
Abstract. Similarities and differences between two closely re-
lated phenomena, diffraction and diffraction radiation, are
discussed in the context of a scalar theory.

1. Introduction

Diffraction radiation is a type of radiation due to the uniform
motion of a charged particle. A charged particle moving in a
uniform medium may become a source of radiation if its
velocity exceeds the phase velocity of light in themedium. The
radiation occurring in this case is the well-known Vavilov ±
Cherenkov radiation the theory of which was formulated by
I E Tamm and I M Frank.1 Note here (this is important for
what follows) that Vavilov ±Cherenkov radiation is normally
considered in the assumption that a charged particle moves
uniformly in a homogeneous unbounded medium. Later on,
Vavilov ±Cherenkov radiation found important applications
in high-energy physics, where it was used to register fast
charged particles. Furthermore, fruitful physical concepts
appeared based on the interaction between a moving charge
and a synchronous wave. These concepts suggested, in

particular, a vivid explanation of wave damping in a
collisionless electron plasma.

If the medium is inhomogeneous along the particle
trajectory, radiation occurs for any velocity of motion. The
first who considered the radiation of a uniformly moving
particle in an inhomogeneous medium were V L Ginzburg
and I M Frank.2 They analyzed the simplest type of
inhomogeneity, i.e., a planar interface between two media
with dissimilar refractive indices. A charged particle moving
in one of the media approached the interface along the
normal, crossed the interface to enter the second medium,
and then,moving at the same velocity, went from the interface
to infinity. V L Ginzburg and I M Frank calculated the
radiation due to such a motion and completely determined all
its characteristics, namely, the intensity, angular distribution,
polarization, etc. The authors called it transition radiation.
Note that the aim of Tamm and Frank was to explain the
discoverymade by PACherenkov and S I Vavilov a few years
before, while Ginzburg and Frank predicted a new effect,
which was revealed experimentally twelve years later.
G M Garibyan afterwards showed that the forward transi-
tion radiation spectrum for a fast particle extends up to high
frequencies proportional to the particle energy, whichmade it
possible to create transition-radiation detectors of fast
particles. As distinct from Cherenkov detectors, transition-
radiation particle detectors do not only register the fact of
particle passage, but also allow its energy to be determined.

In their paper devoted to transition radiation, V L Ginz-
burg and IM Frank for the first time considered the field of a
charge uniformly moving in an inhomogeneous medium. The
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inhomogeneity, as was already said, was a planar interface.
Later on, other types of inhomogeneities were also discussed,
such as screens with apertures or finite-size objects so located
near the trajectory that the particle passing by the body does
not cross its surface. Such a passage also induces radiation,
which was called diffraction radiation.3

The physical nature of transition and diffraction radia-
tions is the same: the field of a passing-by particle induces
alternating currents (or alternating polarization) in the
inhomogeneity, which are a kind of radiation sources. We
say `a kind of' because we think it needless to answer the
question of which of them Ð the moving charged particle or
the inhomogeneity Ð is the source of radiation in this case.
Both the moving charge and the optical inhomogeneity are
necessary for the radiation to occur. If one of them is missing,
no radiation will appear.

However, in spite of the like physical nature, transition
and diffraction radiations differ in the methods with which
they are analyzed, and this difference is deeper than simply
methodical. To understand the difference, we consider the
transformation of a free plane electromagnetic wave by an
optical inhomogeneity. If an inhomogeneity is a planar
interface between two media and a plane wave is incident on
such an interface, reflection and refraction occur. The total
field consists of an incident, a reflected, and a refracted wave,
the latter two being expressed in terms of the incident wave
with the help of Fresnel coefficients. If a charged particle is
incident on the interface, the field of this particle can be
decomposed into plane waves, and then for each such wave
the reflected and refracted waves are found using Fresnel
coefficients. The total field is equal to the sum of all incident,
reflected, and refracted waves. This approach was exploited
by I M Frank who showed that the transition radiation field
can be expressed via Fresnel coefficients.

But Fresnel coefficients are only determined for a planar
interface, and the plane separating two media must have a
sufficiently large (better infinite) length, otherwise diffraction
will occur in addition to reflection and refraction.

If a charged particle moves near a finite-size object, then,
as in the transition radiation problem, its field can be
decomposed into plane waves with a consequent considera-
tion of each such wave transformation due to diffraction by
the body. Fresnel coefficients cannot be used in the solution
of such a problem, for they are not even defined for a finite-
size body. The transformation of waves by a finite-size body
should be determined by the methods developed in the theory
of diffraction. Thus, although the `original' physical nature of
diffraction and transition radiations is much the same, there
exist distinctions in their physical characteristics. These
distinctions are easier to understand in the context of the
definition of diffraction proposed by A Sommerfeld in his
`Optics'.4 He says that diffraction is understood as any
deflection of light from a rectilinear path of rays unless it
can be interpreted as reflection or refraction.

Obviously, a planar interface only yields reflection and
refraction of waves incident on it, and thus no diffraction can
occur in this case. Hence, transition radiation alone is

generated on a planar interface, while diffraction radiation
does not occur.

On the other hand, in some cases transition radiation can
be treated as a limiting case of diffraction radiation. Let us
consider, for example, the radiation of a uniformly moving
charged particle passing through a round aperture in a thin
perfectly conducting screen. Since in this case there is no
perfectly flat interface (it would exist if the aperture radius
were equal to zero), we are dealing with a typical diffraction
radiation problem.We are to find the field of amoving charge
in the presence of a screen with an aperture. Suppose we have
solved this problem and determined the radiation field that is
excited when the charge is passing through the aperture.
Then, we can state that with the aperture radius tending to
zero the solution will continuously pass over to the solution
for the field of transition radiation due to the incidence of a
uniformly moving charge on an ideal mirror. Such a limiting
transition is also possible if we know the diffraction radiation
occurring when a charged particle crosses a circular opaque
disk when moving along its axis. Obviously, in the limit when
the disk radius tends to infinity, we also obtain transition
radiation. A more extensive consideration of these cases is
given below.

In this paper, we attempt to present a comparative
description of two physical phenomena Ð diffraction and
diffraction radiation. This form of presentation will allow the
reader to easily clarify the similarity and distinctions of these
related phenomena. Moreover, the diffraction phenomenon
has been rather well studied for a long time and is included in
textbooks. Practically all guidebooks on electrodynamics or
optics include a special section devoted to diffraction. As to
diffraction radiation, it has attracted researchers' attention
rather recently and is practically absent from the manuals.5

Meanwhile, increasingly many publications (concerning both
theoretical and applied aspects) have already been devoted to
this problem. The reason for such interest is that diffraction
radiation plays an important role in several fields of physics,
in particular, radio engineering and high-energy physics,
where it has found useful applications.

We now remind the reader of the essence of the diffraction
phenomenon. Let a wave propagate in a homogeneous
medium (for simplicity, we hereafter assume this medium to
be a vacuum). The wave field f is described by theD'Alembert
equation

q2f
qx2
� q2f
qy2
� q2f
qz2
ÿ 1

c2
q2f
qt 2
� 0 : �1a�

One of the solutions to this equation is a plane wave of the
form

f � A exp
�
i�kxx� kyy� kzzÿ ot�� ; �1b�

whereo is the wave frequency and k � �kx; ky; kz� is the wave
vector determining the wavelength and the wave propagation
direction. The wave frequency o the components of the wave
vector k and the wave amplitude A are independent of the
coordinates.

3 See, e.g., Bolotovski|̄ BM and Voskresenski|̄G VUsp. Fiz. Nauk 88 209

(1966).
4 The fundamentals of the theory of diffraction can be found in the books

by Vainshtein L A EÂlektromagnitnye Volny (Electromagnetic Waves) (M.:

Radio i Svyaz', 1988); Sommerfeld A Optics, transl. from the German

(Academic Press, New York, 1954); and Landau L D and Lifshitz E M

Teoriya Polya (The Classical Theory of Fields) (M.: Nauka, 1988).

5 An exception is the book by Ter-Mikaelyan M L Vliyanie Sredy na

EÂlektromagnitnye Protsessy pri Vysokikh EÂnergiyakh (The Influence of the

Medium on Electromagnetic Processes at High Energies) (Erevan: Izd.

Akad. Nauk Arm. SSR, 1969), where one chapter is devoted to diffraction

radiation.
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Now we suppose that the medium contains inhomogene-
ities, say, reflecting or absorbing screens, but we observe the
field f in the space region containing no inhomogeneities. The
wave equation (1a) is valid in this case as before, but the plane
wave (1b) will no longer be a solution. The presence of
inhomogeneities leads to the appearance of waves with other
directions of the wave vector k, and, accordingly, the solution
will be represented by a linear combination of waves of the
form (1b) with different k directions. The inhomogeneities
can be said to play the role of extra sources that generate
additional waves propagating in all directions. The diffrac-
tion phenomenon consists precisely in the appearance of these
additional waves. The character of the field due to these
additional waves is determined by the structure of the
inhomogeneities (the position and shape of the screens, in
particular). Different conditions of observation (distinctions
in the incident wave directions, in the positions of inhomo-
geneities, and in the position of the observer) yield an amazing
variety of phenomena characteristic of this field of physics.

The typical diffraction problem is naturally formulated as
follows. A wave emitted by a certain source is incident on a
screen (or on a prescribed arrangement of screens). If the
source is located far enough from the scattering system, the
incident wave may be thought of as plane. One should then
determine the scattered field. Note that in the classical theory
of diffraction the position of the wave source does not change
with time. The wave source is at rest at a prescribed point.

Let us now analyze a somewhat different, although
related problem. Suppose a field source moves past a
scattering system. For example, if it is an electromagnetic
field, the source may be represented by a moving charged
particle. We assume for simplicity that the particle moves
uniformly. If the field is expanded into a Fourier time
integral, the waves of all frequencies turn out to damp
exponentially with distance from the particle trajectory. This
implies that, when moving uniformly and rectilinearly in a
vacuum, a charged particle does not radiate. The field of a
uniformly moving charged particle is carried along at the
same velocity at which the particle moves. While the particle
flies past an inhomogeneity, this entrained field induces
alternating currents (or an alternating polarization) on this
inhomogeneity, and the latter becomes a source of radiation.

