
Abstract. The state of the art in describing the eigen-oscillations
of a vortex ring in an ideal incompressible fluid is reviewed. To
describe eigen-oscillations, the displacement field is taken as the
basic dynamic variable. A vortex ring with the simplest vorticity
distribution in the core and with a potential flow in the vortex
ring envelope is the commonest approximation used in treating
the eigen-oscillations of vortex rings of a more general form. It
turns out that allowing for even a very weak degree of core
smoothing causes many oscillation modes to lose their stabi-
lity. It is shown that the instability effect is determined by the
sign of the vibration energy. The energies of the ring eigen-
oscillations are calculated and two kinds of eigen-oscillations,
those with a negative energy and those with a positive energy,
are identified, of which it is the former which become unstable
when the core vorticity is smoothed. The multiple instabilities of
vortex ring oscillations together with the details of the spatial
structure of its eigen-oscillations suggest that it is the nonlinear
evolution of precisely these processes which might be the origin
of vortex ring turbulence. A new method for the study of
unsteady processes in turbulent vortex rings, which utilizes the
experimental diagnostics of the ring's sound field, is presented.

The structure of the sound field strongly supports the proposed
model of the turbulent vortex ring.

1. Introduction

The vortex ring is a well known and very popular object of
fluid dynamics. Investigations of vortex rings began in the last
century when a vortex ring was considered as a model of the
vortex theory of atoms then under development [1 ± 3].
Though the quantum theory has made many of the ideas
developed in that period insignificant, the vortex ring seems
to remain one of the most interesting and convenient objects
for investigations in hydrodynamics [4]. Really, the vortex
ring is suitable for experimental research and at the same time
its behaviour can be described within the limits of the main
equations of continuous medium. The most important
feature is that once generated, this vortex develops only
under the effect of its own dynamics and is not affected by
rigid boundaries. This permits the use of the vortex ring for
investigations of many problems of hydroaerodynamics in a
pure form. In the present work we restrict ourselves to
considering a certain range of problems associated with
high-frequency oscillations of this vortex. It appeared that
the rigorous description of disturbance dynamics permitted
the association of such problems as flow stability and
mechanisms of energy exchange between the mean flow and
separate modes, transition to turbulence in the vicinity of the
vortex ring core and the absence of turbulence in the core,
sound generation by turbulence and the contribution of
vortex core eigen-oscillations to sound radiation.
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A vortex ring is a vortex torus, which moves together with
an ellipsoidal volume of fluid called the ring envelope. A
detailed description of steady vortex rings can be found, for
example, in Refs [5 ± 7]. These works primarily address the
question about self-translation of a vortical filament rolled up
into a ring. The vortex ring description as a thin annular
filament in an ideal fluid turns out to be in a certain
qualitative agreement with the well known hydrodynamical
phenomenon and permits the relation of the mean vortex
parameters Ð its size and circulation Ð and the translation
velocity. These parameters, as follows from the ideal fluid
equations remain unchanged during the vortex translation,
i.e. such a vortex is preserved without change in form and
velocity. The limitation of such a consideration becomes
evident from the fact that the real ring noticeably expands in
its movement. Accounting for viscosity [8, 9] one could reduce
the discrepancies between the theoretical model and the real
phenomenon. At the same time in the early 1970's it became
quite clear that the ideal model, even accounting for viscosity,
does not take the principal features of vortex ring evolution
into consideration.

Numerous experimental investigations [10 ± 15] have
shown that there exist two qualitatively different flow
regimes Ð laminar and turbulent ones. The critical Reynolds
number Re0 based on the initial radius and velocity of the
vortex ring is equal to about 103. At small Re-numbers a
vortex has a characteristic and apparently seen spiral
structure [16, 17]. At Re-numbers exceeding Re0 the flow
character fundamentally changes and the flow becomes
turbulent. The main feature of such a flow is that its structure
appears to be close to universal and is independent of the
peculiarities of the vortex formation process. In this case the
flow is divided into two regions: the laminar core where the
vorticity is concentrated and the envelope region where the
fluid particles are in chaotic motion (Fig. 1).

The most important and interesting phenomenon is that
the boundary between the turbulent and laminar regions
remain sharp, despite the fact that the ring exists for a long
time [18 ± 20]. The turbulent flow regime peculiarities found in
experiments made possible the formulation of the semi-
empirical self-similar theory [11, 21, 22] describing the
evolution of mean parameters (radius, velocity, vorticity
etc.), on the assumption that the vorticity distribution in the
core is close to uniform (solid-body rotation in the core).
Measurements of the translation velocity and of the geome-
trical parameters of the ring confirmed the self-similar

character of vortex development. However, direct reliable
measurements of vorticity in the vortex core have practically
not been made. We mention the works [23, 24] (the data
presented there are of a preliminary character), and the new
measurements based on the PIV technique [25]. The latter are
related to not very high-velocity rings.

The limited volume of experimental data on the mean
vorticity structure in the core and all themore on the unsteady
processes in the vortex, on the one handÐ is accompanied by
the lack of theoretical investigations of the vortex ring
stability problem, on the other. For a long time it has been
acceptedÐ possibly based on Kelvin's work [2] on the vortex
column (Rankin's vortex) stability Ð that the majority of
modes corresponding to vortex ring cross-section deforma-
tions are stable. In the literature the instability only of one
mode (bending) has been considered [26 ± 29]. The methods
used in this case are based on additional simplifying
assumptions (see Section 3.1) and the comparison with
experiment is of a qualitative character.

The present-time view on the vortex ring turbulence
structure is based on the idea of rotating flow `elasticity', a
qualitative concept of turbulence suppression in the localized
vortex cores [30, 31] and an analogy between the effects of
stratification and rotation. It is clear that substantial progress
in understanding the turbulent flow regime requires not only
qualitative discussions, but also a dynamical description of
oscillating regimes and instability mechanisms which make
possible the energy transfer into separatemodes, as well as the
development of diagnostic methods for delicate and complex
processes in the vortex ring core which would be based, if
possible, on non-contact procedures, since the processes are
very sensitive to any interventions. Therefore we can state
with assurance that the description of vortex ring turbulence
is an interesting and important problem of turbulence itself
and its study will require significant efforts.

The present work considers recent results relating to the
description of vortex ring eigen-oscillations in an ideal
incompressible fluid. These oscillations have a close analo-
gue Ð Kelvin's oscillations of Rankin's cylindrical vortex.
The similarity of the mean flow of a thin vortex ring with an
almost circular cross-section, small in comparison with the
vortex radius, and a cylindrical vortex with circular cross-
section and infinite curvature radius seems to be the main
cause why the vortex ring oscillations (this task is much more
computationally complex) have not been considered in a
complete form (see the review of this problem in Section
3.1). It appeared however that many vortex ring modes were
different from the respective oscillations of the cylindrical
vortex even in the leading approximation. The change in
eigen-oscillation structure appeared not only an unexpected
curious fact. This difference involved a number of important
consequences: from multiple instabilities to peculiarities of
acoustic radiation by vortices.

Since the application of perturbation method to the
problem of vortex ring oscillations is not completely trivial,
the most economical and convenient procedure is required.
Section 2 is devoted to describing the approach developed in
[32] for the description of thin vortex ring oscillations based
on using the displacement field as the principal dynamical
variable. The present work touches upon some important
questions in describing the disturbance energy in vortical
flows, based on Arnold's theorem [33 ± 35]. The possibility of
calculation of this non-linear quantity based only on the
linear dynamics of disturbances (as a consequence of the fact

Figure 1. Photos of turbulent vortex ring (side view and front view) made

with the use of a luminous plane.
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that the first variation of energy equals to zero), has great
importance. The oscillation energy and the sign of this energy
in particular, appear to determine the instability mechanism
considered in the present work.

Section 3 considers long-wave oscillations of a thin vortex
ring with a potential envelope and the simplest vorticity
distribution in the core. The resemblances and differences
between the oscillations of such a vortex ring and oscillations
of a cylindrical vortex are analyzed.

A vortex ring with the simplest vorticity distribution in the
core and a potential flow in the envelope is the basic
approximation in the problem of oscillations of vortex rings
of amore general type. It appears that accounting for the core
smoothing (even very slight) makes many oscillations
unstable. If the vorticity in the envelope is small it can be
taken into account analytically and the increments of
unstable harmonics can be calculated. This task is considered
in Section 4. The multiple instabilities of vortex ring
oscillations and the structures of unstable disturbances show
that the vortex ring turbulence could be exactly a consequence
of the non-linear development of these processes. From this
point of view, it seemsmore correct to speak not of turbulence
suppression in the core, but of turbulence generation in the
ring envelope.

