remains unclear.

The classical kÿ5=3 spectrum would persist in dissipation-
free problems, during intermediate stages, when the cascade
has not reached theminimal wave numbers [27]. Here the field
is close to Gaussian, and strong vortices are absent. Yakhot
[63] suggested a theory to explain such behavior of non-
stationary turbulence in terms of the two-point characteristic

function

Z � 
exp�ldu��
(angular brackets denote ensemble average). For transverse
velocity differences (in the direction l perpendicular to
r � xÿ x 0) he showed Z to obey the Langevin-type equation
with a random Gaussian source. Longitudinal structure
functions were shown to deviate from the Gaussian values,
but the deviations are too small to be measurable.

If the infrared dissipation arrests the inverse energy
cascade `softly' (like Rayleigh friction), the stationary
spectra can remain close to kÿ5=3 in some range of wave
numbers. But the exponents zp of structure functions

hdu pi � r zp

can depart noticeably from their Kolmogorov values, as
found in Ref. [32]. This is usually attributed to intermit-
tency. The authors of Ref. [32] claim that in this case, the
natural assumption is the extended self-similarity

hdu pi � hdv sir zp=zs

(see also Ref. [33]). Exponent s � 3 plays a special role, since
the third moment is proportional to the energy dissipation
rate. While absolute exponents can vary with r, the relative
ones (for the low order structure functions) may remain
constant and this is indeed observed in Ref. [32, 33]. We
shall return to this issue in Section 6.2 (laboratory experi-
ments), and here just mention that non-universal inverse
cascade due to infrared dissipation, would make the conclu-
sion of Refs [32, 33] on noticeable intermittency in the inverse
cascade non-universal, as well.

The high resolution numerics of Ref. [64] corroborate
this remark. It studied odd structure functions in the
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energy range on a 20482 grid with a linear friction law.
The friction coefficient was chosen to arrest the inverse
cascade before it reaches the box size. The energy spectra
give an almost ideal ÿ5=3 slope over two decades. The
increments of longitudinal velocity components (their
PDFs) show a small but discernible asymmetry. The
symmetrized PDF is nearly Gaussian, and the compen-
sated third order structure function for streamwise velocity
(multiplied by 1=re) has a 3=2 plateau region, consistent
with the Kolmogorov law.

The paper also computes the 5th and 7th structure
functions of the longitudinal velocity. They both have
intervals that obey the Kolmogorov scaling

hdun
Li � C �n��er�n=3

with coefficients C �5� � 130, and C �7� � 14000. Such beha-
vior of structure functions suggests a small intermittency level
within experimental error. Of course, linear friction creates a
non-uniform energy flux, inconsistent with the basic premise
of the Kolmogorov theory. The authors claim their flux to be
`nearly constant' over a decade, but one could clearly see its
variation over the plateau region, which far exceeds the
variation of the third structure function.

3.3 Decaying turbulence
Many papers on 2D-turbulence in the past have studied the
decaying case, as it seems more natural and requires no large-
scale dissipation. McWilliams [54] has shown decaying
turbulence to evolve into long-lived coherent vortices, which
persist for many turnover periods. The first examples of
coherent vortices in decaying turbulence appeared in the
early papers [65, 66], but McWilliams demonstrated this
phenomena in different systems and for various initial
conditions. Fig. 2c shows a typical vorticity field of decaying
turbulence.

Paper [54] takes an initial spectrum with a slope of ÿ3 at
large k, and resolves the system on a 2562 grid. As the system
evolves its spectrum steepens to ÿ5, and the enstrophy
transfer drops to zero. But the vorticity kurtosis shoots from
the initial Gaussian value of 3 to several dozen. Vortices form
at intermediate scales (between the initial state and the box
size).

The vortices can slow down the cascade processes [56],
since they carry the bulk of enstrophy, but do not stretch and
filament one another. Paper [67] made a systematic study of
decaying turbulence and its spectra in an attempt to reconcile
the multitude of reported spectral slopes. It uses a high
resolution 1024-grid and long time integration of the initial
Gaussian field of zero mean, and the energy spectrum

E0�k� � k

�
1�

�
k

k0

�g�1�ÿ1
for k0 � 6, and g � 6.

The initial evolution creates vortex filaments via stretch-
ing by the large-scale velocity field. They carry over small-
scale eddies as passive tracers, hence developing a slopeÿ3 in
the enstrophy range. At the next stage large coherent vortices
evolve from the local vorticity extrema, and start breaking
down into smaller size vortices. Due to two different
mechanisms of vortex formation, no universal distribution
of vortices by size and intensity appears, as evident in their
spectra.

The energy spectra have an interval of steep slope at small
k, and a shallower (closer toÿ3) interval in the small vortices
range. The total energy remains nearly constant during the
evolution, while the enstrophy declining does not, however,
drop to zero. Indeed, large-scale stable vortices lock up a
sizable fraction of enstrophy, and will not let it cascade to
small scales.

The main conclusion of Ref. [67] is that the ÿ3 spectrum
could appear only at an intermediate stage of the process.
Large vortices destroy scale invariance and steepen the low-
mode spectra. Besides, the paper claims the resulting spectral
shape to depend strongly on the initial state of the system. In
particular, an initially steep spectrum produces p=k0-size
vortices that dominate the future evolution of the system.
Shallower initial spectra, like the ÿ3 of Refs [54, 68], give a
broad spectrum of vortex sizes. Paper [67] sets the borderline
initial slope for the two patterns somewhere between ÿ3 and
ÿ6.

The appearance of coherent vortices in the decaying
turbulence allows them to be studied as statistical vortex
ensembles [68 ± 72]. To that end one needs to select coherent
vortices from the small-scale turbulent background. The
simplest selection rule identifies regions of vorticity field
that exceed a prescribed threshold (in terms of rms vorti-
city). Another census analyzes the determinant of the velocity
gradient and seeks regions where it takes negative values.
Paper [68] claims that the two methods give similar results.

The vortex distribution by radius in Ref. [68] obeys the
law

P�R� � Rÿa

with a � 1:9. The observed vortices are self-similar,

z�r� � z0 f
�
r

R

�

with nearly fixed z0 and a vortex profile f.
The initial ÿ3 spectrum (at 512 - resolution) evolves to

kÿ4:3. The authors estimate the vortex contribution to the
energy spectrum to have a slope of ÿ6� a, depending on the
vortex size distribution. That yields an energy slope of ÿ4:1;
close to the observed value. At the final stages of evolution the
dynamics of coherent vortices can be well approximated by
point vortices.

Paper [69] studies the characteristics of 2D vortices,
particularly their time evolution. It takes an initial state with
the energy spectrum

E�k� � k6

�k� 2k0�18
;

on a 4502 grid. The vortices are selected by comparison with
the `ideal' vortex profile. Their number decays in time, as

Nv � tÿ0:71 :

The maximal vorticity decreases, but its mean absolute value
over all vortices remains nearly constant. The mean vortex
size grows as t 0:2, and the mean separation as t 0:4. The
vortices maintain a nearly Gaussian profile, but unlike [68]
this profile is not universal. The difference between the two
cases could be attributed to different initial conditions.
Finally, the enstrophy decreases as tÿ0:4, in stark contrast to
Ref. [4].
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The prominent role of vortices in the decaying turbulence
motivated the development of vortex models [70 ± 72]. They
assume that vortices behave like point vortices, at large
separations, and each is determined by two parameters Ð
the vortex radius and (uniform) vorticity level. When two
vortices collide, that is come within a distance 1.7 R1 � R2� � of
their radii, they merge into a single vortex of radius
R 4

1 � R 4
2

ÿ �1=4
. Such collisions conserve energy and decrease

enstrophy, and thus can account for the enstrophy loss due to
vortex straining and filamentation in real systems.

Different initial conditions in Refs [70 ± 72], however, lead
to divergent results. Thus [71] has vortex sizes distributed
initially according to the Rÿ3 law, which corresponds to the
ÿ3 spectrum of numerical simulations [68]. The terminal size-
distribution comes close to Rÿ2, which gives a ÿ4 energy
slope (close to ÿ4:1 of Ref. [68]). The number of vortices
decays as tÿ0:6, which differs from the tÿ0:7 law of Ref. [69],
the tÿ0:75 law of Ref. [70], and the tÿ0:72 law of Ref. [72].

The point-vortex dynamics ofRefs [70, 72] provide scaling
laws for the vortex number, size distribution, distance
distribution, and enstrophy, which agree with the pseudos-
pectral results of Ref. [69]. Based on the numeric results of
Ref. [69], particularly the conservation of average vorticity
amplitude (over all vortices), the authors of Ref. [70]
proposed a hypothesis for decaying turbulence, consistent
with the numerics.

Except energy conservation, as in the Batchelor theory
(Section 2.1), they postulated the conservation of vorticity
extrema. The latter follows naturally, when one views decay
turbulence as the process of vortex merging. The enstrophy
decay is confined to the vortex periphery (caused by
filamentation), but it does not affect vortex cores. Assuming
the conservation of vortex extrema zext, one could introduce
the time and length parameters

l �
����
E
p

zext
; t � 1

zext
:

Assuming further a power decay law for the number of
vortices Nv with an exponent x, and writing the energy and
enstrophy (confined in vortex cores) as

E � NvR
4z 2ext ; O � NvR

2z 2ext ;

one gets the mean vortex size to grow as

l

�
t

t

�z=4

(energy conservation), while the distance between vortices
grows as

l

�
t

t

�z=2

;

and the enstrophy of the entire flow decays as

O�t� � tÿ2
�
t

t

�ÿz=2
:

Such conclusions also agree with the numerical studies.
The proposed scaling differs from the classical Batchelor

results, as well as the selective decay theory (see for instance
Ref. [7]). The latter postulates that turbulent decay should

minimize enstrophy, subject to the energy constraint [75].
This theory was applied to describe late stages of turbulent
decay in papers [73, 74] and others. Paper [75] shows selective
decay to predict higher decay rates than numerical simula-
tions, as it fails to account for the role of coherent vortex
structures in slowing the decay process.

Dritschel [76] questioned the validity and utility of
pseudospectral methods for turbulence dominated by vor-
tices. He argued that pseudospectral methods introduce
significant numerical dissipation on the vortex periphery,
thus giving a wrong description of vortex mergers and the
resulting filamentation [77]. Paper [78] demonstrated that
thin filaments on the periphery, subjected to strong hypervis-
cous dissipation, bring about a sharp increase of the overall
dissipation rate of vorticity. Furthermore, the hyperviscosity
could cause undue oscillations of iso-contours on the
periphery of vortex cores.

He proposed an alternative method of contour dynamics,
augmented by so-called surgery. It allows in principle a higher
spatial resolution than pseudospectral methods and, hence, a
broader spectral range. Paper [76] does it for the spherical
geometry. The initial state of the system consists of 200
vortices of uniform vorticity distribution (and zero total
vorticity). The vortices are distributed according to their
area A, n A� � � Aÿp, with exponent p.

The dissipation scale (which cuts off fine structures)
corresponds to resolution 7000 in pseudospectral methods.
The paper finds that the vortex size distribution is not self-
similar, and steepens as the system evolves. The correspond-
ing energy spectra vary from nearly kÿ5 at large scales to kÿ3

at small ones. It also finds that some other characteristics, like
the growth rate of vortex sizes for large vortices and the decay
rate of enstrophy, are markedly different from the pseudos-
pectral results. The reason for such a departure, however, is
not only the overall decrease of dissipation, as claimed by the
author, but may include other factors, such as sharp
boundaries of the vortex patches, in the contour dynamics.

Let us stress that the entire decay process is due to the
enstrophy dissipation at short wavelengths. Without such
dissipation, the systemwould relax to a statistical equilibrium
state with an equipartition energy spectrum kÿ1 (see, for
instance, Ref. [29]). One could expect the numerical dissipa-
tion to be equally important. Indeed, the key process of large
scale condensation (vortex merger) is largely determined by
small-scale dissipation.

The criticism of pseudospectral methods in Ref. [76] is
based on the notion of a well identified (sharp) vortex
boundary, while pseudospectral methods operate with
smooth fields, without jumps. It is not clear to what extent
vortex patches could represent smooth fields. On the other
hand the different behavior of `pseudospectral' decaying
turbulence from that of contour dynamics could be inter-
preted as a difference in initial conditions, in the spirit of
Ref. [67].

Recent papers [50, 79, 80] describe the dependence of the
decay characteristics on the enstrophy dissipation mechan-
ism. The former considers the temporal evolution of the
vorticity PDF in the decaying turbulence. According to the
Batchelor theory it scales as

p�z� � t f �zt� :

Numerical results show this relation to hold approximately
near the distribution peak, but not on its tails. Paper [79]
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shows a sharp decline of p z� � at large z, so it becomes
practically zero at zj j > zm t� �. The PDF tails have a power
decay law

p�z� � c

jztj1�qc ;

with universal constants c, qc determined from the numerics
(such universality is consistent with Ref. [80]). Clearly, the
time evolution of the moments of vorticity zj jq should depend
on q. For q less than qc themain contribution to the q-moment
comes from PDF near zero, and yields a power decay tÿq,
according to the Batchelor prediction. For q > qc we get
jzj q� � �qÿ qc�ÿ1z qÿqcm tÿqc ;

independent of q, as claimed in Ref. [70]. The latter statement,
however, proves not accurate. Indeed, the numerics of Ref.
[79] claim the true dependence to be
jzj q� � tÿaq

with aq � 0:4 in the hyperviscous case ÿn8D8z, and
aq � 0:2� 0:5q for the regular Newtonian viscosity nD. The
latter agrees with the universality of values c, qc, given that a
finite Reynolds number would make zm a power function of
time. This implies that the decay exponents are also functions
of the Reynolds number.

Paper [50] simulates decaying turbulence with Newtonian
viscosity on a 4096 grid, which allows resolution of the
enstrophy cascade, while keeping the energy peak away
from the outer (integral) scale of the system. It studies the
dependence of the energy and enstrophy decay laws on the
Reynolds number, determined by the initial spectrum,

Re � E

O1=2n
;

and shows the existence of a critical value Rec, so that,
beginning with the Reynolds number Re 0� � < Rec, the
decay proceeds with the Reynolds number decreasing with
time. For Re 0� � � Rec, this number approaches a value Re 0c
constant during the decay. In this case the theoretical
consideration in Ref. [50] predicts that the energy decays as
tÿ1, while the enstrophy exhibits a tÿ2 decay. Indeed, for the
critical value of Re 0� � one could expect a self-similar decay
process with the energy spectrum

E�k; t� � u2lÊ�kl� ; u2�t� � 
u2�t�� ; l�t� � u�t�
hz 2i1=2

:

In that case the decay exponents could be derived in the
following way: assuming

hu2i � bt n ; hz 2i � ctm ;

and constant Reynolds number Re � Re 0c, one gets n � m=2,
while the evolution equation

qhu2i
qt
� ÿ2nhz 2i

yields the relation nb � ÿ2nc. This immediately implies n � 1,
m � 2 and the coefficients

b � n
Re 0c

2

2
; c � Re 0c

2

4
:

If Re 0� � > Rec the Reynolds number grows during the
decay process, but the decay does not proceed in a self-similar
way. The energy and enstrophy decay depend on the
Reynolds number, but for sufficiently large values (> 1000)
the energy remains nearly constant, while enstrophy decays as
tÿ0:8. The decay rate increases for low Re, and the case tÿ1:2

[79] falls in this category. Unlike the decay laws, the energy
spectra are almost self-similar, but their slope is steeper than
ÿ3.

Careful numerical experiments (4096 resolution, averaged
over 64 realizations) and theoretical analysis [80] clarify and
extend the previous results of Refs [79, 50]. They make a
distinction between complete and incomplete self-similarity
of the decaying turbulence. Complete self-similarity requires,
besides a self-similar spectrum, a constant ratio of length
scales l and

m � hz 2i1=2
�Hz�2�1=2 :
The former should be thought of as the external scale; the

latter, as the internal (dissipation) scale. According to Ref.
[80] complete self-similarity yields the enstrophy decay law
tÿ1 in the limit of large Reynolds numbers. In that case
viscosity explicitly enters the decay law.