A few decades ago, I M Frank introduced term the `the
optics of moving sources'6 to define the branch of electro-
dynamics dealingwith various types of radiation generated by
moving charged particles, moving dipoles, and other moving
sources of an electromagnetic field. The optics of moving
sources includes phenomena such as Vavilov ±Cherenkov
radiation, transition radiation, aDoppler effect, and synchro-
tron radiation. Diffraction radiation can with good ground
also be referred to the optics of moving sources (where amore
general term, `the electrodynamics of moving sources,' can
similarly be applied).

Some specific features of diffraction radiation will be
considered below. But before this, we will briefly present a
simple scalar theory of diffraction that allows a consideration
of the basic qualitative features of free electromagnetic wave
scattering by screens with apertures. Then, we will show what
modifications should be introduced into the theory to make it
possible to describe the scattering of a coupled field (i.e., a
field transported by a uniformly moving source). Finally,

simple examples will be given to consider the basic qualitative
features of diffraction radiation.

2. Simple scalar theory of diffraction

For simplicity, we will consider not a vector field, but a scalar
wave field, i.e., a field defined by a single function f�x; y; z; t�
that satisfies the D'Alembert equation

q2f
qx2
� q2f
qy2
� q2f
qz2
ÿ 1

c2
q2f
qt 2
� 0 �1�

or

Dfÿ 1

c2
q2f
qt 2
� 0 : �2�

There are physical problems in which a single function is
indeed enough to describe the field. The propagation (and
diffraction) of sound waves may serve as an example.
However, a single function is generally insufficient to
describe an electromagnetic field. An electric field in a
vacuum is described by a vector in a three-dimensional
space, i.e., three functions are needed to define an electric
field. The same refers to amagnetic field. Hence, six functions
should be given. True, these six functions are related by
Maxwell equations, and therefore not all of them are
independent. For instance, the field of a plane electromag-
netic wave is defined by two functions only. Even in this case
the scalar theory of diffraction is strictly speaking inapplic-
able. Nevertheless, in many cases the scalar theory is
successfully applied for a qualitative and even a quantitative
description of vector fields. We will consider a monochro-
matic field corresponding to a frequency o. In this case, the
function f�x; y; z; t� can be written as follows:

f�x; y; z; t� � fo�x; y; z� exp�iot� : �3�

The wave equation (1) for the function fo�x; y; z� will
accordingly be written as�

D� o2

c2

�
fo � 0 : �4�

Introducing the quantity k � o=c, we rewrite equation (4) as

�D� k2�fo � 0 ; k � o
c
: �4a�

Equation (4a) is called the Helmholtz equation after the
famous German physicist and doctor Herman Helmholtz
who applied it to the study of wave phenomena. Equation
(4a) is in fact the wave equation for a field which has a fixed
frequency o. We first consider the diffraction of a free field
satisfying the Helmholtz equation (4a). We will henceforth
omit the subscript o in view of the fact that the functions of
the space variables x, y, and z dealt with in what follows
describe the spatial distribution of the field at the spectral
frequency o, which means that the time dependence of the
field is determined by the factor exp�iot�.

Let us see how the solution of the Helmholtz equation
depends on the form of the boundary conditions. Suppose
there exists a flat screen with apertures and a wave incident on
this screen (Fig. 1). To determine the field in this case, we
should find a solution to the Helmholtz equation satisfying

6 See I M Frank ``Optics of Light Sources Moving in Refracting Media''

Usp. Fiz. Nauk 68 (3) 397 (1959).
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certain boundary conditions on the screen surface. We may
require, for instance, that the field f assume a given value, in
particular, f � 0, over the nontransparent portion of the
screen. Sometimes a different boundary condition is neces-
sary; namely, we should require that on the screen surface the
derivative qf=qn of the field f along the normal to the screen
surface assume a given value. In some cases, the field f should
satisfy a combination of these two conditions.

There exists a convenient relation expressing the field f in
terms of the values of the function f itself and its normal
derivative at the boundary surface (at the screen surface in our
case). This relation comes out of the Green's formula. Let
there be given two functions of the coordinates Ð f�x; y; z�
and g�x; y; z�. We will consider a certain volume V bounded
by a closed surface S. With reasonable assumptions concern-
ing the functions f and g and the properties of the surface S,
the following integral relation holds:�

V

�fD gÿ gD f� dV �
�
S

�f grad gÿ g grad f� dS : �5�

Here, the area vector element dS is equal in magnitude to the
area element dS of the surface S and corresponds in direction
with the normal n to the surface at the integration point:

dS � dS � n : �6�

Relation (5) is called the Green's theorem. It can be
regarded as a corollary to the integral Gauss' theorem,
according to which the vector flux through a closed surface
is equal to the integral of the divergence of this vector over the
volume enclosed by the surface. Choosing the vector in the
form

A � f grad gÿ g grad f

andwriting for it theGauss' theorem, we arrive at relation (5).
We transform relation (5) as follows. On the left-hand side
(the volume integral V), we put the Helmholtz operator
�D� k2� instead of the Laplacian D. This will not alter the
integrand because the k2-containing summands will be
mutually canceled out. On the right-hand side of equality
(5), we will take into account relation (6), as well as the fact
that

n grad f � qf
qn

; n grad g � qg
qn

; �7�

where qf=qn and qg=qn are the derivatives of the functions f
and g in the n direction.

After this, formula (5) is written as�
V

�
f�D� k2�gÿ g�D� k2�f � dV��

S

�
f
qg
qn
ÿ g

qf
qn

�
dS :

�8�

Formula (8) shows that the volume integral V of a certain
combination of the functions f and g is determined by the
values of these functions and their normal derivatives on the
surface S that restricts the volume V. But formula (8) also
allows us to obtain a much more definite result, namely, to
determine one of the two functions entering into (8), say, the
function f, if the values of this function and of its normal
derivative on the surface S are known. In other words,
formula (8) makes it possible to obtain the solution of the
Helmholtz equation in the volume V, which will satisfy given
boundary conditions. Now we will derive the expression for
the function f in the volume V in terms of boundary
conditions.

If the function f satisfies the wave equation (4a), the
second summand in the integrand in (8) vanishes to give�

V

f�D� k2� g dV �
�
S

�
f
qg
qn
ÿ g

qf
qn

�
dS : �9�

We will now require that the function g satisfy the
inhomogeneous Helmholtz equation with a point source on
the right-hand side:

�D� k2� g � 4pd�rÿ r0� : �10�

The point r0 at which the source is located is assumed to be
inside the volume V. We also require that the function
g�x; y; z� vanish on the surface S:

g jS � 0 : �11�

Then, from relation (9) with allowance for (10) and (11), we
have

4p f �r0� �
�
S

f
qg
qn

dS : �12�

Formula (12) allows the determination of the value of the
field f at any point of the volumeV if the field on the surface S
limiting the volume V and the solution g of equation (10)
satisfying the zero boundary conditions (11) on the surface S
are known.

We will consider the half-space x5 0 as the volumeV and
the plane xy as the surface S.

We will first define the function g that satisfies the
inhomogeneous Helmholtz equation (10) with a source at
the point r0 � �x0; y0; z0� and the homogeneous boundary
condition (11). Since the source is in the half-space x5 0, the
value of x0 is definitely positive. Let the coordinates of the
point r0, at which the field is defined, be equal to x0, y0, and z0.
We will choose the point r̂0 with coordinates ÿx0, y0, z0. The
points r0 and r̂0 are located symmetrically about the screen
plane x � 0, the point r0 lying inside and the point r̂0 outside
the chosen volume V.

At the point r̂0, we will now place a point source phase-
shifted by p relative to the source from the right-hand side of

S

V

Figure 1.Wave diffraction by an aperture in a flat screen.
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equation (10). Recall that the function f and the function g, as
well as the functions entering into the right-hand side of the
Helmholtz equation are coordinate parts of some functions
depending both on coordinates and time. The time factor of
all these functions has the form exp�i�ot� j��, where the
value of j may be different for different functions. If the
phase difference of two sources is equal to p, the correspond-
ing space functions that determine the density of sources have
opposite signs.

In the presence of two sources, the function g satisfies the
equation

�D� k2� g � d�rÿ r0� ÿ d�rÿ r̂0� : �13�

The solution of this equation is written in the form

g�r; r0� � g�x; y; z; x0; y0; z0�

� exp�ikjrÿ r0j�
jrÿ r0j ÿ exp�ikjrÿ r̂0j�

jrÿ r̂0j ; �14�

r0 � �x0; y0; z0�; r̂0 � �ÿx0; y0; z0� : �14a�

One can readily make sure that the function g satisfies the
boundary condition (11), i.e., vanishes at the surface x � 0.

Thus, we have found the function g that is necessary to
determine the wave field f with the help of formula (12).

Note that in our consideration the function g plays a
purely auxiliary role and we choose it so as to obtain a
convenient expression for the wave field f in the presence of a
screen. The source on the right-hand side of the equation for
g also plays a purely auxiliary role. It can be treated as a
probe source that allows the field f to be determined at the
point r.

We now calculate qg=qn on the surface S, i.e., on the plane
x � 0, and substitute it in (12).

The derivative of the function g along the normal to the
surface S is reduced in our case to a partial derivative with
respect to the coordinate x. In order to determine the field f
by formula (12), we should know the value of qg=qn not over
the entire space, but only on the surface S, i.e., on the plane
x � 0 in our case. Simple calculations yield

qg
qn

����
S

� ÿ2ikx0 exp�ikRS�
R2

S

�
1ÿ 1

ikRS

�
; �15�

where RS is the distance from the observation point
�x0; y0; z0� to the point �0; x; y� on the surface S:

RS �
�����������������������������������������������������
x20 � �yÿ y0�2 � �zÿ z0�2

q
: �16�

Wewill assume for simplicity that the observation point is
sufficiently far from the screen plane, so that we may assume

kRS 4 1 �17�

and neglect the second summand in brackets in formula (15).
Inequality (17) physically implies that the distance from the
observation point to the surface S is large compared to the
wavelength. Neglecting the term 1=ikRS compared to unity,
we obtain from (12) and (15)

f�r� � ÿ ik

2p

�
S

f
exp�ikRS�

RS
cos y dS ; �18�

where RS is the distance from the surface element dS and the
observation point,

cos y � x0
RS

; �18a�

and y is the angle between the normal to the surface element
dS and the direction toward the observation point.

Formula (18) gives the value of the field f at a given point
of the volume V if the f values on the screen surface are
known. Note that the function f describes the free field, i.e.,
the field without sources. This was the starting point in the
derivation of formula (18): from the very beginning we
assumed the function f to satisfy equation (4a) with zero
right-hand side. It can readily be shown that the function f
represented in the form of integral (18) actually satisfies the
homogeneous Helmholtz equation for the interior points of
the volume V.

