
Abstract. The critical points of condensation in Coulomb sys-
tems are described here by amodified van derWaals equation of
state taking into account a many-particle exchange interaction
between virtual atoms with overlapping classically accessible
spheres of valence electrons. A characteristic feature of the
Coulomb critical points is strong electron ± ion coupling caused
by the proximity to the metal ± insulator transition. We consid-
er a cell model of the exchange interaction of virtual atoms and
examples of Coulomb critical points in a system of charged hard
spheres, in alkali metals, in metal ± ammonia solutions, and in
excitonic systems. The Coulomb critical point parameters of
transition metals are determined. We consider examples of
insulator ±metal transitions in semiconducting and dielectric
fluids which form the Coulomb systems only in the liquid
phase, and discuss a semiconducting critical state of mercury.

1. Introduction

The Coulomb interaction is so fundamental that its limited
role in the theory of condensation seems astonishing. Indeed,
below the critical temperature even metals and ionic melts

have a weakly ionized gas phase consisting mainly of neutral
atoms or molecules. The appearance of a neutral structure in
a Coulomb system is easily demonstrated with classical
charged hard spheres modelled by the Monte Carlo method.
Numerical simulations show that at sufficiently low tempera-
tures the gas phase is divided into Bjerrum pairs composed of
coupled spheres with opposite charges. Similarly to polar
molecules, at long distances the Bjerrum pairs attract each
other via dipole ± dipole rather than the Coulomb interaction.
However, due to the high density there is a residual Coulomb
interaction near the critical point, since the spheres of ion
motion in the Bjerrum pairs overlap giving rise to an ion
exchange. Analogously, near the liquid ± gas critical points of
metals a many-particle exchange interaction of virtual atoms
with overlapping classically accessible spheres of valence
electrons can be considered. We refer to such critical points
as Coulomb or plasma critical points.

The problem of plasma critical points goes back to
Ya B Zel'dovich and L D Landau [1] who noticed the
possibility of two (except unlikely coincidence) qualitatively
different phase diagrams of metals. In the first case, near the
critical point the vapor becomes metallic under compression
before the condensation line. There are two coexisting
metallic phases in this region, i.e. metallic liquid and metallic
gas. Otherwise, in the second case near the critical point both
phases are dielectric. As has now been experimentally
confirmed, mercury belongs to the second case. The transi-
tion point determined by extrapolating the conductivity
activation energy to zero [2], and by the Knight shift [3] is at
one and a half the critical density, whereas near the critical
pointmercury behaves as a semiconductor with an energy gap
of about 3 eV and, correspondingly, a low conductivity.
Although, in the early work, Zel'dovich and Landau
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supposed the insulator ±metal transition to be a first-order
phase transition, the experiment unambiguously shows that
the transition is continuous, i.e. is not accompanied by any
discontinuity in the thermodynamic values.

In contrast, alkali metals at the critical points have a
minimum metallic conductivity [4], therefore their phase
diagrams should be referred to the first case. Although the
first experiments in caesium and rubidium allowing such a
conclusion were carried out in the middle of the seventies,
they could not be correctly interpreted within the framework
of the theory of nonideal plasma with a weak electron ± ion
interaction. One of the basic difficulties in this theory is the
problem of full ionization of caesium at the critical tempera-
ture of about 2000 K. We note that in the early review on
nonideal plasma by Norman and Starostin [5] the degree of
ionization at the critical point of caesium was estimated to be
as small as 10ÿ4. The close connection between the critical
points of alkali metals and a plasma phase transition with two
metallic phases was first evidenced by the author [6].

The subjects of the present paper are closely associated
with the review on gaseous metals [7] published eight years
ago. However, special attention will be paid here not to the
electron properties, but to the equation of state describing the
Coulomb critical points of metals and of a wider class of
systems. The insulator ±metal transition is considered mainly
to specify the phase diagram and the nature of the critical
points of particular systems. The outline of the paper is clear
from the contents. Section 2, a general review of the problem,
contains examples of experimentally known plasma phase
transitions. The systematic consideration begins with a model
classical system of charged hard spheres which allows the
essential aspects of the problem to be presented. Then we
proceed to the analysis of electronic systems based on
quantum concepts.

2. Plasma phase transition

After the pioneering paper by Zel'dovich and Landau [1], the
possibility of Coulomb condensation was studied within the
framework of the theory of nonideal plasma, not yet
restricted to metals (see the review by Norman and Starostin
[5]). Later works are cited in the book by Kraeft et al. [8] and
the recent review byRedmer [9]. In this section we only briefly
touch these works paying special attention to the most recent
of them, and enumerate those systems in which Coulomb
condensation seems most probable, if not well established.

With a vanishing derivative of the pressure with respect to
the volume, the Debye ±HuÈ ckel theory already gives an
indication that plasma condensation is possible. However,
the zero of the derivative is far beyond the limits of
applicability of this theory describing weak Coulomb inter-
action, and does not correspond to any real transition. The
same situation remains in higher orders of an asymptotic
expansion of thermodynamic quantities in the plasma
interaction parameter.

Formally, plasma condensation also appears in amodel of
strongly coupled ions embedded in an ideal degenerate
electron gas of high density [10]. This one-component plasma
model was originally used for meeting the conditions which
occur in astrophysics in white dwarfs and properly describes
the crystallization of ions in a weakly polarizable electron gas.
However, the one-component plasmamodel is inadequate for
the description of condensation because of the metal ±
insulator transition near the critical density. The problem

does not become clearer for PadeÂ approximations connecting
opposite asymptotics of low and high densities. For this
reason, the plasma phase transitions are usually discussed as
hypothetical [8, 9].

In the case of strong coupling, a partially ionized plasma
consists of atoms and free electrons and ions which still form
overlapping electron ± ion pairs or virtual atoms. The electron
energy includes the internal energy of virtual atoms and the
interaction energy between virtual atoms. The minimum
internal energy of virtual atoms corresponds to a boundary
in the energy spectrum, which separates virtual and normal
excited atoms. The attitude of this boundary, which deter-
mines the percolation lowering of the ionization potential,
essentially influences the degree of ionization. However, the
variations due to the shift of the end-point energy are exactly
compensated in the sum of contributions of normal and
virtual atoms, the full thermodynamic functions being not
explicitly dependent on this boundary.

The last statement establishes an important principle [7]
from which it follows that only interactions between virtual
atoms but not intraatomic interactions contribute to the
equation of state. By this principle, the equation of state of
virtual atoms is the same as in the case of full ionization
caused by the insulator ±metal transition. In the vicinity of
this transition, the ground atomic states also overlap, there-
fore the system consists only of virtual atoms. Obviously, in
this case the ordinary scheme of partial ionization with a
different description of bound and free electrons makes no
sense.

In the vicinity of the insulator ±metal transition, the
ordinary scheme of partial ionization remains unsatisfactory
even taking into account the polarization interaction between
charged and neutral particles, which may strongly increase
the degree of ionization. For example, the estimates of the
critical pressure for caesium and rubidium, based on this
scheme [9], are several times greater than the experimental
values. Besides, this scheme with the realistic interaction
between neutral particles yields a weak first-order phase
transition creating a small density gap in the range of
metallization in liquid hydrogen [11]. However, it would
contradict the conclusion that the insulator ±metal transi-
tion is continuous, which follows from detailed studies of
such a transition in mercury.

A general feature of Coulomb critical points, caused by
the proximity to the transition into a neutral fluid, is strong
electron ± ion coupling. In this connection, another descrip-
tion of the metal critical state originated from the electron
theory of condensed matter. Hernandez et al. [12, 13] utilized
a model of a lattice gas of ions, describing the electron states
in the tight-binding approximation (or a model of narrow
bands). In contrast to this scheme more appropriate for
solids, we consider a fluid of overlapping virtual atoms with
partially free electrons and calculate their interaction energy
using a Wigner ± Seitz cell model [14, 15]. The advantage is
that this model is more closely connected with plasma theory,
and in a considerably smaller degree with the crystalline
lattice which has no relevance to the critical point. For this
reason, the model of virtual atoms will be considered in some
detail.

Apparently, a number of base and transition metals
besides alkali metals have Coulomb critical points [7]. There-
fore, the theory has a rather broad range of applications. In
particular, it becomes possible to calculate the parameters of
the critical points of metals which are generally not accessible
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experimentally but estimated by extrapolating thermody-
namic dependences from lower temperatures.

We further notice two other systems with phase
transitions evidently having Coulomb critical points. The
first is the well-known sodium± ammonia solution. A gap of
solubility of sodium appears because of its partial condensa-
tion to a concentrated metallic phase. At the consolute
point, the system has a minimum metallic conductivity [16]
resulting from overlapping impurity states of sodium atoms
in a dielectric medium [17]. It follows that near the
consolute point the phase transition is caused by a many-
particle exchange interaction between virtual impurity
atoms.

The second is an exciton system in strongly excited
semiconductors. The condensation of excitons forming a
metallic electron ± hole liquid [18] is an example of none-
quilibrium phase transitions. The critical exciton density is
estimated to be so high that excitons overlap, the condensa-
tion being determined by the exchange ± correlation interac-
tion between electrons and holes (see the review by Rice et al.
[19] and references cited therein).

Thus, in a number of cases hypothetical phase transitions
are probably an artefact of the approximate theory of
nonideal plasma. However, a rather great number of known
phase transitions can be referred to as plasma phase
transitions near critical points.

3. Model of charged hard spheres

It is convenient to begin our consideration with a model
problem of charged hard spheres, which reveals Coulomb
condensation, in this case generally accepted. A system of
hard spheres of diameter d having electric charges�e (where e
is the electron charge) is the simplest statistical model of ionic
melts and electrolytes. The hard spheres are characterized by
the packing factor Z � pd 3n=6, where n is the total number
density of positive and negative ions. This classical system of
charged hard spheres allows Monte Carlo simulation. Being
well defined, this model is of importance for analyzing the
properties of the many-particle system and, in particular, for
testing approximate estimates of the Coulomb critical points.

Around each ion we construct a sphere of radius d as a
locus for the center of another member of the Bjerrum pair
with the binding energy D � e2=d. We assume that these
spherical shells overlap forming an infinite percolation cluster
where positive and negative ions alternate as in the corre-
sponding ionic lattice (Fig. 1). According to the triangle
inequality, the distance between two nearest identical (to be
definite, positive) ions belonging to the percolation cluster is
smaller than 4d. Therefore, the potential barrier between the
positive ions (with respect to a negative ion) is lower thanÿD.
Due to the smoothing of a potential relief, the negative ion
found between positive ions can transfer from one positive
ion to another, i.e. between Bjerrum pairs. Thus above the
percolation threshold of the shells the ions in the Bjerrum
pairs are transient, and the system becomes a conductor with
a hopping mobility of ions.

The percolation threshold of overlapping shells is not
sensitive to the relatively small hard core or to the long-range
interaction described by mean field theory. According to
Monte Carlo simulations [20] for a hard core radius equal to
half the shell radius, the threshold volume fraction of the
shells is about 1/3 with the hard spheres taking � 0:04 of the
volume.