Partial self-similarity could be restored by neglecting
viscosity for the wave numbers where the energy spectrum
remains self-similar. This yields the Batchelor tÿ2 enstrophy
decay law.

Numerical experiments [80] suggest the improved enstro-
phy decay law tÿ0:9. It is close to tÿ0:8 obtained in Ref. [50]
and to the theoretical prediction.

Similar considerations for hyperviscous decay turbulence
yield a tÿ1=n law, where n is the power of the Laplacian.
Numerical results of Ref. [80] for the largest Reynolds
number 8192 and biharmonic viscosity (n � 2) show the
exponent in the enstrophy decay to reach the minimal value
ÿ0:8 and approach the limiting value ÿ0:66 at time

t �
�t
0

hz 2i1=2 dt � 70 :

This should be compared with theoretical value 0.5. The
exponent ÿ0:4 for n � 8 [79] differs significantly from the
theoretical estimate 1=n � 0:125.

Computed PDFs confirm the basic conclusions of Ref.
[79] on the tails. The assumption of complete self-similar
decay [80] predicts qc � 1 for normal viscosity, and qc � 0:5
for biharmonic viscosity. This is confirmed by numerical
simulations in Ref. [80] carried out for decaying turbulence
with the initial Reynolds numbers Re�0� � 1024 and 8192
respectively. That disproves, however, the universality
hypothesis of Ref. [79] where the value qc � 0:4 was
indicated for both viscous and hyperviscous decay. Addition-
ally, Ref. [80] shows that complete self-similarity is consistent
with [79] if the parameter zm t� � of Ref. [79] is a function of the
viscosity coefficient, the ratio of the inner and outer length
scales, and the energy.

Thus one should not expect the statistics of coherent
vortices to be universal. They should rather depend on the
type of viscous dissipation and the Reynolds number (if the
latter is not too large).
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4. Quasi-two-dimensional turbulence

4.1 Rotation, bottom friction, beta-effect
A layer of incompressible fluid of depth H, and zero forcing-
dissipation conserves the so-called potential vorticity (PV)

o � z� f

H
; �20�

where z � Dc is the relative vorticity. The simplest way to
derive it is using rotating shallow water equations

qtv� �vH�v� fez � v� gHh � 0 ;

qtH� div �Hv� � 0 ; �21�

where ez is a vertical unit vector, f the (local) Coriolis
parameter Ð twice the angular speed of rotation, v is the
horizontal velocity,H the total fluid depth, g the acceleration
due to gravity, and h the elevation. Applying curl to the first
equation and eliminating div v via the second one gives the
evolution equation for the relative vorticity. Combining it
with the second equation leads to the conservation law

Dto � 0 ; Dt � qt � �vH� : �22�

Large-scale atmospheric motions are slow compared to
the Earth's rotation, hence they have a small Rossby number

Ro � U

Lf
5 1 ;

where U and L are typical velocity and length scales. A small
Rossby number means that the Coriolis acceleration exceeds
the local one, so the flow is geostrophically balanced

fez � v� gHh � 0 ;

and hence can be described by the geostrophic stream
function

c � gh

f
:

The geostrophic balance is a purely diagnostic relation,
without dynamic content.

To get the dynamic evolution, one needs to go to the first
order terms in small Rossby number, the so called quasigeos-
trophic approximation. The simplest derivation exploits the
PV conservation law (22). We write its denominator as

H � H0 � hÿ hb ;

where hb is the bottom profile, and H0 the mean depth, and
assume the ratios h=H0, hb=H0 to be of the order of the
Rossby number. Hence in the first order approximation, the
quasigeostrophic PV

oq � z� fÿ c
L2
0

� f hb
H0
� oH0 �O�Ro2� : �23�

where L0 � �gH0�1=2=f is the Rossby ±Obukhov deformation
radius. Then the PV conservation law (22) implies the
quasigeostrophic equation

Dt oq � 0 ;

or

q
qt

�
zÿ c

L2
0

�
�
�
c; z� fÿ c

L2
0

� f
hb
H0

�
� 0 : �24�

In general, one should also include the sources and
dissipation in the r.h.s of equation (24). The principal
dissipation comes from a thin Ekman boundary layer over
the rigid bottom, where the velocity profile changes from zero
on the boundary to the geostrophic value inside the fluid
layer. The net effect of the Ekman layer on the mean flow
should be an extra dissipation term ÿlz in the r.h.s. of (24),
with coefficient l � n=�H0dE�. Here n denotes the kinematic
viscosity, or turbulent viscosity of the large-scale (atmo-
spheric) motions, and dE � �2n=f�1=2 the thickness of the
Ekman layer.

The Ekman dissipation exceeds the horizontal dissipation
nDz on scales above

HS � �H0dE�1=2

Ð the thickness of the Proudman ± Stewartson layer. Accord-
ing to Ref. [81] the motions on scales below HS are 3-
dimensional, and the Ekman friction prevails and should be
included on all scales, where the motion is two-dimensional.

For scales below the Rossby ±Obukhov radius, one can
drop the term proportional to Lÿ20 , and we shall do this in the
next two sections.

If furthermore, hb � 0, and f � const, equation (24)
coincides with the vorticity equation for a 2D incompressible
fluid. In what follows we shall use mostly quasigeostrophic
PV, called simply PV.

The quasi-2D flows in the atmosphere and ocean have a
local Coriolis parameter varying with latitude. For a limited
zonal bandwe could approximate it by a linear function of the
latitudinal (South ±North) coordinate y, f � f0 � by. This is
conventionally called the beta-plane approximation (or beta-
effect).

The beta-effect could significantly change the dynamics of
the system, due to the y-dependence of f and, hence, of the PV
content of a fluid parcel. The Lagrangian conservation
property of PV means that any latitudinal displacement of a
parcel (North or South) will result in a deficit or excess of PV
compared to the background. The corresponding displace-
ment waves should propagate westward. They are known as
Rossby waves, and the substitution of the standard (mono-
chromatic) Fourier mode

c � A exp�ÿiot� ikxx� ikyy�

in the linearized equation (24) yields the Rossby dispersion
relation

o � ÿ bkx
k2

: �25�

Rossby waves play a fundamental role in large-scale
(atmospheric) circulation, but our main focus is the beta-
effect in the 2D turbulence.

4.2 Bottom friction
As we already mentioned, 2D turbulence can attain a
stationary state when its energy is properly dissipated at
small k and the natural dissipation mechanism is linear
(bottom) drag Dl � ÿlz. In the geophysical context it
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appears as Ekman friction, determined by the physical
parameters of the system [5, 82].

The linear drag (also called Rayleigh friction) affects
equally all scales of motion, hence it invalidates the idea of a
dissipationless inertial interval. The energy spectrum attains
its maximum at some intermediate value km between the
forcing scale and the integral scale, and the relevant problem
here is to parametrize the arrest scale, where the energy flux
comes to a halt.

Lilly [9] was the first to study the role of friction in the
inverse cascade. He introduced the scale

LD � �2E�
3=2

e
� �2E�

1=2

l
;

where E is the mean kinetic energy of the flow (per unit mass),
and e its dissipation rate due to the bottom friction.
According to Lilly the energy peak is estimated to be reached
at 35Lÿ1D , which corresponds to Lmax � 2p=35� �LD �
0:5E 3=2=e and agrees with Lilly's numerics at resolution 642

(maximal wave-number 32, and forcing at kf � 8).
Lilly also suggested modifying the energy and enstrophy

spectra taking into account the variable energy flux. Hewrites
the integral relation

E�k� � a
�
2

�k
0

lE�k� dk
�2=3

kÿ5=3 ;

and derives the modified energy spectrum

E�k� � a3kÿ5=3
�
l�kÿ2=3c ÿ kÿ2=3��2

in terms of the small (cut-off) wave-number kc that terminates
the spectrum. Although Lilly's formula gives a smooth
transition from kÿ5=3 to 0 at small k, such a form is not
unique (or universal). Indeed, a better way to account for
friction would be parameterizing variable flux in the energy
balance equation rather than substituting a variable dissipa-
tion rate in the ÿ5=3 law.

Bottom friction was also considered in Ref. [83], which
parametrized the arrest scale in terms of the energy dissipa-
tion rate

LD �
�
e

l3

�1=2

: �26�

Estimating e as El, one gets the above Lilly parametrization
(to a factor of order unity). Many other authors discussed the
role of bottom friction in the inverse cascade (see, for
instance, Refs [84, 85]). Manin [10] came with an estimate
similar to (26), but from a different perspectiveÐ the stability
analysis of quasi-2D flows with bottom friction.

Relation (26) can be cast in terms of the Reynolds number
based on forcing and bottom friction. To this end we render
equation (1) dimensionless, and write D � ÿlz�Du, as the
sum of frictional plus short-wave (ultraviolet) dissipation.
Introducing the time scale 1=l, the vorticity scale l, the
forcing length scale l and the amplitude F0, we write (1) as

qt 0z 0 � �c 0; z 0 � � ÿz 0 �Du

l2
�Rel F

0 ; �27�

where primes denote dimensionless quantities, and
Rel � F0=l

2 the requisite forcing ± friction Reynolds num-

ber. This yields the arrest scale

LD � lRe
3=4
l

and, hence, the dependence of the energy carrying scaleLD on
forcing.

Clearly, one could construct outer scales similar toLD, for
other types of long-wave dissipation. Thus in the atmospheric
context friction takes on a nonlinear (quadratic) form
Di � ÿavjvj (in the Navier ± Stokes equation), due to the
turbulent Ekman boundary layer (see Ref. [86]). The inverse
of a has the sense of some external scale. Here the forcing
magnitude plays a secondary role (it would only determine
the transition time to a statistically stationary regime), and
one should use the standard Reynolds number, the ratio of
the inertial to frictional terms. This Reynolds number on the
forcing scale is equal to 1=�la�. If we set the outer scale by
requiring Reynolds number to be one, we get

LD � aÿ1 � lRe :

The Reynolds number in this quadratic friction case
measures the ratio of the external and forcing scales. The
external scale is set by physical processes responsible for the
quadratic friction and is not sensitive to the energy flux
produced by the source. A detailed analysis is provided in
Ref. [87].

We return now to the linear friction case. The above
estimates of the outer (arrest) scale have a major flaw, since
they implicitly assume a constant energy flux over the energy
interval. Yet both friction laws, linear (Ekman), or nonlinear
(quadratic), would drive the energy flux to zero at small k.

Paper [11] studied the dependence of the energy peak on
Reynolds number numerically, using a 2562-grid with a linear
friction law. Its authors observed a slower rate of increase,
O Re0:4
ÿ �

, than theoretically predicted one, Re3=4.
Figure 6a shows the energy spectra obtained in our 5122

numerical simulations for several l (0.05, 0.03, 0.02 and
0.015). We kept the source power fixed in all experiments, as
seen in Fig. 6b for energy fluxes, defined by

Pe�k� � ÿ
Xk
k 0�0

Tk 0 �28�

(it equals to the sum of transfers from k through 1, as the
transfer integrated over all wave numbers is zero). The energy
flux measures the cumulative transfer of energy inside �0; k�
across its upper bound k. A negative flux means an upscale
transfer, as seen in Fig. 6b for interval 0; kf� �. The flux varies
along this range due to friction. Also, decreasing lmakes the
shallow (plateau) region near kf stretch further in the energy
range.

If the source power were increased at a fixed friction, the
friction would not be able to dissipate the augmented energy
flux. The energy would condense at the lowest modes, and the
system would lose universality.

Given the variable energy flux over k, one should not
expect the outer scale to depend on a single quantity, the
energy production e, but rather on its fraction that reaches the
low mode region. Indeed, all the plots of Fig. 6a have equal e,
so estimate (26), if true, would imply a difference of LD

between the largest and the smallest l by a factor 6, whereas
the observed factor is about 3. Also one could hardy expect a
universal dependence of the outer scale on the control
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(Reynolds) parameter. A special case of a linearly decaying
flux in the range 04 k4 kf yields LD � Re

1=2
l , which does

appear close to the numeric exponent 0.4 of Ref. [11].
Paper [11] claims a spectral slope close to ÿ5=3 in the

vicinity of kf. The same appears in our Fig. 6a (here the
straight line corresponds to a slope ofÿ5=3). Similar intervals
with a universal slope, insensitive to friction, appear in other
papers (see, for instance, Ref. [64]). On the contrary hypo-
frictional dissipation [44] gives a nearly uniform flux, but the
energy spectra deviate strongly from kÿ5=3.

We have thus seen that bottom friction determines an
outer scale for turbulent eddies. Early estimates of this scale,
based on constant energy flux, do not agree with numerical
experiments. Uniform linear friction destroys the inertial
interval, but the energy flux still propagates upward. One
could give another interpretation to the outer scale in terms of
the characteristic turnover timeÿ

k2P�k��ÿ1=3
for large eddies 1=k � LD. If it exceeds the friction time 1/l,
large eddies will decay before completing the turnover `cycle',
so slower components of velocity should disappear.

Smith and Yakhot [27] argued that the bottom friction in
the energy interval can give a ÿ3 spectrum, through the
balance of the nonlinear term and frictional dissipation in
the Navier ± Stokes equation. They assume scaling,

Du � ui�x� ir� ÿ ui�x� � r q ;

and then balance lui against u � Hui, which implies q � 1 and

E�k� � kÿ2qÿ1 � kÿ3 :

However the velocity gradient over a distance r corresponds
to the inverse turnover time. So the balance at hand simply
sets a condition on the limiting size of large eddies. Motions
satisfying such a balance should become extinct. The real
balance involves the energy dissipation rate lE k� � and energy
transfer ÿqP k� �=qk at k. It implies a link between the energy
spectrum and energy flux, but does not control the shape of
the spectrum.

4.3 Rhines scale
Rhines [8] pioneered the study of beta-plane 2D turbulence,
and based his arguments on the subtle interplay betweenwave
dynamics and turbulence. The turbulence is associated with
the nonlinear Jacobian term J c; z� �, while the (Rossby) waves
arise from a linear operator,

�c; by� � b
qc
qx

so we look for a spectral (or physical) space, when both
quantities are comparable. A parcel of wave-modes localized
near wave number k0 can be characterized by the phase-speed
cp � b=�2k20� with the factor 1/2 coming from the arbitrary
orientation of wave crests. So one can measure the degree of
nonlinearity by the variable

E � U

cp
� 2k20U

b
;

where U denotes the rms turbulent velocity. If E < 1, the
nonlinear terms are negligible, and the dynamics are
dominated by Rossby waves.

Since Rossby waves may propagate, turbulent energy will
be radiated away, and Rhines argued that the upward energy
cascade will be suppressed (more precisely, this occurs
because interacting wave triplets require an auxiliary fre-
quency synchrony besidesmatching wave vectors) at the wave
number

kRb �
�

b
2U

�1=2

;

called the Rhines scale (the factor 2 in the denominator is
unessential).

Rhines [8] made another observation concerning the
energy spectra at small k. The frequency of turbulent
motion, given by the formal dispersion o � kU, decreases
with k, while the Rossby wave frequency b�kx=k2� decreases
at large k, or when kx becomes small. The two tendencies
could be reconciled when the energy flux takes on theNorth ±
South direction in the k-space. This means the formation of
zonal (East ±West) jets in the flow.

Numerical experiments at resolutions 642 (finite differ-
ence scheme) and 1282 (pseudo-spectral method) in Ref. [8]
confirmed Rhines' estimates and demonstrated the formation
of a zonal structure in the presence of the beta-effect. Though
the Rhines derivation was reproduced in many works, and
laid the basis for the theory of the beta-plane turbulence, one
should not take it literally. To beginwith, phase-speed and the
rms turbulent velocity have different transformation proper-
ties under time reversal. The true effect of the beta-plane is to
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Figure 6. (a) Energy spectra and (b) spectral energy fluxes for different

coefficients of the bottom friction, l � 0:05, 0.03, 0.02, 0.015 and fixed

source power. The straight line on the upper plot corresponds to a ÿ5=3
slope.
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inhibit nonlinear transfers into the region where the beta-
effect dominates, and the Rhines scale gives only one possible
estimate of such a region.