Let now the chosen surface S (i.e., the plane x � 0)
represent an opaque screen. Let the volume V (i.e., the half-
space x5 0) contain no field sources. Then over the entire
volume we have f � 0, because the waves from the external
sources (sources from the region x4 0) cannot penetrate into
the volume V. If the screen has apertures, the field of the
sources from the region x4 0 can penetrate into the volumeV
through these apertures, and formula (18) allows an estima-
tion of this field.

The field fmay be assumed to differ from zero only in the
regions of the surface S containing apertures and to be equal
to zero over the rest of the screen surface. There are some
physical grounds for such an assumption. Indeed, if a wave is
incident on the screen from the exterior, it does not pass
through the opaque screen portion (i.e., the portion of the
screen containing no apertures). It is therefore natural to
assume f � 0 at the corresponding points of the inner screen
surface. Then formula (18) implies that the field in the interior
region is determined only by the field values at the aperture
(or apertures).

As concerns the values taken by the field f within the
aperture (or apertures), they may be assumed, at least in the
first approximation, to be the same as the field would have at
the same points in the absence of the screen. Under this
assumption, whose validity will be discussed below, formula
(18) yields the expression for the field in the volume V:

f�r� � ÿ ik

2p

�
S 0

f
exp�ikRS�

RS
cos y dS : �19�

The integral here is taken only over the aperture area S 0

rather than the entire screen areaS, r is an interior point of the
volume V, RS is the distance from the observation point r to
the surface element dS on the aperture area, and y is the angle
between the normal n to the surface element dS and the
segment joining the element dS with the observation point r.

As can be seen from formula (19), the field f is an ensemble
of spherical waves of the form a exp�ikr�=r diverging from
each element dS of the surface `tensed' on the aperture. The
amplitude a of each such partial wave is proportional to the
value of the field f on the corresponding region of the surface
and also to the cosine of the angle y between the normal to the
surface element dS and the direction from this element to the
observation point. In fact, formula (19) exactly corresponds
to the textual formulation of the Huygens' principle. Note
here that formula (19) is far from being always derived using
integral relation (5). In the book ``The Classical Theory of
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Fields'' by L D Landau and E M Lifshitz, the derivation of
formula (19) is essentially a direct representation of the
Huygens' principle in the form of an integral relation, i.e.,
the prime point in the derivation is the physical content of the
Huygens' principle.

Formula (19) can be rewritten as

f�r� � ik

2p

�
S 0
fRS exp�ikRS� dO ; �20�

where dO is the solid angle occupied by the surface element
dS as seen from the observation point:

dO � dS

R2
cos y :

The meaning of formula (19) or an equivalent formula
(20) is as follows. Suppose the volumeV is separated from the
surrounding space by a screen S with apertures S 0 and has no
field sources inside. The external space contains sources
whose field penetrates into the volume V through the
apertures in the screen. Then, if the field at the aperture is
known, so is the field in the volume V, the latter being
determined in terms of the former by formulas (19) and (20).

The surface S 0 bounding the edges of the aperture over
which the integration in (19) is performed, may be chosen
fairly arbitrarily. One should only remember that S 0 is the
complement of the screen surface which makes it closed, and
this total surface divides the space into two parts, and the
volume V in which we define the field must not contain
sources.

Formula (19) is approximate, since in its derivation we
have made some simplifying assumptions. We recall these
assumptions.

(1) We consider the field at points not very near the screen
surface (not nearer than several wavelengths).

(2) The field of the external source at an aperture in the
screen is assumed to be exactly the same as it would be in the
absence of the screen.

The first assumption implies that the linear dimensions of
the volume V in which we define the field must significantly
exceed the radiation wavelength l � 2pc=o. In our simple
case, the volume V in which we define the field is the half-
space x5 0, and this requirement is met without fail.

The validity of the second assumption can be assessed as
follows. The field of the external source incident on the screen
induces alternating currents and charges on the screen
surface. These induced currents and charges are sources of
secondary wave radiation. The total field is the sum of the
field incident on the screen and the secondary waves emitted
by the induced currents and charges. Therefore, over the area
of the aperture the field is generally different from that which
would exist in the absence of the screen. But since the
radiation field in free space generally falls off with distance
from the source, the complementary field turns out to be
weaker at points of the aperture that are farther from the edge
than near the edge of the aperture. Qualitative estimates can
be obtained from the few exact solutions of the diffraction
problem, the first of which was obtained by A Sommerfeld.
These solutions imply that the complementary field becomes
much smaller than the incident one already at a distance of
several wavelengths from the edge of the aperture. This means
that neglecting the complementary field is of course incorrect
if the linear dimensions of the aperture are comparable in
magnitude with the wavelength. Hence, formula (19) holds

true if the linear dimensions of the aperture exceed appreci-
ably the wavelength of the incident radiation.

Suppose the volume V in which the field is defined is
sufficiently large. This assumption certainly holds, for
example, if the screen is located in the plane x � 0 and the
volume V is the half-space x > 0. Next, we suppose that the
observation point is located at large distances from the screen
aperture, so that the distance from the observation point to
the aperture significantly exceeds the linear dimensions of the
aperture in magnitude. In this case expression (19) for the
field in the volume V is simplified. For the reader's
convenience we present once again expression (19):

f�r� � ÿ ik

2p

�
S 0

f
exp�ikRS�

RS
cos y dS :

In this formula, RS is the distance from the observation point
r to the integration element dS in the area of the aperture:

RS � jrÿ r 0j ;
where n is the radius vector of the point on the surface element
dS. If the inequality r4 r 0 is fulfilled, we can expand the
distanceRS in powers of the ratio r

0=r and restrict ourselves to
the first power of this small quantity to obtain

RS � rÿ rr 0

r
� rÿ nr 0; �21�

where n is a unit vector directed from the observation point to
the point of integration (i.e., to the point r 0).

We substitute the value of RS (21) into formula (19),
where in the denominator of the integrand it suffices to take
only the first term of series (21). In the exponent, this term
must not be neglected because, although it is relatively small,
its absolute value significantly determines the wave phase.

As a result, we obtain an expression for the scattered field
at large distances from the aperture:

f�r� � ÿ ik

2p
exp�ikr�

r

�
S 0

f exp�ÿiknr 0� cos y dS : �22�

At large distances from the aperture, the field is a diverging
spherical wave exp�ikr�=r. The amplitude of this wave is
proportional to the integral�

S 0
f exp�ÿiknr 0� cos y dS

taken over the aperture area.
If we introduce the wave vector of the scattered wave

k � kn ;

expression (22) may be rewritten as

f�r� � ÿ ik

2p
exp�ikr�

r

�
S 0

f exp�ÿikr 0� cos y dS : �23�

We rewrite this formula for a simple particular case which
we will consider in more detail below. Let the screen be the
plane x � 0 with one aperture which is so located that the
origin lies in the aperture plane. Then, formula (23) can be
rewritten as follows:

f�r� � ÿ ik

2p
exp�ikr�

r

�
S 0

f�y0; z0�

� exp
�ÿ i�kyy0 � kzz

0�� cos y dy0 dz0: �24�
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Here, f�y0; z0� yields the field value over the aperture plane,
the quantity r �

�������������������������
x2 � y2 � z2

p
is the distance from the

observation point to the aperture and is assumed to be large
compared to the linear dimensions of the aperture. Under
such conditions, the quantity cos y � kx=k in the integrand
may be thought of as a constant and cos ymay be taken off the
integral sign. If small scattering angles are considered, one
may assume cos y � 1. It has been noted above that far from
the aperture the field has the form of a spherical wave. As can
be seen from formula (24), the amplitude of this wave is
determined by the Fourier transform of the field distribution
on the inner side of the screen (i.e., on the side facing the
volume V).

3. A simple scalar theory of diffraction radiation

We now consider the simplest problem of diffraction
radiation. Suppose an opaque screen with apertures is
positioned in the plane x � 0 (Fig. 2). Let a charged particle
move along the x axis at a constant velocity v. The particle
charge will be designated by q. The equation of particle
motion will be written in the form x � vt; y � z � 0. The
particle approaches the screen from the side of negative x
values, crosses the screen plane at the moment t � 0, and then
moves away from the screen plane in the positive direction of
the x axis. Depending on the positions of apertures on the
screen, the particle either flies through the aperture or crosses
the screen in a dense nontransparent region. It is required, as
in the diffraction problem considered above, that the field in
the half-space x > 0 be defined.

A charged particle moving in a vacuum at a constant
velocity does not radiate. As has been said above, if the field
of a moving charged particle is expanded in a Fourier time
integral, i.e., if the field is represented as a set of harmonics
with all possible frequencies, then in the case of a uniform
motion all the harmonics damp in space with distance from
the particle trajectory. But when a screen appears in the way
of the particle, diffraction of the damped harmonics occurs,
their scattering by the screen. And undamped waves going to
infinity may appear, i.e., radiation.