In Section 5 a new method of investigation of unsteady
processes in a turbulent vortex ring is considered. It is based
on experimental diagnostics and a theoretical description of
its sound field. The peculiarities of the measured sound field
strongly support the turbulent vortex ringmodel developed in
the present work. Thus, the vortex ring turns out to be a very
convenient model for investigation of the totality of unsteady
processes which take place in three-dimensional vortex flows.

2. The displacement field as a way to describe
vortex dynamics in an incompressible fluid

The velocity or vorticity field is traditionally used to describe
disturbances in a vortex flow. Recently another approach has
also been used in the problem of vortex disturbances, which is
based on using the displacement field [36] as the principal
function. This field which directly describes each vortex
filament deformation, was first used for describing the
evolution of vortical flow disturbances in Ref. [37]. This
approach was applied to investigation of small-amplitude
oscillations of a vortex ring in Ref. [38] where the bulging
modes of the vortex ring were first correctly described, and in
Ref. [32] where other oscillations were explored.

2.1 Displacement field evolution in arbitrary vortex flows.
Displacement field as a new dynamic variable
Consider an approach to disturbance description based on
the displacement field e�r� as the principal function. We
restrict ourselves to such disturbances at which the disturbed
flow is isovortical to the reference steady flow [39, 40]. Such
disturbances can be presented as a result of displacement of
fluid particles with a frozen vorticity field.

2.1.1. Condition of isovorticity. Consider an arbitrary diver-
gence -free (solenoidal) vector field g�r�,Hg � 0. Let this field
define a set of transforms of space into itself, according to the
following formula:

dr

dt
� g�r� ; �2:1�

where t is some parameter. Transform (2.1) can be presented
as the motion of fluid particles with a `velocity field' g. For
such a transform each particle, which had initially the
coordinate r0, will come to the point determined by the
solution of Eqn (2.1) with the initial condition rjt�0 � r0.
Since the field g is solenoidal, such a transform preserves
volume, according to Liouville's theorem. It is obvious that
all the conceivable volume-preserving displacements of fluid
particles are given by the solution of Eqn (2.1) at some g�r�.
For transforms close to identical one, t is a small parameter.
In the linear approximation in t, the solution of Eqn (2.1) is
given by equality r � r0 � g�r0�t�O�t 2�. Designate the
transform part, linear in parameter t, through e:

e � g�r0�t ; �2:2�

and call this value a displacement field.
Consider now some reference vector field a0, Ha0 � 0. Let

this field remain `frozen' for the fluid particle motion given by
transform (2.1), i.e. the field a0 is transformed into the field a
in such a way, that the intensities of any vector tubes of the
field a remain unchanged. According to Fridman's theorem
[41, 42], the necessary and sufficient condition of preserving
the vector tube intensity (i.e. of the field a being frozen in the
field g) is the equality to zero of the following expression

qa
qt
� H� �a� g� � 0 : �2:3�

At small values of t we present the field a as follows:

a � a0 � t
qa
qt

����
t�0
� t 2

2

q2a
qt 2

����
t�0
� . . . � a0 � da� d2a� . . .

Using Eqn (2.3) we get

qa
qt

����
t�0
� H� �g � a0� ;

q2a
qt 2

����
t�0
� H�

�
g � qa

qt

�����
t�0
� H� ÿg � H� �g � a0�

�
:

Then for the first and the second variations, with account for
Eqn (2.2), we obtain

da � H� �e � a0� ; d2a � 1

2
H� ÿe � H� �e � a0�

�
:

�2:4�
These expressions will be used below for calculations of
vorticity disturbances and vorticity energy.

If the field ameans the vorticityX, then the condition that
it is `frozen' is called the isovorticity condition. It is obvious
that the preservation of vector tube intensity for the vorticity
field is equivalent to preserving the circulation over any fluid
contour. Since transform (2.1) exhausts all the transforms of
space into itself which preserve the volume, Eqns (2.4)
describe all the close fields `isovortical' to the reference field
X0.

2.1.2 Obtaining the main system of equations. In the linear
approximation, under the condition that vortex lines are
frozen into the displacement field e, the vorticity distur-
bance, according to Eqn (2.4), is expressed as

X � H� �e �X0� : �2:5�
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Here and below we shall omit d in the indication of the first
field variation in the cases when we are interested only in
disturbances in the linear approximation.

Since the vorticity field remains isovortical in its
evolution, the disturbed state can be presented at any
moment as a result of the effect of some displacement field
e (Fig. 2), i.e. the vorticity field evolution can be related to
the evolution of the field e. This means that the displacement
field e�r; t� can be used for a description of the disturbance
evolution. It is obvious that at given X the field e is
determined ambiguously. Any trivial displacement et which
is the solution of equation H� �e t �X0� � 0 can be added
to it. According to Eqn (2. 5), a trivial displacement is a fluid
particle displacement which causes no vorticity field dis-
turbance at all.

We get the equation for the displacement field e from the
equations of ideal incompressible fluid dynamics. Small
vorticity disturbances in an unbounded flow are described
by a system of equations:

qX
qt
� H� �X� V0� � H� �X0 � v� � 0 ; �2:6�

v�r� � H� 1

4p

�
X�r 0�
jrÿ r 0j dr

0 ; �2:7�

where V0, X0 are the steady fields of velocity and vorticity,
respectively; and v,X are the disturbances of these fields. Eqn
(2.6) is the linearized Helmholtz equation and Eqn (2.7)
connects the velocity and vorticity disturbances at each
moment of time, according to the Biot ± Savart law.

The system of equations describing the displacement field
evolution can be obtained from the system of linearized Eqns
(2.6) and (2.7) with the direct substitution of Eqn (2.5). Using
the vector identity

H� �a� �H� �b� c���� H� �b� �H� �c� a���
� H� �c� �H� �a� b��� � 0

and relation H� �X0 � V0� � 0 which is the Helmholtz
equation for steady flow, we get from Eqn. (26):

H�
��

qe
qt
� H� �e � V0� ÿ v

�
�X0

�
� 0 :

This equation is equivalent to the following:

qe
qt
� H� �e � V0� ÿ v � F ; �2:8�

where F�r; t� is an arbitrary function satisfying the condition
H� �F�X0� � 0, and the field v is expressed through e with
the use of Eqns (2.5) and (2.7). It is easy to show that the
arbitrary function F can always be compensated by adding
some trivial displacement. Really, consider the field e0�r; t�
which satisfies the initial zero condition and Eqn (2.8) with
the same function F. The field e0 at any following moment of
timewill be a trivial displacement, since it is the solution of the
problem in which the steady flow has not received the initial
disturbance. Therefore, the solutions of Eqn (2.8) with the
same initial conditions and different right-hand sides differ
from one another only by the trivial displacement. We
introduce the difference n � e ÿ e 0 into our consideration.
This value is the difference of the fluid particle position in the
disturbed and undisturbed flows at the time t after the
moment of disturbance, i.e. it is the Lagrangian displacement
of the fluid particle [36, 43]. The right-hand side of Eqn (2.8)
for this quantity is exactly equal to zero. Thus, we get the well
known equation describing the evolution of Lagrangian
displacement field [36]:

qn
qt
� H� �n� V0� ÿ v � 0 ; �2:9a�

v � H� 1

4p

�
H 0 � �n�X0�
jrÿ r 0j dr 0 ; �2:9b�

where H 0 is the differential operator with respect to the
variable r 0.

Making use both of the vorticity field and the displace-
ment field for describing disturbances allows the problem to
be localized, i.e. the solution can only be sought for within the
region occupied by the vortex. The behaviour of the field v in
the region outside the vortex and, in particular, its decay at
infinity, is automatically taken into account in the integral
expression (2.9b). An important difference of Eqn (2.9a) from
the Helmholtz equation (2.6), equivalent to it, is the
separation of the integral term v in the pure form. It can
easily be transformed into a differential form with using the
curl operation and relation (2.5).