There are other estimates, like that obtained by Holloway
and Hendershott [88], who conducted a numerical study of
the decaying turbulence on the beta-plane to verify their
statistical closure model known as the test-field model. They
found a strong anisotropy in the wave range

k4 kHb �
b
Z
;

where Z denotes the rms vorticity. Their estimate gives a b-
dependence different from that found by Rhines.

Paper [12] analyzed various scales associated with beta-
plane turbulence, and gave a physical space picture of the
beta-plane turbulence, which we shall briefly outline. We
consider forced beta-plane turbulence with an isotropic
source at sufficiently large kf, and assume that the energy
cascade to small k depends on a single parameter Ð the
energy dissipation e. Then the eddy turnover time can be
estimated to be

tt�k� � eÿ1=3kÿ2=3 ;

and its reciprocal measures the rate of strain, or the turbulent
eddy frequency. Equating this to the Rossby frequency gives
the spectral borderline between waves and turbulence.

If we ignore the anisotropy of equation (25), and replace
kx in the numerator by k, we get the following expression for
the transitional wave number

kb �
�
b3

e

�1=5

:

All three numbers, kRb , k
H
b , kb are in general different, and

Vallis and Maltrud explain their relationship. They estimate
the rate of strain via

s�k� �
��k

k0

�k 0�2E�k 0� dk 0
�1=2

;

k0 being the cut-off wave number for the energy containing
eddies, and then use the standard 5/3-spectrum hypothesis to
get tt and kb with the coefficient 3C2=4� �ÿ1=2� 0:46 (assuming
the Kolmogorov constant C2 � 6).

If the energy is localized within a narrow spectral band,
then s k� � should coincide with the total enstrophy, and one
obtains the external scale of Ref. [88]. The original Rhines'
estimate corresponds to the choice

s�k� � k3E�k� :

For a power spectrum it differs from kb by a numerical factor.
Equating 1=tt to the Rossby frequency (25), one gets the

following equation for the bounding curve of the cascade
region

kx � �kb cos 8=5 y ;
ky � kb sin y cos3=5 y ; �29�

in terms of polar angle y of k (Fig. 7). This shows the
characteristic anisotropy of the beta-plane turbulence.

Paper [12] verified these predictions in two ways. The first
one exploits the so called EDQNM (Eddy-Damped-Quasi-

Normal-Markovian) closure (we refer to Ref. [7] for an
elementary exposition, and to Ref. [19] for a more complete
description of the analytical statistical theories). Forcing and
dissipation are not considered here, though this could be done
in principle. Numerical simulations show the initially iso-
tropic spectrum evolving into the characteristic dumbbell
shape. The latter, however, doesn't remain fixed. Since
statistical equilibria (in the absence of forcing dissipation)
are defined by (isotropic) conserved integrals, the anisotropy
would gradually disappear.

Let us remark that similar results hold for Rossby waves
in the framework of the kinetic theory, as discussed in the
review article by Reznik in Ref. [89].

EDQNM has advantages compared to those of direct
numeric simulations, since it demonstrates the beta-effect in
quasigeostrophic turbulence directly. The theory is formu-
lated in the language of 2D energy, or enstrophy Fourier
spectra. The energy density obeys the kinetic equation�

qt � d�k� ÿ ibkx
k2

�
Ek�t� � Re

�
Tk�t�

	� Fk�t� ;

Tk �
X

k�p�q�0
ykpqakpq�EpEq ÿ EqEk� ;

akpq � 2�p� q�2
k2p2q2

�p2 ÿ q2��k2 ÿ p2� ;

where d�k� denotes the linear dissipation operator and Fk the
enstrophy source power. The transfer term Tk also involves
the relaxation times ykpq of triads p� q� k � 0.

The latter, in the presence of the beta-effect, takes on the
form [88]

yÿ1kpq � i�oÿk � op � oq� � mÿk � mp � mq ;

where ok are the Rossby frequencies and

mk � a

��k
0

l 2E�l� dl
�1=2

is the relaxation rate of the kth mode [with coefficient
a � O�1�], equal to the combined straining of large-scale
eddies (l4 k) on the kth mode.

The straining rates m and Rossby frequencies o have a
similar effect on the transfer term Re�Tk�t��: the increase of
either one lowers T, thus suppressing the nonlinear transfer.
Thus the principal role of the beta-effect in the 2D turbulence
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Figure 7. Bounding curve in the wave-number space of Eqn (29).
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(from the EDQNM standpoint) is not the (Rossby) wave
radiation, but the inhibition of nonlinear transfers, due to
decoherence of the third moments, measured by ykpq.

The relation jokj � mk, or equivalently k � kb divides the
k-space into two regions with different nonlinear interactions.
In particular, the region of large anisotropy has inefficient
interactions, because of short relaxation times. The same
could be phrased in the language of triads: the dominant
linear b-term in the PV evolution equation should impose an
additional frequency synchrony on nonlinear interactions,
and thus render them less efficient. Notice that f-plane (zero-
beta) turbulence (purely 2D) is automatically synchronous, as
all modes have zero frequency.

Vallis andMaltrud [12] carried out numerical simulations
on a 2562 lattice with isotropic forcing at kf � 80, and found
that only broadly distributed friction could equilibrate such a
system. If scale selective friction is turned on at small wave
numbers, kc < kb, the energy will still accumulate at kb and
the system will not relax to equilibrium.

Wave number kb is determined by the energy flux and
remains fixed for a stationary source (e.g. a delta-correlated
Gaussian [27, 44, 49]). If the long-wave dissipation is confined
to small k < kb, the energy will slip across the kb-barrier, so it
will no longer define the arrest scale [49]. Nevertheless the

Rhines wave number kRb (or kHb Ð for the narrow-band
spectra) can remain valid. It will decay with time, since the
energy slips across kb, increasing rms velocity and thus
lowering kRb until reaching the dissipation range.

Thus we find that kb and kRb have different meanings, but
both express anisotropy and the departure from the 5=3-law,
to be discussed below. Let us remark that in the forced
turbulence case all three numbers, kRb , kb and the wave
number determined by bottom drag, should be related. It
remains to be studied whether the Rhines scale kRb has the
same meaning of the energy carrying scale in the presence of
bottom friction.

Paper [12] presents the stationary two-dimensional spec-
trum for kb � 10, with its characteristic1-shape. It becomes
nearly isotropic for k > kb. The wave-dominated 1-regions
have low energy density, typical of such experiments (e.g.
Ref. [49]). So one should not consider kb to separate `waves
and turbulence'.

Experiments [12] show kb to approximately represent
both the energy peak and the cut-off between the isotropic
and anisotropic turbulence. In general, kb should rather serve
the latter role, as agreed by many authors.

We illustrate some features of the stationary beta-plane
turbulence in Fig. 8. The simulation was performed on the
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2652 grid with forcing wave number k 2 78; 82� �, friction
coefficient l � 0:01 and b � 60. It yielded stationary values
kRb � 18, and kb � 50. Figure 8a shows the stream-field at
t � 520 (the shades change twice from black to white). One
can see the large-scale organization of the systems in the form
of zonal jets along the y-axis. The jet-structure slowly changes
in time, and Fig. 8c reproduces the x-component of velocity
averaged in the x-direction (zonal mean of zonal velocity)
over the entire duration of the experiment.

The total mean kinetic energy remains nearly constant
after t � 120, but its spectrum continues to evolve, as the
formation of a zonal structure is a slow process. Thewestward
jets (having negative velocities and white-color flanks) are
broader than the eastward ones, and have stronger meanders.
The jets are linearly stable according to Ref. [12], and all
speculations about `critical beta-plane stability criteria' for
determining their width are redundant.

Figure 8b shows the compensated energy spectrum at
t � 520, along the positive k-directions, multiplied by the
theoretical k5=3 and the factor k (to take into account the
cylindrical divergence). It could be compared to the compen-
sated isotropic spectrum. For better visualization the ampli-
tudes of wave components 0; 10� � and 1; 8� � are reduced by
factors of 4 and 2 respectively. The spectrum has a sharp fall-
off in the upper left corner, which indicates nearly vanishing
flux to small k. It attains its maximal value at the zonal wave
vector k � 0; 10� �. The alternating zonal jets in physical space
have a zero total (zonal) transport. The nonzonal spectral
peak is located at 1; 8� � and has an amplitude lower than
0; 10� �. Both wave-numbers are smaller than theoretical
predictions, and kb overestimates the outer (arrest) scale by
a factor of 5.

Away from themaxima, the energy spectrum is practically
isotropic, and has a slope close to ÿ5=3. Figure 8d shows the
angular average of the energy flux as a function of k, averaged
over the last 10 units of time. The energy flux slowly decays
with k to k � 15, which corresponds to kRb . The nonuniform
flux is as above due to the bottom friction and falls sharply in
the region of high energy density. The kRb -barrier is thus
connected with the specific dissipation mechanism at low k.
Clearly, for large drag coefficient l, the energy flux will decay
faster, and we reach a balance between the flux and
dissipation at a higher k. As kb is independent of the friction
(as long as the friction is not too high on the forcing scale) we
can raise l, and thus bring kb close to the energy peak.

The shape of the 2D spectrum [12] comes closer to the1-
shape than in our Fig. 8b. To get a better measure of the
stabilizing beta-effect, paper [12] suggests an energy peak
wave number averaged over the angles ÿp=6; p6� � about the
kx-axis, called k �b . The jet wave number kjet Ð the absolute
spectral maximum, is always less than k �b , since the beta-effect
becomes zero in the South ±North direction, and allows
uninhibited energy flux to low k. But the difference is
marginal, more pronounced under special choices of the
long-wave friction (see below). In our experiments (Fig. 8),
the two quantities are close: k �b � 12, while kjet � 10.

Paper [12] compares the computed values k �b and kjet with
theoretical predictions. The authors point out that theory
overestimates these wave numbers, but comes close to them.
They attribute the discrepancy to the bottom friction, and we
have explained its role in determining such relations.

Paper [49] takes hypo-friction

Di � ni�ÿ1�n�1Dÿn

with n � 5, a space resolution 5122, and a stationary source at
k 2 �100; 105�. It studies 3 cases: b � 0, and two others
kb � 56 and 158. Such a choice of friction makes the outer
(arrest) wave number fall well below kb in the two latter cases
since long-wave dissipation resides at smaller wave numbers.
The authors claim to obtain the ÿ5=3 spectrum almost
everywhere outside a narrow sector about ky (our Fig. 8b
shows similar behavior). The ky-spectrum is much steeper
with a slope reaching ÿ5 (all spectra are averaged over small
sectors of aperture �p=12 about the given direction).

The authors call it a Rhines spectrum, but this may be
misleading. The relation

E�k� � c1b
2kÿ5 ;

in the original work [8] marks the curve separating `waves
from turbulence', rather than the turbulent spectrum per se.
Indeed, the equation

E�k�k � 1

2
U�k�2 ;

yields the Rhines wave number kRb , and furthermore, relation
E k� � � c1b

2kÿ5 has no spectral energy flux parameter. The
observed slope ÿ5 has no explanation. It could be due to a
special form of the long range dissipation and angular
averaging in Ref. [49].

The zonal jets of beta-plane turbulence could explain the
underlying structure of the planetary atmospheres, like those
of the Earth or Jupiter. So one is naturally led to studying
turbulence in spherical geometry. Williams [90] did the first
numerical simulation of 2D turbulence on a sphere, and
found such a zonal structure. His computational region
however was limited to 1=16 of the surface, due to the
imposed symmetries, and he used a special spectral source.
The spherical code of Ref. [66] didn't produce a clear zonal
structure, most likely because of dissipation.

Next wemention a few recent works [42, 47, 91] devoted to
the topic. The former studied forced turbulence without
bottom friction (but with short-wave dissipation). The
authors intentionally exclude long-wave dissipation. Such a
system could eventually arrive at a statistical equilibrium,
since it allows (small) direct energy cascade to the viscous
range. But the authors note that the relaxation process to an
equilibrium in the absence of long-wave dissipation is at
present beyond the computational capability of modern
tools.

Instead of stationary regimes, the paper studies the
turbulent state after 1000 Jovian days. It looks for the
dependence of the jet number on angular speed, with forcing
at various spherical harmonics. In spherical geometry the
Rhines argument would give the following estimate of the cut-
off (spherical) wave-number

nRb �1� nRb � �
OR
U

; �30�

whereO is the rotation rate of the sphere,R the sphere radius,
and U the rms velocity of vortex modes.

Model [47] has a spatial grid of 600� 300 points, with
truncation T199 (triangular truncation of higher spherical
harmonics that leaves numbers n4 199). Figure 9 reproduced
from Ref. [47] shows the dependence of the jet number on the
rotation rateO. Only the relatively high wave number nf � 79
shows amonotonic dependence of the jet number onO.When
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the forcing number is smaller, e.g. nf � 20 or nf � 40, the
dependence becomes irregular.

For a small forcing wave number and a high rotation rate
O one gets only high latitude jets, and a circumpolar vortex
bounded by a strong eastern current. The lower latitudes
carry only wave-like undulations. In this case the jet comes
close to the integral scale of the whole system.

Cho and Polvani studied decaying turbulence on a sphere
for a shallow water system. We shall talk about additional
effects in this system later on, and here focus only on the
rotational effects. The paper exploits a triangular spherical
truncation scheme T170 (on a 512� 256 grid). The decaying
turbulence is characterized by the energy centroid

�n�t� �
P

n nE�n; t�P
n E�n; t�

;

where n is the number of the spherical harmonic. The centroid
gives the outer (arrest) scale of the inverse cascade due to the
beta-effect (rotation).

All rapid rotation experiments yielded �n < nR
b , where the

latter quantity is defined for the equatorial value of b. Hence,
it was concluded that the Rhines scale makes a poor
prediction of the jet-number (as could be expected from the
beta-plane geometry, the exact correspondence between these
quantities does not necessarily exist). As O increases, the
initial phase shows steepening of the spectral slope, which can
be attributed to the termination of the inverse cascade. At
larger times this tendency weakens. For small Rossby
numbers, the turbulence evolves into a pair of anticyclonic
polar vortices, as predicted in the earlier work [92] (cf. Ref.
[47]).

Paper [91] studies both decaying and forced turbulence in
a system with bottom friction. To some extent, it extends the
planar analysis of Ref. [12] to the spherical case, and utilizes
the T85 truncation (on a 256� 128 grid) with forcing at
nf � 55. The 2D energy spectra, in both the decaying
turbulence and the stationary forced turbulence, look similar
to those in the planar case. Namely, the energy condenses in
spherical modes with zonal wave numbers m close to 0. The
difference appears at high latitudes, where jets weaken and
broaden. This agrees with the decrease of b at high latitudes.

The jets of decaying turbulence are less stable and robust than
in the forced case. Also, the quasistationary spherical jets
cannot move along a meridian, as their planar counterparts
(with periodic boundary conditions), since b � 0 at the poles.

Paper [91] makes a difference between the full rms velocity
and the rms vortex velocity obtained by subtracting the zonal
mean. Fig. 10 shows the dependence of rms velocity on the
mean wave number �n�n� 1��1=2CM defined as the ratio of the
mean zonal enstrophy to the mean zonal energy. Qualita-
tively, they follow from Eqn (30) with nRb �1� nRb � substituted
for the squared wave number.

An important conclusion of Ref. [91] came from the
analysis of spectral fluxes. The sustaining mechanism for jets
was found to be the straining of small (forcing) scale vortices
by the jets. Moreover, the intermediate scales practically
disappear from the interaction after time averaging. The
energy of vortex modes (defined by subtracting the zonal
mean from the total field) peaks at theRhines scale. However,
large vortices do not interact with the zonal mean on average.
These results, on the one hand, indicate nonlocal interactions
to be typical of 2D turbulence; secondly, they separate the
Rhines scale and the jet scale. The dynamics sustaining zonal
jets have little relation to the Rhines-scale structures,
identified with maximal vortex activity.
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We reiterate the main points of this section:
� There are several theoretical estimates of the separation

scale between small-scale isotropic eddies and the large-scale
motions influenced by the beta-effect. The wave number kb
seems to be the best candidate for the boundary between
isotropic and anisotropic turbulence although it tends to
overestimate this boundary. The Rhines scale should fall in
between kb and the spectral peak wave number. The latter
accounts for the basic zonal structure Ð the (East to West)
jets on the beta-plane. All such estimates are, however,
qualitative, as one should not expect a single parameter to
describe the transition from anisotropic to isotropic turbulent
regions. The original Rhines formulation wasmost often used
in this context, but its ambiguity lies in the meaning of rms
velocity fluctuations.
� The turbulent energy does not propagate up into the

range of `degenerate' Rossby waves, but condenses in the
South ±North direction in the Fourier space. Zonal jets are
sustained mainly through the direct (non-local) interactions
of small (forcing size) scales, and involve no Rossby waves.
� Long-wave dissipation brings more uncertainty (in the

stationary state) because it can produce its own outer (arrest)
scale. It is not clear whether the original Rhines number, or its
cousins, could serve as a universal estimate of the outer scale
in the presence of such dissipation.

