

Рисунок. СТМ-изображение участка поверхности висмута с двойниковой микропрослойкой (в центре). Для того чтобы подчеркнуть атомную структуру, изображение было подвергнуто двумерному фурье-преобразованию, компоненты спектра, отвечающие атомной структуре, умножены на 4 и выполнено обратное фурье-преобразование. Слева: продифференцированное исходное изображение, на котором атомная структура четко проявлена и без фурье-обработки. Справа: сечения изображения вдоль соответствующих линий. Одно из них проходит через сорбированный атом, что позволяет оценить аппаратную функцию СТМ. Наклон плоского участка прослойки с точностью до погрешности измерений совпадает с углом, который должен быть между тригональной плоскостью скола и плоскостью выхода двойника. Это позволяет утверждать, что прослойка двойниковая.

энергию активации дефектов на уровне 1,5–2 эВ. Такие величины характерны для вакансий.

Наиболее интересное и неожиданное явление появление двойниковых микропрослоек квантованной ширины (см. рисунок). Их ширина определяется тем, что атомные слои в прослойке, наклоненные на малый (2,34°) угол к слоям в остальном кристалле, ориентированным перпендикулярно тригональной оси, "сшиваются" на границах. И только самый верхний слой, "сшивающийся" с матрицей с одной стороны, образует ступеньку высотой 0,2 нм с другой стороны [15, 16]. Согласно измерениям вольт-амперных характеристик, в области шириной в один-два атомных ряда вблизи ступеньки формируется одномерный проводник с существенно большей концентрацией электронов проводимости, чем на остальной поверхности. Аналогичное явление наблюдается и вблизи границ обычных террас.

Список литературы

- 1. Хайкин M C ПТЭ (1) 161 (1989)
- Хайкин М С, Володин А П, Трояновский А М, Эдельман В С ПТЭ (4) 231 (1987)
- Володин А П, Степанян Г А, Хайкин М С, Эдельман В С ПТЭ (5) 185 (1989)
- 4. Эдельман B С ПТЭ (4) 149 (1989)
- 5. Edelman V S et al. J.Vac. Sci. Technol. B 9 618 (1991)
- 6. Альтфедер И Б, Володин А П, Хайкин М С ПТЭ (5) 188 (1989)
- 7. Хлюстиков И Н, Эдельман В С ПТЭ (1) 158 (1996)
- 8. Edelman V S, Khlyustikov I N *Czech. J. Phys.* Suppl. Pt. S5 **46** 2839 (1996)
- Трояновский А М, Эдельман В С *Письма в ЖЭТФ* 60 104 (1994)
 Володин А П ПТЭ (6) 3 (1998)
- 11. Эдельман В С ПТЭ (4) 203 (1994)
- Трояновский А М, Эдельман В С Поверхность (2) 51 (1998)
- Провловский А.М., Эдельман В.С. Посермосто (2) 51 (1996)
 Трояновский А.М., Эдельман В.С. Кристаллография 44 336 (1999)
- 14. Трояновский А М, Эдельман В С ЖЭТФ 115 2214 (1999)
- 15. Edelman V S Phys. Lett. A 210 105 (1996)
- 16. Edelman V S et al. Europhys. Lett. 34 115 (1996)

PACS numbers: 79.60.Jv, 79.70.+q, 85.45.-w, 85.60.Pg

Автоэмиссионные катоды (холодные эмиттеры) на нанокристаллических углеродных и наноалмазных пленках (физика, технология, применение)

А.Т. Рахимов

Автоэмиссионным катодом называется источник электронов, принцип работы которого основан на явлении автоэлектронной эмиссии, т.е. на туннелировании электронов через потенциальный барьер на границе раздела твердое тело – вакуум под действием приложенного электрического поля. Вероятность такого туннелирования определяется высотой потенциального барьера (работой выхода электрона) и величиной приложенного электрического поля. Работа выхода определяется фундаментальными свойствами материала и для большинства металлов составляет 4-5 эВ, при этом для получения необходимых для практических применений токов эмиссии требуются напряженности электрического поля порядка 10^7 В см⁻¹.

