
Abstract. As a follow-up to Ref. [1], the formation of particle
clusters (Lagrangian description) and cluster structure of the
field of a passive tracer (Eulerian description) in a random
velocity field is analyzed for a simple problem amenable to an
analytical solution.

1. Introduction

At the early stages of development, the diffusion of density of
a passive conservative tracer r�r; t�, moving in a random
velocity field u�r; t�, is described by the continuity equation�

q
qt
� q
qr

u�r; t�
�
r�r; t� � 0 ;

which can be rewritten in the form�
q
qt
� u�r; t� q

qr

�
r�r; t� � qu�r; t�

qr
r�r; t� � 0 : �1�

In the general case the random field u�r; t� may contain
both a solenoidal (divergence-free) component, for which

div u�r; t� � 0, and a divergent component with
div u�r; t� 6� 0. The total mass of the tracer is conserved in
the course of evolution Ð that is,

M �
�
r�r;t� dr �

�
r0�r� dr � const :

This is the Eulerian description of the evolution of the
density field. Equation (1) is an equation in partial derivatives
of the first order, and can be solved using the method of
characteristics. Defining the characteristic curves r�t� Ð the
paths of particles described by the equation

d

dt
r�t� � u�r; t� ; r�0� � r0 ; �2�

we go over from Eqn (1) to the ordinary differential equation

d

dt
r�t� � ÿ qu�r; t�

qr
r�t� ; r�0� � r0�r0� : �3�

The solutions of Eqns (2), (3) admit an obvious geome-
trical interpretation. They describe the evolution of density in
the neighborhood of a fixed tracer particle, whose path is
described by the equation r � r�t�. As follows from Eqn (3),
the density in divergent flows varies Ð it is greater in the
regions of compression and smaller in the regions of
rarefaction of the medium. The divergence (the elementary
volume of particle) j�t� � Det k qri�t�=qr0j k is linked to the
density of the particle by the equation

j�t� � r0�r0�
r�t� :

Solutions of the set (2), (3) depend on the characteristic
parameter Ð the initial coordinate of particle r0:

r�t� � r�tjr0� ; r�t� � r�tjr0� ; �4�

which will be denoted by a vertical bar. The components of
vector r0, which uniquely determines the position of an
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arbitrary particle, are known as its Lagrangian coordinates.
Then Eqns (2), (3) correspond to the Lagrangian description
of the density field. The linkage between Eulerian and
Lagrangian descriptions is given by the first expression in
Eqn (4). Resolving it with respect to r0, we get a relation that
expresses Lagrangian coordinates in terms of Eulerian
coordinates:

r0 � r0�t; r� : �5�

Now we use Eqn (5) to eliminate the dependence on r0 in the
last expression in Eqn (4), and return to the Eulerian
description of density:

r�r; t� � r
ÿ
tjr0�t; r�

�
: �6�

For the stationary velocity field u�r; t� � u�r� Eqn (2) is
simplified:

d

dt
r�t� � u�r� ; r�0� � r0 : �7�

Hence it follows that the stationary points ~r, at which
u�~r� � 0, remain fixed. Depending on whether such points
are stable or unstable, they will either attract or repel particles
in their neighborhood. Owing to the stochastic nature of the
function u�r�, the positions of points ~r are also random.

A similar situation ought to persist in the general case of a
random space-time velocity field u�r; t�.

If some points ~r remain stable for a sufficiently long time,
then in certain realizations of the random field u�r; t� clusters
of particles ought to form in their neighborhood (that is,
compact regions of elevated particle density, which are
located in less dense areas). If, however, the stable points
become unstable soon enough, and the particles do not have
the time to rearrange, then cluster regions do not form.