Equation (29a) can easily be extended to the case of
vortices moving as a whole with the velocity V1 (e.g. vortex
ring) or rotating as a whole with angular velocity o (e.g. two-
dimensional elliptical Kirchhoff vortex). The basic flow will
be steady for such flows in the coordinate system moving and
rotating together with the vortex and the disturbances will be
described by theHelmholtz equation which in this coordinate
system is expressed as

qX
qt
� H� �X�U0� � H� �X0 � v� � 0 ;

where U0 � V0 ÿ V1 ÿ x� r, the velocity field V0 decays at
infinity and is connected with the reference steady vorticity

e�t1�

e�t�

t

e�t2�

e�t3�

X �t1�

X 0
X �t�

X �t2�

X�t3�

Figure 2. Evolution of the vorticity field X�t� and displacement field

e�t�.
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field X0 by the Biot ± Savart integral:

V0�r� � H� 1

4p

�
X0�r 0�
jrÿ r 0j dr

0 : �2:10�

In this case the rotation and displacement of the vortex as a
whole are separated from the small displacement field n, and
Eqn (2.9a) describing the displacement field evolution takes
the form

qn
qt
� H� �n�U0� ÿ v � 0 : �2:11�

2.2 Evolution of the displacement field in localized vortices
2.2.1 The system of governing equations. Consider a situation
when the vorticity is concentrated in a finite region of space.
As is known, the vector field in the bounded regionM can be
determined in terms of the normal component at the
boundary G�M�, and the curl and divergence of this field
over the whole region M. In the case of a nonsimply
connected region for unambiguous determination of the
vector field, it is also necessary to specify the circulation
along a closed contour C not reduced to zero. Let us consider
the whole expression qn=qt� H� �n� V0� ÿ v as the vector
field and the region in which the vorticity is concentrated as
the region M. Then we obtain that Eqn (2.9a) is equivalent to
the system of equations

q
qt

H� n� H� �H� �n� V0�
�ÿ H� �n�X0� � 0; r 2M ;

�2:12a�
Hn � 0 ; r 2M ; �2:12b��
qn
qt
� H� �n� V0� ÿ v

�
� n � 0 ; r 2 G�M� ; �2:12c�

�
C

�
qn
qt
� H� �n� V0� ÿ v

�
dl � 0 ; �2:12d�

where n is the normal to the surface G�M�. An important
advantage of the system of Eqns (2.12) in comparison with
Eqn (2.9a) is that the integral term v is excluded from the
equation over the whole region inside the vortex and is to be
calculated only at the boundary G�M�.

2.2.2 Transform of equation for velocity evaluation. Equation
(2.12c) contains the normal velocity disturbance v n � �v � n�
at the boundary G�M� for a given displacement field e.
Therefore the system of equations (2.12) must be supplemen-
ted with expression (2.9b) from which the velocity distur-
bance v is found. We transform this expression into a form
more convenient for calculations. Making use of integration
by parts, we get a chain of equalities

v � H� 1

4p

�
M

H 0 � B

jrÿ r 0j dr
0 � 1

4p

�
M

H 0 � �H 0 � B�
jrÿ r 0j dr 0

� 1

4p

�
M

H 0�H 0B� ÿ H 0 2B
jrÿ r 0j dr 0 � B� H

1

4p

�
M

H 0 B
jrÿ r 0j dr

0 ;

�2:13�

whereB � n�X0. Hence it follows, that in the region outside
the vortex the velocity disturbance v can be presented as the
field produced by sources with intensity Q�r� � ÿH�n�X0�.

Indeed, in this region B � 0 and therefore

v � HF ; F � ÿ 1

4p

�
M

Q�r 0�
jrÿ r 0j dr

0 : �2:14�

Since the normal component of the velocity is continuous
at the vortex boundary, both the external and the internal
limit of expression (2.13) can be used for calculating the value
v n in Eqn (2.12c). We shall use the external limit, proceeding
from Eqn (2.14).

Note also, that in calculations of the field v the intensityQ
in Eqn (2.14) can be given in different ways. Really, the field
outside the region M does not change on substituting
Q! Q�Q 0 where Q 0 � H 2G is an arbitrary function
identically equal to zero outside the region M. Thus, the
velocity disturbance outside the vortex can be found from
Eqn (2.14) with an intensity of a more general kind

Q � ÿH��n�X0� � HG
�
; �2:15�

where G is an arbitrary function different from zero only in
the region occupied by the vortex.

In particular, one can select the solution of the equation
H 2G � ÿH�n�X0� for r 2M as the function G on condition
that G � 0 at the boundary r 2 G�M�. Then the volume
intensity Q becomes the surface one. This transform some-
times substantially facilitates calculations.

2.2.3 Some comments on the system of governing equations.We
dwell on the physical meaning of the equation set (2.12),
(2.14). Since the vortex boundary displacement is equal to
�n � n� for r 2 G�M�, Eqn (2.12c) describes the disturbed
vortex boundary evolution. The vortex boundary evolution
is related to the disturbance shape inside the vortex through
the term �v � n� which is expressed as the integral (2.14) over
the whole vortex volume. In its turn, the disturbance
evolution inside the vortex is described by Eqn (2.12a),
(2.12b). The internal disturbance dependence on the bound-
ary shape is expressed in the fact that Eqn (2.12c) serves as a
boundary condition for Eqns (2.12a), (2.12b). Thus, the
equation system (2.12), (2.14) describes the disturbances of
the three-dimensional vortex as a joint evolution of the vortex
boundary and of disturbances inside the vortex region. Such
an approach can be considered an extension of the contour
dynamics method applied for describing the evolution of the
boundary of a two-dimensional vortex of uniform vorticity
[44, 45] to the case of three-dimensional disturbances of
localized vortices with arbitrary vorticity.

2.3 Energy of disturbances in vortex flows
The disturbance energy is one of the most important flow
characteristics which in many cases permits not only an
understanding, but also a description of the characteristic
peculiarities of the system behaviour. The energy of the
disturbed flow (surely, positive) can be greater or smaller
than the energy of the basic flow. Therefore it seems reason-
able to speak about the positive or negative energy of
disturbances, according to the sign of the energy difference
of the disturbed and reference states. Disturbances with an
energy larger than the reference state energy will be called
disturbances with positive energy, since it is necessary to
introduce energy into the system for their generation.
Disturbances with an energy smaller than the reference state
energy will be called disturbances with negative energy, since
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for their production energy must be taken away. The notion
of disturbances (waves) of negative energy is widely used not
only in hydrodynamics [46, 47], but in the physics of plasma
[48, 49], acoustics [50, 51], oceanography [52, 53] etc.

For such complex flows as a vortex ring, the search for the
oscillation energy requires cumbersome calculations. In this
connection, we reduce some expressions for the disturbance
energy to the simplest and most convenient form. Following
the well known works of Arnold [33, 34], we get a general
expression for the second variation of the kinetic energy
functional on the set of isovortical flows. Since, according to
Arnold's theorem, the first variation is equal to zero, the
second variation will present the required difference of the
disturbed and steady flow energy. A detailed review of the
problem and supplements can be found, for example, in
Ref. [35].

For the case of flows which are steady in coordinate
systems moving or rotating with constant velocities, the
expression obtained requires some modification, since in this
case a more complex functional presenting some generalized
flow energy in moving or rotating coordinate systems turns
out to be extremal [54, 43].

2.3.1 Energy of isovortical disturbances and Arnold's theorem.
First consider the case when the main steady flow has a
velocity field V0 decaying at infinity in the fixed coordinate
system. The kinetic energy of an infinite flow of incompres-
sible fluid with velocity fieldV is determined by the functional

T � 1

2

�
V 2 dr ; �2:16�

where the integration is performed over the whole space and
the density is taken to be equal to unity. For three-
dimensional flows, if the vorticity field decreases fast enough
and the integral

� �r�X� dr converges, the velocity V
decreases at infinity as r3 and integral (2.16) does exist. This
condition is known to be fulfilled for flows with localized
vortices.

We present the velocity field as V � V0 � dv� d2v� . . . ,
where dv and d2v are the first and the second velocity
variations, respectively. Then the disturbance energy, i.e. the
energy difference between the disturbed and steady flows in
the first and the second approximations, will be as follows:

dT �
�
V0 dv dr ; �2:17�

d2T � 1

2

���dv�2 � 2V0 d
2v
�
dr : �2:18�

We will show that the integral (2.17) becomes zero on the
set of isovortical flows and calculate the second variation of
energy (2.18) which exactly presents the disturbance energy.