Since the packing factor is rather small, the thermal
pressure near the percolation threshold of the shells is
described with good accuracy by the van der Waals formula
with the fourfold volume of hard spheres excluded:

pT � nT

1ÿ 4Z
;

where pT is the thermal pressure, and T is the temperature in
energy units. The long-range Coulomb attraction is expected
to be well described in a mean field approximation. The
Coulomb energy of the Bjerrum pairs consists of the internal
energy ÿND=2, where N is the total number of ions, and the
residual Coulomb interaction energy which has a Madelung
form for strong ion correlation, U � ÿae2N 4=3=V, where a is
the Madelung constant, and V is the system volume. Notice
that separating the internal energy of the Bjerrum pairs we
renormalize the ordinary Madelung constant for an ionic
lattice. The Coulomb lowering of the pressure is obtained by
differentiating the energy with respect to the volume,
Dp � ÿqU=qV. The internal energy of the pairs does not
contribute to the pressure, being independent of the system
volume, therefore we obtain Dp � ÿae2n4=3=3.

Collecting the terms, we arrive at a van der Waals
equation for the system of charged hard spheres:

p � nT

1ÿ 4Z
ÿ 1

3
ae2n4=3 : �1�

By solving Eqn (1) with the conditions qp=qn �
q2p=qn2 � 0, we obtain the critical parameters

Tc � 16

49

�
3

14p

�1=3

aD ; �2�

pc � 1

49

�
3

14p

�1=3 aD
2pd 3

; �3�

Zc �
1

28
� 0:036 : �4�

We note that the critical packing factor following from
Eqn (4) is approximately ten times smaller than the packing
factor in normal liquids, Zn � 0:45, found by fitting the main
peak of the radial distribution function [21]. In modern
Monte Carlo simulations, the critical packing factor is varied
from 0.02 to 0.04, because the critical point cannot be reached
(see the review by Fisher [22]). Therefore, formula (4) falls
within the range of uncertainty. A high critical expansion, of
the order of 10 compared to about 3 in neutral fluids, is
distinctive of Coulomb systems.

ÿ

� �

R � d

Figure 1. Charged hard spheres with overlapping shells.
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Ionic systems generally form a simple cubic lattice with
alternate positive and negative ions, which is described by the
well-known Madelung constant. The renormalization of the
Madelung constant can be carried out by directly excluding
the internal energy of the Bjerrum pairs from the Coulomb
interaction energy. In order to calculate the Coulomb energy,
we use a principle of electric neutrality leading to cancellation
of great terms with opposite signs. Setting a positive ion at the
origin, we add together the potential energy of interaction of
the central ion with six nearest negative ions at the distance
a � nÿ1=3, where a is the lattice constant, and with an equal
number of positive ions at the distance a

���
2
p

in the next
spherical layer. Obviously, repeating the procedure for a
negative ion, another member of the Bjerrum pair, or
symmetrizing in charges, we obtain the same result. Such a
procedure suggests a minimization of the charge separation
radius, which is apparently justified for liquids with even the
second coordination sphere smeared out. The calculation
gives the Coulomb interaction energy per positive ion

ÿ6
�
1ÿ 1���

2
p
�
e2

a
� ÿ1:75e2n1=3 ;

which practically coincides with the known value including
the numerical coefficient [23]. Subtracting an energy corre-
sponding to interaction with another member of the Bjerrum
pair in the lattice model and assigning the residual interaction
energy to the total number of ions, we obtain the renorma-
lized Madelung constant

a � 1:75ÿ 1

2
� 0:375 : �5�

We note that the renormalized constant following from Eqn
(5) is approximately 2.3 times smaller than the ordinary
Madelung constant defined with respect to the total number
of ions, i.e. 1.75/2.

Substituting the renormalized Madelung constant into
Eqns (2) and (3), we find the critical temperature

Tc � 0:05D ; �6�

and pressure

pc � 5� 10ÿ4
D

d 3
� 0:01

Tc

d 3
: �7�

Numerical modelling allows us to find the densities of
liquid and gas phases as functions of the temperature,
intersecting at the critical temperature Tc � 0:057D (but the
critical pressure remains uncertain due to strong compensa-
tion of the thermal and Coulomb contributions [24]). The
discrepancy between the theoretical estimate due to Eqn (6)
and numerical experiments is only 12%. As we will see, such
an accuracy is also typical for estimates of the critical points
of alkali metals, which are known experimentally. Unfortu-
nately, the critical points of ionic melts are hardly accessible
that makes the direct comparison with experiment impos-
sible.

By Eqn (4) the critical packing factor is somewhat smaller
than the shell percolation threshold estimated above. Even if,
as we suppose, the genuine critical density is greater, it must
be rather close to the threshold. Taking into account the weak
dependence of the pressure on the density near the critical
point, the gas phase is found to lie below the percolation
threshold of the shells almost over the whole phase equili-

brium line ps � ps�T�. Supposing the gas phase consists of
partially dissociated Bjerrum pairs and taking into account
the Coulomb and dipole interactions, Fisher [22] could
estimate the critical parameters. However, such an analysis
is more appropriate for densities much smaller than the
critical value.

As is known, the van der Waals equation does not take
into account critical peculiarities caused by fluctuations. The
question of critical behavior in Coulomb systems was
considered by Levin and Fisher [25]. Though experimental
information in electrolytes is still lacking, the difference
between Coulomb and neutral systems does not seem so
radical taking into account the virtual Bjerrum pair struc-
ture. Nevertheless, there exist some indications that in
Coulomb systems the critical region with an essential
deviation from the mean field theory decreases (see refer-
ences in the cited paper by Levin and Fisher).

The problem of charged hard spheres gives the clearest
and commonly accepted proof that Coulomb critical points
exist. Although without explicit renormalization, the Made-
lung energy has already been used with some success in
estimating the critical points of ionic salt melts [26] 1, and
was discussed more recently by Levin and Fisher [25] 2. The
equation of state of electrolytes presented above has been
obtained from an analogous equation for plasma critical
points of metals [27].

4. Percolation in atomic systems

Starting from this section, we turn to electronic systems with
electron exchange between overlapping atomic shells, in
contrast to the ion exchange between the Bjerrum pairs.
Basically, the size of atomic shells is determined by the radius
of classically accessible spheres of the valence electrons.
Metallic plasma formed by overlapping atomic shells differs
from the ionic systems in the quantum uncertainty of the
electron coordinates described by the wave function. For
example, the 6s valence electron state in a caesium atom has
completely uncertain angular coordinates. Most probably, in
this state the electron is located in a classically accessible
sphere of radiusRa � e2=I, where I is the ionization potential.
This can be easily verified using an asymptotic Coulombwave
function [28]

C�r� � 2nkn�1=2

4pnn�3G�n� r
nÿ1 exp�ÿkr� ; �8�

where k � �2mI=�h2�1=2 is the inverse decay length,
n � �Ry=I�1=2 is the effective principal quantum number,
Ry � me4=2�h2 is the hydrogen ionization potential, and G�n�
is the gamma function. Integrating the wave function
squared, we find the probability of being outside the
classically accessible spheres [29]:

P � G�2n� 1; 4n�
2n2�n�3�G2�n� ; �9�

where G�2n� 1; 4n� is the incomplete gamma function. In the
case of caesium, this probability is only 0.2% (it increases to

1 Because of a mistake in the integral expressing the potential within the

uniformly charged sphere, the Madelung constant was twofold decreased

being only 15% greater than its properly renormalized value.
2 The author is grateful to M Fisher for the references.
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23% with I � Ry in nonmetallic elements). Therefore, the
remainder ion in a metal atom is almost fully screened within
the classically accessible sphere. Since radial motion with a
great quantum number is quasi-classical, the main maximum
of the wave function is attached to the classically accessible
sphere, thus in a qualitative analysis an electron spreads over
this sphere.

When classically accessible spheres overlap forming an
infinite percolation cluster (Fig. 2), it becomes probable that
virtual atoms in such a cluster exchange electrons. We first
consider a pair interatomic repulsion with a small radius (the
many-particle attraction between atoms will be considered
somewhat later). We assume the directions of spins in the
percolation cluster alternate, and correlations between elec-
tronswith opposite spins are negligible. Although the electron
shells of two neighboring atoms overlap, the remainder ions
inside remain screened. However, if ions enter the electron
shell surrounding another ion, the ion potential is no longer
compensated by the (constant) potential of the shell. Then an
extra potential energy appears,

U�R� � z2e2

R
ÿ z2I ; �10�

where R4Ra is the distance between the atoms, and z is the
valence (charge number) of remainder ions, introduced in the
general case. On the thermal energy scale at low temperatures
�T5 I�, the potential U�R� is very steep, therefore the
distance of closest approach of two atoms is approximately
equal to Ra. This conclusion can be easily verified for the
ground 1S term of alkali dimers [30] with the repulsive branch
describing a pair interaction of atoms with opposite spins at
small distances.

The interatomic repulsion at the distance Ra, caused by
the bare Coulomb interactions of remainder ions, is modelled
by considering atoms as hard spheres of diameter d � Ra. It
can be directly verified that at normal densities in liquid alkali
metals the packing factor of these hard spheres varies from
0.225 for caesium to 0.45 for lithium.When allowing for some

variation of the diameter in the hard sphere model with
varying conditions, such values reasonably agree with the
theory of liquids [21].

However, the above-neglected exchange repulsion of
overlapping electron shells becomes more important or even
determinative for polyvalent atoms with high ionization
potentials. For example, in liquid mercury at normal density
rn � 13:6 g cmÿ3, the packing factor of hard spheres of
diameter d � Ra would be only 5%, i.e. too small for a stable
liquid. This is an indication that the fluid density is really
limited by the exchange repulsion with a radius exceeding the
Coulomb repulsion radius of ions. Obviously, this is the
reason why mercury becomes a semiconductor upon rela-
tively small expansion. Digressing from the complexities
caused by the molecular structure, this statement is relevant
to arsenic, selenium and tellurium as well.

As was already mentioned, on approaching the percola-
tion threshold, the volume of shells with relatively small hard
cores is about 1/3 of the whole volume. Now, we consider this
point in more detail. The relative volume of atomic shells is
characterized by the parameter

z0 �
�
Ra

Rs

�3

; �11�

whereRs � �4pna=3�ÿ1=3 is theWigner ± Seitz radius, and na is
the atomic number density. The packing factor of effective
hard spheres with diameter d � Ra is also expressed via this
parameter:

Z �
�

d

2Rs

�3

� z0
8
: �12�

Wedetermine themean coordination number in a percolation
cluster, i.e. the number of atoms overlapping the one chosen
at the cell center with their electron shells:

B � 8�z0 ÿ Z�
1ÿ 4Z

; �13�

where the van der Waals denominator describes the excluded
volume for a small packing factor of the hard spheres.
Expressing z0 from Eqn (13) by B and Z, we obtain

z0 �
B

8
ÿ Z
�
B

2
ÿ 1

�
: �14�

Substituting Eqn (12) into (14) and solving the equation at the
percolation threshold with respect to z0, we find

zpc � Bpc

8

1

1� �Bpc=2ÿ 1�=8 � 0:325 : �15�

In the last equation we substitute Bpc � 2:7 for an ideal
system of overlapping spheres [31], assuming that the thresh-
old coordination number is an approximate invariant. As a
result of compensation of two competing effects, the thresh-
old in Eqn (15) is rather close to its value for an ideal system,
Bpc=8 � 0:34. Indeed, the presence of hard cores restricts the
overlap of shells, thus decreasing the density necessary for
percolation. On the other hand, the hard cores bound a
coordination sphere for the centers of atoms overlapping
with the central atom and in doing so they increase the
required density.