Для получения столь больших напряженностей, как правило, используют эффекты усиления электрического поля на микроостриях. Поэтому традиционным направлением в разработке автоэмиссионных катодов является создание поля идентичных микроострий на поверхности металлического или кремниевого катодов [1]. В настоящее время целый ряд лабораторий мира развивает этот подход, используя те или иные вариации создания микроострийных структур. Однако данное направление имеет весьма существенный недостаток, заключающийся в том, что производство микроострийных структур требует субмикронной технологии со всеми вытекающими отсюда последствиями. Кроме того, исполь-

996

зование традиционных металлов или кремния приводит к быстрому снижению их эмиссионных свойств в результате распыления и химической деградации даже в условиях высокого вакуума.

Альтернативным подходом к созданию автоэмиссионных катодов является поиск материалов, характеризующихся появлением эмиссионных токов уже в сравнительно низких электрических полях порядка 10^5 B см⁻¹ (10 B мкм⁻¹). Из известных материалов, которые, с одной стороны, обладают этим свойством, а с другой могут иметь реальное практическое применение, в последнее время наиболее интенсивно изучаются пленки на основе углерода (среди них наилучшие результаты получены для алмазоподобных пленок и углеродных нанотрубок) [2].

В данной работе сообщается о получении и исследовании нового материала на основе углерода, обладающего уникально высокими эмиссионными характеристиками. Материал представляет собой тонкие пленки, которые могут быть осаждены как на проводящие, так и на диэлектрические подложки методом плазменного газофазного осаждения. Возбуждение плазмы осуществлялось тлеющим разрядом постоянного тока [3]. Замечательно, что физические свойства осаждаемых углеродсодержащих пленок сильно варьируются в зависимости от режима плазменного возбуждения. В частности, мы нашли такие режимы, при которых осажденные пленки являются высокоэффективными эмиттерами [4, 5]. Эмиссионные характеристики осаждаемых пленок измерялись с помощью широкоапертурного диодного тестера, детально описанного в [6].

На рисунке 1 представлена типичная вольт-амперная характеристика: зависимость усредненной по площади образца плотности эмиссионного тока от величины напряженности электрического поля в диодном промежутке. Катодом являлся образец с нанесенной пленкой, анодом — стеклянная пластинка, покрытая слоем оксидов индия и олова и слоем люминофора. Зазор между ними варьировался в пределах 100 – 500 мкм. Линейные размеры образцов варьировались в пределах 1–5 см.

Как видно из этого рисунка, созданные эмиттеры обеспечивают эмиссионные токи с больших поверхностей со средним значением плотности тока до 2,5 A см⁻². Следует отметить, что такие токи недостижимы даже для большинства существующих термокатодов.

Рис. 1. Вольт-амперная кривая, демонстрирующая уникально высокие автоэмиссионные токи.

Рис. 2. Свечение 20×20 мм² люминофорного экрана в диодном тестере под действием эмиссионного тока величиной 40 мА при приложении электрического поля напряженностью 5,4 В мкм⁻¹.

На рисунке 2 представлена фотография свечения анодного экрана под действием бомбардирующих его электронов. Видно, что эмиттеры характеризуются хорошей пространственной однородностью.

Кроме исследования собственно эмиссионных характеристик [5] мы провели детальные исследования открытого нами материала методами сканирующей электронной и туннельной микроскопии [7, 8], а также методами рамановской и рентгеновской спектроскопии. Было обнаружено, что полученные в ходе газофазного осаждения пленки характеризуются сильной пространственной микронеоднородностью поверхностной структуры: неоднородностью фазового состава, локальной работы выхода, поверхностного рельефа.

Проиллюстрируем это на примере материала, который по фазовому составу, скорее всего, можно характеризовать как микрографит. На рисунке 3 приведена фотография поверхности образца, полученная сканирующим электронным микроскопом.