According to Eqns (2.4), the first and second variations of
the vorticity field for an arbitrary displacement field are

dX � H� �e �X0� ;

d2X � 1

2
H� ÿe � H� �e �X0�

�
: �2:19�

Making use of the fact that the velocity and vorticity field
variations are connected with the relations dX � H� dv and

d2X � H� d2v, we get

dv � �e �X0� � Hj1 ;

d2v � 1

2

ÿ
e � H� �e �X0�

�� Hj2 ; �2:20�

where j1 and j2 are to be chosen in such a way that the fields
dv and d2v are divergence-free. Consider integral (2.17). With
account for Eqn. (2.20), we get

dT �
�
V0 dv dr �

�
V0�e �X0� dr�

�
V0Hj1 dr : �2:21�

Using integration by parts and making use of the solenoidal
character of the velocity field V0, we get that the second
integral in (2.21) becomes zero, i.e.

dT �
��
V0�e �X0�

�
dr �

��
e�X0 � V0�

�
dr : �2:22�

In Eqn (2.22) the field e is not arbitrary and satisfies the
condition of zero divergence. This field can be presented as
e � H� b, where b is already an arbitrary vector field. After
simple transforms we obtain from Eqn (2.22):

dT �
��
bH� �X0 � V0�

�
dr : �2:23�

For a steady flow Helmholtz's equation is as follows

H� �X0 � V0� � 0 ; �2:24�
and from Eqns (2.23) and (2.24) we obtain dT � 0. Thus, we
derived the well knownArnold's variational principle: a steady
flow of ideal fluid is the point of the conditional extremum of
the kinetic energy functional on the set of isovortical flows.
Due to the arbitrary character of the field b, it is obvious that
the inverse statement is also valid.

We determine the second variation of the energy d2T. The
first term in Eqn (2.18) is left unchanged, the second, with
account for Eqn (2.20), is rewritten in a form similar to Eqn
(2.22). The part of integral (2.18) connected with Hj2

becomes zero after integration by parts. With account for
Eqn (2.19) we obtain for d2T,

d2T � 1

2

���dv�2 � dX�V0 � e��dr : �2:25�

We emphasize that the second variation of energy is
expressed through linear flow variations. Therefore it is
sufficient to know the disturbance dynamics only in a linear
approximation for energy calculations.

2.3.2 Disturbance energy in a coordinate system moving or
rotating with constant velocity. It was assumed in deriving Eqn
(2.25) that the steady velocity field V0 decreased at infinity.
Flows which are steady in the moving coordinate system (e.g.
vortex ring) obviously do not comply with Eqn (2.24),
therefore Arnold's variational principle cannot be applied to
them in the pure form. The same can be said about flows
which are steady in the rotating coordinate system (e.g.
Kirchhoff's vortex). The velocity and vorticity fields for
such flows satisfyHelmholtz's equation in the following form:

H� �U0 �X0� � 0 ; �2:26�
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where U0 � V0 ÿ V1 ÿ x� r, V0 is the velocity field decay-
ing at infinity and connected with the vorticity field X0

through the Biot ± Savart integral (2.10); and V1 and x are
the translation velocity and angular velocity of vortex in the
fixed coordinate system, respectively.

We introduce the integrals of vortex momentum p and
vortex angular momentum M [6] into the consideration in
addition to the kinetic energy integral T (2.16):

p � 1

2

�
�r�X� dr ; �2:27�

M � 1

3

�ÿ
r� �r�X�� dr : �2:28�

According to the formulas of Hamiltonian transforms in
classical mechanics, the functional

T 0 � Tÿ V1pÿ xM �2:29�

presents the flow energy in the coordinate systemmovingwith
the constant velocity V1 and rotating with constant angular
velocity x.

We find the first variation of the generalized energy:
dT 0 � dTÿ V1dpÿ xdM. We shall use Eqn (2.22) for dT.
Let us consider the variations of the momentum dp and of the
angular momentum dM. With account for Eqn (2.19) on the
isovortical layer, we have

V1dp �
��
e�X0 � V1�

�
dr ; �2:30�

xdM �
��
e
ÿ
X0 � �x� r��� dr : �2:31�

Substituting Eqns (2.30) and (2.31) together with Eqn (2.22)
into Eqn (2.29), we finally obtain:

dT 0 �
��
e�X0 �U0�

�
dr : �2:32�

Using the same reasoning as to derive Eqn (2.23) and taking
into account theHelmholtz equation (2.26) we obtain that the
integral (2.32) becomes zero. Hence, the functional of the
generalized energy (2.29) is extreme at flows which are steady
in the coordinate system moving with constant velocity V1
and rotating with constant angular velocity x.

For the second variation we get:

d2T 0 � 1

2

���dv�2 � dX�U0 � e�� dr ; �2:33�

which naturally agrees with Eqn (2.25) at V1 � x� 0.
Making use of the equality

� �dv�2 dr � � �dX � dA� dr, where
dA is the vector potential of disturbances determined by the
formula H� dA � dv, we get:

d2T 0 � 1

2

��
dX�dAÿ e �U0�

�
dr : �2:34�

2.3.3 Expression for the disturbance energy in terms of the
displacement field.Using Eqn (2.5) and the transform formula
for the divergence from the vector product, we present the
integrand in Eqn (2.34) in the form:

dX�dAÿ e �U0� � H
��e �X0� � �dAÿ e �U0�

�
� �e �X0�

ÿ
dvÿ H� �e �U0�

�
:

Making use of Eqns (2.9a) or (2.10), with account for the
integral of the first term being equal to zero, we get the
following expression:

d2T � 1

2

��
X0

�
qe
qt
� e

��
dr : �2:35�

Equation (2.35) is valid for arbitrary displacement fields e,
including Lagrangian displacement field n. If the frequencies
and the form of vortex eigen-oscillations are found, Eqn
(2.35) appears to be more convenient for calculations of the
oscillation energy than Eqn (2.34).

3. Vortex ring eigen-oscillations

This section considers long-wave eigen-oscillations of a thin
vortex ring with piecewise-uniform and piecewise-isochro-
nous vorticity profiles in an ideal incompressible fluid. These
vorticity distributions appear to be the simplest for obtaining
analytical solutions. A complete set of three-dimensional
eigen-oscillations for vortex rings with such vorticity profiles
was found in Ref. [32] in the form of asymptotic expansions in
terms of the small parameter m characterizing the ring
thickness. These solutions will be used in Section 4 as the
starting point for exploring oscillations of vortex rings with
more general profiles (smoothed vorticity profile).

3.1 Review of different approaches to the problem
of vortex ring oscillations
As a consequence of the extreme complexity of the problem,
all the theoretical solutions of vortex ring eigen-oscillation
problem are limited to the case of a thin vortex ring (m5 1, m
is the ratio of the vortex ring cross-section to the ring radius).
However, until recent times, even for this case only those
modes were found the form of which permits simplifying the
problem still more. For this purpose the disturbance
axisymmetry, short-wave approximation or a priori assump-
tions relating to the oscillation shape were used. We describe
the main approaches based on using such simplifications.

The simplest problem is that relating to axisymmetric
oscillations. It reduces to determining the vortex boundary
disturbances. In this case it is possible to study both small-
amplitude [55] and the non-linear disturbances [56].

In the case of short-wave three-dimensional oscillations
[28] the wave length is a supplemental small parameter, the
presence of which permits solutions to be obtained, ignoring
the mutual interaction of the disturbances in the vortex ring
regions far away from one another.

For arbitrary three-dimensional oscillations there are two
well known cases in which the problem of oscillations of a
vortex ring with small parameter m is reduced to the analysis
of the limiting case m � 0. This limit can be realized in two
different ways. In the first case the limit is achieved at finite
ring radius and for the vortex cross-section dimension tending
to zero. In this case the disturbance structure in the core is set
a priori. In the second case the limit m � 0 is achieved at finite
vortex cross-section dimension and infinite ring radius and
this leads to neglecting the curvature of the vortex ring mean
line.

The first approach corresponds to the method of local
approximation [57] and the more exact version developed in
Refs [58 ± 60]. According to this method, the self-induced
velocity in any vortex section is calculated in such a way as if
the whole vortex were a filament of infinitely small thickness,
excluding the vicinity of the section considered, where the
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flow structure coincides with the flow structure in the fitted
steady vortex ring. The complete solution shows that this
method permits a correct solution to be obtained for one of
the families of oscillations accompanied by bending distur-
bances of the vortex mean line (bending modes). However,
the evolution of the mean line at each moment of time for the
oscillations of other families is determined not only by this
mean line form, but also by the disturbance structure inside
the vortex core.