Ra

Figure 2. Percolation cluster of overlapping classically accessible spheres.
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To complete the analysis we consider the percolation
threshold of shells as a function of the relative radius of the
hard core which is no longer fixed. In general, if the packing
factor is not small, Eqn (13) is rewritten in the form

B � 8�z0 ÿ Z�F�Z� ; �16�
where F�Z� is the Carnahan ± Starling function describing the
excluded volume [32]:

F � 1� Z� Z2 ÿ Z3

�1ÿ Z�3 : �17�

Substituting Z � c3z0, where c � d=2Ra, and the threshold
coordination number Bpc � 2:7 into Eqns (16) and (17), we
obtain an algebraic equation which determines the function
zpc�c�. This function practically coincides with the above-
estimated threshold in Eqn (15) for c � 0:5 and is shown to
agree with results of Monte Carlo simulations [20] in Fig. 3.
With c increasing over 0:8, the threshold increases, andwith c
close to unity it goes to the random close packing zpc � 0:64.

In addition to the bare Coulomb repulsion between
remainder ions modelled by hard cores, there is a many-
particle exchange attraction of virtual atoms in percolation
clusters, described in a mean field approximation (see next
section). Apparently, the attraction does not essentially
influence the percolation threshold since due to averaging
the interaction energy weakly depends on the atomic
configuration.

5. Virtual atoms

In this sectionwewill consider special properties of the system
of overlapping atoms which form the percolation cluster. The
notion of virtual atoms with weakly overlapping electron

shells suggests that the electronic state changes only a little.
Nevertheless, the electronic state of virtual atoms qualita-
tively differs from that of isolated atoms. Since the classically
accessible spheres of the valence electrons overlap, the atomic
screening of the remainder ion becomes collective, thus
mixing the ground atomic state with the asymptotically free
motion in a screened potential. Therefore, virtual atoms
possess a continuous spectrum of electronic excitations. An
adequate method of description of virtual atoms is provided
by the density matrix in presentation of the eigenfunctions of
the free atom, amn. In particular, the internal energy of the
virtual atom, expressed by the density matrix, is given by

E � ÿa00I�
X
n5 1

ann�ÿI� en� � appep ; �18�

where a00 and ann are the diagonal matrix elements, and en the
excitation energies of the atomic levels. A matrix element app
corresponds to asymptotically free motion with an excitation
energy ep � p2=2m, where p is an asymptotic momentum.
Phenomenologically, this matrix element is determined by the
condition that the energy ep of free motion plays the role of
excitation.

Using the normalization condition

a00 �
X
n5 1

ann � app � 1 ; �19�

we rewrite the internal energy defined by Eqn (18) in a more
transparent form

E � ÿI�1ÿ app� � appep �
X
n5 1

annen : �20�

From Eqn (20), the minimum internal energy E � ÿI
corresponds to zero matrix elements app � ann � 0, in
accordance with the variational principle of quantum
mechanics.

With the free-like excitation ep caused by screening, the
minimum internal energy is then

E � ÿI� ep : �21�

To put it otherwise, the last equation represents the energy
spectrum of noninteracting virtual atoms.

Comparing Eqns (21) and (20) (with ann � 0), one obtains

app � x

1� x
; �22�

where x � ep=I. Thus, the matrix element app describing the
low-energy excitations �ep 5 I� is small. The other matrix
elements closely connected with the interatomic interaction
cannot generally be determined.

The density of states of partially free electrons in virtual
atoms, compared to that of free electrons, increases since the
states belonging to different virtual atoms are distinguishable
even though their wave functions overlap. One can distin-
guish between the electronic states of neighboring atoms
during the transition time

t0 � t
#
; �23�

where t � Rs=v is the time of free flight, v � p=m is the
velocity of free motion corresponding to the excitation

0.65

zc

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0 0.2 0.4 0.6 0.8 1.0
d=2Ra

Figure 3. Percolation threshold of shells versus the relative diameter of

hard cores. Dots are resulted from Monte Carlo simulations [20].
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energy ep, and # < 1 is the localization factor just defined by
Eqn (23). In particular, above the percolation transition the
localization factor is [33]

# � 3T=2ÿ Dpc

Dcp ÿ Dpc
; �24�

where Dpc < 0 is a (virtual) mobility gap, and Dcp > 0 is a soft
gap where the mobility is smaller than the minimum gas-
kinetic value. The gaps are given by formulas

Di � Iÿ e2

Ri
; i � pc; cp �25�

with Rpc the percolation radius, and Rcp the close packing
radius. At the critical points of alkali metals with an
experimentally determined volume fraction of classically
accessible spheres z0 � 0:365, the localization factor is
estimated to be #c � 0:4.

Virtual atomic states are defined for a finite transition
time within a sphere of radius Rs=#. In the approximation of
free motion, the density of states is then

dg

dp
� ga

4pp2O

�2p�h�3 ; �26�

where ga is the statistical weight of the ground-state atom, and
O � 1=na#

3 is the volume of a sphere where the mixed states
of virtual atoms are defined.

The Fermi energy of partially free electrons is renorma-
lized in accordance with the density of states. Since the density
of states increases proportionally to the volume #ÿ3, the
renormalized Fermi momentum decreases as #, and the
Fermi energy decreases as #2, we obtain

e 0F
I
�
�
9pz0
16ga

�2=3
I

Ry
#2 ; �27�

where the prime denotes the renormalized quantity. At the
caesium critical point, the renormalized Fermi energy is
approximately two times smaller than the temperature,
therefore the Fermi correction to the pressure [34] is small.
Basically, the degeneracy of partially free electrons depends
on the localization factor and becomes prominent when this
factor is close to unity.

Taking into account a quantum spreading of electrons in
space, the energy of the residual Coulomb interaction can be
estimated with a modified one-component plasma model
excluding the internal energy of virtual atoms. In the case of
strong interaction with a great coupling parameter, i.e.

G � z2e2

RsT
4 1 ; �28�

this model is equivalent to an ionic cell model, the potential
energy being

U � ÿgna z
2e2

Rs
; �29�

where g is another Madelung constant. The g is related to the
coefficient a in the expression for energy ÿaz2e2n4=3a by an
equality a � g�4p=3�1=3. Assuming the valence electrons to be
mainly distributed in a range from the ionic core radius Rc to

the cell radius Rs with a uniform probability density,
calculation of the electrostatic energy reduces to a simple
integration. Since the electron density belongs to diatomic
quasi-molecules formed by the central atom and atoms in
neighboring cells, we find that the renormalized interaction
energy corresponds to half the total electrostatic energy of the
cell. Thus, the interaction energy equals

U � ÿ e2n

2

�Rs

Rc

z�r�
r

4pr2 dr ; �30�

where n � zna=�1ÿ b� is the electron density, b � �Rc=Rs�3 is
the volume fraction of the ionic core where the valence
electron density is small, and z�r� is a screened ionic charge:

z�r� � zÿ 4pn
3
�r3 ÿ R3

c� ; r > Rc : �31�

Calculation of the integral in Eqn (30) leads to formula (29)
with a Madelung constant

g � 0:9ÿ 1:5b2=3�1ÿ 0:4b�
2�1ÿ b�2 : �32�

According to the above equation, the renormalized Made-
lung constant varies from 0.35 to 0.31 when g is in the range
(0.5 ± 0.7)Rs, i.e. is almost three times smaller than that in the
one-component plasma model, equal to 0.9. This conclusion
is of importance for the equation of state, being confirmed by
a more sophisticated analysis of the electronic structure of
atomic cells which we make in the next section.

6. Model of ellipsoidal cells

In this section we consider a model of ellipsoidal Wigner ±
Seitz cells adapted for the percolation structure. In general, a
virtual atom is a part of the quasi-molecules formed by
neighboring atoms in the percolation cluster. However, in
the atomic cell model the average interaction between
neighboring atoms is described by a cell potential with a
smoothed angular dependence. With an infinite number of
neighboring atoms, the cell potential can be presented (in 4
dimensions) as an envelope of self-consistent potentials on the
axis of the quasi-molecules. The potentials are created by two
remainder ions and by the electron cloud which gives a rather
weak coordinate dependence, particularly near the symmetry
center of the quasi-molecule. To simplify the problem
radically, we consider the electron cloud potential outside
the ion core as constant [14].

In disordered systems, atomic cells are Voronoi polyhedra
which are close to the Wigner ± Seitz cells approximated by
spheres in closely packed structures. In a looser percolation
structure, atomic cells are approximated by ellipsoids
circumscribing the classically accessible spheres. By construc-
tion, the surface of atomic cells consists of symmetry planes of
diatomic quasi-molecules formed by a central atom in the cell
and its neighbors. Analogously, the surface of the ellipsoidal
cell can be considered the locus of the symmetry centers in
such quasi-molecules.

With a definite excitation energy, the radius of the
classically accessible sphere is given by

Ra�ep� � Ra

1ÿ ep=I
: �33�

The cells can be considered identical only in the case when
neighboring atoms have the same excitation energy. How-
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ever, in the following the solution can be renormalized, thus
removing this limitation. In the system of excited virtual
atoms, the classically accessible volume fraction is

z�ep� � z0
�1ÿ ep=I�3

: �34�

The simplest form of the cell nearest to the sphere is an
oblate ellipsoid (Fig. 4):

R�#� � Ra�ep�����������������������������������������������
1ÿ �1ÿ z�ep�=f � sin2 #

q ; �35�

where R�#� is the radius, # is the polar angle, and f �2=3 is
the random close packing factor of the spheres. At the poles,
the inscribed classically accessible sphere touches those of
neighboring atoms. The polar half-axis of the ellipsoid is
equal to the classically accessible radius Ra�ep�, and the
volume is the fraction f of the Wigner ± Seitz cell volume. In
the case z�ep� � f, the cell coincides with the classically
accessible sphere. Thus, due to the excitation of virtual
atoms the ellipsoidal cells are rounded, approaching the
sphere. Physically, the rounding of the cells is connected
with an atomic displacement which is slow compared to
electronic processes.

We consider a one-electron problem with the effective cell
potential

V�r; #� � v�R�#� � r
�� v�R�#� ÿ r

�
; �36�

where r � rÿ R�#�, r is the radial coordinate, and v�r� is the
Heine ±Abarenkov-like pseudopotential:

v�r� �
ÿ e2

rc
; r < rc ;

ÿ e2

r
� xI

2
; r > rc ;

8>><>>: �37�

where rc is the effective radius of the ionic core. Outside the
ionic core, the Coulomb potential acquires an additive
constant which is half the electron cloud potential. The core
radius is determined by the condition that the ionization
potential of a free atom is reproduced at x � 0.

To determine the unknown parameter x, we use a
percolation condition implying that the valence electron
energy is equal to the potential saddle between the clas-
sically accessible spheres touching at the poles of neigh-

boring cells:

E � ÿ2�Iÿ ep� � �x� d�I : �38�

In Eqn (38), the first term in the right-hand side corresponds
to the sum of the Coulomb potentials created by remainder
ions of the quasi-molecule. In the second term, the x item
relates to the electron cloud potential, and the d item stands
for the centrifugal potential caused by an admixture of higher
angular momenta to the s-wave ground atomic state in the
absence of spherical symmetry.