Numerical simulation [2 ± 4] indicates that the dynamic
behavior of the system of particles can be considerably
different depending on whether the random velocity field
u�r� is divergent or divergence-free. For example, in Fig. 1,

reproduced from Ref. [1], for a particular realization of the
divergence-free velocity field u�r� (two-dimensional), the
evolution of a system of particles homogeneously distributed
in a circle is shown schematically, with the dimensionless time
related to the statistical parameters of the field u�r�. In this
case the area enclosed by the contour is conserved, and the
particles more or less uniformly fill up the distorted shape that
had initially been the circle, the boundary now cusped in
fractal-like fashion. When, however, the velocity field u�r� is
divergent, the particles that were initially distributed uni-
formly within the square, eventually huddle in clusters. The
results of numerical simulation for this case are shown in Fig.
1b. Observe that this is a purely kinematic phenomenon. This
feature of dynamic behavior of particles disappears upon
averaging over the ensemble of random velocity field
realizations.

The purpose of this paper is to demonstrate the effect of
clustering of particles and passive tracer field in a random
velocity field using a simple example of velocity field that
makes possible analytical solution of the problem.

First of all we recall the basic ideas of statistical
topography, which allow us to define and describe the
process of clustering of the Eulerian density field in the
Gaussian delta-correlated velocity field u�r; t�. As will be
demonstrated thereafter, this general case is statistically
equivalent to the problem of diffusion of tracers in a random
velocity field of the form u�r; t� � v�t� f�r�, where f�r� is a
deterministic `quasi-periodical' function, and v�t� is a vector
Gaussian process delta-correlated in time. Observe that the
requirement of delta-correlation can be dropped in the case of
a one-dimensional velocity field. Finally, we shall give an
example that admits analytical solution for every realization
of the random velocity field. This example illustrates the
predictions of the general theory.

So, to describe the density field in the Eulerian representa-
tion, we define the indicator function

F�t; r; r� � d
ÿ
r�r; t� ÿ r

�
; �8�

localized on the surface r�r; t� � r � const in the three-
dimensional case, or on a contour in the case of two-
dimensions. The evolution of this function is described by
the Liouville equation [1, 5]�

q
qt
� u�r; t� q

qr

�
F�t; r; r� � qu�r; t�

qr
q
qr

rF�t; r; r� ;

F�0; r; r� � d
ÿ
r0�r� ÿ r� : �9�

The one-point probability density for a solution of the
dynamic equation (1) in this case coincides with the indicator
function averaged over the ensemble of realizations:

P�t; r; r� � 
F�t; r; r�� :
The indicator function also characterizes the geometrical

structure of the density field [1, 5]. In terms of function (8) in
the two-dimensional case, for example, it is possible to express
such quantities as the total area of regions delimited by the
level lines, where r�r; t� > r:

S�t; r� �
�1
r
d~r
�
drF�t; r; ~r� ; �10�
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Figure 1. Results of numerical simulation of diffusion of a system of

particles in solenoidal (a) and divergent (b) random velocity fields u�r�.
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and the total `mass' of the field confined within these
regions:

M�t; r� �
�1
r

~r d~r
�
drF�t; r; ~r� : �11�

The random component of the velocity field in the general
case is assumed to have a nonzero divergence �div u�r; t� 6� 0�,
and is represented by a statistically homogeneous, space-
isotropic and time-stationary randomGaussian field with the
correlation and spectral tensors

ÿhu�r; t�i � 0
�
given by


ui�r; t�uj�r 0; t 0�
� � Bij�rÿ r 0; tÿ t 0� ;

Eij�k; t� � 1

�2p�N
�
drBij�r; t� exp�ÿikr� ; �12�

where N is the dimensionality of space, and the structure of
spectral tensor of velocity field is

Eij�k; t� � E s�k; t�
�
dij ÿ ki kj

k2

�
� E p�k; t� ki kj

k2
: �13�

Here we denote respectively the solenoidal and the potential
components of the spectral density of the velocity field by
E s�k; t� and E p�k; t�.