The radiation may seem accessible for calculation using
formula (19) Ð the basic formula of the scalar theory of
diffraction. Indeed, if there is a screen with apertures and a
charged particle flies near this screen, then to determine the

radiation in the volumeV using formula (19) it is sufficient to
know the field over the area of the aperture. But in the case of
diffraction radiation this approach generally leads to erro-
neous results. The reason is as follows. If a wave falls on a
screen with an aperture, the field on the other side of the
screen is determined, according to formula (19), by the
integral of the field over the aperture area. If we make the
aperture size tend to zero, the field on the other side of the
screen (i.e., in the volume V) in the limit vanishes. Let us now
consider the case of a charged particle incident on a screen.
For definiteness, we assume the screen to be located in the
plane x � 0. The particle flies up to the screen from the half-
space x < 0, crosses the screen, and then moves in the half-
space x > 0 (i.e., according to our terminology, in the volume
V). Suppose we know the Fourier component Fo of the
particle field, which corresponds to the frequency o. If we
substitute Fo for f in formula (19), we obtain the field
scattered by the aperture. If we now make the aperture size
tend to zero, the scattered field in the volume V vanishes as in
the case of normal diffraction. But the total field in the
volume V must not vanish even if the charge moves
uniformly and rectilinearly. Indeed, a moving charge carries
along its own field. Moreover, when a uniformly moving
charge crosses the screen and gets into the half-space x > 0, a
burst of transition radiation occurs. If a charge in volumeV is
accelerated, there also arises additional radiation along with
transition radiation. Formula (19) contains neither transi-
tion, nor any additional radiation, nor a transported field,
because the field f, for which this formula was derived, was
assumed from the very beginning to satisfy the homogeneous
Helmholtz equation Df� k2f � 0. This equation describes a
free field without sources in the volume V. Transition
radiation is on the contrary the radiation of a source which,
in addition, is not at rest, butmoves. That is why, if wewant to
describe diffraction radiation, we should formulate a theory
analogous to the theory of diffraction, but for the case when
the field satisfies the wave equation with a nonzero right-hand
side (the right-hand side defines the source density). We
describe this density by the function s�x; y; z; t� and determine
the field generated by this source via the potential function
j�x; y; z; t� as is normally done in electrodynamics and fluid
mechanics.We postpone the discussion of the question of how
fields are expressed in terms of the potential function. It is
important for us now that the functionj�x; y; z; t� satisfies the
inhomogeneous wave equation

q2j
qx2
� q2j

qy2
� q2j

qz2
ÿ 1

c2
q2j
qt 2
� ÿ4ps�x; y; z; t� ; �25�

and the Fourier component jo of the function j satisfies the
inhomogeneous Helmholtz equation

Djo � k2jo � ÿ4pso ; �26�
where so is the Fourier component of the source density (say,
the charge density) corresponding to the frequency o. Here
we use the following definition of the Fourier component. If
Fo�x; y; z� is the Fourier component of the function
F�x; y; z; t�, these two functions are related as

F�x; y; z; t� �
�1
ÿ1

Fo�x; y; z� exp�ÿiot� do ;

Fo�x; y; z� � 1

2p

�1
ÿ1

F�x; y; z; t� exp�iot� dt : �27�
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x
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q v

y
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Figure 2. Passage of a point charged particle through a round aperture in a

flat screen.
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It would generally suffice to present one of these two relations
and the other would be a corollary to it. But for reader's
convenience we present both.

We now turn to the derivation of the basic formula of
diffraction radiation in the scalar approximation of the
theory of diffraction. As in the diffraction problem, we
proceed from the integral Green's formula [see formula (8)]
for two functions; this time this is the potential j describing
the diffraction radiation field and an auxiliary function g (as
the function g, we take, as in the case considered above, the
Green's function for the boundary problem in question):�

V

�
j�D� k2�gÿ g�D� k2�j� dV��

S

�
j
qg
qn
ÿ g

qj
qn

�
dS:

�28�

The function g will, as before (when considering the
diffraction problem), be defined as follows: this function
satisfies the Helmholtz equation

�D� k2�g � ÿ4pd�rÿ r0� ; �29�

where the right-hand side contains the density of a unit point
source. We also require that the function g satisfy the zero
boundary conditions on the screen surface:

gjS � 0 : �30�

For a flat screen, the function g has the form (14), (14a). With
allowance for (29), relation (28) has the form

ÿ4pj�r0� �
�
V

g�D� k2�j dVÿ
�
S 0
j

qg
qn

dS : �31�

We now substitute the value of the quantity �D� k2�j from
formula (26) into formula (31) to obtain

jo�r0� �
1

4p

�
S 0
jo�r�

qg�r; r0�
qn

dS�
�
V

g�r; r0�so�r� dV :
�32�

We recall here that jo is the Fourier component of the
potential j�x; y; z; t� and so is the Fourier component of the
function s�x; y; z; t� that determines the source density [see
equations (25) and (26)]. The function g must also have the
subscript o since it is specified by equation (26) which is valid
for waves of frequency o. In the derivation of formula (32),
we omitted the subscript o and will omit it as a rule in what
follows, but one should remember that we always mean an
alternating field of frequency o unless otherwise specified.

Formula (32) shows that the potential j of the wave field
in a volume V is described by two summands of different
nature. The first summand (the integral over the aperture area
S 0) has the same form as the scattered field has in the classical
Fresnel ±Huygens ±Kirchhoff theory [see formula (12)].
However, one should bear in mind that in the case of
diffraction radiation, j is the potential of a moving (not
resting, as in the classical theory of diffraction) radiation
source. The potential jo under the sign of the surface integral
in formula (32) may be said to describe the field generated by
the source motion outside the volume V. Accordingly, the
first summand in formula (32) specifies the part of the field in
the volume V due to diffraction (by the aperture S 0) of the
field generated by the charge motion outside the volume V.

We will further consider a simple example, which will help us
to clarify the physical meaning of the first summand.

The second summand describes the field generated by the
source motion in the volumeV. If the moving source does not
get into the volumeV but onlymoves on one side of the screen
outside the volume V, the density so in the volume V is equal
to zero, and therefore the second term in expression (32)
vanishes. Then the whole field that has penetrated into the
volume V is solely described by the first summand (the
aperture surface integral) on the right-hand side of formula
(32).

Suppose a sourcemoving at a constant velocity crosses the
screen plane (i.e., the plane x � 0) and flies into the volumeV.
In its further motion, the source moves away from the screen.
Let us divide the source path into two parts of which one is
outside and the other is inside the volume V. The part of the
trajectory lying outside the volume V will be called exterior
and the part inside the volume V interior. Then the first term
in formula (32) describes the part of the field in the volume V
that is due to the source motion along the exterior portion of
the trajectory: the source seemed to move on the exterior of
the trajectory up to the intersection point with the screen
plane and then to stop instantaneously at this point without
further motion. The radiation occurring according to this law
of motion underwent diffraction by the screen apertures and
penetrated into the volume V. The second term on the right-
hand side of formula (32) describes the field in the volume V
generated by the source motion along the interior region of
the trajectory: the source seemed to be primarily at rest at the
intersection point with the screen plane and then to be
instantaneously accelerated to move along the interior
region of the trajectory. This also yields radiation, which
interferes with that that was excited by the source moving
outside the volume V and penetrated the volume V through
the screen apertures. But if a source is moving uniformly, the
volumeVmust also contain a nonradiated field (the so-called
entrained field, which is transported by the source in the case
of a uniform motion). This field is also described by the
second summand in formula (32).

At small distances from the transition point, the trans-
ported field strongly interferes with radiation and the total
field cannot be decomposed into summands corresponding to
radiation and to the self-field. But at sufficiently large
distances from the transition point (at distances exceeding
the path of formation7), such a decomposition becomes
possible. Then the radiation field and the transported field
can be considered separately. In particular, if the observation
point is taken rather far from the screen, one can find the
expression for the radiated field, which follows from the
general formula (32).

At large distances from the screen, the first summand (the
area integral) in formula (32) assumes a form exactly
analogous to formula (23) with the only difference that,
instead of the free field fo�r� dealt with in formula (23), the
potential fo�r� of a moving source is now considered.
Designating the first summand in (32) by j�1�o , we arrive at

j�1�o � ÿ
ik

2p
exp�ikr�

r

�
S 0
jo�r 0� exp�ÿikr 0� cos y dS : �33�

The integral is taken over the aperture area S 0. Formula (33)
holds provided that the distance r is large compared to the

7 Frank I M Izv. Akad. Nauk SSSR, Ser. Fiz. 3 2 (1943).
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values jr 0j in the integration domain. The vector k has the
magnitude k � o=c and is aligned to the observation point
from the screen region over which the integration is carried
out in (33).

The second summand (the volume integral) in formula
(32) will be designated j�2�o . At large distances from the screen
(and from the region in which radiation occurs), this
summand takes the form

j�2�o �
exp�ikr�

r

�
V

so�r 0�
�
exp�ÿikr 0� ÿ exp�ÿikr̂ 0�� dV 0:

�34�

If only the first exponent exp�ÿikr 0� is taken into account
in the brackets in the integrand while the second is omitted,
we obtain an expression for the potential corresponding to the
source motion in an unlimited space. The second exponent
exp�ÿikr̂ 0� in brackets in the integrand of (34) allows for the
existence of the adopted boundary conditions, i.e., the
vanishing of the Green's function g on the screen surface.
The first exponent may be said to give the radiation of the
source, and the second, the radiation of its mirror image.

To summarize the discussion, we can say that in the
volume V at large distances from the region adjoining the
point at which themoving source crossed the screen plane and
flew into the volume, there exists a spherical radiation wave
diverging from this region. This wave is described by the sum
of expressions j�1�o (33) and j�2�o (34). Furthermore, there also
exists a nonradiated field transported together with the
source. But it falls off faster than 1=r, and at large enough
distances from the source trajectory is negligibly small
compared to the radiation field. However, at small distances
from the screen the transported field strongly interferes with
the radiated one, and therefore the total field is not amenable
to a division into radiated and transported. The notions of a
`small distance' and a `large distance' are not absolute
categories. In the given problem, there is a characteristic
length lf, i.e., the path of radiation formation introduced by
I M Frank:

lf � v

oÿ kv
; �35�

where v is the source velocity and o and k are the frequency
and the wave vector of the radiated wave. The physical
meaning of the quantity (35) is that the path of formation
determines the distance at which the interference between the
radiated wave and the self-field of the uniformly moving
particle is significant. By `large distances,' we imply those that
appreciably exceed lf. Consequently, `small distances' are
small compared to lf.

4. Radiation of a small source passing through
a round aperture in a flat screen

Let a flat opaque screen be located in the yz plane of a
rectilinear Cartesian coordinate system. In the screen, there is
a round aperture of radius a centered at the origin. A field
source moves along the x axis at a constant velocity v. In
electrodynamics the source is a charged particle, while in
acoustics it is a small body moving in a gas. The source
approaches the screen from the side of negative x values,
passes through the center of the round aperture and moves
away from the screen to the right along the x axis. It is
required that the resulting radiation be determined.

What has been said above implies that at large distances
from the screen the radiation field potential is equal to the
sum of expressions (33) and (34):

jo�r!1� � j�1�o � j�2�o

� exp�ikr�
r

�
ÿ ik

2p

�
S 0
jo�r 0� exp�ÿikr 0� cos y dS

�
�
V

so�r 0�
ÿ
exp�ÿikr 0� ÿ exp�ÿikr̂ 0�� dV 0�: �36�

The expression in square brackets will be called the amplitude
of the spherical wave. Obviously, the magnitude of the
amplitude of a radiated wave depends on the direction of the
wave vector k. However, since the distance r at which the
radiation field is determined is sufficiently large, the wave at
the observation point may be thought of as plane and having
the wave vector k aligned from the origin to the observation
point. For that reason, the expression in square brackets in
formula (36) can also be thought of as the amplitude of a
plane wave with the corresponding direction of the wave
vector.