The pseudowave function is determined by the SchroÈ din-
ger equation

DC� 2m

�h2
�
Eÿ V�r; #��C � 0 �39�

with the boundary conditions qC=qr � 0 at the origin and on
the cell surface. Substituting the percolation condition
defined by Eqn (38) into the SchroÈ dinger equation, we obtain
an additional boundary condition q2C=qr2 � 0 at the
ellipsoid poles, which allows us to determine the unknown
factor x. The wave function is expanded in terms of the
eigenfunctions of the angular momentum:

C �
X

l�0;2;...
alFl�r�Yl0�cos#� ; �40�

where Yl 0�cos#� are the spherical functions with the projec-
tion of the angular momentum m � 0, Fl�r� are normalized
radial functions, and al are coefficients normalized by the
condition a0 � 1. Substituting the series expansion (40) into
the SchroÈ dinger equation and projecting onto the state of a
definite angular momentum l, one obtains a system of
coupled ordinary differential equations for the radial func-
tions Fl�r� [15]:�

1

r2
d

dr

�
r2

d

dr

�
ÿ l�l� 1�

r2
� 2m

�h2
E

�
alFl�r�

� 2m

�h2

X
Vll 0 �r�al 0Fl 0 �r� ; l � 0; 2; . . . ; �41�

where Vll 0 �r� � hYl0jV�r; #�jYl 00i are the matrix elements of
the potential. Generally, only a few partial waves consider-
ably contribute to the wave function (40). By numerical
integration of Eqns (41) along the polar, equatorial, and
corresponding number of intermediate directions with a
Newton iteration, one determines the energy E, the x factor,
and the unknown coefficients al which satisfy the boundary
conditions at the center and on the surface of the cell. A
characteristic feature of the pseudowave function C is a
plateau near the ellipsoid poles, which occupies almost the
whole region outside the ionic core (Fig. 5).

The interaction energy of one atom with all others is
determined by the difference between the energyE and that of
noninteracting virtual atoms, ÿI� ep. Summing over all the
atoms, each atomic interaction contributes twice, therefore
the interaction energy per atom is

u � 1

2
�E� Iÿ ep� : �42�

At definite z0, the interaction energy is a function of the
classically accessible volume of excited electrons and must
still be averaged over z from z0 to close packing factor f.

Ra�ep�

#

R�#�

Figure 4. Ellipsoidal atomic cell circumscribing the classically accessible

sphere of the valence electron in a virtual atom [15].
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The result of calculations [15] with rc � 0:68Ra which is
characteristic of heavy alkali metals has been approximated
by a linear function of z (Fig. 6):

u�z0; z� � 0:0662ÿ 0:5183z0

ÿ b�1:8862ÿ 1:4867z0��zÿ z0� ; �43�
where b � 1=2 is the symmetry coefficient of the diatomic
quasi-molecules. Provided that the virtual contribution of
each quasi-molecule depends on the average volume of the
classically accessible spheres of the two constituent atoms, the

symmetry coefficient allows us to map the linear dependence
on z, caused by the simultaneous excitation of all the atoms,
onto the problem of the excitation of a single atom at the cell
center.

Calculation of the mean interaction energy becomes
essentially simpler because the excitation energy is almost
compensated by energetically advantageous rounding of the
cells. Due to compensation, the total excitation energy is
much smaller than the critical temperatures of alkali
plasmas:

DE � ep � u�z0; z� ÿ u�z0; z0�5Tc : �44�

Since all rounded cells have practically the same probability
of occurrence, the interaction energy is averaged by a simple
integration:

u�z0� �
1

fÿ z0

�f
z0

u�z0; z� dz : �45�

As a result of averaging over the rounded cells, the
interaction energy goes independent of the details of their
electronic structure and turns out to be rather close to the
Madelung energy with the constant g � 0:32ÿ0:34 (Fig.7).
Thus, the cell model confirms the estimate of the Madelung
constant discussed in the previous section for the quasi-
classical case typical of heavy alkali metals with great ionic
core radii.

In lithium, the relative radius of the ionic core rc � 0:6Ra,
being considerably smaller than in heavy alkali metals, results
in a numerical deviation of the Madelung constant. By
solving the problem for spherical cells in random close
packing (z0 � 2=3) we find that the percolation condition

1.0

C

0.9

0.8

0.7
0 0.2 0.4 0.6 0.8 1.0 1.2

r=Ra

# � 0; p

# � p=2

rc

Figure 5. Pseudowave function along the polar and equatorial radii of the

ellipsoidal atomic cell for z0=f � 0:8 (solid line) and z0=f � 1:0 (dotted

line) [14].

u
� z 0
; z
�=
I

z0 � 0.35

0.45

0.55

0

ÿ0.1

ÿ0.2

ÿ0.3

ÿ0.4
0.4 0.5 0.6 z

Figure 6. Interaction energy as a function of the classically accessible

volume of an excited electron [15].

0

ÿ0.1

ÿ0.2

ÿ0.3

u=I

0.35 0.40 0.45 0.50 0.55 0.60 z0

Figure 7. Mean interaction energy versus volume fraction of classically

accessible spheres [15]. The dot-and-dash line corresponds to fixed cells,

and the solid line to rounded cells. The dashed line is the renormalized

Madelung energy.
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(38) is satisfied only in the limiting case E � ÿ2I correspond-
ing to the maximum-in-modulus interaction energy
u � ÿI=2. Then it follows that the Madelung constant
g � ÿu=I z1=30 � 0:55 is about 1.5 times greater than in
caesium. Such a distinction of lithium may be the reason for
its deviation from the similarity laws justified for heavy alkali
metals (see the next section). Thus in the quasi-classical case,
its estimate (32) obtained with a uniform distribution of the
electron density is confirmed, but the atomic cell model also
shows that the Madelung constant varies in different metals
due to quantum effects.

7. Van der Waals equation

In this section we will give direct estimates for the Coulomb
critical points of metals using the simplest equation of state of
virtual atoms. Similar to charged hard spheres, this equation
can be presented as a van der Waals equation of state.
However, a distinctive feature of virtual atoms is that valence
electrons directly contribute to the pressure by their random
walk on atoms with thermal excitation energies. Since in the
initial and final states the electron wave packet is centered on
the atom, an electron excluded volume coincides with that for
atoms as composite particles. Thus taking into account the
electron contribution to the pressure, the equation of state is
written as

p � �z� 1�naT
1ÿ 4Z

ÿ g
3

�
4p
3

�1=3

z2e2n4=3a ; �46�

where z is the number of valence electrons of the atom, and Z
is the packing factor of the hard spheres of diameter d � e2=I:

Z � p
6

�
e2

I

�3

na : �47�

The critical temperature determined by this equation of
state [15] with the conditions qp=qn � q2p=qn20 � 0 is

Tc � 16

49

�
2

7

�1=3 gz2I
z� 1

; �48�

the critical pressure

pc � 1

49

�
2

7

�1=3 gz2I
2p

�
I

e2

�3

; �49�

and the critical density

na c � 2

7

3

4p

�
I

e2

�3

: �50�

Thus, the critical parameters turn out to be expressed via
the ionization potential and the valence of atoms. From these
equations it follows that the critical value of the coupling
parameter defined by Eqn (28) equals

Gc � 49

16

z� 1

g
: �51�

For instance, in alkali plasmas with z � 1 it follows that
Gc � 18, i.e. the Coulomb condensation occurs in strongly
coupled plasmas (note that the Debye ±HuÈ ckel theory
already signals the phase transition when G � 1).

When applied to alkali metals, Eqns (48) ± (50) with z � 1
give rather good estimates. For example, with g � 0:33 the
critical temperature of caesium deviates from the experimen-
tal value [35] by about 15%, and the critical pressure by 5%.
According to these formulas, the critical value of the
classically accessible volume fraction is z0 � 2=7 � 0:286,
which should be compared to that found from the experi-
mental critical density, z0 � 0:365 [35]. As can be seen from
the data given in Table 1, there is a similar correspondence for
other alkali metals as well (the only exception is the critical
density of sodium for which the experimental estimate is less
accurate). Thus, the simple van der Waals equation correctly
describes the main features of the problem. According to
Eqns (48) ± (50), there is an approximate scaling

Tc / I ; pc / I 4 ; na c / I 3 ; �52�
which is confirmed by available experimental data.

There is every indication that lithium has a Coulomb
critical point but it is expected to deviate from the scaling law
(see the end of Section 6). Although the critical point of
lithium has not been experimentally determined, the devia-
tion from the similarity laws defined by Eqns (52) is revealed
by a bad correspondence of estimated critical parameters with
the saturation pressure extrapolated to the critical tempera-
ture [36]:

ps / Tÿm exp

�
ÿ q

T

�
; m � 0:5 ; �53�

where q is the heat of evaporation at T � 0 3. All the
estimated critical points of alkali metals are located in the
saturation pressure curves given by Eqn (53), while that of
lithium turns out to be considerably above it. However, with
the limiting value of the Madelung constant g predicted for
lithium, Eqns (48) and (49) give the critical point at a higher
temperature (see Table 1) to agree with Eqn (53).

It should be noted that the above-mentioned calculations
in the approximation of weak electron ± ion coupling give a
critical temperature up to five times higher or in the model of
partial ionization the critical pressure as many times higher
than experimental values (with the exception of lithium,
described a bit better) [9]. The numerical calculations based
on the tight-binding approximation (taken from the one-
electron theory of solids) combined with the lattice gas model
for ions [12, 13] are closer to the experimental data but not as
good as estimates made with the van der Waals equation for
virtual atoms.

8. Three-parameter equation of state

In this section we will consider the scaling of critical
parameters with respect to the ionization potential and
valence of ions, which allows us to estimate unknown
parameters for a number of metals with normalization to
the critical parameters of caesium. The main idea is that the
parameters of the van der Waals equation, namely, the hard-
sphere diameter and the Madelung constant, can be found
empirically using available critical data [6]. However, an
approximate equation with two parameters does not allow
approximation of the critical values of three thermodynamic

3 Since the heat of evaporation is much greater than the critical

temperature, the saturation pressure grows exponentially up to the

critical point, thus making the extrapolation rather definite.
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variables. This becomes obvious when expressing the critical
compressibility factor from Eqns (48) ± (50):

Zc � pc
na cTc

� 7

48
�z� 1� : �54�

For alkali metals (z � 1), themagnitude of this factor is about
0.29 that is due to adding errors 45% greater than the
experimental value 0.2 [35]. In contrast to the van der Waals
equation, an equation of state with three parameters [37]
allows us to approximate the critical values of three thermo-
dynamic variables and thus to compare theoretical estimates
of both the hard-sphere diameter and the Madelung constant
with the experiment.

For a finite packing factor of hard spheres, the range of
applicability of the equation of state extends a little by
substituting the Carnahan ± Starling function [Eqn (17)] for
the van der Waals function of excluded volume:

pT � �z� 1�naTF�Z� : �55�

Since the cell model with smoothed angular dependence of
the potential corresponds to the limit of great coordination
numbers Nc � �2Ra=Rs�3 4 1, the Madelung energy can be
considered the first term of a power expansion in a small
parameter:

U � ÿgna z
2e2

Rs

�
1� b

Rs

2Ra
� d
�

Rs

2Ra

�2

� . . .