Из этой фотографии видно, что материал, полученный в результате осаждения, представляет собой на микроскопическом уровне ребристую структуру с плотностью несколько ребер на квадратный мкм. Типичная толщина микроребер — порядка нескольких нм, а их длина — порядка микрона. Наши исследования показали, что несмотря на кажущуюся хрупкую поверхностную структуру, полученный материал имеет высокую адгезию к самым разным подложкам и не разрушается при приложении электрических полей вплоть до 30 В мкм⁻¹. Рентгеноструктурный анализ и рамановская спектрометрия показали, что полученный материал можно характеризовать как микрографит с размером кристаллитов порядка 50–70 А.

Чтобы изучить связь указанного поверхностного микрорельефа с локальными эмиссионными свойствами, мы разработали специальную методику использования сканирующей туннельной микроскопии [7, 8]. Основным результатом этого исследования явилось

Рис. 3. Микрофотография участка поверхности; точками обозначена линейка, полная длина которой составляет 1 мкм.

доказательство того, что полученные материалы характеризуются рекордно большой плотностью эмиссионных центров, что, как известно, открывает возможность применения созданных автоэмиттеров в самых современных плоских дисплеях с высоким разрешением. На рисунке 4 приведена карта эмиссионных токов по области поверхности 0,6 мкм \times 0,6 мкм, демонстрирующая исключительно высокую плотность эмиссионных центров.

Следует отметить, что спектр возможного применения созданных нами автоэмиттеров чрезвычайно широк: от приборов вакуумной электроники до ярких источников света самого разного назначения. Но, пожалуй,

Рис. 4. Карта распределения эмиссионных токов по произвольному участку поверхности размером 0,6 мкм \times 0,6 мкм, полученная с помощью сканирующего туннельного микроскопа, работающего в эмиссионной моде [8].

одним из самых перспективных в практическом плане применений является возможность создания плоских автоэмиссионных дисплеев, не уступающих современным электронно-лучевым мониторам и телевизорам. В связи с последним применением отметим, что разработанная нами технология осаждения пленочных эмиттеров позволяет обеспечивать не только однородное осаждение пленок на поверхность подложек (см. рис. 2), но и их селективное осаждение на выделенные области подложки. Это обстоятельство открывает реальную возможность формирования эмиссионного источника с произвольной и управляемой геометрией.

На рисунке 5 приведены фотографии люминофорного экрана (тот же экран, что и на рис. 2), где в качестве катода использована диэлектрическая подложка с нанесенными на нее металлическими полосками различной ширины. На эту подложку методом газофазного осаждения была нанесена автоэмиссионная пленка. Фотографии демонстрируют возможность заданного селективного

Рис. 5. Образцы фотографий люминофорного экрана в диодном тестере, полученные с использованием автоэмиттера с селективным осаждением пленочного материала. (а) Полный размер области осаждения 20 мм × 20 мм, ширина металлических линий: 20, 40, 60, 80, 100, 125, 150, 200, 250, 300, 350, 400 мкм, контактные площадки 800 × 800 мкм. (б) Полный размер области осаждения 33 мм × 37 мм, ширина металлических линий 2 мм. (в) Полный размер области осаждения 33 мм × 37 мм, размер каждого пятна 2 × 2 мм.

Рис. 6. Изменение тока автоэмиссии во времени (приведен участок кривой от 1400 до 5000 ч), измеренного для отпаянного вакуумного диода при давлении остаточных газов 10⁻⁸ торр [9].

осаждения эмитирующих пленок. Рисунки 5а, б соответствуют случаю, когда эмиссионная пленка осаждена только на металлические полоски. На рисунке 5в приведена фотография, полученная в аналогичных условиях, но с селективным осаждением эмиссионной пленки и в пределах металлических полосок.

В заключение этого сообщения необходимо отметить, что созданный нами углеродсодержащий материал является механически и химически стабильным и сохраняет приведенные выше автоэмиссионные характеристики в течение длительного рабочего времени. Так, изменение во времени автоэмиссионных параметров созданных нами автокатодов исследовалось в ряде лабораторий США (Oxford Instruments, Sarnoff Labs и др.) [9]. Было показано, что созданные нами автоэмиттеры могут работать свыше 5000 ч без существенного ухудшения эмиссионных характеристик. Это проиллюстрировано на рис. 6, где приведены результаты измерений [9], полученные при плотности эмиссионного тока порядка 1 A см⁻².