4.4 Finite Rossby ±Obukhov radius
In the previous section we talked about geostrophic turbu-
lence on the beta plane, or sphere, in the limit of an infinite
Rossby ±Obukhov radius. A finite radius entails a new effect.
The PV equation with a finite Rossby ±Obukhov radius is
often called the equivalent barotropic PV. It also appears in
plasma physics under the name Hasegawa ±Mima equation,
and describes drift waves.

In this section we exclude Rossby waves by assuming a
constant Coriolis parameter (the f-plane approximation). As
is well known, a localized PV density in an equivalent
barotropic fluid gives a localized velocity distribution, since
the Laplacian in the relation between the vorticity and stream
function is replaced with the Helmholtz operator,

Dcÿ 1

L2
0

c � oq :

So Green's function G�r; r0� [for oq � o0d�jrÿ r0j�]
changes from the infinite range, log-potential one to the
finite range (exponentially decaying) Bessel ±MacDonald
function

G�r; r0� � ÿ 1

2p
o0K0

�
rÿ r0
L0

�
:

Thus one could expect inhibition of large-scale structures
above L0. Though a finite Rossby ±Obukhov radius could
suppress the inverse cascade, which, however, will not
necessarily be stopped completely.

Indeed, in the limit

k5
2p
L0
� kRO

the PV is approximated by

oq � ÿ c
L2
0

;

and PV evolution takes on the form

ÿLÿ20 qtc� �c;Dc� � D� F ; �31�

conserving (in the absence of forcing ± dissipation) the
integrals

K �
�
cDc dx dy ;

P �
�
c2 dxdy

Ð the kinetic and potential energies. They can be regarded as
limiting values for the total energy and enstrophy, conserved
in the entire system. We note that the principal terms of the
energy and enstrophy become proportional in the limit
k! 0, and turn into the `potential energy', while the higher
order terms in the small parameter kL0� �2 give the `kinetic
energy'.

According to Ref. [93] the two integrals K, P define two
cascade regions: the upscale cascade of the potential energy,
and the downscale one for the kinetic energy. The former has
a spectral slope ÿ11=3; the latter, ÿ5. Paper [93] refers to an
earlier work by Iroshnikov, who obtained these laws. Such
spectral laws are much steeper than the standard 2D-
turbulence and can be attributed to the drop in the cascade
efficiency.

The large-scale turbulence driven by (31) evolves on a
slow time scale tL2

0=L
2, where L is the characteristic size of

large eddies that could be identified with the outer (integral)
scale of the system,L � 2p. So after energy penetrates into the
upscale range, the dynamics slows down. Numerical experi-
ments on decaying turbulence with the initial spectrum in the
upper range k5 kRO [93] yielded spectra steeper than ÿ5, as
in the 2D decay case, which gave spectral slopes steeper than
the theoretical slope ÿ3. They also show that the PV
dynamics driven by the complete QGS system are identical
to the reduced equation (31).

Paper [94] considers turbulence forced within the wave-
number band 47 < k < 50, for

kRO � 2p
L0
� 0; 10; 20; 40 ;

on a 2562 grid, with standard hyperviscosity at high k, but
without long-wave dissipation. The forcing scale is put below
the Rossby radius, and one is interested in the energy transfer
across the kRO-barrier. Of course, such a system could not
equilibrate without infrared dissipation.

The inverse cascade spectra, averaged over a sufficiently
long time, depend on kRO and steepen with kRO fromÿ5=3 to
ÿ11=3. The slow cascade process at k < kRO leads to energy
accumulation at low modes and to the formation of regularly
spaced vortex structures ± `vortex crystallization', according
to the terminology of Ref. [94]. Accordingly, the PV structure
functions show oscillations as functions of the separation
distance r.

The authors of Ref. [94] stress that the vortex lattice does
not remain fixed. As energy continues to accumulate in the
low modes, the quasi-periods of the vortex lattice grows. The
authors attribute the growth process to vortex merging, but
provide little evidence. They also don't address the interaction
of strong vortices with the background field. Indeed, the
source cannot directly contribute to large vortices, but only to
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the small-scale background, and one needs a proper transfer
mechanism to explain the growth of large structures.

The finite Rossby radius cannot arrest the inverse cascade
without a dissipative sink. The simple linear drag becomes less
efficient here, as the Ekman friction affects the relative
vorticity rather than the PV. Our preliminary simulations
show that the energy can go well above the Rossby ±
Obukhov radius and reach higher levels than for kRO � 0,
all other parameters being equal. Here we see inefficient `large
scale friction' competing against inefficient nonlinearity, and
the problem of equilibration of the inverse cascade by bottom
drag remains open.

4.5 Shallow water turbulence
Rotating shallow water allows for surface (inertia-gravity)
waves and raises the problem of vortex dynamics, in the
presence of wave modes. This model is important for
geophysical applications and is often discussed in the context
of the so-called `slow manifold'. The latter means a slowly
evolving part of the coupled wave-vortex system, which
should yield a nearly quasigeostrophic equilibrium for
vortex modes. The shallow water system always emits fast
gravity waves, so the problem could be also phrased in terms
of the effect of gravity waves on the slow evolution of vortex
modes.

Another issue studied in connection with shallow water is
related to the Rossby ±Obukhov radius. It could have some
bearing on the wave generation, but is usually studied in the
context of the equivalent barotropic model without waves
(preceding section).

The study of the shallow water turbulence by itself could
not solve the slow manifold problem, but it allows one to
address some basic issues of wave-vortex interactions.

Rapid rotation decouples the wave and vortex modes, so
one could expect that stirring only the slow part of the system
(via a `balanced source') should produce turbulence close to
two-dimensional turbulence. This does happen to some
extent, but gravity waves are still generated in the vicinity of
intense vortex structures and canmodify the dynamics of such
structures.

If the Rossby and Froude numbers are small (the latter
refers to the ratio of typical velocities to the speed of a `surface
wave'), the separation into the slow and fast modes could be
implemented by a linear (gravity wave) operator (e.g. Ref.
[95]). This operator has two types of eigenmodes Ð zero
frequency, geostrophically balanced modes, and non-zero
inertia-gravity modes. To take into account nonlinearity,
one has to specify a proper nonlinear splitting.

The commonly used procedure exploits the gradient wind
balance, and leads to the so-called balance equations (see e.g.
Ref. [96]). All fields are decomposed into a vortical (balanced)
component (labeled with subscript v), and a small (in
Rossby ±Froude numbers) unbalanced residual. The gradi-
ent-wind balance equation is obtained from the Navier ±
Stokes equations by applying the divergence operator and
retaining the zeroth and first order parts in small Rossby
number,

gH2hv � fH2cv � 2J�qxcv; qycv� :

The first term in the r.h.s. corresponds to the geostrophic
balance; the second gives a quadratic correction (propor-
tional to Ro). But the gradient wind balance can be
considered for any value of Ro; in particular, for large

Rossby numbers it corresponds to the so-called cyclos-
trophic balance.

The gradient wind equation gives the balanced compo-
nent of the height-function in terms of the balanced stream-
field cv, but the definition of cv requires additional assump-
tions. Paper [97] imposes them through the potential vorticity
of the vortex mode

oq � H2cv ÿ
f

H0
hv :

Thus the unbalanced residual would have zero geostrophic
PV; this is a justified assumption as long as the residual
remains small during the evolution, which, however, can be
tested only by solving the system.

Two relations (gradient wind and the PV condition) allow
one to recover the fields cv and hv from PV. The residual is
merely the difference between the complete solution and the
balanced one. The source of mass and momentum are then
chosen to stir only the balanced mode.

Paper [97] integrates shallowwater on a 2562 grid with the
source at wave numbers 7 ± 9. Linear friction is confined to
the first 6 wave numbers, and the Rossby ±Obukhov radius
exceeds the forcing scale by a factor of 2. The inverse cascade
range is not resolved here, so themain focus of the paper is the
direct enstrophy cascade.

The paper considers regimes with different Rossby and
Froude numbers (the former being measured by the ratio of
the rms vorticity to the Coriolis parameter), varying them
within the range from 0.1 to 1. One example is a stationary
regimewith aRossby number of 0.45 and aFroude number of
0.25. Here the vortexmode develops a spectral slopeÿ3:3 (the
initial one was somewhat steeper, ÿ3:8), consistent with
standard 2D turbulence. The vortex modes dominate the
spectrum in the lowwave-number range. But the gravity wave
spectra decay more slowly than the vortex ones, and become
dominant at large wave numbers. They have no power law
approximation.

For physical space, paper [97] reports active zones of wave
generation (large divergence) on the periphery of strong
vortices. Thus wave-modes are stirred by the large scale
vortex components, and their spectra are sensitive to the
enstrophy resolution.

The paper shows that the vortical modes of shallow water
share many characteristics of 2D turbulence. For instance,
the direct (enstrophy) cascade, as in 2D turbulence, is
dominated by elongated triads. If the Rossby number
exceeds 0.2, the spectral slope of inertia-gravity waves
becomes much shallower than the slope of vortex modes,
and starts to dominate at large k.

The paper takes Rossby and Froude numbers close to the
atmospheric values, and claims that the transition from the
ÿ3 slope to a gentler one roughly corresponds to the 500 km
scale in the atmosphere. Thus mesoscale motions dominated
by gravity waves could arise in the absence of small scale
forcing.

A complete study of decaying shallow water turbulence
was conducted in paper [98]. It studied the evolution of the
initially balanced spectrum. To get the balanced initial
conditions, it uses balance relations, whereby the velocity
field is represented as the sum of the vortex field and a small
potential field

v � rotcez � EHw ;
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with E5 1. This expansion is substituted into the shallow
water equations, and all terms of order higher than ERo are
dropped. Given the spectrum of the vortex component c, one
can compute the spectra of the velocity potential w and surface
elevation hwith the help of balanced equations, and use them
as the initial conditions. The shallowwater equations are then
integrated on a spatial grid of 2002, or with a higher resolution
of 5002. The initial spectrum is centered at the wave number
k0 � 14. The numerical simulations [98] cover the widest
range of the Rossby and Froude parameters in the shallow
water system to date.

One particular aspect of the study is the effect of a finite
Rossby ±Obukhov radius on the turbulent cascade, con-
trolled by the dimensionless Burgers number

B � Ro2

Fr 2
� L2

0

L2
;

where L is the typical linear scale, and L0 the Rossby ±
Obukhov radius.

A small value of B means large initial vortices, compared
toL0, andweak inverse cascade. The authors study the kinetic
energy centroid kK as a function of the Burgers number after
1000 eddy turnover periods. This relation shows that for small
values of B it deviates moderately from the initial k0. As the
Burgers number is increased, the centroid kK moves down and
stabilizes at some value. This happens as the Rossby ±
Obukhov radius comes close to the box size when B
approximately equals 200, and for higher values of B the
evolution of turbulence is determined by (non-universal)
large scale geometry.

Another important parameter is the vorticity kurtosis,
which measures the intermittency of the system. Paper [98]
shows the time evolution of kurtosis for 3 experiments. The
first experiment has an initial vortex scale several times as
large as the Rossby-Obukhov radius. The second one takes it
to be of order L0=2 and the third one, L0=5. The first case
maintains kurtosis close to the Gaussian value 3, as in the
initial state. In the second experiment the intense vortex
formation stops at time t � 200, when the typical vortex size
approaches the Rossby ±Obukhov radius. After this the
inverse cascade becomes inefficient and the kurtosis satu-
rates. In the third experiment, the typical vortex size does not
reach the Rossby ±Obukhov radius even at t � 1000, and the
kurtosis continues growing.

The paper notes that the evolution of turbulence leads to
the growth of asymmetry between cyclonic (positive) and
anticyclonic (negative) vorticity. The skewness (measure of
asymmetry) of the vorticity field, initially zero, becomes
negative in a long run. The asymmetry depends on the
Froude number and appears at the early stages of experi-
ments. Cyclones look less regular than anticyclones, and grow
more slowly. The paper doesn't offer a convincing explana-
tion of such behavior, but points out that cyclones have a
lower thickness and, therefore, a smaller local Rossby ±
Obukhov radius, as well as a smaller zone of influence.

The problem of asymmetry between cyclones and antic-
yclones was also studied in Ref. [99]. It showed that the
merging of anticyclones leads to axi-symmetrization and
strengthening of the combined structure, whereas merged
cyclones remain elongated and dissipate energy in the direct
(enstrophy) cascade. These results agree with the conclusions
of Ref. [98]. In this regard we should remark that quasigeos-
trophy maintains complete symmetry between cyclones and

anticyclones, since the surface elevation appears through a
linearized (symmetric) approximation:

1

H
� 1

H0

�
1ÿ h

H0

�
:

The equations for shallow water make no such approxima-
tions and treat the surface nonlinearly. So the dynamics of
cyclones and anticyclones need not be similar.

The analysis of Ref. [98] shows that unbalanced fields
grow with Rossby and Froude numbers, but remain small on
average for small Rossby numbers. Like Ref. [97] this paper
finds large coherent vortex structures to be surrounded by
gravity wave fronts (bores). Bores stretch radially from vortex
centers; they are formed during the merging processes of
cyclones and anticyclones.

The unbalanced motions in the simulations of Refs [97,
98] remain small, since the sources can stir only balanced
modes, and strong small-scale dissipation prevents energy
accumulation at high k. The situation changes in conservative
systems. In that case fast modes are always generated by the
slow ones, but there is no direct feedback of waves to vorticity
(generation of gravity waves by vorticity at small Froude
number bears analogy to generation of sound by turbulence).
The slow leak of vortex energy to waves can be studied
adiabatically and modeled by slow evolution of the basic
parameters of vortex modes. Such `super-slow' evolution can
be interpreted as a higher level `slow manifold'.

Of course, the real dynamics and their adiabatic approx-
imation can diverge at large time, as demonstrated in Ref.
[100] by a specific example. As wave modes accumulate
sufficient energy, they can become dynamically independent,
rather than enslaved to `balanced vortex modes', and this can
lead to a gradual departure from the slow manifold.

Paper [42] (mentioned in the preceding section) studied
the effect of finite Rossby ±Obukhov radius on turbulence
decay for shallow water on a rotating sphere. It shows that
large circumpolar vortices are replaced by groups of small
vortices of Rossby ±Obukhov size. The zonal jet structure
disappears and turns into a spiral structure. These results can
also be attributed to the reduced efficiency of nonlinear
interactions for large vortices.

5. Geostrophic turbulence

5.1 Quasigeostrophic potential vorticity in stratified fluids
So far our discussion of various geophysical factors (the
beta-effect, topography, finite Rossby ±Obukhov radius)
has been confined to barotropic fluids. Real systems are
stratified, so a latitudinally varying heat flux renders iso-
thermal surfaces of potential temperature in the atmosphere
(or potential density in the ocean) inclined to the horizontal
plane (isobaric surfaces). Such an inclination implies the
presence of a potential energy that can be released into
baroclinic motions. Stratification means that the potential
temperature or density are functions of the vertical
coordinate. The standard textbooks (e.g. Refs [5, 7]) show
that stratified (baroclinic) fluids conserve the quasigeos-
trophic potential vorticity PV in the absence of forcing
and dissipation,

Dt oq � 0 : �32�
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As above we denote Dt � qt � �vH� (this takes into account
the horizontal advection by a geostrophic velocity field), and

oq � Dc� f 2qz

�
1

N 2
qzc
�
� f

is the quasigeostrophic PV in a stratified fluid defined in terms
of the horizontal Laplacian D and the Brunt ± VaÈ isaÈ laÈ
(buoyancy) frequency N z� �. The latter depends on the
vertical stratification,

N 2�z� � ÿg qz rs�z�
r0

for the ocean and

N 2�z� � g
qzys�z�
y0

for the atmosphere, where r0 and y0 are the reference
potential density and temperature. Thus a quasigeostrophic
PV, compared to the case of barotropic fluid, has an
additional z-dependent term. But the quasigeostrophic
motion of the stratified fluid is still horizontal (in layers)
and, therefore, determined by a single stream function of
three space coordinates and time.