�
: �56�

Restricting the expansion to three terms and requiring that
the energy as a function of Ra is maximum in modulus when
Ra � Rs, we obtain b > 0 and d � ÿb < 0. Correspondingly,
an expansion for the pressure is the following

Dp � ÿ gz2e2na
3Rs

�
1� b

R2
s

4R2
a

�
; �57�

where the coefficient d is expressed by b. The second term in
Eqn (56) does not contribute to the pressure, since the factor

Table 1. Critical parameters of metallic fluids.

Metal Tc, K pc, bar rc, g cm
ÿ3 Method Reference

Cs (6s)

Rb (5s)

K (4s)

Na (3s)

Li (2s)

Cu (4s2)

Al (3s23p)

Be (2s2)

U (7s27p)

La (6s26p)

Y (5s25p)

1600
2000
2350
1924

1720
2200
2475
2060
2017

1790
2350
2550
2140
2178

2115
2400
2970
2535
2485

3700
3500
2660
3225

7620
8390

8860
8000

9200
8100

9000
11600

8250
11000

9500
10800

87
460
60
92.5

115
650
73
123
124

134
690
70
144
150

263
1400
128
282
248

530
770
342
690

5770
7460

4680
4470

12200
11700

5000
6100

3500
3350

6000
3700

0.3
0.55
0.47
0.38

0.24
0.45
0.35
0.3
0.29

0.12
0.21
0.22
0.16
0.17

0.12
0.27
0.22
0.15
0.30

0.042
0.025
0.053
0.1

1.4
2.4

0.28
0.64

0.35
0.55

2.6
5.3

1.2
1.8

1.1
1.3

Van der Waals equation for virtual atoms
Partially ionized gas
Lattice gas & tight-binding approximation
Experiment

Van der Waals equation for virtual atoms
Partially ionized gas
Lattice gas & tight-binding approximation
Scaling normalized to caesium
Experiment

Van der Waals equation for virtual atoms
Partially ionized gas
Lattice gas & tight-binding approximation
Scaling normalized to caesium
Experiment

Van der Waals equation for virtual atoms
Partially ionized gas
Lattice gas & tight-binding approximation
Scaling normalized to caesium
Experiment

Van der Waals equation for virtual atoms
Partially ionized gas
Scaling normalized to caesium
Extrapolation

Scaling normalized to caesium
Extrapolation

Scaling normalized to caesium
Extrapolation

Scaling normalized to caesium
Extrapolation

Scaling normalized to caesium
Extrapolation

Scaling normalized to caesium
Extrapolation

Scaling normalized to caesium
Extrapolation

[15]
[9]
[12]
[35]

[15]
[9]
[12]
[37]
[35]

[15]
[9]
[12]
[37]
[75]

[15]
[9]
[12]
[37]
[75]

This work
[9]
[37]
[40]

[37]
[40]

[37]
[40]

[37]
[40]

[45]
[40]

[45]
[40]

[45]
[40]

August, 2000 Critical points of condensation in Coulomb systems 787



Rs which contains the volume dependence reduces. Collecting
terms, we obtain

p � na
��z� 1�TF�Z� ÿ AZ1=3 ÿ BZÿ1=3

�
; �58�

where

A � gz2I
3c

; B � gbcz2I
12

; c � d

2Ra
;

and d is the hard-sphere diameter. The parameters in Eqn
(58), determined by the caesium critical data involving the
compressibility factor Zc � 0:2, the volume fraction of the
classically accessible spheres zc � 0:365, and the temperature
Tc=I � 0:0425, are c � 0:47, g � 0:34, and b � 0:23 [37].
Thus, the hard-sphere diameter is approximately equal to
the radius of the electron shells, and the Madelung constant
practically coincides with that found from the model of
ellipsoidal cells. The small values of the coefficients b and d
show that expansion (56) has a meaning.

With the relative pressure p � p=pc, density n � na=na c,
and temperature t � T=Tc, equation (58) becomes

p � 10n
�
tF�Z� ÿ A0Z1=3 ÿ B0Zÿ1=3

�
; �59�

where A0 � 2:854, and B0 � 0:03643. Due to the high critical
expansion, the coexistence curve determined by this equation
is considerably more asymmetric than in neutral fluids
(Fig. 8). It is interesting that at the relative densities
n � 0:5ÿ1:5 near the critical point, the boiling and condensa-
tion lines agree well with the experiment. However, the range
of applicability of the mean field theory is still vague because
even in a greater density range the coexistence curve and the
mean diameter are approximated by scaling dependences
with universal critical indices as well [35].

The critical parameters determined by Eqn (58) are
expressed by the same functions of the ionization potential
and the valence as for the van der Waals equation, but with
numerical coefficients normalized to the critical point of
caesium:

Tc � 0:085
z2I

z� 1
; �60�

pc � 0:405z2I 4 ; �61�

na c � 2:92� 1019I 3 ; �62�

Zc � 0:1�z� 1� ; �63�

where T and I are measured in eV, pc in bars, and na c in cmÿ3.
Equations (60) ± (62) are somewhat more accurate than the
analogous formulas (48) ± (50). However, similarity between
metals occurs only for the same relative hard-sphere radii c,
and the same coefficients g and b, i.e. can be only approx-
imate. Nevertheless, the similarity laws allow us to estimate
the critical parameters promptly in the absence of detailed
calculations for specific metals.

Except for the dependence of the critical temperature on
the valence, which reduces to their proportionality only in the
case of great valence z4 1, the other functions of I and z in
Eqns (60) ± (62) are governed by power laws corresponding to
the absence of characteristic values. Within the limits of
uncertainty, the formula for the temperature can also be
presented by a power law

Tc � 0:0425zI : �64�

The power laws ruled by Eqns (61), (62) and (64) yield a
scaling of the Coulomb critical points of metals with respect
to the ionization potential and the valence of atoms. A
relationship between the critical pressure and temperature
for arbitrary valence also follows from Eqns (61) and (64):

pc � 225I 2T 2
c : �65�

As can be seen from Table 1, the measured critical points of
heavy alkali metals are well described by scaling (except the
critical density of sodium, which is worse known). However,
lithium deviates from the similarity, thus indicating that one
should be careful with scaling. Additional information for
more definite estimates can be given, for example, by the
relationship between the temperature and pressure extrapo-
lated along the vapor pressure curve. Inmany cases [38], Eqns
(61) and (64) reasonably agree with the thermodynamic
estimates of critical temperatures and pressures [39, 40],
which are based on available characteristics of condensed
phases and some other data (see examples in Table 1).

9. Metal ± ammonia solutions

Solutions of metals, such as Na, in liquid ammonia [41] give
a unique possibility to observe a phase transition with a
Coulomb critical point easily available in the laboratory
conditions. As was noticed long ago, the solution layering
into dilute (polaronic) and concentrated metal-rich phases
below the consolute temperature of 230 K is analogous to
the condensation of a dissolved metal. It was believed that
the consolute point is determined by the Coulomb interac-

3.0

n

2.5

2.0

1.5

1.0

0.5

0
0.8 0.9 1.0 t

Figure 8.Density ± temperature phase diagram in the vicinity of the critical

point of metallic fluids [37]. The experimental dots for caesium (circles)

and rubidium (stars) are from JuÈ ngst et al. [35].
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tion [42], since the polaronic phase is an electrolyte, and the
metal-rich phase is a metal. Moreover, at the consolute
point the conductivity reaches a minimum metallic value
� 102 Oÿ1 cmÿ1 [43], the atomic number density of dissolved
metal being of the same order as at the critical points of
condensation in pure alkali metals.

Metal-rich solutions differ from those diluted by strong
electron ± ion coupling which results in overlapping impurity
states of alkali atoms in liquid ammonia. Analogously to pure
alkali metals, near the consolute point the phase transition is
caused by interaction of overlapping impurity atoms. How-
ever, the characteristics of impurity states and interactions
between them are strongly influenced by liquid ammonia as a
nonlinear dielectric medium with a strong frequency disper-
sion.

At high frequencies, the permittivity of liquid ammonia,
caused by electronic polarization of molecules, is e1 � 2.
High permittivity at low frequencies �e0 � 22� is mainly
caused by the orientation of permanent dipoles of ammonia
molecules. By virtue of the inertia of molecules, an electron
creates a polaron potential well with Coulomb asymptotics
ÿ�eÿ11 ÿ eÿ10 �e2=r (outside the main region of localization)
[44]. The impurity state has a potential obtained by summing
the polaronic and ionic potentials, i.e.

n � ÿ e2

e1r
; �66�

and the classically accessible radius

Ra � e2

e1I
; �67�

where I is the impurity ionization potential. Due to a great
static permittivity, the impurity potential differs from the
polaronic potential rather little. Therefore, the classically
accessible radius can be estimated from Eqn (67) with the
polaronic binding energy I � 1:6 eV found from the optical
absorption spectra of dilute solutions. Analogously to alkali
plasmas, impurity atoms form percolation clusters of over-
lapping classically accessible spheres of radius Ra defined by
Eqn (67), the interatomic repulsion being modelled by hard
spheres of such a diameter d � Ra.

The interaction between overlapping impurity atoms,
determined by the main region of electron localization, thus
decreases by virtue of the high static permittivity. However, at
the mean ammonia intermolecular distance the dipole
polarization in the ion field is saturated, therefore the
permittivity differs from the macroscopic value. The polar-
ization vector of dipole molecules in the ion field is given by

P � eeff�r� ÿ e1
4p

e

eeff�r�r2 ; �68�

where eeff�r� is an effective permittivity which depends on the
distance from the ion due to the saturation of polarization.
Equating this expression to a saturated polarization P � dN,
where d is the dipole moment, andN is the molecular number
density in liquid ammonia, we obtain the upper limit of
permittivity

eeff�r� < e1
1ÿ r2=R2

d

; R0 < r < Rd

�
1ÿ e1

e0

�1=2

; �69�

where R0 � �4pN=3�ÿ1=3 is the molecular cell radius, and
Rd �

����������������
e=4pdN

p
is the saturation radius of polarization. To

average over the Wigner ± Seitz impurity cell, we use an
integral expression for the potential:

1

eeff
�
�

1

R0
ÿ 1

Rs

�ÿ1 �Rs

R0

dr

eeff�r�r2 ; �70�

with eeff defined by Eqn (69) in the range of saturation or by
e�r� � e0 beyond this range. At the consolute point we obtain
eeff < 9, i.e. the average effective permittivity is 2.5 ± 3 times
smaller than the macroscopic value.

On the other hand, the impurity ionization potential and
the effective permittivity can be estimated semiempirically via
the experimental temperature and concentration at the
consolute point of sodium± ammonia solutions. We use
formulas (47) ± (49) for the solution replacing I with e1I and
g with g=eeff. Normalizing to the critical point of caesium, we
have

na c � 2:92� 1019�e1I�3 ; �71�

Tc � 0:0425
e1
eeff

I : �72�

Substituting in these equations the density of sodium
corresponding to the critical concentration 4.15% as well as
the number density of molecules 2:55� 1022 cmÿ3 and the
critical temperature Tc � 230 K [43], we find I � 1:65 eV and
eeff � 7 in agreement with the estimates above. Thus, the
parameters of the consolute point contain information on the
impurity states of metal atoms and nonlinear dielectric
properties of liquid ammonia.