Expression (36) for the radiation field can be written
somewhat differently. Note that if the aperture size is
infinitely increased, then the screen vanishes in the limit and
we obtain a homogeneous space with a uniformly moving
source. Radiation is known to be absent in this case. But on
the other hand, if the aperture size increases, then in the limit
the integral over the aperture area in (36) extends to the entire
surface x � 0. That is why the equality

ÿ ik

2p

�
S

jo�r0� exp�ÿikr 0� cos y dS

�
�
V

so�r 0�
�
exp�ÿikr 0� ÿ exp�ÿikr̂ 0�� dV 0 � 0

must hold, in which S is the total screen surface:

S � S 0 � S 00

(S 0 is the aperture area and S 00 is the area of the nontran-
sparent part of the screen). The above relation can be
rewritten as follows:

ÿ ik

2p

�
S 0
jo�r 0� exp�ÿikr 0� cos y dS

ÿ ik

2p

�
S 00

jo�r 0� exp�ÿikr 0� cos y dS

�
�
V

so�r 0�
�
exp�ÿikr 0� ÿ exp�ÿikr̂ 0�� dV 0 � 0 ;

whence

ÿ ik

2p

�
S 0
jo�r 0� exp�ÿikr 0� cos y dS�

�
�
V

so�r 0�
�
exp�ÿikr 0� ÿ exp�ÿikr̂ 0�� dV 0 �

� ik

2p

�
S 00

jo�r 0� exp�ÿikr 0� cos y dS:

Thus, the right-hand side of formula (36), which determines
the radiation field, can bewritten as a surface integral over the
opaque portion of the screen.
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It can be seen from relation (36) that to calculate the
amplitude of a radiated wave, one should know the Fourier
component jo of the source potential over the aperture area
and the Fourier component so of the moving source density.
The functions j�x; y; z; t� and s�x; y; z; t� are related by
equation (25):

q2j
qx2
� q2j

qy2
� q2j

qz2
ÿ 1

c2
q2j
qt 2
� ÿ4ps�x; y; z; t� :

The density s�x; y; z; t� of a small uniformly moving source
can be written in the form

s�x; y; z; t� � qd�xÿ vt�d�y�d�z� ; �37�

where the coefficient q characterizes the physical properties of
the source. For example, if the source is a flying particle
possessing an electric charge, then q gives the value of this
charge and the function j is a scalar potential. If we consider
the problem of a small body moving in a gas, then q is the
value of the resistance force experienced by the moving
particle and the function j allows us to determine the field
of pressures in the gas. In the latter case, as was shown by
V P Dokuchaev8, the source density d�xÿ vt� in expression
(37) should be replaced by �q=qx�d�xÿ vt�. Using expression
(37) for the source density in what follows, we will understand
q as the magnitude of the electric charge.

We will present the solution of equation (25) for the case
when the right-hand side is given in the form (37). We will
proceed not from the explicit form of the solution for the
potential j as a function of coordinates and time, but write
the expansion of the solution as a Fourier time integral. Such
a representation of the solution is more convenient for us
because the whole preceding theory holds for components of
the Fourier series corresponding to a certain frequency o.

The solution of equation (25) with the right-hand side (37)
can be written as follows:

j�x; y; z; t� � q

pv

�
exp�ÿiot� exp

�
i
o
v
x

�
� K0

� joj
v

�������������
1ÿ b2

q
r
�
do : �38�

Here,

r �
���������������
y2 � z2

p
; �39�

b is the ratio of the source velocity v to the characteristic
velocity c entering into the wave equation (25) (in an
electromagnetic problem, c is the velocity of light in a
vacuum), and K0�x� is a modified Bessel function of the
second kind (a MacDonald function).

Comparison with formulas (27) immediately allows
writing the expression for jo:

jo�x; y; z� �
q

pv
exp

�
i
o
v
x

�
K0

� joj
v

�������������
1ÿ b2

q
r
�
: �40�

The MacDonald function K0�x� possesses the following
properties:

For small x, we have

K0�x� � ÿ lnx ; x5 1 ;

and for large values of the argument,

K0�x� �
������
p
2x

r
exp�ÿx� ; x4 1 :

Thus, the field of a charged particle moving uniformly in a
vacuum attenuates according to an exponential law with
distance from the trajectory:

jo�x; r� �
q����������������������������������

2pvjojr
�������������
1ÿ b2

qr
� exp

�
i
o
v
x

�
exp

�
ÿ joj

v

�������������
1ÿ b2

q
r
�

;

joj
v

�������������
1ÿ b2

q
r4 1 �r �

���������������
y2 � z2

p
� : �41�

The dependence of the field on the coordinate x is wavelikeÐ
a plane wave with a wave vector k

�0�
x � o=v propagates along

the x axis. Since the charge velocity v is smaller than the
velocity of light c, the quantity k

�0�
x is larger than the wave

vector of a free electromagnetic wave k � o=c.
In connection with the asymptotics (41), we should

mention the following fact. Suppose a free wave of the form

j � exp
�
i�kxx� krr�

� �42�

propagates in a medium. Obviously, the components kr and
kx of the wave vector in such a wave must satisfy the relation
k2x � k2r � o2=c2. Now let the equality kx � k

�0�
x � o=v hold.

Then, for kr we obtain k2r � o2=c2 ÿ o2=v2 �
�ÿo2=v2��1ÿ b2�. Since we assume the velocity v of the field
source not to exceed the characteristic wave velocity c, i.e.,
b < 1, the square of the radial component kr of the wave
vector appears to be negative, i.e., the radial component kr
itself is imaginary: kr � �io=v��1ÿ b2�1=2. The substitution
of this kr value into expression (42) for the wave yields the
same attenuation law with increasing r as expression (41)
does. Expression (41) has a characteristic feature. Suppose the
source velocity v exceeds the velocity c of wave propagation in
a medium: v > c. Then, we have b � v=c > 1. Accordingly,
�1ÿ v2=c2�1=2 becomes an imaginary quantity:
�1ÿ b2�1=2 � �i�b2 ÿ 1�1=2. In this case, formula (41), which
determines the dependence of the field on coordinates at a
large distance from the source trajectory, leads to the
following coordinate dependence of the field (constant
factors are omitted):

jo�x; r� �
1��
r
p exp

�
i
o
v
x

�
exp

�
i
joj
v

�������������
b2 ÿ 1

q
r
�
: �43�

Formula (43) implies that in the case v > c, a radiation
wave exists at large distances from the source path. For
sufficiently high r values, this wave can be considered plane.
The wave vector of this wave has two components: kx � o=v
along the x axis and kr � �o=v��b2 ÿ 1�1=2 along the radius.
The total value of the wave vector, as can be readily shown, is
equal to o=c, i.e., is the same as that of a free wave of
frequency o. The wave vector and the source trajectory make

8 See also Bolotovski|̄ B M Tr. Fiz. Inst Akad. Nauk SSSR 140 95 (1982).

See Dokuchaev V P Zh. Exp. Teor. Fiz. 43 2 (8) (1962).
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a certain angle # such that

cos# � kx
k
� c

v
: �44�

The angle # may be real only if the inequality v > c holds,
i.e., provided the source velocity exceeds the characteristic
wave velocity in the medium. Certainly, if the constant c
signifies the velocity of light in a vacuum, the inequality
v > c cannot be fulfilled. If we are dealing with a charged
particle moving in a refractive medium in which the velocity
of light is lower than in a vacuum, the inequality v > c may
hold. It may also be satisfied for a body moving in a gas
with a supersonic velocity.

Expression (43) describes Vavilov ±Cherenkov radiation
if the quantity c in the wave equation (25) signifies the velocity
of light in a refractive medium (or the Mach effect if we are
dealing with the motion of a body in a gas and c is the sound
velocity). Obviously, in this case the source outruns its own
field and the diffraction radiation problem has its peculia-
rities. We will assume the source velocity not to exceed the
wave velocity in the medium, and, therefore, the field jo is
determined by expression (40). This expression should be
substituted into formula (36) that determines the radiation
field.

To completely determine the diffraction radiation poten-
tial jo, one also has to know the Fourier component of the
source density so�x; y; z�

so�x; y; z� � 1

2p

�1
ÿ1

s�x; y; z; t� exp�iot� dt :

The substitution of expression (37) for s�x; y; z; t� into this
equality gives

so�x; y; z� � q

2pv
exp

�
i
o
v
x

�
d�y�d�z� : �45�

Thus, to determine the potential of the diffraction radiation
occurring when a charge flies through a round aperture in the
screen, one should substitute expression (40) for jo and
expression (45) for so into the general formula (36). Then
formula (36) for the radiation potential takes the form

jo�r!1� � ÿq
ik

2p2v
exp�ikr�

r

�
S 0
K0

�
o
v

�������������
1ÿ b2

q
r
�

� exp
��ÿi�kyy� kzz�

�
cos y dy dz

� q

2pv
exp�ikr�

r

�
V

�
exp�ÿikr 0� ÿ exp�ÿikr̂ 0��

� exp

�
i
o
v
x0
�
d�y0�d�z0� dx0 dy0 dz0 : �46�

Here, r �
�������������������������
x2 � y2 � z2

p
is the distance between the observa-

tion point and the center of the aperture and r �
���������������
y2 � z2

p
is

the distance between the observation point and the charge
trajectory (the x axis). Recall that the first summand in
formula (46), i.e., the integral over the aperture area S 0,
describes the radiation due to themotion of the source when it
is approaching the screen and then has passed (with allowance
for diffraction) through the aperture. The second summand,
i.e., the integral over the volume V, describes the radiation
due to the motion of the source when the latter has flown
through the aperture.

We first calculate the integral over the aperture area:

Is �
�
S 0
K0

�
o
v

�������������
1ÿ b2

q
r
�
exp

�ÿ i�kyy� kzz�
�

� cos y dxdy dz : �47�

The exponent in the integrand contains a scalar product of the
vector r � �y; z� and the vector K � �ky; kz�. Both vectors lie
in the screen plane (i.e., in the yz plane). Obviously,
jKj � �o=c� sin y, jrj �

���������������
y2 � z2

p
. Hence, we can write expres-

sion (47) as follows:

Is �
�
S 0
K0

�
o
v

�������������
1ÿ b2

q
r
�
exp�ÿiKr cosf� cos y r dr df ;

�48�

where f is the angle between the vectors K and r. Integration
over r is carried out in the limits from zero to a (recall that a is
the screen aperture radius) and integration over f is
conducted in the limits from zero to 2p.