Usually the calculation of the statistical properties of the
field is based on the assumption that the velocity field u�r; t� is
delta-correlated in time (see, for example, Ref. [6]). In this
case the correlation tensor (12) is approximated by

Bij�r; t� � 2B eff
ij �r�d�t� ;

where

B eff
ij �r� �

1

2

�1
ÿ1

dt Bij�r; t� �
�1
0

dt Bij�r; t� :

When Eqn (9) is averaged with respect to realizations of
the field u�r; t�, the field u�r; t� becomes correlated with the
functionF�t; r; r�, which is a functional of the field u�r; t�. For
the Gaussian velocity field u�r; t�, the split-up of correlation is
based on the Furutsu ±Novikov formula (see, for example,
Ref. [6]):


ua�r; t�F
�
u�~r; ~t��� � � dr 0 � dt 0 Bab�rÿ r 0; tÿ t 0�

�
�

d
dub�r 0; t 0�

�
F
�
u�~r; ~t ��� ; �14�

which holds for arbitrary functional F
�
u�~r; ~t �� of the

Gaussian field u�r; t�, and is basically a formula of integra-
tion by parts in functional space.

Averaging Eqn (9) over the ensemble of realizations of
random field u�r; t� in the approximation of time delta-
correlated field u�r; t�, we get the equation for the probability
density of the density field in the form [1]

�
q
qt
ÿD0

q2

qr2

�
P�t; r; r� � D p q2

qr2
r2P�t; r; r� ;

P�0; r; r� � d
ÿ
r0�r� ÿ r

�
; �15�

where

D0 �
�1
0

dt

�
dk
��Nÿ 1�E s�k; t� � E p�k; t�� ;

D p �
�1
0

dt

�
dk k2Ep�k; t� :

Knowing the solution of Eqn (15), we can calculate the
time evolution of such functionals of the density field as Ð in
the two-dimensional case, for example Ð the mean total area
hS�t; r�i where r�r; t� > r, and the mean total mass of tracer
contained within such areas hM�t; r�i:


S�t; r�� � �1
r
d~r
�
drP�t; r; ~r� ;



M�t; r�� � �1

r
~r d~r

�
drP�t; r; ~r� ;

or (t � D pt),



S�t; r�� � � drF�lnÿr0�r� exp�ÿt�=r�

2
���
t
p

�
;



M�t; r�� � � r0�r� drF�lnÿr0�r� exp�t�=r�2

���
t
p

�
; �16�

where F�z� is the error function

F�z� � 1������
2p
p

�z
ÿ1

dy exp

�
ÿ y2

2

�
:

Hence it follows that for t4 1, the mean area of regions
where the density is above the preset level r, decreases with
time as


S�t; r�� � 1��������
ptr
p exp

�
ÿ t
4

�� �����������
r0�r�

p
dr ;

while the mean mass of tracer contained within such regions



M�t; r�� �Mÿ

�����
r
pt

r
exp

�
ÿ t
4

�� �����������
r0�r�

p
dr

tends steadily to the total mass of tracerM � � r0�r� dr. This
points to the formation of clusters of tracer field in the
random field of velocities Ð compact regions of elevated
density surrounded by areas of smaller density.

If the initial density of tracer is the same throughout,
r0�r� � r0 � const, then the probabilistic density distribution
does not depend on the coordinate r, and is log-normal with
the following probability density and probability distribution
function:

P�t; r� � 1

2r
�����
pt
p exp

�
ÿ ln2�r exp t=r0�

4t

�
;

F�t; r� � F
�
ln�r exp t=r0�

2
���
t
p

�
: �17�

2. Model of velocity field

Consider now a model of the random velocity field of the
form

u�r; t� � v�t� f�r� ; �18�
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where v�t� is a random Gaussian stationary vector process
with the parameters


v�t�� � 0 ; Bij�tÿ t 0� � 
vi�t�vj�t 0�� ÿ
Bv�0� �



v2�t��� ;

and f�r� a deterministic function.
In the approximation of the delta-correlated process v�t�,

we assume that

Bij�tÿ t 0� � 2s2dijt0d�tÿ t 0�
�
s2dijt0 �

�1
0

dtBij�t�
�
;