In the second approach the limiting value m � 0 is
achieved by replacing a thin vortex ring with a cylindrical
vortex [61, 62]. The basis for this approach is the fact that the
local flow structure in a thin vortex ring is close to the flow
structure in a cylindrical vortex. A more sophisticated
treatment shows that the oscillations of these vortices really
have a spectrum similar in structure. However, the oscillation
shapes of the vortex ring, obtained in the cylindrical vortex
approximation, appear incorrect. Unlike the eigen-oscilla-
tions of the cylindrical vortex, the vortex ring eigen-oscilla-
tions in the leading approximation can be not a single angular
harmonic, but a sum of two angular harmonics.

To solve the problem of thin vortex ring oscillations and
to avoid the difficulties indicated, the following procedure
was developed in Ref. [32]. The task of finding the eigen-
oscillations was divided into three simpler tasks. As the first
step, a set of basic disturbances was built, and the eigen-
oscillations were expanded in these disturbances. At the
second stage the Biot ± Savart integral was calculated for
each of the basic disturbances. At the third stage the system
of algebraic equations determining the eigen-oscillation
frequencies and shapes was solved. Such an approach
permitted simultaneously finding the disturbance structure
inside the vortex, the boundary displacement form and eigen-
frequencies, and evaluating the value of rejected terms in each
approximation. To realize this procedure it appeared reason-
able to use the displacement field e. The main elements of this
procedure and the principal results are given below.

3.2 Oscillations of a cylindrical vortex
In the limiting case m � 0 (R!1, r0 � const, whereR is the
ring radius, r0 is the vortex cross-section radius) the thin
vortex ring with a piecewise-uniform vorticity profile trans-
forms into the cylindrical Rankin vortex with a constant
vorticity O0. The dependence of the dimensionless angular
velocity U0 on the radial coordinate r for Rankin's vortex is
presented in Fig. 3.

The solution for small oscillations of the cylindrical vortex
was obtained by Kelvin [2] and is well known (e.g. Ref. [63]).
We shall give here a short review of these oscillations, keeping
in mind that some of their properties appear to be similar to
those of vortex ring oscillations.

The eigen-oscillations of Rankin's vortex in the cylind-
rical coordinates r;j; z with the axis ez along the vortex axis
are as follows:

V i � V i�r� exp�imj� ikzÿ iot� ; m � 0; 1; 2; . . . �3:1�

The possibility of seeking the solution in such a form is
connected with the cylindrical vortex symmetry relative to
translations along the z-coordinate and rotations around the
axis ez. Note that for the vortex ring there is only one
symmetry connected with rotations through the angle y (the
analogue to the symmetry of a cylindrical vortex relative to
translations along the z-axis).

Consider only the case of k5 0, m5 0, since it can be
easily extended to the case of k < 0, m4 ÿ 1. We restrict
ourselves to the case of long-wave oscillations, i.e. we assume
that kr0 5 1.

We select the dimensionless variables in which the vortex
cross-section radius r0 � 1, and the steady vorticity field
O0 � 1 (the angular velocity in the core becomes U0 � 1=2).

3.2.1 Dispersion relation. To find the cylindrical vortex eigen-
oscillations, the equations for velocity disturbances in the
regions inside and outside the vortex are solved separately
and then their solutions are matched at the vortex boundary.
The disturbances inside the vortex satisfy Helmholtz's
equation (2.6) and the condition of zero divergence for the
velocity field. Excluding the velocity components vr and vj

from these equations, we come to a Bessel equation for the
component v z

1

r
d

dr

�
r
dv z

dr

�
�
�
a2 ÿm2

r2

�
v z � 0 ;

where a �
����������������
1ÿ o 0 2
p

k=o 0, o 0 � oÿm=2. The solution of
this equation finite at zero is the Bessel function v z � Jm�ar�.
Using this solution, one can easily obtain the other compo-
nents of the velocity field.

The flow is potential outside the vortex. The velocity
potential F satisfies the Laplace equation. Its solution,
decreasing at infinity, takes on the form:

F � AH �1�m �ikr� ;

where H
�1�
m is the Hankel function of the first kind. The

constant A, together with eigen-frequencies, is determined
from the conditions of continuity of the normal velocity
component v r and pressure p at the boundary r � 1. These
conditions lead to the dispersion equation

o 0kJm�1�a�����������������
1ÿ o 0 2
p

Jm�a�
� ikH

�1�
m�1�ik�

H
�1�
m �ik�

ÿ m

1� o 0
� 0 : �3:2�

This equation is valid for an arbitrary k, but further we shall
be interested only in the case of k5 1.

3.2.2 Analysis of dispersion relation for k5 1. For long-wave
oscillations �k5 1� the dispersion equation (3.2) has solu-
tions in two regions of parameter a : a � O�1� and a5 1. At

U0

1=2

r0 r

Figure 3. Angular velocity dependence on the radial coordinate for

Rankin's vortex.
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a � O�1� for eachm � 0; 1; 2; . . . there is a family of solutions:

oj � m

2
� k

aj
�O�k2� ; j � �1;�2; . . . �3:3�

where aj are the zeros of Bessel function Jm�a�. We shall call
these eigen-oscillations Bessel modes. The eigen-frequencies
oj have the concentration point o � m=2 and are located to
the right and to the left of it. The modes with frequencies
located to the right of the concentration point �aj > 0� are
called advancing, since their angular velocity is larger than the
maximum angular velocity of the flow at the core boundary
�oj=m > 1=2�. On the contrary, the modes whose frequencies
are located to the left of the concentration point �aj < 0� are
called lagging. There is an important difference between these
modes. The phase velocity of the lagging modes is smaller
than the maximum angular velocity of the mean flow (see
Fig. 3) and therefore it can coincide with this angular velocity
on some streamline rc (in the presence of variable vorticity
outside the vortex core such a line will correspond to the so-
called critical layer; see Section 4). These lines are in the region
outside the vortex, and the closer they are to the vortex
boundary, the closer the eigen-oscillation eigen-frequency is
to the concentration point. On the contrary, the phase
velocity of the advancing modes is larger than the angular
velocity of the mean flow and such lines for them are absent.

For eachm � 1; 2; . . . Eqn (3.2) has one more solution for
a5 1:

o � mÿ 1

2
�O�k2� ; m5 2 ; �3:4a�

o � ÿ k2

4

�
ln

2

k
ÿ C� 1

4

�
�O�k 4 ln k� ; m � 1 ; �3:4b�

where C � 0:58 is Euler's constant [64]. The respective eigen-
oscillations are called isolated modes; the isolated mode with
m � 1 is also called a bending mode. Note, that the bending
mode frequency is negative. This means that this oscillation
angular phase velocity is directed against the flow.

Thus, close to each frequency value o � l=2,
l � 0; 1; 2; . . . , there exist modes of two types: Bessel modes
which are of the harmonic type exp�imj� with m � l and one
isolated mode which is the next harmonic with m � l� 1
(Fig. 4a). We see that long-wave eigen-oscillations of the
cylindrical vortex with a given k can be classified both
according to the harmonic number m and the number l
which characterizes the nearest concentration point of the
eigen-frequencies o � l=2.

As we shall see, there exists only the second possibility for
the vortex ring. The eigen-frequencies of the vortex ring as
well as those of the cylindrical vortex are close too � l=2 and

accordingly these oscillations can be characterized by the
number l. At the same time the numberm of a harmonic in the
vortex cross-section does not characterize the vortex ring
eigen-oscillations, since these occur as a sum of harmonics
exp�imj� with different m, in contrast to the cylindrical
vortex for which the eigen-oscillations are separate harmo-
nics in j.

3.2.3 Eigen-oscillation shapes. It follows from (3.1) that the
disturbed vortex boundary is of corrugated structure. This
structure in each cross-section z � z0 has m lobes turned
around the cylinder axis through an angle depending on z,
according to the expression exp�imj� ikz� (Fig. 5).

Bessel modes with m � 0 have a characteristic barrel-like
shape and, according to this, are called bulging modes
(Fig. 5b). Isolated modes with m � 1, as was indicated
above, are called bending modes, as these oscillations are
reduced to a periodical displacement of the vortex mean line
(Fig. 5a).

Bessel and isolated modes with the same number m have
an identical shape of vortex boundary disturbance (Fig. 5c).
However, the disturbance structures inside the vortex are
different for these oscillations. The isolated modes have a
power dependency on the coordinate r and Bessel oscillations
are of an oscillating character in the radial direction.