From the basic hydrostatic and geostrophic balances one
gets the thermal wind relations

qzvx � ÿ g

f
qy

y
ys
; qzvy � g

f
qx

y
ys
;

where ymeans the departure of potential temperature from its
basic (mean) profile ys. For the ocean, the ratio of potential
temperatures should be replaced by the ratio of two densities
(with negative sign). By virtue of the thermal wind balance the
horizontal gradient of potential temperature is proportional
to the vertical wind shear. In particular, the meridional
temperature contrast gives rise to a vertical shear along the
x-axis.

The conserved dynamics of quasigeostrophic PV (32)
imply conservation of the total energy

E � ÿ 1

2

�
coq dV � 1

2

��
jHcj2 �N 2

f 2
�qzc�2

�
dV

and quasigeostrophic potential enstrophy

Z �
�
o2

q dV :

Charney [101] has shown that two conserved integrals of
motion allow one to adopt the two-dimensional theory to the
quasigeostrophic turbulence, assuming an isotropic distribu-
tion of energy in 3D space with a stretched vertical coordinate
z 0 � zN=f (for constant Brunt-VaÈ isaÈ laÈ frequency). The iso-
tropization hypothesis for geostrophic turbulence was tested
in Ref. [102] by means of a simplified Test Field Model. It
considered the decaying turbulence and showed that at large
wave numbers (greater than the energy peak) a turbulent flow
becomes almost isotropic. This process however, proceeds at
a slow pace, due to the kÿ3 energy spectrum. Indeed, the rate
of strain at wave number k,��k

0

E�p�p2 dp
�1=2

;

should grow logarithmically slowly with k for a kÿ3 energy
spectrum. At the low k end, the 3D isotropic distribution
transforms into a two-dimensional one.

Charney's 3D isotropization assumes a degree of homo-
geneity in the vertical direction, while the real atmosphere and
ocean have only limited vertical extent. Besides we use the 2D
advection in Eqn (32) and 3D elliptic operator in the
definition of oq. So to show the equivalence of the quasigeos-
trophic and the 2D turbulence, one needs to compare the triad
structure in both cases.

Paper [103] does it for N � const, and notes that a non-
constant Brunt ±VaÈ isaÈ laÈ would not allow such isomorphism.
The numerical simulations of Ref. [103] verify Charney's
hypothesis in a model with horizontal resolution 128� 128
and 6 vertical modes. The vertical modes are solutions of the
Sturm ±Liouville problem

q
qz

�
f 2

N 2

q
qz

Fm�z�
�
� ÿl2mFm�z�

with rigid lids on the top and bottom of the fluid layer. The
m � 0 mode F0�z� � 1 is barotropic, while the rest are
baroclinic,

Fm�z� �
���
2
p

cos

�
mpz
H

�
; l2m �

�
mpf
NH

�2

:

where H is the depth of the layer.
Assuming an external shear profile U � �U�z�; 0� to be

fixed by the balance of the heat flux and dissipation in (32) via
the thermal wind relation, one can study the stability problem
(we shall describe it below in more detail for the two-layer
fluid). Such a flow is known to be unstable to baroclinic
perturbations (see e.g. Ref. [5]). Such instability evolves into
the turbulence studied in Ref. [103]. Here the vertical velocity
profile U�z� is assumed to have only the first (most unstable)
baroclinic mode. Stationary states can exist due to the bottom
friction, which augments the r.h.s. of (32) with ÿlH2cjz�0.
The external flow can be accounted for by adding ÿUHoq

term on the r.h.s. of Eqn (32), or expanding all the fields in the
mean and perturbation.

The statement of problem inRef. [103] differs from that of
standard 2D turbulence, as the forcing scale here is not fixed.
The Rossby radius of the first mode, lÿ11 , gives the principal
instability scale, so the energy input is confined to the vicinity
of k � l1.

The energy pumping in Ref. [103] is clearly anisotropic in
3D, as it involves the first baroclinic mode. But the energy
spectra at large 3D wave numbers

K � �k2 � l2m�1=2

are equal (in the constant Brunt ±VaÈ isaÈ llaÈ frequency case).
That means 3D-isotropization in the modal representation,
with the spectral density depending on K only.

The energy peaks of the fixed vertical modes, as functions
of horizontal k, have different positions, but the peaks of the
barotropic and the first baroclinic modes coincide. The
horizontal wave-number of the energy peak is close to the
Rhines scale kRb of the barotropic mode.

Experiments with variable (exponential) Brunt ±VaÈ isaÈ llaÈ
frequency lose universality. The energy spectra are no more
functions of the 3D wave-number, though different vertical
numbers m have the same horizontal slope in k. However,
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decaying turbulence with 3D isotropic initial conditions and a
variable Brunt ±VaÈ isaÈ llaÈ frequency profile restores the iso-
tropic spectra and universal relations. The authors suggest
that the tendency to 3D isotropization in general depends on
the isotropy of the source.

Paper [103] also considers the energy budget for different
modes. It shows that nonlinear energy transfer for the
barotropic mode is positive at small horizontal wave
numbers, like in the inverse cascade of 2D turbulence. This
transfer is largely balanced by the bottom friction, whereas
the baroclinic instability plays a minor role. For baroclinic
modes the nonlinear energy transfer is negative in the low k
range, and one gets the direct cascade to high k.

The energy balance of the first baroclinic mode is
sustained by generation and nonlinear transfer. An interest-
ing effect of the bottom friction is the positive contribution to
the balances of baroclinic modes at small wave numbers, due
to the coupling of baroclinic modes to the barotropic one at
the lower boundary. We shall come back to spectral fluxes in
the next section on multi-layer models. Here we only state the
principal conclusion: amultimode stratified fluid can produce
an inverse energy cascade only through its barotropic mode.

Paper [104] compares the decay regimes of 2D turbulence
and quasigeostrophic (3D) turbulence (with homogeneous
vertical structure). Their gross features (enstrophy slope,
enstrophy decay rate, as function of a time, etc.) look
qualitatively similar, but differ in details. As in the 2D decay
turbulence long lived vortices appear in the 3D quasigeos-
trophic case [105]. A recent paper [106] conducted a statistical
analysis of geostrophic vortices, and showed that after the
initial transient the vortex statistics become self-similar, and
agree with the scaling based on constant energy, vorticity
extrema and the ratio of vertical to horizontal vortex sizes (cf.
Refs [70, 72]).

The dynamic study of quasigeostrophic turbulence is
much more laborious compared to the 2D case, due to 3D
integration. Only a few papers have made such attempts.
Most results of geophysical significance were obtained by
means of multi-layer (typically two-layer) models, which we
shall now describe.

5.2 Multi-layer models
The main source of atmospheric energy comes from the solar
radiation that creates the temperature contrast between the
poles and the equator. The horizontal gradient makes the
isotherms of the potential temperature inclined and causes
baroclinic instability, which releases the available potential
energy. The observational data, however, show that the
maximum kinetic energy of nonstationary atmospheric
vortices and the maximal heat flux correspond to zonal
wave-numbers 4ÿ7, in contrast to the Earth's baroclinic
instability modes, which correspond to wave numbers 12 ±
15 [107]; see Fig. 11 reproduced from Ref. [108]. Hence the
basic problem is as follows: what are processes responsible for
the observedmaximum, and how can they explain its seasonal
variations, as well as its variations between the northern and
southern hemispheres?

The ocean currents gain part of their energy from the wind
stress at the surface. The source scale here is comparable to
that of the basin. The wind stress gives rise to vertical shear,
proportional, via the thermal wind relation, to the meridional
gradient of the temperature. So the baroclinic instability is
still responsible for the energy flux. The classical problem of
oceanography is the Antarctic Circumpolar Current in the

Southern Ocean Ð a jet flow whose meridional extent is far
lower than the wind stress scale [109].

The physics of such localization is only part of the
problem. Another important point comes from the relatively
small inner Rossby radius of the ocean Ð 40 ± 50 km,
compared to 800 ± 1000 km for the atmosphere. This radius
characterizes the energy release scale for baroclinic modes,
and its small value does not allow it to be resolved in any
general circulation model. The subgrid turbulence must be
parametrized in terms of the resolved fields (or mean fields in
the simplest models). Thus one needs an effective parame-
trization for turbulent fluxes of heat, potential vorticity and
momentum, which by itself is a big unresolved problem that
we leave aside in this review.

The basic tool for such problems, used in many works, are
multi-layer (often two-layer) models. They are most efficient
from the computational standpoint, if one has to compute the
important statistics and parameters.

Quasigeostrophic equations for PV in a two-layer fluid of
equal thickness and with a rigid lid (the latter is equivalent to
the infinite outer Rossby ±Obukhov radius) have the follow-
ing form (see Ref. [5] for more detail):

qt qi � J�ci; qi� � Fi ; �33�
where i � 1; 2 labels the layer: 1 Ð upper, 2 Ð lower. The
potential vorticity in each layer is computed via

qi � Dci � f� 1

2
k2R�cj ÿ ci� ; j � 3ÿ i ;

where kR � 2� f 2=�g 0H0��1=2 measures the inverse of the
internal Rossby radius (g 0 � gDr=r the reduced gravity
acceleration, Dr the density drop between two layers), and
Fi designate the forcing-dissipation in two layers. These terms
look different for the atmospheric and oceanic models. In the
ocean the surface wind stress provides the source. It enters the
model through the meridional gradient of the tangential wind
stress on the upper layer; the long wave dissipation consists of
the Ekman bottom friction on the lower layer, and one uses
hyperviscosity for the short-wave energy sink,

F1 � ÿqyt�D1u ; F2 � ÿlDc2 �D2u :
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Figure 11.Meridional heat flux as a function of the zonal wave number for

the Earth's atmosphere [108].
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The second terms in both expressions mean hyperviscosity,
which we will not specify.

For atmospheric models solar radiation provides the
source, while dissipation is due to both bottom friction and
radiative cooling. For continuously stratified models the heat
source is proportional to the vertical derivative of the heat
flux [5]. This gives two heat sources of equal amplitude and
opposite sign, in two layers. The temperature in the two-layer
system is proportional to the difference of two stream-fields,
and the radiative cooling amounts to relaxation of the
temperature. This yields the following sources in the upper
and lower layers:

F1 � KT

�
c1 ÿ c2

2
ÿ te�y�

�
�D1u ;

F2 � ÿKT
�
c1 ÿ c2

2
ÿ te�y�

�
ÿ lDc2 �D2u ;

and the quantity KT te y� � denotes the meridional profile of the
source.

Unlike the previous case we could find a stationary
solution, which balances the heat source, radiative cooling
and Ekman friction. In the absence of Ekman friction and
short-wave dissipation, the stationary meridional tempera-
ture profile is proportional to te. This fixes only the difference
between two stream functions, but not the stream functions
themselves. One can add Ekman friction and neglect short-
wave dissipation (making use of the large disparity between
the forcing and viscous scales). This implies Dc2 � 0, i.e. a
uniform flow in the lower layer, whose velocity must be zero
in the absence of momentum sources in the lower layer.

Given such a stationary state, we can consider solutions
for the two-layer system in the form of the sum of the
reference (mean) flow and its perturbation due to instabil-
ities. In the oceanic case the upper layer source can be
balanced only through non-stationary and nonlinear effects,
so we have no stationary reference flow.

Salmon [110, 111] outlined the general scheme of the two-
layer turbulence (see Ref. [7] for elementary exposition). One
replaces layer stream-functions c1, c2 with c � �c1 � c2�=2
and t � �c1 ÿ c2�=2, Ð barotropic and baroclinic stream
functions (they correspond to the barotropic and first
baroclinic modes of multi-mode systems). The derivation of
corresponding equations for barotropic and baroclinic
stream functions follows easily from Eqns (33).

The total mean energy per unit mass is given by

E � 1

2S

�
�Hc � Hc� Ht � Ht� k2Rt

2� dx dy ;

whereS is the area covered by the flow. This energy consists of
the barotropic kinetic, baroclinic kinetic and baroclinic
potential energies.

In the absence of forcing-dissipation the total energy is
conserved. Moreover, the potential enstrophies of each layer
are also conserved. We denote the total barotropic energy of
the Fourier mode k, as Uk, and total baroclinic energy as Tk.
The analysis [111] of triad interactions for p, q, k
(k� p� q � 0) gives two kinds of triplets: barotropic
�ck;cp;cq�, and mixed baroclinic �ck; tp; tq�.

In the first case we have conservation of the energy and
enstrophy as in the 2D case,

_Uk � _Up � _Uq � 0 ; k2 _Uk � p2 _Up � q2 _Uq � 0 :

So one should expect similar relations and the existence of
inverse energy and direct enstrophy cascades for the baro-
tropic mode. For the mixed type of interaction, the conserva-
tion of energy and enstrophy implies

_Uk � _Tp � _Tq � 0 ;

k2 _Uk � �p2 � k2R� _Tp � �q2 � k2R� _Tq � 0 :

Far belowRossby-scale wave number kR the energy exchange
should involve two baroclinic modes, with small influx to the
barotropic mode. In this limit, energy conservation also
implies enstrophy conservation, and direct cascade to large
wave numbers is not prohibited. The barotropic components
becomes involved in interactions in the vicinity of the wave-
number kR. Salmon concludes that the energy and enstrophy
transfer follow the scheme presented in Fig. 12 (redrawn from
Refs [7, 111]).

The numerics of Ref. [111] are carried out on a 32� 32
grid and agree with simulations of the Markovian model of
turbulence. Here kR � 8, and the maximum kinetic energy
falls in the wave-numbers 3 ± 4. The spectral slope for large k
is close toÿ3. Higher resolution simulations appear in papers
[112, 113] (three-layer models), and [13 ± 15, 114 ± 117] (two-
layer ones). Below we describe the results that take into
account the beta-effect.

Paper [112] wasmotivated by the problem of theAntarctic
Circumpolar Current. It uses a finite-difference scheme. The
domain of integration is periodic in the zonal direction, and
has a rigid latitudinal boundary (where the proper boundary
conditions require special consideration [118]). It uses
quadratic bottom friction and linear friction between the
layers. The grid resolution varies from 38.5 to 9.8 km, and the
domain of integration covers 2000 km zonally and 1000 km
along the meridian. The surface stress obeys a sin�py=Ly�-
law. The channel regime corresponds to a meandering jet,
whose localization across the channel is far less than the
localization of the wind stress. The PV field has a frontal
structure with irregular, nonstationary vortices.

A substantial part of the paper deals with mean balances,
which we shall not discuss, as we are primarily interested in
spectral characteristics. Spectral density of the velocity
fluctuations on the channel axis has a broad range where the
spectral slope is close toÿ3, and themeridional component v 0

has a much higher amplitude than the zonal u 0. Theÿ3 range
covers both the radius-of-deformation wave-number and the
maximal instability range. It does not extend, however, to
small wave-numbers, where the bulk of the energy resides.

kO
kR

kD

Baroclinic energy

Barotropic energy

SCATTERING
INTO 3D
TURBULENCE

WIND OR
SOLAR
INPUT

NET LOSS
TO BOUNDARY
LAYER FRICTION

Figure 12. Schematic view of energy (solid) and potential enstrophy

(dashed) fluxes in the baroclinic turbulent flow [110, 111].
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The spectral maximum sits close to �2p�ÿ1b1=2 u02
ÿ �ÿ1=4

, i.e. to
the Rhines scale [8]. This scale changes by a factor of 2 from
the lower to the upper layer. The jet wave-number (deter-
mined by the exponential fall of the velocity) is smaller than
the spectral peak; we observed a similar feature for the beta-
plane turbulence.