10. Critical valence of the transition metals

The majority of elements in the Periodic Table are metals,
most of them being transition metals with partially filled d-
and f-shells. Close to the metal ± insulator transition, the
valence (ion charge number) of these metals is different from
that at normal density. The main point here is that the radii of
d- and, especially, f-shells are considerably smaller than the
radii of valence s-shells [28]. In condensed metals, d-electrons
are generally related to the valence electrons, but near the
percolation threshold of s-shells they are considered internal,
since d-shells are still far from overlapping. Thus, the
question of ionic valence at the critical point reduces to the
possibility that internal electrons are excited into the outer sp-
shells.

Due to the many-particle exchange interaction between
virtual atoms, the electron excitation changing the valence
electron configuration of virtual atoms can be energetically
advantageous and strongly influences the critical temperature
and pressure. This effect is analogous to changing the electron
configuration of transition metal atoms forming molecules
(but d-electrons can also directly participate in chemical
bonding thus increasing the maximum chemical valence up
to 6 [28]). The total excitation energy depends on the relation
between that of the electron configuration with higher ionic
valence and the corresponding change of the exchange
interaction energy.

For the ground electron configuration �nÿ 1� d kns2 with
a great principal quantum number n, the excitation energy of
another configuration �nÿ 1� d kÿ1ns2np can be estimated in a
crude approximation with a semiclassical model. By semi-
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empirical rules, a d-electron has nearly the same energy, and a
p-electron nearly the same characteristic radius as an s-
electron. With this rule, the excitation energy of the displaced
term is equal to the centrifugal energy of the p-electron at the
characteristic radius Ra:

DE � l�l� 1��h2
2mR2

a

� I 2

2Ry
: �73�

Formula (73) correlates with the excitation energies of known
displaced terms (Fig. 9) and can be used for crude estimates in
the absence of experimental data. According to this formula,
the excitation energy of the displaced term of uranium, for
example, is close to that known for thorium, and the displaced
term of tungsten is close to that of tantalum.

At the critical point, the total energy of the transition into
such a displaced term includes the change of interatomic
interaction due to increasing ionic valence:

DEc � I 2

2Ry
ÿ g�z2c ÿ z2�Iz1=30 ; �74�

where z � 2 is the ionic valence in the ground electron
configuration of the atom, and zc � 3 is the effective valence
corresponding to the displaced term. Substituting g � 0:33
and the critical value of the classically accessible volume,
z0 � 0:365, it can be verified that for every possible ionization
potentials the total excitation energy DEc is negative, and in
order of magnitude is equal to ÿI.

Thus, the excitation of displaced terms is energetically
advantageous. In most cases, transition metals have the
electron configuration �nÿ 1� d kns2, therefore the critical
ionic valence is increased to 3. An increase of the valence z

by 1 can still be considered a small perturbation of the order
of 1=zc � 1=3, but many-electron transitions increasing the
valence even more are apparently beyond the concept of
virtual atoms which differ little from free atoms.

In consequence of increasing ionic valence, the critical
compressibility factor of transition metals becomes equal to
Zc � 0:1�zc � 1� � 0:4, i.e. two times greater than in alkali
metals. Generally, critical temperatures and pressures of
transition metals estimated by scaling laws due to Eqns (61),
(62) and (64) with the critical ionic valence zc � 3 [45],
correlate quite well with available semiempirical estimates
(Table 1).

11. Percolation transition in liquids

The problem of existence of the Coulomb critical points is
inseparable from the more general problem of the insulator ±
metal transition. The nature of the critical point essentially
depends on its position in the phase diagram with respect to
this transition. Besides, the insulator ±metal transitions are of
interest in a wider class of fluid systems than liquid metals
having Coulomb critical points, for instance, in inert gases,
hydrogen, other semiconducting and dielectric fluids and
disordered solids as well. In fluids and disordered solids, the
insulator ±metal transition is drastically different from that in
crystalline solids determined by the electronic band structure.
In various liquids such transitions have their own features, by
no means described with generally used theoretical models.
At the same time, there is also something common to all the
insulator ±metal transitions in liquids. In particular, the
surprisingly easy metallization of liquid hydrogen as com-
pared to solid [46] is in fact typical and has even been
predicted by analogy with liquid iodine [47]. In this section,
we will consider examples of insulator ±metal transitions in
different systems and the Coulomb interaction effects related
to the insulator ±metal transition from recent works.

11.1 Role of structure
In semiconducting and dielectric liquids, the insulator ±metal
transition resides certainly above the critical density. There-
fore, the critical point corresponds to equilibrium between
two dielectric phases and is determined by the van der Waals
rather than the Coulomb interaction. One such liquid is
mercury which is semiconducting when expanded more than
one and a half times, although it is metallic at normal density.
An alternative example is selenium, a semiconductor with an
energy gap of 2 eV, which becomesmetallic in melt at elevated
temperature and a pressure of the order of 10 kbar.

The insulator ±metal transition depends on the density as
well as on the atomic structure of condensed matter. It is well
known that germanium and silicon, crystalline and amor-
phous semiconductors, become metals in melts [42]. Boron,
an insulator in crystalline state, becomes a metal being
melted, despite a little decrease in the density [48]. Selenium
[49] and iodine [47] transfer into ametallic state when they are
melted under a pressure higher than about 35 kbar. Liquid
hydrogen is metallized being compressed ninefold [46],
though the solid remains dielectric at the maximum reached
compression. Evidently, it is easier to make the transition into
the metallic state in liquids than in solids due to lesser
importance of quantum diffraction. In the absence of
quantum interference and Anderson localization [50], perco-
lation of overlapping electron shells becomes the condition of
metallization brought to forefront.
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11.2 Mercury
Themetal ± insulator transition in expanded liquidmercury at
about the critical temperature is the best studied [2]. The tran-
sition density is experimentally determined by the disappear-
ance of the activation energy extrapolated from the insulator
side or by the Knight shift on the metal side, the results being
consistent with each other. In contrast, attempts to relate the
insulator ±metal transition to closing of the optical gap led to
misunderstanding (see, for example, book [53] and references
cited therein), because the transparency window in optical
spectra vanishes due to a polarization shift of the resonance
atomic energy level in fluctuation clusters [51, 52].

The insulator ±metal transition point, rIM � 9 g cmÿ3,
corresponds to the classically accessible volume fraction
z0 � 0:3 equal within a few percent to the minimum percola-
tion threshold of overlapping shells with hard cores (see Fig.
3). In this density range, the hard-core diameter found in the
Carnahan ± Starling approximation by fitting the pÿVÿT
data of a saturated liquid goes through a weak minimum,
� 2:4 A

�
[2]. The ratio of the hard-core diameter to the shell

diameter is about 0.8, i.e. approximately corresponds to the
minimum of the shell percolation threshold (Fig. 3).

The structure of expanded liquid mercury studied by X-
ray diffraction shows a first peak of the radial distribution
function located at about 3 A

�
[54], i.e. within 10% of the

electron shell diameter. At the density 9 g cmÿ3, the average
number of neighboring atoms in the first peak (i.e. the
coordination number of liquid) varies from 4 to 6 according
to different experimental estimates, and about half the atoms
are located in a percolation sphere of radius 2Ra. The estimate
suggests proximity to the percolation threshold, although in
this way it is rather difficult to determine the number of
overlapping atoms more accurately.

The pÿVÿT data [2, 55] and the sound velocity [56] do
not show any thermodynamic peculiarity at the insulator ±
metal transition point. Evidently, a plasma phase transition
(secondary condensation) which otherwise could be caused
by the Coulomb interaction is forbidden due to the small
compressibility of the liquid. An important conclusion that
the insulator ±metal transition is continuous can be applied
to the whole problem of such transitions in liquids, although
it is often ignored. Besides, Kozhevnikov et al. [56] reported
on a first-order `cluster' phase transition near the critical
density (� 6 g cmÿ3). But this statement has been repudiated
[57], since the observed phenomena are explained by prewet-
ting (i.e. growth of a liquid film on the surface, see alsoHensel
and Yao [58]).

Electronic properties such as conductivity, the Hall
coefficient and the thermo-emf in the vicinity of the metal ±
insulator transition are well described by a percolation theory
of thermally activated hopping on virtual atoms [33]. When
passing through the transition point, all the electronic
properties vary continuously. Below the transition point the
conductivity is finite due to thermal excitations, but it
strongly reduces with decreasing density. A rather sharp
decrease of the conductivity is caused by the great ratio of
the ionization potential to the temperature, I=Tc, which
reaches about 70. If such a parameter goes to infinity, the
metal ± insulator transition becomes quite sharp, as is
observed in impurity semiconductors (see the next section).

11.3 Phosphorus in silicon
Substituting for atoms of silicon in the crystalline lattice,
phosphorus atoms form impurity states with a low ionization

potential Ia � 45:5 meV [23]. The classically accessible radius
of impurity states,

Ra � e2

eIa
;

with e � 11:5 the dielectric constant of the silicon matrix, is
considerably greater than the lattice constant of silicon.
Therefore, the disordered impurity system is similar to
liquids with the percolation threshold of the classically
accessible spheres equal to that of the ideal system,
z0 � 0:34. Indeed, the corresponding phosphorus density
na � 3:8� 1018 cmÿ3 practically coincides with the insula-
tor ±metal transition point found experimentally [59].

At a low temperature of the order of 1 mK, the ratio of
impurity ionization potential to temperature, I=T, reaches
5� 105. Due to the great parameter, the conductivity
practically disappears below the transition point, being of
metallic character a little above (Fig. 10) [60]. In contrast, at
room temperature it is already impossible to differ between
activated and metallic conductivities [61]. This example
clearly illustrates that the qualitative difference in electronic
structure between metal and insulator can be completely
masked at high temperatures.

Phosphorus-doped silicon Si:P is a classical disordered
system used to study the insulator ±metal transition at very
low temperatures. An advantage of this system as compared
to liquids arises because the Coulomb condensation of
impurity atoms fixed in the silicon lattice is forbidden.
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11.4 Selenium
The complex molecular structure of selenium, which may
change depending on the temperature and pressure, adds
unique characteristics to the insulator ±metal transition.
Selenium melts into a polymer semiconducting liquid with
chain molecules which contain up to 105 atoms, gradually
dissociating with increasing temperature. The pressure
decreases along the insulator ±metal transition line from
35 kbar near the melting curve to � 1 kbar at the critical
temperature (Fig. 11). Near the melting curve, the insulator ±
metal transition seems to accompany a smeared out phase
transition indicated by a 3% decrease of the volume over a
small temperature range DT � 50 K [49]. The phase transi-
tion line is described by the Clapeyron ±Clausius equation

dp

dT
� q

T�v2 ÿ v1� ;

where q is the transition heat, and v1 and v2 are the specific
volumes of the semiconducting and metallic phases, corre-
spondingly. If we interpret the phase transition as melting of
macromolecules, the negative slope of the transition line in
the pressure ± temperature plane can be explained by the
fragments of melted polymer molecules being packed closer,
thus decreasing the volume of liquid. The transition heat
estimated by theClapeyron ±Clausius equation, q � 45 J gÿ1,
coincides in order of magnitude with the ordinary latent heat,
supporting the idea of a two-step melting of selenium. Thus,
the transition into a metallic state observed in liquid selenium
in the range 10 ± 35 kbar is probably a consequence of melting
of macromolecules in the polymer melt, similar to that above
35 kbar caused by melting of the solid.