The difference between the Bessel and isolated modes also
manifests itself through the relation between the disturbance
amplitude outside the vortex and the vortex boundary
displacement amplitude. For isolated oscillations these
amplitudes are of the same order. In contrast, Bessel
oscillations appear to be localized mostly inside the vortex.
For these oscillations the disturbance amplitude outside the
vortex appears to be of order O�k� relative to the boundary
displacement amplitude. This is connected with the fact that
according to (3.1) the phase velocity of disturbances for Bessel
oscillations appears to be close to the basic flow velocity at the
vortex boundary, i.e. these disturbances are seen as `adhered'
to the basic flow at the vortex boundary and only slightly
perturb the external flow region. This property has a number
of serious consequences. In particular, with account for the
medium compressibility, the vortex oscillations generate

l=2 o
k4 0

a

l=2
k � 0

o

b

Figure 4. Eigen-frequencies of a cylindrical vortex close to the value

o � l=2: k > 0 (a) and k � 0 (b); � Bessel modes �m � l�; � isolated mode

�m � l� 1�.

a b c

Figure 5. Disturbance shape of the cylindrical vortex boundary: bending

mode, m � 1 (a); bulging mode, m � 0 (b); Bessel modes and isolated

mode at m � 2 (c).
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sound radiation. These `adhered' oscillations in this case
appear to be inefficient sound sources. On the contrary, the
non-`adhered' oscillations radiate sound efficiently and are of
greater interest from this standpoint.

In the case of two-dimensional oscillations �k � 0� the
isolated modes are reduced to oscillations of a plane circular
vortex [5, 63] with frequency o � �mÿ 1�=2. The frequencies
of all Bessel modes appear to be o � m=2, i.e. these modes
become degenerate (Fig. 4b). In this case the eigen-oscillation
with frequencyo � m=2 will be any disturbance of the vortex
core of the form

Or � 0 ; Oj � 0 ;

O z �
�
f�r� ÿ d�rÿ 1�

�1
0

f�r�rm�1 dr
�
exp�imj� ;

where f �r� is an arbitrary function, and d is Dirac's delta-
function. Despite the fact that the vorticity disturbance in the
core (the first term) is followed by the boundary displacement
with an amplitude of order O�1� (the term with the d-
function), it is easy to check that such oscillations produce
no disturbances in the external region �r > 1� at all, since
their phase velocity exactly equals 1=2, i.e. these disturbances
exactly follow the basic flow [65] at the vortex boundary.
These modes together with the isolated mode make up a
complete set of disturbances in terms of which any two-
dimensional disturbance of the vortex core can be expanded.

3.3 Three-dimensional oscillations of vortex ring
We return to the consideration of vortex ring oscillations. In
three-dimensional (non-axisymmetric) oscillations of the
vortex ring one can separate two principal difficulties. The
first is connected with selecting the simplest steady flow. Even
if the vorticity is completely localizedwithin the boundaries of
the toroidal core region, the question relating to the simplest
vorticity profile, from the standpoint of obtaining an
analytical solution, is not trivial.

It is known that for thin vortex rings there exist an infinite
number of different vorticity distributions in the core cross-
section, for which the flow is steady in the coordinate system
moving together with the vortex ring [66]. The simplest
distribution among them seems to be the so-called uniform
one for which the vorticity amplitudeX is proportional to the
distance from the vortex symmetry axis x �O=x � const�.
Note that a steady flow with such a vorticity distribution
exists not only in the case of a thin �m5 1� ring, but also for
rings of arbitrary thickness [67], including Hill's vortex as a
limiting case [42].

The uniform vorticity distribution is characterized by the
fact that the axisymmetric boundary disturbances produce no
vorticity disturbances in the core. Therefore it is very
convenient for studying axisymmetric oscillations (Sections
3.3.1, 3.3.2). On the other hand, for such a vorticity
distribution the period of fluid particle motion on stream-
lines in the vortex core does not appear to be identical for
different streamlines (i.e. particles do not move isochro-
nously). The non-isochronism can be easily understood
from considering the limiting case of Hill's vortex, for which
the period of fluid particle movement tends to infinity on
approaching the vortex boundary. This non-isochronism
leads to the appearance of disturbances of the continuous
spectrum arising at flow oscillations. This fact does not
prevent the study of axisymmetric oscillations, for which the
continuous spectrum disturbances can be described rather

simply [32]. However in the case of three-dimensional (non-
axisymmetric) oscillations the presence of the continuous
spectrum makes the task very complex. Therefore the most
suitable vorticity distribution for describing three-dimen-
sional oscillations is one for which the periods of fluid
particle movement on streamlines are identical (an isochro-
nous vorticity distribution; see Sections 3.3.3 ± 3.3.6). In the
case of a cylindrical vortex the uniform vorticity distribution
�O0 � const� is simultaneously isochronous. For a thin vortex
ring these distributions coincide only in the first two
approximations in m and differ in the terms of order O�m2�.
The expressions for the isochronous vorticity distribution in
the vortex ring were obtained in Ref. [68] and are presented
below.

The second difficulty is connected with the fact that it is
not known beforehand for three-dimensional oscillations in
what form the solution ought to be sought. This is their
distinction from cylindrical vortex oscillations (Section 3.2)
and from two-dimensional (axisymmetric) vortex ring oscilla-
tions, for which the general form of the solution can easily be
guessed. In particular, using the cylindrical vortex modes as
the leading approximation appears to be unsatisfactory.
Therefore a special procedure is built for the vortex ring,
which is considered below.

3.3.1 Steady flow with a uniform vorticity distribution.
Consider the cylindrical coordinates r; y; z with the axis ez
along the ring axis and the polar coordinates r;j in the core
cross-section with the centre at the stagnation point (Fig. 6).
These coordinates are connected by the relations
r � Rÿ r cosj and z � r sinj, where R is the distance
from the ring axis to the stagnation point. We also make use
of the coordinate s connected with the angular coordinate y
by the relation s � Ry.

The vorticity magnitude for the uniform distribution is
proportional to the distance from the ring symmetry axis, i.e.
X0 � esO0r=R �O0 � const�. The contravariant s-component
of the vorticity field is constant O s

0 � O0. The steady velocity
field U0 can be presented as U0 � V0 ÿ V1, where the
velocity field component V0 decaying at infinity is deter-
mined by the Biot ± Savart law (2.10), V1 is the ring velocity
in the fixed coordinate system directed along the z-axis and
equal to

Vz
1 �

O0a m
4

�
ln

8

m
ÿ 1

4

�
:

z

r

j

y

x
R r

a

Figure 6. Coordinate system.
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We exactly determine the small parameter m which
characterizes the ring thickness. This parameter is the ratio
of the core cross-section dimension a to the ring radius R:
m � a=R. Since the cross-section boundary is close to circular,
differing only in terms of order O�m2�, a is determined as the
radius of the circle with area pa2, exactly equal to the core
cross-section area.

The contra-variant components of the steady velocity
field inside the vortex ring core and the core boundary shape
are as follows:

V
r
0 � ÿmO0

5r2

16a
sinj� m2O0

��
3

8
ln

8

m
ÿ 15

64

�
rÿ r3

16a2

�
� sin 2j�O�m3� ; �3:5a�

V
j
0 �

O0

2
� m2O0

5

16
ÿ mO0

7r
16a

cosj

� m2O0

��
3

8
ln

8

m
ÿ 15

64

�
ÿ r2

32a2

�
cos 2j�O�m3� ; �3:5b�

r � a

�
1� 5

8
m cosjÿ 25

256
m2

�
�
161

256
ÿ 3

8
ln

8

m

�
m2 cos 2j

�
�O�m3� ; �3:5c�

where the unified expression O�m n� is used, for the sake of
brevity, for indicating the terms of order m n ln m and m n. Note,
that the contra-variant velocity j component is of angular
velocity dimensionality.