Figure 13 shows spectra for various components of
velocity, as well as the scales of the problem [112]. The
frequency spectrum computed in Ref. [112] also exhibits a
ÿ3 region, which confirms the Taylor hypothesis of frozen
turbulence. The corresponding frequency interval, however,
is shorter than the ÿ3 region of k-spectra and belongs to the
short-wave range.

The energy spectra in the zonal wave number look similar
to the velocity spectra on the axis of the channel. The kinetic
energy spectrum has a ÿ3 region, but the potential energy
drops as kÿ4 there. The spectrum of the total energy has an
intermediate shape. Finally, the energy budget on Fig. 14
(follows Fig. 21 of Ref. [112]) indicates that the energy is
gained from the mean flow on intermediate scales and
transferred away from there through nonlinear interactions
between vortices both to large and small wave-numbers.

The energy dissipation is comparable with the nonlinear
transfer over a wide range of wave-numbers n, so the problem
of the dissipation-free inertial interval remains open even in
the ÿ3 region. The maximal dissipation has smaller values of
k than energy generation and coincides with the energy peak.
We stress that this budget concerns the total energy, made of
the barotropic and baroclinic components. It says little about
Salmon's scenario, but we have already discussed other
results [103] that confirm his picture.

Paper [13] studied the jet-structure in the atmospheric
conditions in detail. It used a pseudo-spectral code with
N � 64 or 128, in each direction and each layer. The heat
source gives a uniform flow of velocity U0 in the upper layer,

and the stream-function has a period 2p=L, L � 15, 20, 30 in
units 1=kR. Most experiments do not consider temperature
relaxation. The transition time to a stable-jet state depends on
forcing-dissipation. The author notes that the global char-
acteristics of the flow (such as the total energy or heat-flux)
are settled rapidly, over several dozens of time units
1=�U0kR�. The organization of jets, however, requires
substantially longer (higher order) periods.

The paper presents stream-field realization, PV and the
time averaged zonal velocity component; they clearly visua-
lize the jet-structure in both layers. The dependence of the
wave number kJ, equal to the jet number over channel width
L, on the Rhines kRb �

������������
b=2U

p
of Ref. [13], is shown in

Fig. 15. The rms velocity is determined via the total vortex
kinetic energy U � ������

2E
p

. The vortices of Ref. [13] are any
departures from the base flow, including zonal jets.

The three dependencies on the figure differ by the bottom
friction coefficient and b. The thick line has l � 0:05 and
b � 0:1ÿ0:5 in dimensionless units (determined via kR and
U0). The other solid line has l � 0:15 and b � 0:2ÿ0:5, while
the dashed line corresponds to a fixed b � 0:25, and variable
friction l � 0:015ÿ0:4. The jets weaken considerably as the
friction grows. We should also remark that variable friction
has an effect similar to that of variable b. Both parameters can
significantly modify the energy of the flow. The last figure
clearly demonstrates that a relation exists between the jet-
number and the wave number kRb , thus bottom friction affects
the flow in a given range of parameters through the rms
velocity.

The total kinetic energy E includes both the barotropic
and baroclinic contributions, and this contradicts, to some
extent, the argument of Rhines. However, the barotropic
energy in all experiments [13] far exceeded the baroclinic
energy.

Paper [13] gives maps of the zonal component of `vortical
velocity', as a function of time and meridional coordinate
(similar to Fig. 8c). The position and width of jets vary with
time, but their number remains fixed. The maxima of vortex

10ÿ4

10ÿ3

10ÿ2

10ÿ1

100

101

102

103

104

105

106

Fundamental horizontal
wave numbers

Energy-
containing
range

Inertial
range

Dissipation
range

kÿ3

B
as
in

M
ea
n
je
t

T
ra
n
sf
er

ar
re
st

M
ax
im

u
m

in
st
ab

il
it
y

D
ef
o
rm

at
io
n

ra
d
ii

R
es
o
lu
ti
o
n

S
�k
�,
m

2
sÿ

2
(c
.p
.m

.)

Figure 13. Spectra of the axial velocity components in the upper layer of a

3-layer fluid and scale ratio [112]. Spectrum of the zonal component (thick

solid line) is less in absolute value than the meridional spectrum (dotted

line). The total spectrum of the kinetic energy (dashed line) almost

coincides with the meridional spectrum. The spectra are obtained by

averaging 720 instantaneous snapshots.

0 2 4 6 8 10 12 14 16 18 20 22
ÿ20

ÿ15

ÿ10

ÿ5

0

5

10

15

20

n

E
d
d
y
en
er
gy

ra
te
s,
10
ÿ7

m
3
sÿ

3

Figure 14. Vortex energy budget in numerical experiments [112]. Energy

production shown in dashed line is balanced by nonlinear transfer (solid),

and dissipation (dotted). The energy is transferred from the source region

in both directions, to large and small wave-numbers.

September, 2000 Quasi-two-dimensional turbulence 889



activity lie in between jets, therefore energy-carrying eddies
are close to but somewhat smaller than the jet-scale.

We mention two important conclusions of Ref. [13]. It
points out that any attempts to produce stationary regimes
without bottom friction failed, allegedly because of the
absence of a long-wave sink for the barotropic mode. This
stresses once again the leading role of long-wave dissipation
in stabilizing flows and forming jets.

The second remark concerns the characteristics of the
inverse cascade of kinetic energy. The author observes that
the region of energy generation moves dynamically to larger
scales with increasing heat influx (or diminishing dissipation,
or b). The distance between the kinetic energy peak and the
energy generation peak is smaller than these numbers. Hence
one has the energy flux to large scales, but no inertial interval
with a self-similar spectrum. This apparently takes place for
the total energy budget. The kinetic energy at large scale is
indeed dominated by the barotropic mode, but the kinetic
energy source is baroclinic. According to Salmon, the transfer
of the baroclinic mode into barotropic proceeds in the vicinity
of the Rossby radius.

The Earth's atmosphere poses a problem of low frequency
variability. There are indications that such variability could
appear even in the absence of zonal heat contrast, being an
internal characteristic of the system. In this case it must be
related to some characteristics of the quasi-two-dimensional
turbulence. Paper [115] tackles this problem for a two-layer
quasigeostrophicmodel. It takes a jet in the upper layer rather
than uniform flow as the base flow, and uses a somewhat
lower resolution (31 in both directions) than [13] does. It finds
that kRb gives a good estimate of the energy peak wave number
of vortex modes, and also for the maximal low-frequency
variability. The dynamics of these waves are not related to the
inverse energy cascade: the nonlinear transfer is small, and the
wave amplitude is determined by the balance between
generation (via mean flow) and dissipation.

As in the preceding paper, the conclusion in Ref. [115] is
drawn for the total energy, hence the result is incomplete (the
inverse cascade exists only for the barotropic mode). Unlike
the preceding paper, however, the vortex mode is measured
by its departure from zonally and temporally averaged flow.
The paper shows that the transfer term becomes zero near the
maximal production wave-number. The transfer is positive
for smaller k and negative at the highest energy production
region, since this energy is transported to other wave-
numbers. The energy peak and the maximum production
peak are nearly identical, which agrees with the earlier work
[112].

Though all authors agree that Rhines scales corresponds
to the maximal vortex energy in quasigeostrophic turbulence,
such a result by itself has little predictive power, as long as one
has no independent estimate of the rms velocity. There is no
direct analogy here with barotropic turbulence on the beta-
plane, since we are dealing with spectra in zonal wave
numbers, and the energy flux is caused by instabilities of the
global anisotropic zonal flow.

Held and Larichev [14, 15] used an idealized picture of
quasigeostrophic turbulence in two-layer systems to estimate
the rms velocities and turbulent diffusion coefficient for PV.
Their argumentation is as follows. Let the source be such that
in the absence of vortices it generates a shear

U � U1 ÿU2

2
> 0

between the upper and the lower layers (subscripts 1, 2). Then
we get the mean PV gradients in the upper and lower layers

b�Uk2R � Uk2R�zÿ1 � 1� ;

where z � Uk2R=b is a dimensionless parameter: The condi-
tion of linear instability for such flow is z > 1 (see Ref. [5]).

We assume that the flow is mostly barotropic on scales
greater than the deformation radius 1=kR (this condition
holds in experiments [13]), and that the inverse cascade is
arrested at some wave number k0. If the spectral slope for
k > k0 is sufficiently steep, the bulk of energy is confined to
the vicinity of k0. The resulting large scale barotropic field
should carry over baroclinic PV. We can estimate the
baroclinic PV to be

q 0 � kÿ10 �Uk2R�

and its flux to be

v 0q 0 � ÿD�Uk2R� ;

where D � V=k0 is the diffusion coefficient and V the
barotropic rms velocity. Hence, the rate of energy produc-
tion per unit mass is

E � ÿU1v 01q
0
1 �U2v 02q

0
2

2
� Vkÿ10 �UkR�2 :

The baroclinic vortex energy is generated at the wave number
k0 (where the barotropic energy resides), then transferred to
small scales through the cascade process, and converted to
barotropic energy in the vicinity of kR. The cascade is halted
at kR, as all larger k are barotropic (2D), so only enstrophy is
allowed to cascade down.
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Figure 15. Dependence of the experimentally measured wave number kJ,

obtained as the jet number divided by L, on the Rhines number

kRb � �b=�2U��1=2 [13]. Rms velocity is defined by the total boundary

condition energy (including the zonal mean component of jets).
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The authors argue that the energy flux into the barotropic
mode should be equilibrated by the production of baroclinic
energy, hence

E � V 3k0

(one could dispute this claim, as it neglects the contribution of
energy dissipation at small wave-numbers). This yields an
estimate

V � UkR
k0

;

so the barotropic rms velocity far exceeds the vertical shear.
Another key assumption of Ref. [15] is the equality

k0 � kRb , which implies

V

U
� z ; k0 � kR

z
; D � Uz 2

kR
:

The second of these predictions is supported by the numerical
results of Ref. [13] (in Fig. 18), that exhibits a nearly linear
dependence of the energy peak number on b.

The premises and estimates of the Held ±Larichev theory
were tested in numerical simulations with a model described
in Ref. [14]. The domain of integration L was chosen so that

2p
kR
� L

50
;

is 50 times the smallest wave number. The bottom friction
coefficient is taken as

l � 0:16UkR

and varies according to the forcing amplitude U. The paper
computes spectra of the squared barotropic component of the
meridional velocity and the energy production rate E, as
functions of k. The maxima of the two spectra are well
correlated with kRb , whose definition involves the meridional
barotropic velocity. The energy and its production rate grow
with z much faster than the predicted z 2 law (and come close
to z 4). There are noticeable departures from the relation
k0=kR � z.

The authors attribute these departures to oversimplified
barotropic dynamics, though we believe that there might be
other reasons. Indeed, their arguments completely ignore the
bottom friction. It tends, as we already observed, to suppress
the upscale energy flux (in this case barotropic kinetic
energy), hence it should change their estimates (the possible
dependence of the turbulent statistics on the bottom friction is
mentioned inRef. [15] ). Held andLarichev also claim that the
development of a reliable theory for vortex amplitudes could
be untenable because of a strong positive feedback between
vortex fluxes and their sizes.

We summarize the basic results of this section. Many
specific features and problems in two-layer models are due to
complicated transfer processes (with two interacting modes)
and different forcingmechanisms. Such systems possess outer
scales, a highly anisotropic structure, and excite the baroclinic
modes as a result of baroclinic instability. One could expect
isotropization at small scales k > kR, but large scales should
be dominated by zonal-type spectra. Scales of the highest
energy production rate are close and dynamically coupled to
scales of the maximal kinetic energy; in this respect the

qualitative picture of Held and Larichev grasps the essence
of the process.

The Rhines scale in most cases gives reasonably good
estimates of the vortex energy peak and the jet number of the
flow, though different authors use different rms velocities.
Nobody has so far studied two-layer geostrophic turbulence
and its nonlinear transfer structure as comprehensively as
quasi-2D turbulence in barotropic fluids on the beta plane
[12] or on a sphere [91]. The main goal of such study is to
determine whether the balance of two cascade processes Ð
barotropic upscale transfer and baroclinic downscale transfer
Ð could explain the structure of quasigeostrophic turbulence
and its energy carrying scales.

6. Observational data and laboratory
experiments

6.1 Observational data
The GASP experiment (Global Atmospheric Sampling
Program) has conducted detailed measurements of the
horizontal velocity spectra in the upper troposphere and
lower stratosphere on scales ranging from 3000 km to several
km. The results were reported in papers [119, 120]. They gave
kÿ5=3 spectra in the mesoscale range 10ÿ5 ± 10ÿ3 rad/m,
whereas in the range of small wave numbers k < 10ÿ5 rad/m
the spectra had a slope of ÿ3, see Fig. 16. More recent work
[121] takes a lower altitude, and obtains spectra with the same
slope ÿ5=3 in the 10ÿ5ÿ10ÿ3 range, but of somewhat lower
amplitude. The slope steepens to ÿ9=4 in the range
10ÿ3ÿ10ÿ2 rad/m, and then flattens at even larger wave-
numbers.

Paper [31] analyses commercial aircraft data, the
MOZAIC database, confirming the ÿ5=3 spectrum at small
scales, and ÿ3 at larger scales, consistent with the previous
observations.

Paper [122] analyzes the TOGACOARE (Tropical Ocean
Global Atmospheric Coupled Ocean-Atmosphere Response
Experiment) data, which refer to the range from 1 km to
1000 km. The entire data set has a spectrum with a slope close
to ÿ5=3, but for subsets of the data the slope varies between
ÿ5=3 andÿ2. This work found noÿ3 slope (it corresponds to
larger scales).

There have been several attempts to explain the observa-
tional results within the conventional paradigm of 2D-
turbulence. The main difficulty results from the reversal of
two spectral branches. The traditional interpretation of the
ÿ3 and ÿ5=3 slopes, based on the inertial intervals of 2D
turbulence, traces back to Refs [123, 124], see also Ref. [121].
Lilly suggested that the 5=3 spectrum is due to the inverse
energy cascade from the mesoscale convective source.
Convective motions in the stratified atmosphere give rise to
gravity waves and stratified turbulence. The latter should be
almost two-dimensional (notice that the quasigeostrophic
approximation is no longer valid at such scales, and rotation
has negligible effect).

Stratified turbulence and the problem of the mesoscale
spectra were discussed in two recent survey articles [125] and
[126]. We forego the details but just point out that numerical
experiments with narrow band forcing do show a tendency to
quasi-two-dimensionalization. Spectral fluxes at small (hor-
izontal) wave-numbers k become negative (inverse cascade),
but the spectral slopes deviate strongly from ÿ5=3, and the
spectral energy peak comes close to the forcing scale. Papers
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that consider broad band forcing and take into account the
physics of convective processes report spectra close to ÿ5=3
([127]).

Paper [120] suggests that the source of mesoscale
turbulence could be the breakup of internal gravity waves.

The conventional ÿ3 spectrum appears in the direct
(enstrophy) range when the forcing scale exceeds the inner
Rossby radius. Paper [128] points out that ÿ3 and ÿ5=3
branches of the spectrum can coexist if the system has two
sources at large and small scales, even without energy and
enstrophy sinks at intermediate scales. Maltrud and Vallis
have obtained such a spectrum numerically [41].

A different viewpoint is presented in Ref. [27]. Its authors
claim that aÿ3 spectrum could be explained in the framework
of the inverse cascade damped by the bottom friction, but, as
we mentioned earlier, these arguments are flawed.

All observational spectra, however, have serious flaws, as
one computes them indirectly from the observed frequency
spectra. So their slopes alone do not qualify such processes as
2D turbulence. In particular, to identify the ÿ5=3 slope with
the `inverse cascade', one would need the energy fluxes, and
hence, space realizations of the velocity field, or at least its
third order structure function.

Besides, the two-dimensionality of the system, approxi-
mately valid at the lower end of the 5=3-range (about 500 km),
is completely lost at the upper end (kilometers to tens of
kilometers). As for the large scales, a spectral slope ofÿ3 does
agree with the discussion of geostrophic turbulence in the
previous section. Indeed, spectral slopes of the kinetic energy
in Refs [15] (its Fig. 1) and [112] (Fig. 13 here) come close to
this value.