It seems likely that the liquid formed after the melting of
macromolecules consists mainly of strongly coupled dimers
Se2. Indeed, at the critical point (Tc � 1888 K, pc � 385 bar,
rc � 1:85 g cmÿ3 [62]) an estimate based on an average value
of the critical compressibility factor for the dielectric liquids,

Zc � 0:3, shows that molecules contain on the average 2.7
atoms. On the other hand, according to the nuclear magnetic
resonance data [63], the fraction of end atoms in molecular
chains at the critical point, equal to 1/5, corresponds to chains
of ten atoms. However, this value characterizes the chain
structure of the liquid rather than the constituent molecules.

At the critical temperature, the insulator ±metal transi-
tion is caused by compression as in expanded fluidmercury. A
minimum metallic conductivity � 102 Oÿ1 cmÿ1 occurs at a
density of about 3.2 g cmÿ3 [64, 65], i.e. considerably below
the normal density of semiconducting amorphous selenium,
rn � 4:2 g cmÿ3. The conductivity shows a complex tempera-
ture dependence which differs from a simple exponential, thus
making the activation energy analysis difficult. In such a case,
a minimum metallic conductivity remains the main evidence
of the insulator ±metal transition [66]. As was discussed
above for mercury, attempts to determine the transition
point by the gap in the optical spectra, already closed at the
critical point [67], can only lead to misunderstanding.

Since in the Se2 molecule the atomic shells do not overlap
very strongly, some two thirds of the classically accessible
radius, the atoms in the molecules can be considered elements
of the percolation cluster. On the other hand, the existing
molecular structure obviously influences the percolation
threshold of atomic shells. Indeed, the transition point
3.2 g cmÿ3 corresponds to the threshold classically accessible
volume fraction zpc � 0:42 which considerably exceeds the
ideal threshold value. At the transition point, the estimate
based on the atomic percolationmodel gives a conductivity of
about 200 Oÿ1 cmÿ1, which is consistent with the experi-
mental value.

11.5 Xenon
Dielectric liquids having a wide energy gap are metallized by
multiple compression increasing the shell percolation thresh-
old up to a random close packing. Another peculiarity is a
steeper self-consistent potential ofmany-electron shells which
goes lower the Coulombic one at the classically accessible
radius (Fig. 12). In the quasi-classical case, the difference of
these potentials can be estimated by the electron affinity of an
isoelectronic negative ion 4. A negative ion isoelectronic to
xenon, Iÿ, has the binding energy ea � 3 eV comparable to
the ionization potential of xenon I � 12 eV. Therefore, the
Coulomb part is about 3/4 of the ionization potential. The
classically accessible radius is Ra � e2=�Iÿ ea�. Calculating
the volume fraction of the classically accessible spheres at the
density of liquid xenon, z0 � 0:27, we find that the random
close packing factor will be already reached for 2.4 times
compression. In fact, it was realized in shock waves [68], when
the insulator ±metal transition is masked by high tempera-
tures. In contrast, solid xenon is metallized by 3.6 times
compression [69], which is considerably greater compared to
the liquid.

11.6 Hydrogen
Liquid hydrogen is metallized in reverberating shock waves
providing tenfold compression under a pressure of about
1.5 Mbar at moderate temperatures 2000 ± 3000 K [46]. With
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4 This is elucidated by the example of metallic clusters of radiusRwith the

quasi-classical ionization potential I�W� �3=8�e2=R and electron affi-

nity e �Wÿ �5=8�e2=R expressed by the work functionW. The difference

IC � Iÿ e can be considered a Coulomb ionization potential which

determines the classically accessible electron radius Ra � e2=IC equal to

the cluster radius R.
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the dissociation energy of 4.5 eV, hydrogen molecules are not
appreciably dissociated in these conditions. In contrast to
atomic systems, the insulator ±metal transition is caused here
by percolation of overlapping electron shells of virtual
molecules.

The classically accessible domain of electron motion in a
hydrogenmolecule (Fig. 13) is close to a prolate ellipsoid with
semiaxes of 1:55aB and 1:95aB, which bounds almost the same
volume as a sphere of the radius Rm � e2=I, where I � 16 eV
is the ionization potential of the molecule for fixed nuclei.
With parallel axes of the ellipsoids, the percolation threshold
does not differ from that for spheres. In a general way, with
the axes of molecules occurring at arbitrary angles to each
other, the sphere percolation threshold gives an upper limit.
In a strongly compressed system, the threshold is attained at

random close packing:

4p
3

�
e2

I

�3

nm � 0:64 ; �75�

where nm is the number density of molecules. Equation (75)
determines the threshold number density nm�2:1� 1023 cmÿ3

corresponding to the mass density of 0.7 g cmÿ3, which is ten
times the normal liquid hydrogen density. This estimate is
consistent within 10% with the experimental transition-point
density obtained by extrapolating the activation energy of
conductivity to zero [46].

According to a theoretical model [70], near the dielectric
liquid ±molecular metal transition point the conductivity is
caused by thermally activated overbarrier hops of electrons
on virtual molecules with overlapping classically accessible
spheres. Although experimental data are still lacking, and the
temperature estimated by approximate calculation of shock
compression varies with the density, the qualitative behavior
of the conductivity as a function of density is evidently within
the framework of this model (Fig. 14).

In recent calculations of the equation of state [11], the
insulator ±metal transition observed in superdense fluid
hydrogen is represented by a jump in the degree of ioniza-
tion, which gives rise to a weak first-order phase transition
with vanishing transition heat and a 15% density gap.
Although still not excluded, the phase transition has not
been observed yet. Therefore, one may look for the reason in
themethod of calculation. Indeed, the jumpmay be caused by
an imperfect theory of nonideal plasma, describing bound
and free electron states in different approximations without
mixing bound states with free motion. However, due to a
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strong screening in overlapping molecular shells, the discrete
electron spectrum disappears and the effective ionization
potential of molecules vanishes. For this reason, the usual
separation of free electrons from bound ones makes no sense,
therefore there is no jump of the ionization degree as well as
the density gap. Thus with mixing of free and bound states,
the weak first-order phase transition evidently turns into a
continuous transition.

Summing up this section, we note that the insulator ±
metal transition in liquids forms a Coulomb system with new
electronic and thermodynamic properties, since partially free
electrons contribute, for example, to the conductivity and
pressure. However, in the liquid phase this transition is not
generally connected with any first-order phase transition,
except for such special cases as melting of macromolecules
in liquid selenium.

12. Critical point of mercury

In this section we consider the nature of mercury behavior
near the critical point which is on the dielectric side of the
metal ± insulator transition. In contrast to dielectric liquids,
at the critical point mercury possesses an appreciable
conductivity. The critical parameters are Tc � 1751 K,
pc � 1763 bar, and rc � 5:8 g cmÿ3 [55]. In the density
range 4 ± 6 g cmÿ3, i.e. below the critical point, mercury
shows properties of a gaseous semiconductor. Its conductiv-
ity falls much lower than the minimum metallic value, still
remaining ten orders of magnitude higher than in an ideal
gas, whereas at constant density the conductivity exponen-
tially increases with increasing temperature. The dielectric
constant varies with the density from a few units to ten, that
is in the range typical for semiconductors.

The main feature of a gaseous semiconductor is that the
energy gap cannot be considered as an experimentally
determined parameter, since it depends on the density. In a
dielectric model [71], the energy gap compared to the
ionization potential decreases due to the decreasing Cou-
lomb attraction at distances longer than the percolation
radius:

D � Iÿ e2

Rpc

�
1ÿ 1

e

�
; �76�

where e is the dielectric constant, and Rpc is the percolation
radius. In the case of full screening, e!1, formula (76)
assumes the form of Eqn (25) for the mobility gap below the
percolation transition in the system of virtual atoms.

The permittivity can be estimated using the Clausius ±
Mossotti formula (or its regularized version) taking into
account the polarization of atoms and chemical bonds in
quasi-molecules [33]:

e � 1� 4pnaa
1ÿ K

; �77�

where a � aa � Bab=2 is the total polarizability per atom,
aa � z�e2=I�3 is the atomic polarizability, z � 2 is the number
of polarizable s-electrons, ab � �4=3��e2=I�3 is the polariz-
ability of the bond in the quasi-molecule, B is the average
number of atoms in a coordination sphere of radius 2e2=I,
and K � 4pnaa=3. Setting themagnitude ofB to half the liquid
coordination number, at the critical density we find the
permittivity to be 6, and the corresponding energy gap
D � 3 eV, typical for a semiconductor. The critical-point

permittivity found by light reflection in early works [72, 73]
reaches 10. New data [74], closer to the theoretical estimates
above, take into account a semiconducting liquid mercury
film of about 100 A

�
thick, growing on a sapphire surface

above the prewetting temperature [58].
With the minimum free path, the electron ± hole con-

ductivity is [71]

s � 2e2

p�hl
exp

�
ÿ D
2T

�
; �78�

where l � �2p�h2=mT�1=2 is the thermal electron wavelength.
We note that the hole mobility is caused by the overbarrier
transitions of valence electrons from neighboring atoms to
the bare ion, whereas electrons in the conduction band move
between neutral atoms. The density dependence which
follows from Eqns (76) ± (78), and the order of magnitude of
conductivity at the critical point, � 0:1 Oÿ1 cmÿ1, corre-
sponding to a weak ionization, agree with experimental data
[75]. The thermoelectrical coefficient

aT � kBD
2eT
�bh ÿ be� ; �79�

where kB is the Boltzmann constant, bh and be are the hole and
the electron mobilities, becomes zero at the critical point [76].
This suggests the compensation of competing terms in Eqn
(79) that confirms the existence of the hole contribution to
conductivity.

The semiconducting state of mercury at the critical point
manifests itself in the critical parameters quite different from
the scaling with respect to the ionization potential and valence
characteristic of the Coulomb critical points in metals. Since
the critical point of mercury does not fall under the Coulomb
class, the critical parameters are determined by the van der
Waals interaction of atoms. However, a peculiarity of the
semiconducting liquid is the still considerable role played by
many-particle interactions. Indeed, the depth of the pair-
additive Lennard ± Jones potential estimated via the critical
temperature, e � �0:6ÿ0:8�Tc (see, for example, the book
[21]), is 1.5 ± 2 times greater than the bond energy of the van
der Waals molecules Hg2, D � 0:06 eV [77], indicating the
importance of nonpair atomic interactions.

13. Exciton condensation

Finally, we consider the Coulomb critical points of non-
equilibrium phase transitions limited to the relaxation time.
An example is the condensation of excitons into a metallic
electron ± hole liquid in strongly excited semiconductors,
predicted by Keldysh [18]. The critical point is determined
here by the exchange interaction of overlapping excitons, like
atoms in metals or impurity atoms in metal ± ammonia
solutions. Within this analogy, we introduce a model of
virtual excitons which allows for strong electron ± hole
interaction, in contrast to the model of two liquids (see the
book [19] and references cited therein). Similarly to other
systems, the critical point of condensation is determined by
the exciton binding energy and the dielectric constant of the
semiconductor.