�19�

where s2 is the variance of fluctuations of the velocity field,
and t0 is the time-domain correlation radius. Then the
Furutsu ±Novikov formula is simplified:


va�t�F
�
v�~t��� � s2t0

�
d

dva�t�
�
F
�
v�~t ��� ;

and the Liouville equation (9) becomes�
q
qt
� v�t� f�r� q

qr

�
F�t; r; r� � v�t� qf�r�

qr
q
qr

rF�t; r; r� ;

F�0; r; r� � d
ÿ
r0�r� ÿ r

�
;

which we rewrite in the form

q
qt

F�t; r; r� � ÿv�t�
�
q
qr

f�r� ÿ qf�r�
qr

�
1� q

qr
r
��

F�t; r; r� ;

F�0; r; r� � d
ÿ
r0�r� ÿ r

�
: �20�

Averaging Eqn (20) over the ensemble of random
processes v�t�, we get

q
qt

P�t; r; r� � ÿ
�t
0

dt 0 Bij�tÿ t 0�

�
�

q
qri

f�r� ÿ qf�r�
qri

�
1� q

qr
r
���

d
dvj�t 0� F�t; r; r�

�
;

P�0; r; r� � d
ÿ
r0�r� ÿ r

�
: �21�

Now using the equality

d
dvj�t� F�t; r; r� � ÿ

�
f�r� q

qrj
ÿ qf�r�

qrj

�
1� q

qr
r
��

F�t; r; r� ;

which follows from Eqn (20), in the approximation of the
delta-correlated process v�t�, we get an equation in prob-
ability density of the form

q
qt

P�t; r; r� � s2t0

�
q2

qr2
f 2�r� ÿ

�
3� 2

q
qr

r
�

q
qr

f�r� qf�r�
qr

� f�r� q
2f�r�
qr2

�
1� q

qr
r
�

� qf�r�
qr

qf�r�
qr

�
1� q

qr
r
�2�

P�t; r; r� : �22�

If now the function f�r� has the characteristic scale of
variation ~kÿ1 with respect to r, and is a quasi-periodical (`fast')

function, then we can also average Eqn (22) with respect to
these scales and find the equation for `slow' spatial variations

q
qt

P�t; r; r� � s2t0

�
f 2�r� q2

qr2
� qf�r�

qr
qf�r�
qr

q2

qr2
r2
�
P�t; r; r� :

�23�

Equation (23) coincides with Eqn (15), and therefore the
model of the velocity field (18) for one-point statistical
characteristics of the density field is statistically equivalent
to the model of the Gaussian delta-correlated field u�r; t�.
Therefore, in themodel of the fluctuations of the velocity field
(18) the tracers should also exhibit clustering if

v�t� qf�r�
qr
6� 0 :

For two-point statistical characteristics these models will
obviously be statistically equivalent too.

Observe that for the one-dimensional case the random
field of velocities u�x; t� � v�t� f�x� is always potential, and
the assumption that the process v�t� is delta-correlated is not
necessary. Indeed, the structure of solution of Eqn (20) in this
case is

F�t; x; r� � F
ÿ
T�t�; x; r� ;

where the new `random' time is T�t� � � t0 dt v�t�, and the
function F�T; x; r� as a function of its variables is defined by
the deterministic equation

q
qT

F�T; x; r� � ÿ
�

q
qx

f�x� ÿ df�x�
dx

�
1� q

qr
r
��

F�T; x; r� ;