Note that for describing the steady flow in the vortex ring,
the polar coordinates rc;jc with another origin located at the
ring cross-section centre can be used. It is closer to the ring
axis than the stagnation point by the value
Dx � �5a=8�m�O�m3� [68] can be used. Equations (3.5)
expressed in the coordinates rc;jc for a � 1 were used in
[28]. In particular, the boundary shape (3.5c) in these
coordinates is simpler. It is expressed as follows:

rc � a

�
1� m2

�
ÿ 3

8
ln

8

m
� 17

32

�
cos 2jc �O�m3�

�
:

For convenience of calculations inRef. [32] the curvilinear
coordinates s;c are determined in the ring core cross-section,
which coincide in the leading approximation with the
coordinates r;j respectively. The coordinates s�r;j� and
c�r;j� are selected in such a way that the relations V s

0 � 0,
V

c
0 � V

c
0 �s�,

�����jgjp � s are satisfied, where V s
0 , V

c
0 are the

contravariant components of the velocity field, gij is the
metrical tensor in the coordinate system s;c; s. The lines
s � const correspond to streamlines, since V s

0 � 0. The
condition

�����jgjp � s is selected to ensure that the differential
operators in the coordinate system s;c; s have the simplest
form. The specific expressions for the coordinates s;c; s and
themetric tensor gij with an accuracy up to m2 are presented in
Ref. [32]. Contravariant components of the steady velocity
field in these coordinates are

V s
0 � 0 ; V

c
0 �

1

2
ÿ m2

21

64
s2 �O�m3� : �3:6�

For convenience, we use dimensionless variables from
here on. As the time scale we select Oÿ10 and the length scale
a
�
1� �5=16�m2 �O�m3��. The length scale is selected to

ensure that the vortex boundary corresponds to the line
s � 1.

Calculating the rotation period of fluid particles on the
streamlines, we obtain:

T �
�

dl

jV0j �
2p

V
c
0 �s�

: �3:7�

It is evident from Eqns (3.6) and (3.7), that the vortex ring
with uniform vorticity appears to be non-isochronous, i.e. the
rotation periods of fluid particles in the vortex core on
different streamlines s � const turn out to be different.
However this difference is of order O�m2�, i.e. the uniform
vorticity distribution for the thin vortex ring differs only
slightly from the isochronous one.

3.3.2 Axisymmetric oscillations of a vortex ring with uniform
vorticity. The family of axisymmetric oscillations of a vortex
ring with uniform vorticity is described in Ref. [32]. Their
analogue are two-dimensional oscillations of a cylindrical
vortex (Section 3.2.3). The family of axisymmetric oscilla-
tions consists of isolated modes which are reduced exclusively
to vortex boundary disturbances, and of continuous spectrum
oscillations including vorticity disturbances in the core. The
isolated mode frequency is expressed as

o � l

2
� m2

�
6l 3 � 18l 2 � 14l� 3

16l�l� 1��l� 2� ÿ
21

64
�l� 1�

�
�O�m3� ;

l � 1; 2; . . .

In contrast to the continuous spectrum of the cylindrical
vortex degenerating in the two-dimensional case into the
point o � l=2, the frequencies of axisymmetric oscillation
belonging to the continuous spectrum of the vortex ring
occupy the frequency region o=l � �V c

0;min;V
c
0;max� (Fig. 7).

The appearance of the continuous spectrum for the non-
isochronous flow is connected with the fact that V

c
0 depends

on s and the solutions of Eqn (2.12a) have a singularity at
ÿo�mV

c
0 �s� � 0, where m is an integer.

3.3.3 Steady vortex ring with isochronous movement of fluid
particles. The condition of isochronism for the vortex ring
with uniform vorticity is not satisfied for the terms of order
O�m2�. In the general case the search for a vorticity
distribution which satisfies the isochronism condition is a
complex problem. However, if one restricts oneself to the
terms of order O�m2�, the uniform vorticity distribution can
be easily modified to satisfy this condition. With accuracy up
to m2, the steady vortex ring with isochronous flow has the
vorticity and velocity fields:

O s
0 � 1� m2

21

16
s2 �O�m3� ; V s

0 � 0 ; V
c
0 �

1

2
:

Since V
c
0 is independent of s, this flow, according to Eqn

(3.7), is isochronous in the vortex core. The vortex ring with
isochronous flow in the core represents a special choice
because its c-component of the velocity is independent of s

�1; 0; 0� �l; 0; 0� n � 0

l=2 o1=20

Figure 7. Mutual arrangement of the continuous spectrum and isolated

mode (*) close to each value of l=2, l5 1.
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in any approximation. Hence such a vortex ring has the
oscillation of the discrete spectrum only. In this aspect, it is
the isochronous vortex ring, and not the uniform one, that is
the simplest for studying three-dimensional oscillations. This
flowwas used inRef. [32] as the principal one in investigations
of three-dimensional oscillations.

3.3.4 Main equations for describing vortex ring oscillations.
The vortex ring symmetry relative to the z axis permits
seeking for eigen-oscillations in the following form:

x i�r; t� � x i�s;c� exp�inyÿ iot� :

Thus, to find the vortex ring disturbance shape, it is
necessary to find the vector amplitude function of two
variables x i�s;c�. That is why the problem of vortex ring
oscillations is much more complex than that of cylindrical
vortex oscillations. The latter reduces to determining the
function of one variable r.

To find the oscillations, two related tasks are to be solved:
to solve the system of differential equations (2.12a), (2.12b)
and to calculate the integral term in the boundary condition
(2.14). In Ref. [32] a solution method was proposed for the
case of long-wave oscillations �n � O�1��, which permits
these tasks to be separated. Principally this method consists
of the following steps.

The amplitude functions are expanded in terms of a set of
basic disturbances

n�s;c� �
X1

m�ÿ1
Cmn �m��s;c� : �3:8�

The basic disturbances n �m��s;c;o� are built in such a way
that each is a solution of Eqns (2.12a), (2.12b) and the whole
set of basic disturbances is a complete system of functions at
the boundary (in other words, the boundary values of s-
components of these fields are to be a complete system of
linearly independent functions in the segment 04c4 2p.
Though the basic disturbances individually do not satisfy
condition (2.12c) at the vortex boundary, any solution of the
system of equations (2.12a), (2.12b) with an arbitrary
boundary condition (including the eigen-oscillation) can be
presented as expansion (3.8).

The next step is the calculation of the velocity field at the
vortex boundary for each basic disturbance. For this purpose,
according to the Biot ± Savart law, integral (2.14) is calcu-
lated. Note, that presenting the velocity field in such a way
ensures that the disturbance decreases at infinity.

Finally, after the substitution of Eqn (3.8) and expressions
for the velocity field at the vortex boundary calculated at the
previous step into the boundary condition (2.12c), a system of
linear equations relative to the coefficients Cm of expansion
(3.8) is obtained. The condition that the determinant of this
system is equal to zero gives the dispersion equation on the
basis of which the eigen-frequencies are found. Further, after
substituting each of the eigen-frequencies in the system of
algebraic equations, the coefficients Cm of eigen-oscillation
expansion in terms of basic disturbances are found.

For a thin vortex ring the problem possesses the small
parameter m, which permits the solution at each of these
stages to be obtained with the use of successive approxima-
tions. It is to be taken into account that the eigen-frequencies
are degenerate for long-wave oscillations, i.e. in the first
approximations in m some eigen-frequencies coincide. The

shape of the respective eigen-oscillations in these approxima-
tions remains indefinite and higher approximations are to be
used for their determination, in which the mean flow in the
vortex ring is already different from the mean flow in the
cylindrical vortex. Therefore the shapes of some eigen-
oscillations of the thin vortex ring and the cylindrical vortex
are already different in the leading approximation despite the
proximity of mean flows.

3.3.5 Dispersion equation and eigen-frequencies. Consider the
cases of large �l5 1� and small �l � 0� frequencies separately.
In the case of l5 1 the dispersion equation is�
o 0 ÿ m2

�
6l 2 � 11l� 6

32l�l� 1��l� 2� ÿ
n2

4l�l� 2�
�
�O�m3�

�
Jl�a0�
Jl�1�a0�

� ÿ �3l� 2�2�l� 1�o 0 3
4n3m

�O�m2o 0; m 4� ; �3:9�

where a0 � �mn=o 0�
�
1�O�o 0��, o 0 � oÿ l=2. The disper-

sion equation (3.9) is a transcendental equation, the roots of
which determine the system eigen-frequencies. Since the right-
hand side is small, these roots are located close to those values
at which one of the multipliers in the left-hand side of the
equation becomes zero.

The second multiplier in Eqn (3.9) Jl�a0�=Jl�1�a0�, which
is a ratio of Bessel functions, becomes zero at an infinite
number of points corresponding to the zeros of Bessel
function Jl. These zeros correspond to an infinite family of
eigen-oscillations with the frequencies

o � l

2
� mn

aj

�
1�O�m�� ; �3:10�

where Jl�aj� � 0, j � �1;�2; . . . The eigen-frequencies have a
concentration point l=2 and are located on each side of it,
according to the sign of aj. The oscillations of this family are
called Bessel oscillations. Similar to the case of cylindrical
vortex, the modes with frequencies located to the right of the
concentration point �aj > 0� are called advancing. And on the
contrary, the modes with frequencies located to the left of it
�aj < 0� are called lagging.