To begin, we will integrate over f. To do this, we use the
relation�2p

0

exp�ix cosf� df � 2pJ0�x� ;

where J0 is a zero-order Bessel function. We obtain

Is � 2p
�a
0

K0

�
o
v

�������������
1ÿ b2

q
r
�
J0

�
o
c
sin y r

�
cos y r dr:

�49�

Integration over r gives

Is � 2p
v2

o2

1

1ÿ �v2=c2� cos2 y
�
a
o
c
sin y J1

�
a
o
c
sin y

�
� K0

�
a
o
v

�������������
1ÿ b2

q �
ÿ a

o
v

�������������
1ÿ b2

q
J0

�
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c
sin y

�
� K1

�
a
o
v

�������������
1ÿ b2

q �
� 1

�
cos y : �50�

Here, J1�x� � ÿJ00�x�, and K1�x� � ÿK0
0�x�.

Consequently, the first summand in formula (46) is
written in the form

j1 � ÿ
iq

po
v

c

exp�ikr�
r

1

1ÿ �v2=c2� cos2 y

�
�
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o
c
sin y J1

�
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�
K0

�
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v

�������������
1ÿ b2

q �
ÿ a

o
v

������������
1ÿb2

q
J0

�
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o
c
sin y

�
K1

�
a
o
v

������������
1ÿb2

q �
�1
�
cos y:

�51�
It can easily be shown that if the aperture radius a tends to

zero, the part of the potential expressed by the term j1

vanishes. If the radius a tends to infinity, we obtain from
formula (51)

j1�ÿ
iq

po
v

c

exp�ikr�
r

1

1ÿ �v2=c2� cos2 y cos y �a!1�:

�52�
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The latter result vividly shows the difference between two
phenomena: diffraction of a free wave by a screen aperture
and diffraction of the field of a uniformly moving source by
the same screen. If a free electromagnetic wave is incident on a
screen aperture, then, with the aperture radius tending to
infinity, the scattered field in the volume V disappears and
only the incident wave remains. If the field of a uniformly
moving source is incident on a screen aperture, then, as can be
seen from formula (52), with the aperture radius tending to
infinity, a field arises in the volume V which differs radically
from the incident field. Indeed, formula (52) for a scattered
field describes an undamped spherical wave, whereas the
incident field has the form (40), i.e., attenuates exponentially
with distance from the source trajectory. Hence, the presence
of a screen is in a sense equivalent to a nonuniformmotionÐ
radiation is observed in both cases. We will show below that
these two phenomena may actually be related.

Curve 1 in Fig. 3 represents the scattered radiation
intensity for normal incidence of a plane wave onto a round
aperture in a screen. Curve 2 depicts the intensity of
diffraction radiation generated by a charge passing through
a round aperture of the same radius. One and the same
observation angle y � 1=g is taken for comparison. The
maximum intensity values are normalized to unity in both
cases. The diffraction radiation intensity can be seen to fall
faster than the scattered radiation intensity upon diffraction.

We now proceed to the calculation of the summand in (46)
containing the integral over the volumeV. This summand will
be designated by j2. Then, we have

j2 �
q

2pv
exp�ikr�

r

�
V

�
exp�ÿikr 0� ÿ exp�ÿikr̂ 0��

� exp

�
i
o
v
x0
�
d�y0�d�z0� dx0 dy0 dz

� iq

po
v

c

exp�ikr�
r

1

1ÿ �v2=c2� cos2 y cos y : �53�

Comparison of formulas (53) and (52) shows that the
summand j2 is equal in magnitude and opposite in sign to the
limiting value of the summand j1 in the limit a!1.

The complete expression for the radiation field potential
in the volume V at large distances from the screen plane is
equal to the sum of j1 and j2:

jo � ÿ
iq

po
v

c

exp�ikr�
r

1

1ÿ �v2=c2� cos2 y

�
�
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c
sin y J1

�
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�
K0
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v

�������������
1ÿ b2

q �
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1ÿ b2

q
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�
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sin y

�
K1

�
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v

�������������
1ÿ b2

q ��
cos y :

�54�
If the aperture radius a increases, then, in the limit a!1,

the radiation field potential (54) tends to zero. This result is
readily understood from physical considerations: If the
aperture radius increases without limit, the screen in fact
vanishes and in the limit we have the problem of uniform
source motion in a homogeneous space in the absence of a
screen. In this case, as has already been said, there is no
radiation at all.

In the opposite case of a continuous shield (when the
limiting transition a! 0 occurs), we have

jo �
iq

po
v

c

exp�ikr�
r

1

1ÿ �v2=c2� cos2 y cos y : �55�

This expression yields the potential of transition radiation
generated by a charged particle moving at a constant velocity
along the x axis when it crosses an opaque screen located in
the plane x � 0, flies into the volume V, and moves farther in
the volume V along the x axis away from the wall.

We now turn from the potential to the radiation fields. In
this connection, we recall the notation of the equation for
field potentials in electrodynamics:�

Dÿ 1

c2
q2

qt2

�
A � 4p

c
j ;�

Dÿ 1

c2
q2

qt 2

�
j � 4ps : �56�

Here,A is the vector potential,j is the scalar potential, j is the
current density, and s is the charge density. In our case (a
uniformmotion of a point charge along the x axis), the charge
density s has the form (37) and the vector of the current
density j has only one nonzero component jx � vs. The field of
a charge passing along the x axis of a round aperture in the
screen possesses axial symmetry. The form of equations (56)
implies that if the solution of equation (56) forj is known, the
solution of the equation for the vector potentialA is expressed
in terms of the scalar potential as follows:

A � v

c
j ;

that is, the only nonzero component of the vector potential A
in our case is the component

Az � v
c
j : �57�

Hence, using relations (54) and (57), we can immediately write
that part of the vector potentialA that describes the radiation
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Figure 3. Comparative characteristics of radiation on an aperture in a flat

screen depending on the parameter x � ka=g at an observation angle

y � 1: 1, scattered light intensity for normal incidence of a planewave onto

a round aperture; 2, intensity of diffraction radiation of a point charge

upon its passage through the center of a round aperture.
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of a point charge passing through a round aperture:

Az � ÿ iq

po
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cos y:

�58�
Knowing the expression for the vector potential, we

employ the usual rules to find the magnetic field:

H � rotA � i�k;A� :

The magnetic field has a single nonzero component Hj:

Hj � q

p
v2
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exp�ikr�
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������������
1ÿb2

q ��
sin y cos y:

�59�

The electric field of a radiated wave lies in the plane drawn
through the radius vector of the observation point and the line
of source motion (the x axis). The vector of the electric field is
equal inmagnitude to the vector of themagnetic fieldHj. The
intensity of radiation at a frequency o at an angle y into an
element of solid angle dO is written in the form

Wo�y� dO � c
��Ho�y�

��2 r2 dO
� q2

p2
v4

c5
1ÿ

1ÿ �v2=c2� cos2 y�2
�
�
a
o
c
sin y J1

�
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sin y

�
K0
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�������������
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�������������
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q
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�
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�
K1

�
a
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v

�������������
1ÿ b2

q ��2
� sin3 y cos2 y dy dj : �60�

Here, j is the azimuthal angle. In view of the axial symmetry,
the radiation intensity does not depend on j. Therefore, the
integration over j is reduced to a multiplication by 2p.

If the aperture radius a tends to infinity, the radiation
intensity tends to zero, as it should. If, on the contrary, a! 0,
formula (60) gives transition radiation due to the charged
particle's escape from a bulk screen:

Wo�y� dO � q2

p2
v4

c5
1ÿ

1ÿ �v2=c2� cos2 y�2 sin3 y cos2 y dy dj:
�61�

For this case, there exists an exact solution of the
electrodynamic problem (see footnote on p. 1), which implies
the following expression for the transition radiation intensity

on the boundary of an ideal conductor:

Wo�y� dO � q2v2 sin3 y dy dj

p2c3
�
1ÿ �v2=c2� cos2 y�2 : �62�

Comparison of formulas (61) and (62) shows that the
approximate formula for radiation intensity derived from
the scalar theory differs from the exact solution of the vector
problem by the factor �v2=c2� cos2 y. From this, one can
deduce the validity conditions for the scalar theory of
diffraction radiation. The conditions should be such that
this extra factor be close to unity. First, the velocity of the
particle passing through an aperture should be close to the
velocity of light and, second, only small radiation angles
should be considered. In practice, it suffices that the first
condition alone be fulfilled: formulas (61) and (62) imply that
if the velocity of the particle is close to the velocity of light, the
bulk radiation is concentrated in the region of small angles

y �
�������������
1ÿ v

2

c2

r
� 1

g
�g4 1� : �63�

Here, g � ÿ �������������������
1ÿ v2=c2p �ÿ1 � E=mc2 is the quantity termed

the Lorentz factor. It shows the factor by which the energy of
an emitting particle exceeds its rest energy. The condition
g4 1 may be regarded as the validity condition for our
approach, which leads to expression (36) for the diffraction
radiation field. This condition can be clarified as follows. The
theory of diffraction is formulated on the assumption that a
free electromagnetic wave is incident on an aperture in the
screen. The propagation velocity of this wave is equal to the
velocity of light. On the other hand, the field of a uniformly
moving charge in a free space propagates at the velocity of the
charge, i.e., slower than free electromagnetic waves. That is
why the field of a moving charge differs from the field of free
electromagnetic waves, and the result of the interaction
between this field and the screen may differ strongly from
the picture given by the diffraction of free electromagnetic
waves. But the closer the charge velocity to the velocity of
light, the smaller the difference between the charge field and
the field of free electromagnetic waves, and the more we can
hope for the validity of the theory developed above.
Henceforth, we assume, if not specified otherwise, that the
velocity of a flying particle is close to the velocity of light, i.e.,
the Lorentz factor g is large compared to unity.