F�0; x; r� � d
ÿ
r0�x� ÿ r

�
: �24�

Hence

d
dv�t 0� F�t; x; r� � qF�T; x; r�

qT
d

dv�t 0� T�t�

� qF�T; x; r�
qT

y�tÿ t 0�

� ÿy�tÿ t 0�
�

q
qx

f�x� ÿ df�x�
dx

�
1� q

qr
r
��

F�t; x; r� ;

where the Heaviside function y�t� is 1 for t > 0, and 0 for
t < 0; then Eqn (21) takes on the form of a closed equation

q
qt

P�t; x; r��
�t
0

dt 0 B�tÿ t 0�
�

q
qx

f�x� ÿ df�x�
dx

�
1� q

qr
r
��

�
�

q
qx

f�x� ÿ df�x�
dx

�
1� q

qr
r
��

P�t; x; r� ;

P�0; x; r� � d
ÿ
r0�x� ÿ r

�
;

which, after averaging with respect to the fast space variable,
becomes

q
qt

P�t; x; r�

�
�t
0

dtB�t�
�
f 2�x� q2

qx2
�
�
df�x�
dx

�2 q2

qr2
r2
�
P�t; x; r� :

If the initial density distribution does not depend on x Ð
that is, r0�x� � r0 Ð then P�t; x; r� � P�t; r�, and this
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function is defined by the equation

q
qt

P�t; r� � D�t� q2

qr2
r2P�t; x; r� ;

D�t� �
�
df�x�
dx

�2 �t
0

dtB�t� :

3. A simple example

In the simplest case, the function f�r� is a function of one
variable, and we select it in the form

f�r� � sin 2�kr� : �25�

Note that such a function f�r� corresponds to the first term in
the Fourier expansion of arbitrary f�r�, used in numerical
simulations of the problem [3, 4].

3.1 Lagrangian description of the model
In this case the Lagrangian equations (2), (3) are:

d

dt
r�t� � v�t� sin 2�kr� ; r�0� � r0 ;

d

dt
r�t� � ÿ2ÿkv�t�� cos 2�kr�r�t� ; r�0� � r0�r0� :

For such a model, the motion of a particle in the direction of
vector k and in the perpendicular direction can be separated.
So, if we align the x-axis with the direction of vector k, then
the equations become

d

dt
x�t� � vx�t� sin�2kx� ; x�0� � x0 ;

d

dt
R�t� � vR�t� sin�2kx� ; R�0� � R0 ;

d

dt
r�t� � ÿ2kvx�t� cos�2kx�r�t� ; r�0� � r0�r0� : �26�

The solution of the first equation in Eqns (26) is

x�t� � 1

k
arctan

�
exp
ÿ
T�t�� tan�kx0�� ; �27�

where

T�t� � 2k

�t
0

dt vx�t� :

Using the equalities that follow from Eqn (27)

sin�2kx�

� sin�2kx0� 1

exp
ÿÿT�t�� cos2�kx0� � exp

ÿ
T�t�� sin2�kx0� ;

cos�2kx� � 1ÿ exp
ÿ
2T�t�� tan2�kx0�

1� exp
ÿ
2T�t�� tan2�kx0� ;

we rewrite the last two equations in Eqns (26) as

d

dt
R�tjr0�

� sin�2kx0� vR�t�
exp
ÿÿT�t�� cos2�kx0� � exp

ÿ
T�t�� sin2�kx0� ;

d

dt
r�tjr0� � ÿ2kvx�t�

1ÿ exp
ÿ
2T�t�� tan2�kx0�

1� exp
ÿ
2T�t�� tan2�kx0� r�tjr0� :

Hence

R�tjr0� � R0 � sin�2kx0�

�
�t
0

dt
vR�t�

exp
ÿÿT�t�� cos2�kx0� � exp

ÿ
T�t�� sin2�kx0� ;

r�tjr0� � r0�r0�
�
exp
ÿÿT�t�� cos2�kx0�� exp

ÿ
T�t�� sin2�kx0��:

�28�

Then the divergence (the elementary volume of a particle)
is

j�tjr0� � 1

exp
ÿÿT�t�� cos2�kx0� � exp

ÿ
T�t�� sin2�kx0� :

Thus, if the initial parameter x0 is such that

kx0 � n
p
2
; �29�

where n � 0;�1; . . . ; then the particles are fixed and r�t� � r0.
Equations (29) in the general case define planes, or points

in the case of one dimension. They correspond to the zeros of
the velocity field. The stability of these points, however,
depends on the sign of the function v�t�, which may change
in the course of evolution. One may expect that in the course
of evolution the `particles' Ð the Lagrangian paths Ð will
condense in the neighborhood of these points if vx�t� 6� 0,
which is what is meant by the clustering of particles. In the
neighborhoods of these points we have

r�tjr0� � r0�r0� exp
ÿ�T�t�� ; j�tjr0� � exp

ÿ�T�t�� ;
and all the statistical moment functions of these quantities
increase with time.

For a divergence-free velocity field, when vx�t� � 0, and
therefore T�t� � 0, we have

x�tjx0� � x0 ; R�tjr0� � R0 � sin 2�kx0�
�t
0

dt vR�t� ;
r�tjr0� � r0�r0� ; j�tjr0� � 1 :

3.2 Eulerian description of the model
To go over to the Eulerian description, we use Eqn (27) to
resolve Eqn (28) with respect to the characteristic parameter
r0:

x0 � 1

k
arctan

�
exp
ÿÿT�t�� tan�kx�� ;

R0 � Rÿ sin�2kx�
�t
0

dt

� vR�t�
exp
�
T�t� ÿ T�t�� cos2�kx� � exp

�ÿT�t� � T�t�� sin2�kx� :
Now we can rewrite the density field as

r�r; t� � r0�r0�
1

exp
ÿ
T�t�� cos2�kx� � exp

ÿÿT�t�� sin2�kx� :
�30�
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For a divergence-free velocity field, when vx�t� � 0,
T�t� � 0, we have

r0 � rÿ sin�2kx�
�t
0

dt v�t� ;

r�r; t� � r0

�
rÿ sin�2kx�

�t
0

dt v�t�
�
:

In the particular case when the initial density distribution
does not depend on x Ð that is, r0�r0� � r0 Ð Eqn (30) is
simplified:

r�r; t�
r0
� 1

exp
ÿ
T�t�� cos2�kx� � exp

ÿÿT�t�� sin2�kx� : �31�
From Eqn (31) it follows that after averaging with respect to
the fast spatial variables we have

r�r; t�
r0
� 1

and this quantity does not depend on the random time T�t�.
In a similar way we find that�
r�r; t�
r0

�2

� 1

2

�
exp
ÿ
T�t��� exp

ÿÿT�t��� ;
and therefore for a Gaussian random process vx�t� we have��

r�r; t�
r0

�2�
� 
expÿT�t��� � exp

�
1

2



T 2�t��� ;

in accordance with the log-normal distribution of probabil-
ities (17).

As far as the structure of the density field (31) itself is
concerned, it is obvious that the density field is minor
everywhere except in the neighborhood of the points
kx � np=2, where r�r; t�=r0 � exp

ÿ�T�t�� and hence the
field is sufficiently large with the right sign of the random
time T�t�.

So we see that for the problem under consideration the
cluster structure of the density field in the Eulerian descrip-
tion is formed in the neighborhood of the points

kx � n
p
2

�n � 0;�1;�2; . . .� :

4. Numerical simulation

For the purposes of numerical simulation of the two-
dimensional problem we assume that the vector process v�t�
is a Gaussian delta-correlated process with parameters (19).
In dimensionless coordinates and time

r! kr ; t! k2s2t0t ; �32�

the Lagrangian equations for the coordinates of particle (26)
become

d

dt
x�t� � vx�t� sin�2x� ; x�0� � x0 ;

d

dt
y�t� � vy�t� sin�2x� ; y�0� � y0 ; �33�

where the correlation functions of the velocity field are given
by 


vx�t�vx�t 0�
� � 
vy�t�vy�t 0�� � 2d�tÿ t 0� :