The comparative analysis of Ref. [31] reaffirms such
conclusions. This paper uses reanalysis of the experimental
data to compute the structure functions. It takes advantage of
the relations between longitudinal and transverse structure
functions, which differ for 2D and 3D turbulence. The author
concludes that the interval of large separations (ÿ3 range)
better agrees with two-dimensional dynamics than a smaller
range does. Hence, the kÿ5=3 spectrum should not be
attributed to 2D-turbulence.

The paper also computes the third order structure
function. These functions are reliably measured in the range
30 ± 300 km and prove to be positive. Positivity indicates the
presence of an inverse energy cascade, or at least of a
significant two-dimensional contribution. Thus the ÿ5=3
range should not also be attributed to purely 3D turbulence.
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Stratified turbulence offers the best choice for describing the
mesoscale atmospheric motions, but the persistence of aÿ5=3
slope for over 2 decades remains an open issue.

An important complement to observational data comes
from spectral reanalysis of the data of weather forecasting
centers. Paper [129] gives such spectra for February 1993,
based on ECMWF data (European Centre for Medium-
Range Forecasts); for January 1989, based on NMC
(National Meteorological Center); and for January 1979,
based on FGGE-3b experimental data. They show the
spectral slope (of vertically integrated energy spectrum) in
the range of spherical harmonics 10 ± 30 to be close to ÿ3 for
all three data sets.

For n > 30 the spectra diverge, due to the different spatial
resolution in the three experiments. The spectral energy flux is
positive for n < 10 and turns negative in the range
n � 10ÿ30, which means that such a range (of spectral slope
ÿ3) does not belong to the inverse cascade. The data were
filtered by the T60 scheme and contained no wave numbers of
the above ÿ5=3 interval.

The analysis [130] for 14 winter seasons and 15 summer
seasons of ECMWF data gave slopes ÿ�2:5ÿ2:6� for the
vertically averaged energy spectra in the range n � 10ÿ40.
Even in view of possible variability such a slope still differs
substantially from theÿ3 of the preceding work. The authors
didn't find the ÿ5=3 range for large n.

They also find spectral fluxes for the energy and
enstrophy. The energy flux is positive for n � 3ÿ10, in the
range of planetary waves, and negative in the synoptic range
10 ± 40. This once again would rather link theÿ3 range to the
direct cascade. The authors point out that nonlocal interac-
tions of planetary waves play a role in the enstrophy transfer,
whereas more local interactions in the synoptic range are
largely responsible for the energy transfer to large scales.

A simplified view of the large scale atmospheric motion as
two-dimensional turbulence does not account for the vertical
structure. The vertically averaged spectra sum the contribu-
tions of the barotropic and baroclinic modes, and even this
fact taken alone could bring about an uncertainty of slopes.
The aircraft data would rather be related to the energy spectra
at the flight altitude than characterize the atmosphere as a
whole.

6.2 Laboratory experiments
There are few laboratory experiments on 2D turbulence. The
early works surveyed in Ref. [131] are mostly qualitative. The
recent ones are discussed in Ref. [21].

Here we shall briefly review the quantitative results and
describe the laboratory techniques reproducing 2D fluid
motion. One way, most natural from the geophysical
standpoint, requires a rapidly rotating homogeneous fluid,
with small Rossby number. Such fluid should move as a
whole in Taylor columns, according to the Taylor ± Proud-
man theorem. The stirring source may be arbitrary, but, as
long as the Rossby number is small, the 3D effects will be
confined to a thin Proudman ± Stewartson layer, with the
bulk remaining two-dimensional. The fluid can be stirred by a
combination of sources and sinks [83, 132]. Weak ageos-
trophic currents created by sources and sinks and enhanced
by the Coriolis force would grow into strong geostrophic
vortex motion. Its instabilities, in turn, would give rise to
complex vortex patterns associated with 2D turbulence.

A rotating fluid in a cylindrical channel can be heated on
one side and cooled on the other, as in the experiments by

Hide and Mason [133]. This can represent the stirring
mechanism of the global circulation. Heating creates inclined
isopicnal surfaces, and the resulting baroclinic instability for a
sufficiently strong temperature contrast can stir turbulent
motions.

For conducting fluids a strong vertical magnetic field
would have the same effect as rotation has. The vortex
motion could then be excited by electric currents produced
by a system of electrodes of alternating polarity [84]. The
resulting regular vortex lattice could lose stability past the
critical current value and would create a two-dimensional
flow with a complex spatial-temporal pattern.

The simplest means of `two-dimensionalization' is using a
thin layer of fluid. If typical horizontal scales of motion are
much larger than the thickness, and the motions are slow
compared to the speed of surface waves, the vertical velocities
remain small, and the motion is quasi-two-dimensional. Such
flows are typically generated by magneto-hydrodynamic
(MHD) sources.

A weak electrolytic fluid is poured into a container over a
checkerboard array of magnets of opposite polarity. The
electric current through such a fluid would create vortex
motion, generated by theAmpere force (see, for instance, Ref.
[82]). As the current through the electrolyte is increased, the
primary flow becomes unstable. The tracer plot of Fig. 17
gives an example of the complicated spatial organization of
the flow in such experiments.

Let us remark that all experimental quasi-2D systems
have bottom friction. For a rotating fluid itmanifests itself via
the formation of an Ekman boundary layer at the bottom of
the tank. For MHD experiments in electro-conducting fluids
the friction is due to the Hartmann boundary layer. Finally,
experiments with thin fluid layers create a quasi-Poiseuille
vertical profile, hence

n qzzu � ÿlu ;

where l � nK=H 2
0 with parameter K � O 1� �. Clearly, in this

case we are dealing with a parametrization that grasps the
essence of bottom influence on dissipation.

Another type of experiment involves soap films between
two wires under the force of gravity. Such flows are clearly
quasi-two-dimensional, as the film thickness is only several
microns, and the surrounding air subjects such flows to
frictional dissipation. Assuming friction to be proportional

Figure 17. Streak photograph of anMDH induced flow in a thin layer. The

magnetic configuration corresponds to a lattice of 8� 8 elliptical vortices

of 2 : 1 eccentricity. The resulting non-stationary flow is due to instability

of the basic flow.
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to the flow velocity, we come to the same quasi-two-
dimensional setup as above.

Papers [136 ± 143] run experiments with decaying turbu-
lence, while [30, 84, 144 ± 151] do the same for forced
turbulence.

Paper [136] exploits a technique of MHD generation. A
strong electric current runs through the fluid during a short
period, after which the decay of the flow is studied. The
horizontal size of a single magnet is 8� 5 mm2, the layer
thickness H0 � 3 mm. The apparatus has 14� 13 magnets,
which can create the same number of vortices. The flow is
visualizedwith tracer particles, and velocities aremeasured by
correlating subsequent video-snapshots. The space resolution
of the measured velocity is 32� 32 grid points, which can be
tracked over time.

The initial state with 100 vortices gives the following
relation between energy and enstrophy:

O
E
� tÿ0:44�0:06 ;

after a few seconds. This law departs from the Batchelor
theory [4] that predicts enstrophy decaying as tÿ2, but is close
to the numerical results of Ref. [70]. However, according to
Ref. [70], the area occupied by vortices should decrease with
time, whereas experiments [136] show them densely filling the
entire region. The authors conclude that decay turbulence
does not follow either of the two scenarios.

The departure from theoretical predictions is hardly
surprising, as the assumptions of either theory do not hold
in the experiment. Thus energy is conserved in the theory, but
decays exponentially in experiments with time constant 2.3 s.
The latter comes close to the bottom friction time,

1

2l
� H 2

0

4n
;

of about 2.2 s.
The paper does not examine the relative role of nonlinear

terms responsible for the transfer, compared to that of
dissipation. So one couldn't say to what extent it reproduces
the turbulent regime, or a viscous decay process (which
combines standard viscosity and bottom friction). Here the
geometry and physical size makes standard viscosity compar-
able to the bottom friction at the forcing scale: the estimated
viscous time �2nk2f �ÿ1 gives 1.6 s, close to but somewhat lower
than the friction time. Since the forcing scale components
decay rapidly, the flow should be largely controlled by
dissipation.

The kurtosis in Ref. [136] remained close to the initial
value 3 (as expected for Gaussian fields) over the entire
evolution. This differs markedly from the numeric experi-
ments with decaying turbulence, where the typical vorticity
kurtosis may exceed several dozens, after attaining maximal
enstrophy dissipation, which signals the appearance of strong
vortices on an otherwise (statistically) uniform background.

Experiments [138] also deal with the decay laws and
vortex statistics of 2D turbulence, and are similar to the
experiments in Ref. [136]. Ref. [138] claims that the improved
methodology (using a two-layer fluid with a small density
drop between the layers) and a different interpretation of the
results yield complete agreement with theoretical results of
Ref. [70]. This refers to the decay laws for the number of
vortices, their separation and their mean size. A new
interpretation requires a change of variables in the vorticity

equation,

z � � z exp�lt�

and a time change to

t � � lÿ1
ÿ
1ÿ exp�ÿlt�� :

The new variables eliminate the friction term and change the
infinite time range into a finite interval. The viscosity
coefficient would now grow exponentially

qt z
� � �c�; z �� � n�Dz � ; n� � n exp�lt� :

The authors of Ref. [138] suggest that the change of
viscosity is not essential, so one could regard the flow as a
standard 2D flow. Then one should compare the theoretical
predictions with experimental data in new variables. As the
Reynolds number is close to that of Ref. [136], the new
interpretation maintains the relation between nonlinear
transfers and dissipation, but changes the time dependence.

Let us point out, however, that the decay laws of two-
dimensional turbulence are sensitive to the short-wave
dissipation. The decay laws of Ref. [70] are derived for a
special hyperviscous case, and differ significantly from the
laws observed for standard viscosity. For this reason any
agreement of the results of Refs [138] and [70] should not be
considered universal.

Another uncertainty stems from the procedure of separa-
tion of experimental flows into the background and vortices.
Unlike numerical turbulence, where local vorticity extrema
can exceed rms several times, the experiments show a
marginal difference.

Paper [139] considers the 2D turbulence in a soap film
between two vertical wires. The wires are 180 cm long, 5 cm
apart. They start at the bottom of a reservoir of soap mixture,
leaking through a 0.02 cm wide slit. The flow velocity in the
film could vary from 20 cm sÿ1 to 4 m sÿ1. Two methods were
used to measure velocity: homodyne photon correlation
spectroscopy and fiber anemometry. We shall discuss the
results obtained with the latter technique.

The turbulence is stirred by a horizontal comb of 3(1) mm
grid separation, and the flow ismeasured 4(1) cmdownstream
from the grid. Taylor's hypothesis allows one to convert the
frequency spectra of vertical and horizontal velocity into
spatial (Fourier) spectra. Both spectra are nearly identical in
the frequency range 100 to 1000 Hz (meaning isotropy), and
have slopes ofÿ3:3 �ÿ3:6�. This frequency range corresponds
to scales of 2 ± 0.2 cm (for 2 m sÿ1 velocity).

In the frequency range 20 ± 100 Hz the isotropy is broken,
but the spectra become shallower, with a slope of approxi-
mately ÿ2. The authors interpret the high frequency spectra
as enstrophy cascade. Since turbulence in such experiments
evolves downstream, one can expect the integral scale (the
flow velocity over the frequency of spectral peak) to grow
linearly along the flow, as in Batchelor turbulence [4], where
the vortex sizes grow linearly in time.

The latter was indeed shown in paper [140]. The experi-
mental setup is similar to that of the preceding work, but the
velocity field is measured with the two-component laser
Doppler velocimeter at different downstream locations. The
spectral slopes of the high frequency part (where the signal
level exceeds the noise) are approximately ÿ3:3. The linear
growth of the integral scale downstream, however, goes along
with a decreased in the kinetic energy density, due to the air

894 S D Danilov, D Gurarie Physics ±Uspekhi 43 (9)



friction. The authors show that lowering the air pressure
could yield a substantial reduction of the dissipation, but the
spectral shape and the integral scale law do not change.

Soap films are not strictly two-dimensional systems, since
their thickness can change. Thus experiments [141] estimate
the change of thickness to be such that the mean divergence
makes up 10 ± 20% of the mean vorticity. These experiments
use a setup similar to that of two preceding works: a 120 cm
long channel with 6 cm distance between wires, and a mean
flow velocity of 1.05 m sÿ1. The turbulent velocity fluctua-
tions were measured by the digital video-imaging system that
resolves 60� 60 grid points on a 1.5 cm� 1.5 cm square of the
film. The paper shows that the change of thickness is
correlated with the vorticity of the flow (a shallow water
type behavior), but the surface tension introduces some
specific features.

The authors of [141] measured the laws of decay of
thickness fluctuations, divergence squared and enstrophy
downstream. The latter two quantities have the same decay
rate, which goes faster than the energy decay. Since the energy
decay here is due to the air friction, one could not associate it
with any known decay theory.

The relatively high divergence makes soap film experi-
ments less valuable from the standpoint of two-dimensional
turbulence. Nevertheless, one can expect many qualitative
characteristics to be maintained by such a system. The paper
studies second order structure functions of vorticity and
longitudinal velocity, as well as the 3rd order structure
functions

Svzz �


dvL�dz�2

�
:

The latter obeys an exact relation in the enstrophy interval,

dvL�dz�2

� � ÿ2Zr ;
obtained similarly to (9). The measured structure function
Svzz does have a range (about a decade long) where the
theoretical relation holds (over the scale range from fractions
of mm to 1 cm). The measurements were taken 5 cm down-
stream, and the grid had 2.7 mm combs spaced 3 mm apart.

The second order structure function of vorticity had a
slope of 0.4, consistent with the energy slope steeper than ÿ3
for the other soap experiments. But the velocity structure
function had a slope of 1.6, which should give an energy
spectral slope ofÿ2:6. The reason for such a wide gap may be
the limited enstrophy interval.

Another work [142], which ran similar experiments (wire
length 120 cm, distance 6.2 cm, mean velocity 1.8 m sÿ1 with
laserDoppler velocimetry), also reported a slope of 1.6 for the
second structure function in the enstrophy interval. The
velocity measurements show a spectral range with a slope of
ÿ3:3, which also agrees with the previous results. The
measured third order structure function gave negative values
for small separation, as one could expect in the enstrophy
range, but as r grows, it becomes positive, in agreement with
the 3=2 law for the 2D turbulence. This suggests an inverse
energy cascade.

The paper raises the question of verifying the relation
between the second and third structure functions for 2D
turbulence [a consequence of (7)]. This question can be
answered only qualitatively, since one studies the decaying
system and needs estimates of time derivatives (let alone the
outer dissipation).

Paper [143] also discussed the structure function Svzz. It
showed the experimentally measured ratio Svzz=r to have a
plateau region, and thus confirmed the preceding work. The
paper also measures the PDF of Svzz, and finds a large
departure from the Gaussian distribution. The measure-
ments were conducted with two fiber anemometers, and the
experimental setup was similar to those in other experiments.

The numerical work [152] models turbulent experiments
on soap films. It studies a 2D flow behind a grid with
cylindrical combs, and finds a value of ÿ3:7 for the spectral
slope and a slope of 2 for the second structure function of
longitudinal velocities, which gradually becomes 1.6 as the
separation r grows. The structure functions of vorticity have
slopes close to their order n for n � 2; 4.

If turbulence evolves in the absence of forcing and
dissipation, one can apply the methods of statistical
mechanics (cf. Refs [7, 153, 154]), which predict a functional
dependence between the (mean) stream-field and vorticity.
Paper [137] made an attempt to check the prediction of the
statistical theories, using the experimental apparatus of
Ref. [136]. The authors conclude that the real evolution does
not follow the prescriptions of either statistical theory, nor
`selective dissipation', nor `minimum enstrophy'. However,
the paper does not examine the relation between the energy
dissipation and energy transfer, so strictly speaking one
cannot claim the system to be in a turbulent state.

Paper [155] observes that the evolution driven by viscous
dissipation alone can look similar to the evolution of 2D
turbulence flow, since it is also accompanied by a growth of
vortex size.