We now consider in more detail expression (60) for
diffraction radiation intensity. Let us first investigate the
angular dependence. We begin with the factor

sin3 y cos2 y�
1ÿ �v2=c2� cos2 y�2 � sin3 y cos2 y

�1ÿ b2 cos2 y�2

before the expression in square brackets in (60). For low
values of the angle y, we can expand cos y in powers of the
argument and restrict ourselves to the first two terms of the
series and also assume that sin y � y. We arrive at

y3

�1ÿ b2 cos2 y�2 �
y3

�1ÿ b2 � y2�2 �
y3

�1=g2 � y2�2 : �64�

This factor takes high values in the region of angles y � 1=g
(the maximum value is proportional to g) and then, as y
increases, it falls as yÿ4.
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Considering further formula (60), we now turn to the
factor�
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�������������
1ÿ b2

q ��2
:�65�

In this expression, the argument of the Bessel functions J0 and
J1 is a combination of the variables a�o=c� sin y and the
argument of the MacDonald functions K0 and K1 is the
combination a�o=v��1ÿ b2�1=2. But since factor (64) takes
on large values when y � 1=g � �1ÿ b2�1=2, for a qualitative
estimate of expression (65) one may assume that for high g
values the arguments of the Bessel functions andMacDonald
functions are close to each other. Then, with allowance for the
properties of the functions J0; J1 and K0;K1 for low and high
values of the argument, we obtain that for low values of the
argument (i.e., for a�o=v��1ÿ b2�1=2 5 1) factor (65) is equal
to unity, while for high values of the argument (i.e., for
a�o=v��1ÿ b2�1=2 > 1) expression (65) decreases exponen-
tially with increasing argument, i.e., proportionally to the
factor exp�ÿ2a�o=v��1ÿ b2�1=2�. Obviously, the radiation
intensity at corresponding frequencies decreases exponen-
tially along with this factor. We can thus qualitatively
determine the upper boundary of the radiation spectrum due
to the passage of a charge along the axis of a round aperture in
the screen. We define the boundary frequency as the
frequency beginning with which the radiation intensity falls
by an exponential law. Clearly, one can determine the
boundary frequency on the order of magnitude by equating
to unity the argument a�o=v��1ÿ b2�1=2 on which the
functions K0 and K1 depend, because these particular
functions begin falling exponentially with a further increase
in the argument. Hence, for the boundary frequency obound

we take a frequency for which there holds the relation

a
obound

v

�������������
1ÿ b2

q
� 1 ; �66�

whereby for the boundary frequency we obtain

obound � v

a
g : �67�

Since, as was noted above, our consideration is valid for
charge velocities v close to the velocity of light c, we can
rewrite this relation as

obound � c

a
g : �68�

Frequencies much higher than obound are radiated with a
negligible intensity. It follows from formula (67) thatobound is
proportional to the particle energy (since the Lorentz factor g
is proportional to the energy). Even for macroscopic aperture
sizes (say, a � 1 cm), beginning with a certain energy of an
incident charged particle, visible light and a harder radiation
may arise. In this connection, we note that for sufficiently
high obound values our consideration may become invalid.
Indeed, if obound is in the X-ray region, the boundary
conditions accepted by us on the screen surface do not hold
any more (a thin screen is perfectly penetrable to X-rays).

The boundary frequency corresponds to the boundary
wavelength

lbound � 2pc
obound

� 2pa
g

: �69�

Waves with wavelengthsmuch smaller than lbound are emitted
with a negligibly low intensity. Note that since we assume the
charge velocity to be close to the velocity of light, we may
think that the Lorentz factor g is much greater than unity. It
then follows from formula (69) that the boundary wavelength
is much smaller than the linear dimensions of the aperture,
that is, one of the main conditions decisive in the validity of
our consideration (the smallness of the wavelength compared
to the aperture size) holds automatically.

We now fix the frequency o and see how the lossWo (60)
depends on the aperture radius a. It has been said above that
as a! 0, the expression for the loss gives the loss due to
transition radiation, i.e., radiation that accompanies the a
charged particle's escape from the bulk screen. In the opposite
case, i.e., as a! 0, theWo value exponentially tends to zero.
But when we speak of small or large values of the radius a, we
should specify a certain physical quantity compared to which
the a values may be thought of as small (or large). Such a
quantity in our case is v g=o � lg=2p, where l � 2pc=o is the
wavelength at the frequency o. Indeed, the Fourier compo-
nent of the scalar potential for the field of a charged particle
uniformly moving in a vacuum is determined by relation (40)

jo�x; y; z� �
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v

�������������
1ÿ b2

q
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�
:

The expression for the Fourier component of the vector
potential can be obtained by multiplying the latter relation
by b � v=c. By doing so, we obtain

Az�x; y; z� � q
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exp

�
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v
x

�
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v

�������������
1ÿ b2

q
r
�
:

It has already been said (see the text between formulas (40)
and (41)) that the function K0 falls exponentially with
increasing argument. We may roughly assume qualitatively
that the Fourier component of the field of a uniformlymoving
charge is nonzero at a distance r from the line of motion if the
inequality

o
v

�������������
1ÿ b2

q
r < 1

holds and becomes negligible if the inverse inequality

o
v

�������������
1ÿ b2

q
r > 1

is fulfilled. Therefore, if a charge flies through a round
aperture of radius a, two cases are possible. For

a <
v

o
�������������
1ÿ b2

q � v

o
g � 1

2p
lg ;

the field at the edge of the aperture is noticeably nonzero. In
this case diffraction takes place and a scattered field, i.e.,
diffraction radiation at a frequency o, arises. If, on the
contrary,

a >
v

o
�������������
1ÿ b2

q � v

o
g � 1

2p
lg ;

the field at the edge of the aperture is negligibly small, and
hence so is the scattered field.

Since obound is proportional to the particle energy, the
total diffraction radiation loss is also proportional to the
particle energy.
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Let us now proceed to the estimation of the diffraction
radiation loss. The total energy loss dW is determined by the
expression�

Wo�y� dO do ;

whereWo�y� is described by formula (60). Consequently,
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Aswas noted above, the factor before the expression in square
brackets in the integrand is large in the range of angles
y � 1=g, where it is equal to 1=g4 on the order of magnitude.
Next, on the order of magnitude, we can put sin y � dy � 1=g
and cos y � 1. Integration over the angle j comes down to a
multiplication by 2p. As concerns the expression in square
brackets, it may be assumed to be equal to unity on the order
of magnitude for frequencies not exceeding obound, and for
higher frequencies it falls rapidly and, accordingly,
do � obound. In view of this, we obtain

DW � 2

p
q2

a
g : �71�

This estimate is rather rough, but we may hope that the order
of magnitude is determined correctly.

Thus, the total diffraction radiation energy is inversely
proportional to the aperture radius (or, which is the same, to
the path length, i.e., the minimum distance between the
charge path and the edge of the aperture) and directly
proportional to the flying particle energy. We are dealing
here with forward radiation in the direction of particle motion
in a narrow cone with opening inversely proportional to the
particle energy. The spectrum of radiated frequencies is
limited from above, the boundary frequency being propor-
tional to the particle energy.

If the frequency of a radiated quantum is determined on
the order of magnitude by formula (67), then multiplying this
quantity by Planck's constant h, we obtain the value of the
energy carried away by this quantum:

e � hobound � hv

a
g :

Let us ask the question of what number n of such quanta are
radiated in the passage of a single charged particle. To answer
this question, we should obviously determine the ratio of the
total energy loss dW (71) to the emitted quantum energy
hobound. We have done this to obtain

n � e2

hc
:

The quantity e2=hc is known as the fine-structure constant
and is equal to 1/137. The estimate shows that a quantumwith

the energy of about hobound is emitted approximately once
every hundred charge passages through the screen aperture.

5. Radiation of a point source crossing
the center of a flat circular screen

Let a thin opaque circular disk of radius a be located in the yz
plane of a rectilinear Cartesian coordinate system (Fig. 4). A
charged particle is moving uniformly in the positive direction
of the x axis at a velocity v, so that the equation of particle
motion has the form x � vt. At the time moment t � 0, the
charged particle crosses the screen, enters the volume V (the
half-space x > 0) and, moves away from the screen. We wish
to determine the excited radiation.

To find the vector potential of the radiation occurring in
this problem, we can exploit the formula for the component
Az of the vector potential:
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Here, S 0 is the area of the `aperture,' i.e., in this case the entire
area outside the disk in the plane x � 0. Formula (72) is
equivalent to relation (46) for the scalar potential j with the
only difference that Az � vj=c, and so the right-hand side of
formula (72) differs by the factor v=c. Recall that
r �

���������������
y2 � z2

p
in formula (72) is the distance from the x axis,

r is the distance from the observation point to the disk center,
and S 0 is the area of the aperture in the screen over which the
integration is performed. In this case, the region S 0 extends
from r � a to r � 1.

As was shown above, the expression for the vector
potential can be reduced to the disk area integral
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Here,S 00 is the disk surface, which corresponds to the range of
r values from 0 to a.
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y

Figure 4. Passage of a point charged particle through the center of a disk.
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Introducing, as in the preceding section, a polar coordi-
nate system r;f on the yz plane and integrating over the polar
angle f, we are led to

Az�r!1� � q
ik
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Integration over the variable r yields

Az�r!1� � iq

po
exp�ikr�

r

b2

1ÿ b2 cos2 y

�
�
a
o
c
sin y J1

�
a
o
c
sin y

�
K0

�
a
o
v

�������������
1ÿ b2

q �
ÿ a

o
v

������������
1ÿb2

q
J0

�
a
o
c
sin y

�
K1

�
a
o
v

�������������
1ÿ b2

q �
� 1

�
cos y :

�75�
The magnetic field, as in the case of charge passage along the
axis of a round aperture, has only one nonzero component
Hj:
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The energy radiated at a frequency o in the frequency range
do into a solid angle dO � sin y dy dj in the direction
making an angle y with the charge velocity is equal to

Wo�y� dO�cjHj�y�j2 r2 dO � q2

p2
v4

c5
1

�1ÿ�v2=c2� cos2 y�2

�
�
a
o
c
sin y J1

�
a
o
c
sin y

�
K0

�
a
o
v

�������������
1ÿ b2

q �
ÿ a

o
v

�������������
1ÿ b2

q
J0

�
a
o
c
sin y

�
� K1

�
a
o
v

�������������
1ÿ b2

q �
� 1

�2
sin3 y cos2 y dy dj : �77�

If the disk radius a tends to zero, so does the radiation
intensity. To establish the law according to which the
intensity vanishes, we go back to expression (74) for the
vector potential. For small values of the argument, the
function K0 has a logarithmic singularity. Therefore, the
result of integration over the radius for small a values can be
written as

Az�a! 0� � q
ik

pc
exp�ikr�

r
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2
ln

 
v

oa�1ÿ b2�1=2
!
:

This implies that at small a the radiation intensity tends to
zero as �a2 ln�v=ao�1ÿ b2�1=2��2. That the diffraction radia-
tion intensity tends to zero for a small radius might be
expected from physical considerations. Indeed, in this case
the optical inhomogeneity vanishes in the limit, and we
observe a uniform charge motion in free space. In the inverse

limit, when the disk radius tends to infinity, expression (77)
gives formula (61) for the intensity of transition radiation that
appears when a charge crosses a continuous screen. The
quantity to distinguish between large and small radius
values, as in the previously considered case of charge passage
through a round aperture, is lg=2p. In this connection, the
following is noteworthy. Suppose we are considering radia-
tion at a wavelength l5 a. Then for not very high charge
velocities (when g � 1) we have a4 lg=2p. The Lorentz
factor increases with increasing particle energy, and, begin-
ning with a certain value of the particle energy, the inverse
inequality a5 lg=2p holds for the same values of the aperture
radius a and wavelength l. We have seen that the character of
diffraction radiation depends essentially on which of the two
inequalities is fulfilled.