Then the x-coordinate of the Lagrangian particle (27) and the
Eulerian density field (31) are

x�t� � arctan
h
exp
ÿ
T�t�� tanx0i ;

r�r; t�
r0
� 1

exp
ÿ
T�t�� cos2 x� exp

ÿÿT�t�� sin2 x ; �34�

where

T�t� � 2

�t
0

dt vx�t� : �35�

Observe that the initial stochastic equations (33) and
expressions (34) and (35) do not formally involve the
parameters s2 and t0. These parameters only enter the
definition of dimensionless time (32). This is a consequence
of the earlier discussed independence of the diffusion of
particles from the model of a random velocity field in the
one-dimensional problem.

Figure 2a shows a fragment of the realization of the
random process T�t�, obtained by numerical integration of
Eqn (35) for one particular realization of the random process
vx�t�, used for numerical simulation of time evolution of the
coordinates of four particles x�t� �x 2 �0; p=2�� with the
initial coordinates x0�i� � �p=2��i=5� �i � 1; 2; 3; 4� (Fig. 2b),
and an Eulerian density field (Fig. 3).

From Fig. 2b we see that the particles at the time t � 4
form a cluster in the neighborhood of the point x � 0. At the
time t � 16 this cluster falls apart, and a new cluster is formed
in the neighborhood of the point x � p=2. At t � 40 a cluster
is formed again in the neighborhood of the point x � 0, and
so on. The particles in clusters remember their history, and in
the interim move apart to considerable distances (Fig. 2c).

We see that in this example the cluster as an entity does
not move from one point in space to another Ð instead, one
cluster breaks up and a new one is formed. The lifetime of the
cluster is much greater than the transition time. This is
apparently a specific property of the employed model of the
velocity field, related to the stationary positions of points
(29).

The diffusion of particles with respect to y-axis is not
associated with formation of clusters.

Figure 3a ± d shows the space-time evolution of an
Eulerian density field 1� r�r; t�=r0, calculated according to
Eqn (34) (one is added to avoid problems with logarithms
when the density is close to zero). In these diagrams we clearly
see the gradual concentration of the field in the close
neighborhood of the points x � 0 and x � p=2, which
implies the formation of clusters. For example, Fig. 3a, b
shows the time sequence (t � 1ÿ10� of cluster formation in
the neighborhood of the point x � 0. Figure 3c, d shows the
time sequence (t � 16ÿ25) of the drift of the density field
from the neighborhood of the point x � 0 to the neighbor-
hood of the point x � p=2 Ð that is, disintegration of the
cluster at x � 0 and formation of a new cluster at x � p=2.
Then this process is repeated in time. As seen from the
diagrams, the lifetime of clusters in this model is of the same
order as the time of their formation.
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5. Conclusion

We have discussed a simple model of the diffusion of tracers
(particles and Eulerian density field) in a random velocity
field, which clearly illustrates the process of cluster formation.
Of course, the value of this model is somewhat compromised
by the fact that the points where the clusters form are fixed in
space.

However, this model helps to understand the basic
distinction between diffusion in divergent and divergence-
free velocity fields. In the divergence-free (incompressible)
velocity fields, the particles (and hence the density field) do
not have the time to drift towards the attraction sites while the
latter still exist, and only slightly fluctuate about their initial
positions. In the divergent (compressible) velocity field, the
particles are able tomove towards the attraction sites over the
lifetime of the latter (which is the same as before), because the
process of attraction is exponentially accelerated, which is
obvious from expressions (34).

This work was supported in part by the Russian
Foundation of Basic Research (Grants 98-05-64479, 99-05-
64350, and 00-15-98608).
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Figure 3. Space-time evolution of Eulerian density field.
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