We first consider exciton condensation in silicon, which
has been widely studied. Silicon is an intrinsic semiconductor
with an indirect energy gap of 1.1 eV between the top of the
valence band at the Brillouin zone center and the bottom of
six equivalent valleys in the conduction band. An external
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excitation creates free electrons in the conduction band and
holes in the valence band, which at low temperature are
bound in excitons with a hydrogen-like energy spectrum,
namely

En � ÿ me4

2�h2e2n2
; �80�

where n is the principal quantum number,
m � memh=�me �mh� is the reduced mass, and me and mh

are the electron and hole effective masses, respectively. In the
ground state, the electron and hole being at opposite ends of
the diameter from the common center of mass are mainly
localized within concentric classically accessible spheres with
radii

Ri � e2

eIx

m
mi
� 2eaB

m

mi
; i � e; h ; �81�

where Ix � ÿE1 is the exciton binding energy, aB � �h2=me2 is
the Bohr radius, andm is the free-electronmass.With its large
dielectric constant, silicon plays the role of a continuous
dielectric medium, since the classically accessible radii of
electrons and holes are much greater than the lattice
constant. Ellipsoidal valleys in the conduction band have
different longitudinalml and transversemt masses. Generally,
to simplify the problem the valleys are considered spherical
with the effective mass describing the density of states,
me � m

1=3
l m

2=3
t � 0:32m [78]. Near the center of the Brillouin

zone, the valence band splits into bands of heavy and light
holes. The heavy holes with a greater effective mass
mh � 0:52m have the lowest excitation energy, thus being
the most important. In the ground exciton state the electron
forms a shell around the heavy hole, since the ratio of the
electron classically accessible radius to that of the holes is 5:3.

In what follows we restrict the full problem to the limiting
case of infinitely heavy holes �mh 4me� with hopping
excitons reduced to metastable atoms with the ionization
potential

Ia � me

m
Ix � me

m

Ry

e2
�82�

and the classically accessible radius Ra � Re.
At low density, the system is an excitonic insulator.

However, when overlapping electron shells form an infinite
percolation cluster, the electrons become partially free due to
collective screening. With the radius of shells Re determined
by Eqn (81), the percolation condition is

4p
3

�
2eaB

m

me

�3

nx � 1

3
; �83�

and the threshold density of excitons nx � 1018 cmÿ3.
In the limit of infinitely heavy holes, the interaction

between excitons reduces to that of overlapping virtual
atoms. Analogously to normal atomic systems (see Section
4), the repulsion between excitons at small distances can be
modelled by hard spheres of diameter d � Ra. In the mean
field approximation, the attraction is described by a Made-
lung energy

U � ÿ ge2

eRsx
; �84�

whereRsx � �4pnx=3�ÿ1=3 is the excitonWigner ± Seitz radius,
and g is the renormalizedMadelung constant. In the case of a
small ion core (see the end of Section 6), an appropriate value
of the Madelung constant is g � 0:55.

The equation of state of virtual excitons is written as

p � 2nxT

1ÿ 4Z
ÿ g
3

�
4p
3

�1=3
e2

e
n4=3x ; �85�

where Z � pd 3nx=6 is the packing factor of the hard spheres.
This equation determines the critical temperature of exciton
condensation

Tc � 16

49

�
2

7

�1=3 gIa
2
; �86�

the critical pressure

pc � 1

49

�
2

7

�1=3 gIa
2p

�
eIa
e2

�3

; �87�

and the critical density

nxc � 2

7

3

4p

�
eIa
e2

�3

: �88�

According to Eqn (86), the critical temperature depends
on the binding energy of excitons, but not on the dielectric
constant of the semiconductor. In the limit of infinitely heavy
holes, the binding energy estimated by Eqn (82) is
Ia � 30 meV. Substituting this value of Ia into Eqns (86) ±
(88), we obtain the critical temperature Tc � 21 K, the
pressure pc �10ÿ3 bar, and the density nc�1:1�1018 cmÿ3.
These estimates agree reasonably well with the experimental
data (Tc � 24 K, nxc � 1018 cmÿ3) [79].

To our knowledge, exciton condensation has only been
observed in crystalline semiconductors [19]. Here, we estimate
the critical point of exciton condensation in liquid xenon to
show the predictive power of the dielectric model. The
permittivity of liquid xenon is fairly well represented by the
Clausius ±Mossotti formula with the atomic polarizability:

e � 1� 4pNaa
1ÿ K

; �89�

where K � 4pNaa=3. Substituting the polarizability
aa � 4� 10ÿ24 cmÿ3 [30], and the atomic number density at
the boiling temperature, N � 1:6� 1022 cmÿ3 (Tb � 165 K),
into Eqn (89), we find e � 2:1 which is close to the optical
permittivity 1.85 [80]. The permittivity determines the energy
gap between the valence and conduction bands:

D � Iÿ e2

Rs

�
1ÿ 1

e

�
: �90�

This is analogous to the energy gap in expanded fluidmercury
defined by Eqn (76), except that at normal liquid density the
percolation radius is replaced by the ordinary Wigner ± Seitz
cell radius. Estimating the energy gap with Eqn (90), one
obtains 9.45 eV.

At normal density in liquid xenon, electrons of neighbor-
ing atoms can transfer to bare ions over the potential barrier,
giving rise to a random walk of holes. Indeed, it can be
directly verified that the top of the potential barriers,
Um � ÿ2e2=Rs, is at about the atomic energy level, ÿI. As
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in ordinary semiconductors, electrons and holes created by
the external excitation can occupy the exciton levels in the
forbidden band.

Provided that the classically accessible electron radius is
much greater than the Wigner ± Seitz radius, the principal
quantum number in the excitonic spectrum (80) must be
limited to n5 2. There are excitonic peaks of 8.6 and 9.3 eV
in the energy spectrum of liquid xenon, observed using
photoconductivity [80]. Identifying these peaks with the
excitation of n � 2 and 3 levels, respectively, we find the
reduced mass to be close to the free-electron mass 5, and the
energy gap 9.75 eV close to that estimated by Eqn (90).

In the limit of infinitely heavyholes (mh 4me,me � m), we
consider excitons asmetastable atomswith the corresponding
ionization potential Ia � Ry=4e2 � 1 eV. The lifetime of
metastable atoms is limited by the nonadiabatic quenching
with t � Rs=vw � 10ÿ6 s, where v � 2� 104 cm sÿ1 is the
thermal velocity of atoms, and w � 10ÿ6 is the probability of
quenching [81].

Using Eqns (86) ± (88), we obtain the following critical
parameters

Tc � 680 K ; pc � 3:9 bar; nxc � 1:4� 1020 cmÿ3 ; �91�

i.e. the critical temperature is greater than that in silicon by
almost 30 times, and the density by two orders of magnitude.
We note that the critical temperature of exciton condensation
is higher than the liquid ± gas critical temperature of xenon
(Tc � 290 K, pc � 58:3 bar), therefore condensation of
excitons is possible in gaseous xenon.

The exciton drops are somewhat like ball lightning, since
at the critical point the stored exciton energy reaches
200 J cmÿ3. However, the exciton condensate is quickly
damped because of exchange of the excitations between
metastable atoms. The resonance process x� x � 0� e
involving metastable atoms x with a great rate constant
Qxx � 10ÿ9 cm3 sÿ1 produces atoms at the ground level 0
and hot electrons e which lose the energy in collisions with
normal atoms. In the case of quasi-equilibrium exchange with
the excitations (n2x � neN, where ne is the density of hot
electrons), the energy balance reduces to the equation for
the density of excitons:

dnx
dt
� ÿKen

2
x ; �92�

whereKe � �2m=M�seave � 5� 10ÿ12 cm3 sÿ1 is the effective
quenching rate constant, M is the atomic mass,
sea � 3� 10ÿ15 cm2 is the cross section of electron scatter-
ing, and ve � 2� 108 cm sÿ1 is the thermal velocity of
electrons. According to Eqn (92), the lifetime of the exciton
condensate, �Kenx�ÿ1 � 10ÿ9 s, is much smaller than that of
isolated excitons.

With its nonequilibrium nature, the exciton condensation
is quite different from an ordinary liquid ± gas phase transi-
tion. However, even in this case the plasma phase transition
which occurs near the critical point is a continuation of the
van der Waals condensation of excitons at lower densities.

14. Conclusions

The well-known van derWaals equation of state qualitatively
describing the critical point of condensation in neutral fluids
is still more suitable for Coulomb systems. Applying it to the
model system of charged hard spheres, this equation is only to
be modified by replacing a quadratic term describing the
interatomic attraction with a renormalized Madelung energy
having an exponent of 4/3, which represents the residual
Coulomb interaction of the Bjerrum pairs. Besides, in plasma
systems the additional pressure of partially free electrons
walking between virtual atoms at thermal excitation energies
is to be included. At the Coulomb critical points, the van der
Waals description of the free volume becomes quite appro-
priate, since the packing factor of effective hard cores is much
smaller than in neutral fluids. The residual Coulomb
interaction is described in the mean field approximation
which works better here than for the ordinary dispersion
interaction between atoms. Therefore, a modified van der
Waals equation of state for the Coulomb systems allows us to
estimate quantitatively the critical points without extensive
use of experimental parameters and with considerably better
accuracy than using the original equation in the case of
neutral fluids.

The Coulomb critical points are closely connected with
the metal ± insulator transition. A consequence of the
proximity to the metal ± insulator transition is a strong
electron ± ion coupling which excludes the possibility of
using the perturbation theory. Therefore, one must include
the electron ± ion interaction from the beginning. The model
of virtual atoms andWigner ± Seitz atomic cells seem to be the
most suitable for this purpose. The interaction energy of
virtual atoms versus the density, which is not sensitive to the
electron structure due to averaging over different cells, is
presented by a Madelung energy. A renormalized Madelung
constant is up to 2.7 times smaller compared to the one-
component plasma model which thus strongly overestimates
the coupling energy.

It is characteristic of Coulomb critical points that the
exchange repulsion radius of the atomic electron shells is
smaller than the classically accessible radius. In this case, the
core radius is determined by the bare Coulomb interior
repulsion when the remainder ion of one atom enters the
classically accessible sphere of another atom. Inversely, if the
exchange repulsion radius is greater than the classically
accessible radius, an expanded metal transfers into a semi-
conducting state still in the liquid phase.

In every case, the plasma phase transition with a Coulomb
critical point is a continuation of the ordinary phase
transition caused by attraction between neutral particles.
The crossover to the ordinary transition and to the fluctua-
tion critical region, as well as the question of whether the
modified van derWaals equation has a range of applicability,
still remain uninvestigated, though it seems not very actual.

The analysis shows that Coulomb critical points are
determined by parameters which are not entirely universal
and, for example, slightly vary for different metals. The
calculation of all the parameters entering the equation of
state for particular metals seems to require a much more
sophisticated model describing the interaction of virtual
atoms in percolation clusters. However, it is obvious that
any such model must take into account the continuous
spectrum of atomic excitations caused by collective screening
of the remainder ions.

5 Asaf and Steinberg [80] supposed that the first peak corresponds to

n � 1, and the second to the ionization threshold estimated to be 9.22 eV.

This interpretation leads to difficulties when compared to the excitonic

spectrum; besides, the effective electron mass 0:27m seems too low for the

liquid.
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