In the case of radiation at a disk, the dependence of
intensity on the radius turns out to be different from that in
the case of radiation generated by the passage of a particle
through a round aperture of the same radius. For large values
of the radius �a4 lg=2p�, the radiation at the aperture tends
to zero and that on a disk tends to transition radiation. When
the radius is small �a5 lg=2p�, the radiation on the aperture,
on the contrary, tends to transition radiation and the
radiation at a disk tends to zero.

6. Analogue of the Babinet theorem
for diffraction radiation

The amplitudes of radiation fields at a disk and at an
aperture of the same radius are in a way related. Let us
consider the sum of two expressions, namely, the radiation
field (59) for the case of a charge passing through a round
aperture of radius a and the radiation field (76) for radiation
at a disk of the same radius. It can be readily seen that the
sum of fields for these two cases is equal to the transition
radiation field. Accordingly, the sum of potentials gives the
transition radiation potential. This circumstance has a
general character and holds for radiation of a charged
particle on any two complementary screens. Two screens
(for simplicity we consider flat screens here) are called
complementary if the transparent regions of one are opaque
regions of the other and vice versa, the opaque regions of one
correspond to transparent regions of the other (Fig. 5).
Obviously, overlapping the planes of two complementary
screens gives one opaque continuous screen. In the classical
theory of diffraction, there exists the so-called Babinet
theorem: The sum of fields formed upon diffraction by two
complementary screens is equal to the field of the wave
incident on the screen (or to the field of the source). An
analogous theorem can be formulated for the diffraction
radiation of moving sources: The sum of the fields of
diffraction radiation on two complementary screens is
equal to the transition radiation field (on a bulk screen).
We will explain this assertion. Let a charged particle move
uniformly along the x axis. We place a flat screen with
apertures in the plane x � 0. The portion of the screen
surface consisting of apertures will be designated S 0. The
nontransparent part of the surface will be designated S 00 The
charged particle moves uniformly along the x axis and, while
crossing the screen plane, gives diffraction radiation. We
now write down the expression for the potential which
determines the radiation field in this case. The radiation
field potential jo is described by formula (46) which we
write again for convenience:
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In the screen plane, we now replace the nontransparent
regions by transparent ones and vice versa. We obtain the so-
called complementary screen.When a charge flies through the
complementary screen, it also generates diffraction radiation
with the potential in the form
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Here, j
0
o is the diffraction radiation potential on the

complementary screen. In this case, the surface integral is
taken over the region S 00; this region is transparent in the
complementary screen.

Let us sumup the latter two equalities to obtain the sum of
radiation potentials from two complementary screens:
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The surface integral in formula (79) is taken over the region
S 0 � S 00, i.e., over the entire screen surface. This surface
integral can be calculated as follows. In the above problem
of diffraction radiation by a round aperture, the summand of
the potential containing the surface integral is calculated
explicitly and has the form (51). Integration in this case was
performed over the area of the circle of radius a. Obviously,
directing the circle radius to infinity, we obtain the integral
over the entire screen surface. Doing so, we obtain from
formula (51)
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The volume integral (79) can also be calculated in an explicit
form. The second summand in formula (79) is a doubled
expression (53):
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Substituting the two latter relations into formula (79), we
obtain expression (55) for the potential determining the
transition radiation field, and the theorem follows.

If the solution of the problem of diffraction radiation on a
screen of a prescribed configuration is known, the above
theorem immediately suggests the solution of the problem of
radiation on a complementary screen Ð these two solutions
differ only by the transition radiation field.

It is also of importance that the theorem shows a very
close relation between transition and diffraction radiation.
During the diffraction of a free wave, the field source is on one
side of scattering obstacles, whose role is played by comple-
mentary screens. The sum of diffraction fields on the other
side of the complementary screens is equal to the source field.
In the diffraction radiation problem, a moving field source
crosses the plane of the screens, and thus the source is on both
sides of them, which accounts for the relation between
diffraction and transition radiation.

7. Radiation of a charged particle passing
out of an open waveguide end

We now consider a semiinfinite circular waveguide with its
axis coincident with the x axis of the rectilinear Cartesian
coordinate system. The waveguide is situated in the region of
negative x values. The waveguide radius will be designated by
a. The open waveguide end is located at x � 0 and is
interfaced with a flat metallic flange positioned in the same
plane x � 0 as the waveguide opening (Fig. 6). A charged
particle moves along the waveguide axis at a constant velocity
v in the positive direction of the x axis. On reaching the open
end, the particle flies out into free space and, moving at the
same velocity, goes to infinity.

Figure 5. Complementary screens. \

August, 2000 Diffraction and diffraction radiation 771



The particle escape from the open waveguide end is
accompanied by radiation. The field generated by the
particle escape through the open end of a circular flangeless
waveguide was earlier determined exactly in an analytical
form.9 In the presence of a flange, this radiation can be
estimated in the Huygens ±Kirchhoff approximation, as was
done in the consideration of the previous problems. This
problem is considered below in the approximation of the
scalar theory of diffraction.

In the case under consideration, the screen is not flat, but
consists of a flange and the waveguide walls. The field of the
charged particle moving inside the waveguide is specified by
the expression
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Here, I0�x� � J0�ix� is a modified Bessel function (the Bessel
function of an imaginary argument). With increasing argu-
ment, this function grows exponentially:

I0�x� � 1��������
2px
p exp x �x4 1� :

Expression (80) takes into account field vanishing on the
waveguide walls. In the Huygens ±Kirchhoff approximation,
we may assume that in the plane x � 0 the field is nonzero
only at the waveguide opening (i.e., when r < a) and is
defined by formula (80). Next, by analogy with what we did
when considering the previous problems, we can define the
radiation field at large distances from the waveguide opening
(i.e., from the origin). The radiation field potential can be
written as
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where S 0 is the waveguide opening area defined by the
inequality
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On the plane x � 0, we introduce a polar coordinate
system �r;f� and integrate over the polar angle f to obtain
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The integration yields
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The first summand describes the diffraction of the
waveguide field upon the passage of the particle through the
opening into a free space. The second summand, similarly to
the cases described above, gives the transition radiation. This
time, it is due to the charge escape from the waveguide.
Reduction of terms in formula (83) leads us to the expression
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We now determine the spectral and angular distribution of
radiation implied by relation (84). The expression for the
scalar potential j corresponds to the vector potential
Az � bj. Knowing the expression for j, we find the

z

xy

v
q

Figure 6. Escape of a point charge from a circular flanged waveguide.

9 See, for example, Bolotovski|̄ BM, Voskresenski|̄GVDokl. Akad. Nauk

SSSR 156 (5) 1072 (1964).
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magnetic field
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Knowing Hj, one can readily derive the expression for
Wo�y�, which is the radiation intensity at a frequency o at
an angle y to the direction of charge motion:
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With low values of a (a! 0), formula (86) yields the intensity
of transition radiation. With high a values, the radiation
intensity exponentially tends to zero:
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Such asymptotic behavior is indicative of the fact that the
spectrum of diffraction radiation of a relativistic particle is
characterized by the limiting frequency obound that is
proportional to the gamma factor, i.e., to the particle
energy. The expression for obound has the same form (67) as
in the case of diffraction radiation at a round aperture of the
same radius. The spectrum width in our problem and,
accordingly, the total radiation loss are proportional to the
particle energy.

There exists an exact solution of the problem of the
radiation of a charged particle passing into an open space
from a semiinfinite circular flangeless waveguide (see foot-
note 9 in p. 772). The analytical solution obtained in the
relativistic case gives the radiation intensity close to that
described by formula (86). On the other hand, in the
relativistic case and for small radiation angles, the presence
or absence of a flange is unimportant. This suggests that in the
problem considered here the scalar theory of diffraction
radiation is a good approximation.

8. Conclusion

A few particularly simple diffraction radiation problems have
been considered in the scalar approximation of the theory of
diffraction. In actuality, as has already been said, the
electromagnetic field is of vector nature, and the question
arises of whether it would be better to use the so-called vector
theory of diffraction. This theory represents a scattered field
in the form of vectors satisfying the Maxwell equations. Such
a result allows the polarization of scattered radiation to be
determined directly, whereas the scalar theory does not give
this possibility in the general case. However, for axisymmetric
problems that were considered above, the vector and the
scalar theories lead to identical results, the scalar theory being
advantageous for providing a simpler way of obtaining
results. Note that the radiation fields in the above problems
were determined at large distances from the region in which
the radiation process proceeded, i.e., at distances exceeding
the path of formation. In the classical theory of diffraction,
observation of fields at large distances from the screen is
typical of Fraunhofer diffraction. It would be very important

to consider the total field (i.e., the diffraction radiation field
together with the self-field of the radiating particle) at
comparatively small distances from the screen, i.e., at
distances comparable with or smaller than the path of
formation. In the classical theory of diffraction, such a
statement of the problem is typical of Fresnel diffraction.

Rigorous analytical solutions were obtained for a number
of problems of the theory of diffraction radiation. An analysis
of these solutions is important both for the understanding of
the nature of the phenomenon and for the evaluation of
various approximate methods. Note that the overwhelming
majority of exact solutions were published by Soviet and
Russian researchers. To make our presentation more com-
plete, we present at the end of the paper a list of all the works
on diffraction radiation known to us. In this paper, we,
however, have considered neither the mathematical methods
that allow obtaining exact solutions nor the solutions
themselves, but have restricted our analysis to much simpler
approximate methods, which in a number of cases give
satisfactory results.
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