We now turn to forced turbulence. Paper [84] carried out
measurements in thin layers of mercury in an external
magnetic field. Vortex motion was created by 36 electrodes
of alternating polarity at the bottom of the tank. The velocity
field was measured at 11 points along a line. Hence, the
author detects only one-dimensional spectra of the transverse
velocity, but argues that spectral slopes of the 1D spectra
should be close to the wave number spectra (assuming
isotropic velocities). These spectra contain an interval of
nearly ÿ5=3 slope, but it does not extend beyond half a
decade. The paper also discussed how the spectrum varies
with the level of supercriticality. It showed that the energy
transfer to large scale is limited by the bottom drag, and the
energy peak scale grows higher with increasing Reynolds
number.

The turbulence is stirred at the wave vector 6; 6� � (a sine
decomposition is used, so wave numbers characterize the
numbers of vortices along each coordinate), and a Reynolds
number Rel � 20 drives the energy peak to the system size.
Unfortunately, the data on the kmax dependence of the
Reynolds number are incomplete, and involve only one-
dimensional spectra.

Paper [144] studies turbulent motion that results from the
baroclinic instability of the frontal upwelling. The motion is
produced by the surface stress applied to a two-layer fluid in a
cylindrical rotating vessel. Because of special techniques of
stirring, turbulence ismost likely quasigeostrophic. The paper
does not discuss the vertical penetration of stirring and
whether it creates a quasi-two-dimensional flow. The velo-
cities were recovered by streak photographs of tracers on the
fluid surface, where the resolution was from 1 cm to 90 cm
(outer diameter). The paper applies several techniques to
process the streak photographs to get velocity spectra. The
first one attempts to recover spectral slopes from the particle
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dispersion. It overestimates slopes and gives a value below
ÿ2:5.

The second one computes two-dimensional Fourier
spectra for velocities interpolated on a regular grid. The
third method computes a one dimensional Fourier transform
of the correlation function for longitudinal velocity. The
second and third methods give consistent results. For the 2D
Fourier transform one interpolates the velocity field on a
regular 32� 32 grid. The main results of the paper are the
ÿ5=3 spectrum for small k, and the slopeÿ5:5 for large wave
numbers. The spatial resolution, however, is too limited to
draw broad conclusions.

Paper [145] applies the source-and-sink stirring mechan-
ism for stratified rotating flow. The alternating sources and
sinks are placed on a ring of inner diameter 563 mm,
suspended horizontally inside the fluid layer, 445 mm deep.
The rotating fluid experiments use 8 pairs of sources and
sinks, with diameter 4 mm. The authors measure velocity,
using the DigImage tracking system, which allows up to 2000
particles to be followed in a given horizontal cross-section
with frequency 6.25 Hz.

The paper studies the evolution of turbulence from the
rest state, and claims that theRossby radius based on the total
fluid depth should halt the inverse energy cascade, provided
the initial vortex scale is below the Rossby radius. As vortices
grow to the Rossby scale, they also extend vertically, so one
observes the effective barotropization of the large-scale flow.
But this also brings in the bottom friction. The latter could
also favor the arrest of the inverse cascade at theRossby scale.
This could serve as a possible explanation for the absence of
transfer beyond the Rossby scale, which one could expect
based on geostrophic turbulence theory.

The forced turbulence of Refs [146, 147] is stirred by the
baroclinic instability in the cylindrical channel and the
cylindrical tank respectively. The fluid is cooled at the outer
wall and heated from inside. The inclined bottom in both
casesmodels the beta-effect. The energy spectra are computed
for the horizontal cross-section of velocity. The results of
both works show that the energy peak may exceed the Rhines
scale in the case of a negative beta-slope or coincide with it for
positive beta-slope. The short-wave component decays more
steeply than kÿ3, and there are some indications of the ÿ5=3
slope at large scales, which, however, are larger than the
Rhines scale.

The Rossby deformation radius is small in all cases, and
falls within the limits of resolution. Hence, one could expect a
kÿ5=3 spectrum all way until the Rhines scale, but this was not
observed. Again, we have to note the limited spectral
resolution: 6 for the maximal radial wave-number, and 15
for azimuthal one. In such a case one can discuss spectral
slopes only qualitatively.

Papers [148] and [30] give by far the most complete
measured characteristics of the forced quasi-2D turbulence
in the inverse cascade range. Paper [30] considers a turbulent
flow stirred by the MHD method in a thin layer of weak
electrolyte. The system has a size 15� 15 cm, and a forcing
scale of 15 mm (determined by the size of magnets). The
electric current has constant amplitude, but random phases,
unlike other MHD experiments, where the current was kept
steady. The velocity field is estimated on a 64� 64 grid. The
paper considers two cases. In the first case the thin fluid layer
(5.5 mm) creates large bottom friction, so the experimental
wave-number spectrum in suppressed at large scales. The
spectrum contains an interval of ÿ5=3 slope, but its extent,

being the largest for all known measurements, is nevertheless
shorter than a decade.

The second experiment deals with a deeper fluid layer, so
bottom friction cannot arrest the inverse cascade to large
scales. This implies, however, that the observed spectra
strongly depend on the system size and geometry.

Figure 18 gives simultaneous views of the energy spectrum
and spectral energy flux. Their comparison shows a region of
spectral slope close to ÿ5=3, where the spectral flux goes
practically to zero. This decay is caused by the bottom friction
and confirms the numerical results [11]. In both cases the
ÿ5=3 spectrum extends further into the infrared region than
could be expected from the nonuniform energy flux. The
measured flux [30] never remains uniform and decays
monotonically to 0 as k! 0.

Experimental work [30] not only includes spectral
measurements but also analyses structure functions of
different orders for the longitudinal and transverse velocity
components. The Kolmogorov turbulence in the inertial
interval should obey the law

hdv pi � e p=3r p=3 :

The even structure functions of the transverse component
measured in Ref. [30] have a power dependence on the
separation distance only within a narrow range, because of
the suppression of the inverse cascade.

It turns out that the theory of extended self-similarity
(ESS) can give better predictions:
jdvlj p� � 
jdvlj s�zp=zs :
One expects the relative exponent zp=zs to be scale indepen-
dent in situations where absolute exponents are not.
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Figure 18. Energy spectrum of stationary quasi-two-dimensional flow (a),

and its energy flux (b) from the MHD experiments in a thin layer [30].
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As we have already mentioned, Ref. [33] shows the third
moment hdv 3i to play the foremost role here; in particular, the
relative exponents zp=z3 for even low order moments remain
constant over a broad range of scales.

Laboratory experiments [30] demonstrate a similar
feature. Furthermore, the relative exponents for the long-
itudinal structure functions are close to the Kolmogorov
values up to p � 12, while the normalized even functions
remain nearly Gaussian. This work didn't measure the
relative exponents of the transverse velocities, but found the
even function to be also close to Gaussian values.

All this implies that intermittency is practically absent in
an inverse cascade, and velocity fields haveGaussian statistics
(cf. Ref. [27]). Paper [30], however, points out small
departures from Gaussianity, in particular, a weak but
detectable asymmetry of the PDF for the transverse velocity
increments. Without it, there would be no inverse cascade.

The authors of Ref. [30] also consider the distribution of
vortex sizes, most of which belong to the forcing scale, with a
handful spread in the inertial interval. Vortex merging is rare,
and the principal mechanism of energy transfer to large scales
is aggregation (clustering) of like-sign vortices. This process is
observed at the initial stage of numerical experiments.

Paper [149] studies 3 realizations of MHD induced quasi-
2D flows. The forcing scale is 1=8 of the system size, the
magnetic field is weaker than in the previous experiments, but
the electric current is stronger, 1, 3, and 9 A. The suprecriti-
cality defined as the ratio of the Reynolds number to its
critical value (associated with the loss of stability) corre-
sponds here to 9, 30 and 90. The velocity field is reconstructed
via digital processing of streak photographs. Each picture
contains roughly 15000 tracks, and the velocity field is
recovered on a 256� 128 grid. The energy spectra and fluxes
based on the realizations show the arrest of the cascade at
large scales Ð both the spectral density and flux go to 0 as
k! 0. Once againwe see the effect of bottom friction. But the
ÿ5=3 region is absent here, as the supercriticality remains
relatively low.

The experiments inRef. [150] dealt with the energy spectra
and statistics of vorticity in the enstrophy interval. They used
the same experimental setup as in Ref. [30], but changed the
distribution of magnets. The square region was divided into
diagonal sectors, filled with randomly distributed magnets of
like polarity, and opposite sectors had like polarities.

Thus the forcing has the scale of the entire system. The
velocities are reconstructed on a 64� 64 grid, as in [30], and
have a spatial resolution of 2.5 mm. The authors estimate the
error to be several percent for velocity and about 10% for
vorticity. The electric current consists of pulses of changing
polarity with zero mean.

The energy spectra based on 200 realizations contain aÿ3
interval, shown in Fig. 19, which is shorter than a decade. The
vorticity flatness comes close to the Gaussian value 3, which
means the absence of vortex structures. The inset to Fig. 19
shows the measured enstrophy flux, which is highly inter-
mittent and attains its maximum far away from the forcing
scale.

The flux is everywhere positive, which implies a direct
cascade of enstrophy to large wave numbers. But its nonuni-
form shape precludes the presence of an inertial enstrophy
interval. To compute Z the authors average the flux over the
interval between the forcing scale and the maximal wave
number. This yields an estimate of the Batchelor ±Kraichnan
constantC � 1:4� 0:3, close to that reported inRef. [48]. The

latter study computes the enstrophy cascade (nearly con-
stant), and the agreement between the two results seems
somewhat surprising.

Paper [150] reports the measured PDF of the vorticity
difference for several separations, corresponding to the kÿ3

range. It has non-Gaussian tails. It also reports the
experimental data for the even structure functions of
vorticity hdz pi with p � 2, 4, 6, 8, 10. Although they change
with distance, the corresponding exponents are small
(between ÿ0:05 and 0.15), close to zero within experimental
error. The logarithmic correction (which appears at p � 2
for the same reason as for the velocity structure functions)
cannot be reliably verified.

The constant values of structure functions mean that the
corrections for intermittency should be small in the cascade
range, in agreement with Ref. [32], which finds intermittency
to be weak in the enstrophy interval. But the non-uniform
enstrophy flux in Ref. [150] does not allow the results of the
paper to be regarded as universal.

As we mentioned earlier, high space resolution (like 40962

in Refs [48, 60]) with hyperviscosity yields spectra close toÿ3
in the enstrophy interval. But neither property refers to
experiments [150]. The authors do not give the power
spectrum of the source. Its slope could also affect the energy
slope.

Experiment [151] with soap films places the grid either
vertically or at some angle to the vertical, as shown
schematically in Fig. 20. The authors use, as in Ref. [140], a
two-component laser Doppler velocimeter to measure velo-
city. The power spectrum of horizontal velocity,A in Fig. 20a,
is measured between two combs that stir the flow. This
spectrum has a short ÿ5=3 interval, and its maximum
corresponds to the wavelength l related to the largest scale
structures. As the measuring window is displaced downflow,
the spectrum is transformed to that of decaying turbulence.
The ÿ5=3 interval disappears, and only ÿ3 remains.

The energy peak moves to smaller k, and its amplitude
decreases due to friction. The power spectra of vertical
velocity on Fig. 20b show the tendency of changes in what
could be called the forcing scale (on the borderline between
different slopes), as the measurement point is displaced from
the comb.

We thus see that modern laboratory techniques make
possible quantitative studies of spectral and other character-
istics of quasi-2D turbulent flows. Some experimental results
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show good agreement with the theory. This primarily
concerns spectral slopes, the signs of (energy, enstrophy)
spectral fluxes, and the role of bottom friction. Despite all
this, they are far from providing test tools for verifying
theoretical predictions. No experiment has so far managed
to reproduce constant spectral fluxes of energy and enstro-
phy.

This is largely due to a limited spatial resolution. Even the
latest experiments yielded the minimal (maximal) scale and
the forcing scale differing by only one order of magnitude.
Experimental flows are often far away from the idealized
numerical experiments and have additional features hard to
analyze.

In particular, experiments with MHD-driven thin layers
of weak electrolyte are two-dimensional only in the sense
that the velocity is nearly horizontal. But the velocity can
change with depth (being zero at the bottom), and its
vertical profile is a complicated function of 3 space
coordinates and time. The latter means that the bottom
friction n q2v=qz2 in nonstationary flows can be parame-
trized by the Rayleigh friction only in a qualitative sense
(the profile does not relax to a Poiseuille state). Meanwhile,
it is bottom friction that provides the energy sink in Ref.
[30] and the enstrophy sink in Ref. [150], where the most
extensive measurements are presented. Such friction is not
used in numerical studies.

7. Conclusions

Even strictly two-dimensional turbulence, though additional
dissipation at both spectral ends (viscous at the ultraviolet
end and frictional at the infrared end) frequently makes its
two-dimensionality imperfect, departs from the conventional
cascade theory based on the notion of inertial intervals (for
energy and enstrophy). The main reason for this in the short-
wave part of the spectrum is the nonlocality of interactions,
with at least one leg of a typical triad sitting at the forcing
scale. Such systems retainmemory of the source (and/or outer
parameters and processes) at small scales, and strictly speak-
ing, invalidate the idea of the inertial interval, because the
spectral fluxes depend on both local and external character-
istics.

Sufficient spectral resolution could bring system to the
ideal (theoretical) state, and produce slopes close to ÿ3 for
sufficiently large k. This happens since the small scale
vorticity behaves as a passive tracer driven by the large
(forcing scale) eddies (the enstrophy flux is determined by
such large eddies).

The energy spectrum in the energy interval is typically
close to kÿ5=3, but this spectrum also exhibits deviations from
the standard phenomenology due to large-scale dissipation.
The classicalÿ5=3 slope could be restored by artificial means
Ð careful tuning of the long wave dissipation [62], which
would eliminate the backscatter.

The natural dissipation via Ekman (bottom) drag could
give spectra close to ÿ5=3 over a limited range, but energy
spectral flux would still decay within the ÿ5=3 range. On the
contrary, scale selective friction at small k could produce a
nearly uniform spectral flux (well into the infrared region),
but the resulting spectra would strongly deviate from the ideal
ÿ5=3 law (to a slope of ÿ3, reported in Ref. [44]).

Such systems typically develop strong coherent vortices,
whose growth can modify the 2D turbulent dynamics and
spectra. Localized vortices also appear in the ÿ5=3 case, but
remain mostly at the forcing scale. Also, the ÿ5=3 turbulent
field was found to be almost Gaussian in recent experiments.

Strictly two-dimensional turbulence is of only limited use
for geophysical applications, since bottom friction, the beta-
effect, and vertical stratification can modify it significantly.
Bottom friction reduces the energy flux to large scales, and
thus sets the outer scale for the 2D turbulence.

The beta-effect separates small scale isotropic turbulence
from highly anisotropic jet-structures, oriented in the zonal
direction and controlled by the Rhines scale. The conven-
tional view of the Rhines scale as separating isotropic
turbulence from Rossby waves is however flawed, since
waves are absent from the spectral region predicted by
qualitative arguments of Rhines.

The Rhines scale arrests the inverse cascade in decay
turbulence [54], but in stationary (forced) turbulence this
can be achieved only by infrared dissipation. The same
applies to the Rossby ±Obukhov radius. It halts the inverse
cascade of decay turbulence [54], but the stationary case also
requires dissipation. In barotropic problems, the large-scale
dissipation comes through the bottom friction. But its role in
organizing the outer scales in the presence of the beta-effect
and at a finite Rossby ±Obukhov radius has not been
explored.

The situation becomes increasingly complicated for
simple layered baroclinic models. The energy source here
comes from the baroclinic instability, and on scales larger
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than or equal to the inner Rossby radius (800 ± 1000 km for
the atmosphere and 40 ± 50 km for the ocean). The energy
transfer via barotropic and baroclinic modes proceeds in
opposite directions. Most papers observed the energy peak
above the Rossby scale, which agrees well with the Rhines
scale.

The problem of rms vorticity and its dependence on the
source lies at the heart of the Rhines theory, but we have no
conclusive answer at the moment. We believe such estimates
should include the bottom drag and radiative cooling to
provide for the proper energy sink. Otherwise (i.e. in a
dissipation-free system) one should not expect a reliable
outer scale.

Laboratory experiments on two-dimensional turbulence
are few in number and have limited spatial resolution. But
recent progress in the video-imaging technology gives hope of
achieving higher resolution.
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