Список литературы

- 1. Spindt C A, Brodie I, Humphrey L J. Appl. Phys. 47 5248 (1976)
- 2. Fundamentals of Vacuum Microelectronics (Ed. Wei Zhu) (New York: Wiley & Sons, 2000)
- Polushkin V M, Polyakov S N, Rakhimov A T et al. *Diamond Related Mater.* 3 531 (1994)
- 4. Rakhimov A T et al., US Patent No. 6042900, 12.03.96
- Blyablin A A et al., in *Proc. of the XI Intern. Vacuum Microelectronics Conf.* (Esheville, 1998) (Technical Digest (DLC) 99110922) (Piscataway, N.J.: IEEE, 1998) p. 234
- Rakhimov A T, Seleznev B V, Suetin N V, Timofeev M A, in *Proc.* Applied Diamond Conf. 11 Suppl. (Gaithersburg: NISTIR5692, 1995)
- Rakhimov A T et al., in *Proc. of the XI Intern. Vacuum Microelec*tronics Conf. (Esheville, 1998) (Technical Digest (DLC) 99110922) (Piscataway, N.J.: IEEE, 1998) p. 224
- 8. Rakhimov A T, Suetin N V, Soldatov E S et al. *J.Vac. Sci. Technol. B* 18 76 (2000)
- 9. Busta H H, Espinosa R J, Rakhimov A T et al. *Solid State Electronics* (Special Issue on Vacuum Microelectronics) (2000) (in press)

PACS numbers: 07.90. + c, 81.10.-h, 81.10.Fq

Создание оборудования нового поколения для роста кристаллов из расплава. Развитие Экспериментального завода научного приборостроения РАН в новых экономических условиях

В.А. Бородин

1. Введение

В настоящей статье рассматриваются результаты по развитию технологий выращивания кристаллов заданной формы и созданию оборудования для выращивания монокристаллов методами Чохральского, Степанова и разработанными нами модификациями метода Степанова. Кроме того, в статье приводятся основные направления развития Экспериментального завода научного приборостроения (ЭЗНП) РАН.

2. Формообразование кристаллов из расплава и аппаратура для их получения

Стандартный способ Степанова позволяет получать профилированные кристаллы с заданной формой поперечного сечения вдоль оси роста. Однако для различных технических применений требуются кристаллы и с более сложными формами, которые можно было бы получать непосредственно из расплава, если разработать технологии изменения формы поперечного сечения выращиваемого кристалла в ходе процесса роста.

Исследования, которые мы проводим с 1982 г., привели к созданию двух основных технологий. Первая из них, получившая название "вариационного формообразования" [1, 2], обеспечивает дискретное изменение формы поперечного сечения вытягиваемого профиля. Вторая технология, названная методом "локального динамического формообразования", позволяет выращивать сложные кристаллические изделия с непрерывно изменяющейся по заданной программе формой боковой поверхности кристалла [3-7]. В наших предыдущих работах [1, 2, 4, 6, 7] были представлены сложные сапфировые изделия, полученные с помощью этих технологий, в том числе изделия полусферической формы, в виде полых конусов и т.д. Выполненные исследования позволили создать новый, не имеющий аналогов тип ростового оборудования "кристаллизационный центр" [4, 6], который обеспечивает:

выращивание кристаллов постоянного поперечного сечения (традиционный способ Степанова);

 дискретное изменение формы кристаллов в ходе процесса роста (вариационное формообразование);

 — непрерывное изменение по заданной программе формы боковой поверхности сплошных и полых тел вращения (локальное динамическое формообразование);

 — рост кристаллов с винтовым рельефом на боковой поверхности.

Полученные результаты по выращиванию кристаллов сложных форм методами вариационного и локального динамического формообразования позволяют утверждать, что возможно создание новой перспективной технологии, обеспечивающей трехмерное измене-