At any value of l5 1 there exists one more eigen-
oscillation corresponding to the first multiplier becoming
zero in the dispersion equation. This oscillation has the
following frequency:

o � l

2
� m2

�
ÿ n2

4l�l� 2� �
6l 2 � 11l� 6

32l�l� 1��l� 2�
�
�O�m3� :

�3:11�

Such oscillations are called isolated. Depending on the
relation of l and n values, the eigen-frequency can be located
both to the right and to the left of the accumulation point l=2.

For small frequencies �l � 0� the dispersion equation is�
o2 ÿ m 4

16
AnBn �O�m5; m3o�

�
J0�a0�
J1�a0� � O�o3; m 6� ; �3:12�

where

An � �n2 ÿ 1� ln 8

m
� n2 � 5

4
ÿ 4n2 ÿ 1

2
Sn ;

Bn � n2 ln
8

m
� n2

4
ÿ 4n2 ÿ 3

2
Sn ; Sn �

Xn
k�1

1

2kÿ 1
:
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Equation (3.12) has an infinite number of roots close to
the zeros of Bessel function J0. These roots correspond to the
family of eigen-oscillations with the frequencies:

o � mn
aj

�
1�O�m�� ; �3:13�

where J0�aj� � 0, j � 1; 2; . . . The eigen-frequencies have the
concentration point o � 0 and are located to the right of it.
Bessel oscillations of this type are called bulging modes
(similarly to the cylindrical vortex oscillations). Note, that
values aj < 0 give no new solutions for bulging modes,
contrary to the case of l > 0.

At l � 0 there exists one more eigen-oscillation corre-
sponding to the first multiplier in Eqn (3.12) becoming zero.
This is the isolated mode (the so-called bending mode which
was the subject in Section 3.1 and in the Introduction) with
the frequency:

o � m2

4

�����������
AnBn

p
�O�m3� : �3:14�

Note that this expression, starting with a certain number
n, becomes imaginary [26]. However, the value of n, at which
the instability occurs, turns out to be large and the condition
of applicability of Eqn (3.14) is broken. The correct procedure
for describing a short-wave instability is given in Refs [28, 63].
Note also that when the instability develops, the frequency
becomes purely imaginary, i.e. such an instability is not of an
oscillating character.

The spectrum of thin vortex ring oscillations is shown in
Fig. 8. One can see that the structures of oscillation spectra of
the thin vortex ring and cylindrical vortex appear to be
similar. Really, for fixed wave number �k � mn � const� and
the ring curvature tending to zero �m! 0� expressions (3.10),
(3.11) exactly coincide with (3.3), (3.4a), and expressions
(3.13), (3.14) coincide with (3.3), (3.4b).

Thus, the long-wave three-dimensional eigen-oscillations
of the isochronous vortex ring are characterized by three
integers: the frequency number l, the azimuthal number n and
the radial number j. Indeed, the vortex ring oscillations have
frequencies in the vicinity of o � l=2 and have a definite
number n of azimuthal harmonic. Besides, Bessel and bulging
oscillations are also different in the radial number j 6� 0
characterizing the disturbance shape in the vortex core
cross-section. The value of j for isolated oscillations is
assumed to be zero.

3.3.6 Eigen-oscillation shapes. The oscillation shape is
determined by the coefficients Cm of expansion (3.8) in
terms of basic displacements n �m� and by the form of the
basic displacements themselves. The expressions for Cm and
n �m�, for all the long-wave oscillations are presented in Ref.
[32]. We present here only the expressions for the normal
component of the displacement field at the vortex boundary
xsjs�1, characterizing the deformation shape of the vortex
boundary for each oscillation.

The vortex boundary disturbance xsjs�1 for Bessel
oscillations for l5 1, o 0=m � O�1�, is as follows (Fig. 9a):

xs
���
s�1
� exp�ilc� ÿ �3l� 2��l� 1�

2naj
exp
�
i�l� 1�c��O�m� :

�3:15�

We see that the vortex ring boundary deformation in the
leading approximation is a combination of two harmonics
exp�ilc� and exp

�
i�l� 1�c�, while the Bessel oscillations of

the cylindrical vortex have the shape of the lth harmonic.
Oscillations of these vortices are different still further in

the region outside the vortex. Since the phase velocity of
disturbances exp�ilcÿ iot� is close to the flow mean velocity
(the lth harmonic is `adhered' to the mean flow), this
harmonic produces disturbances outside the vortex less
efficiently than the harmonic l� 1 (see Section 3.2.3). As a
result, the external region for the cylindrical vortex appears
weakly disturbed and for the vortex ring it is disturbed, since

...

�0; 1; j� �1; 1; j� �l; 1; j� n � 1

l=21=20 o

�0; 2; j� �1; 2; j� �l; 2; j� n � 2

l=21=20 o

�0; 3; j� �1; 3; j� �l; 3; j� n � 3

l=21=20 o

�0; n; j� �1; n; j� �l; n; j� n5 4

l=21=20 o

Figure 8. Vortex ring eigen-frequencies localized for each n close to values

of l=2: Bessel (and bulging) modes (*); isolated modes (*).

a b c d

Figure 9.Disturbance shape of vortex core boundary: Bessel modes l � 1, n � 2, j5 1 (a); bulging modes (two phases of oscillations), l � 0, n � 2, j5 1

(b); bending mode l � 0, n � 2, j � 0 (two phases of oscillations) (c); isolated mode l � 1, n � 1, j � 0 (d) in comparison with an axisymmetric one.
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in this region the harmonic l� 1 dominates which is
altogether absent in the cylindrical vortex case. In the polar
coordinates, with r andj relating to the vortex section centre,
the expressions for the velocity outside the vortex for the lth
Bessel oscillations of the vortex ring are

v r � ÿi �3l� 2��l� 1� exp�i�l� 1�j�
4naj r l�2

ÿ
1�O�m�� ;

vj � ÿ�3l� 2��l� 1� exp�i�l� 1�j�
4naj r l�3

ÿ
1�O�m�� : �3:16�

Thus, even weak differences in the mean flows of the
cylindrical vortex and vortex ring (curvature of vortex lines
and vorticity structure in the cross-section) lead to qualitative
variations in oscillation properties. These variations are
connected with eigen-frequency degeneration (see remark at
the end of Section 3.3.4). As for the limit m! 0, it is necessary
to take into account that for the curvature tending to zero the
vortex ring oscillations must transform into cylindrical vortex
oscillations on condition of constant wave length
�mn � const�. This means that in the case of a transform into
cylindrical vortex oscillations (Section 3.2) the correct limit is
m! 0, n!1. In this case expression (3.15) really trans-
forms into the expression for Bessel oscillations of the
cylindrical vortex.

All said above on Bessel oscillations with l5 1 relates in
full measure to bulging modes (Bessel oscillations with l � 0).
At o=m � O�1� the vortex boundary disturbance shape
(Fig. 9b) is

xs
���
s�1
� exp�i0c� ÿ 1

naj

ÿ
exp�ic� ÿ exp�ÿic���O�m� :

�3:17�

The bulging modes with n � 1 present an interesting and,
at first glance, unexpected version of vortex ring motion. Let
us turn from the travelling waves of type exp�inyÿ iot� to the
standing waves cos�ny� exp�ÿiot�. This is easy to do by
taking the half-sum of two travelling waves with wave
numbers n of opposite signs. In the case n � 1, this standing
barrel-like mode has the form

xs
���
s�1
� Re

��
exp�i0c� ÿ 1

aj

ÿ
exp�ic� ÿ exp�ÿic���

� cos y exp�ÿiot�
�

�
�
cosotÿ 2

aj
sinc sinot

�
cos y : �3:18�

At t � 0 the disturbance is determined by the first term in
Eqn (3.18) and has the characteristic barrel-like shape
(Fig. 10a) with different areas of the core cross-section at
different y, but within one fourth of the period [at t � p=�2o�]
this disturbance is determined by the second term in
Eqn (3.18) and reduces to a simple inclination of the ring
plane (Fig. 10b). Really, in a linear approximation in
disturbances the term with sinc is equivalent to the vortex
cross-section drift as a whole along the z-axis. Then the
multiplier cos y will correspond to the ring plane inclination
under the angle determined by the multiplier �2=aj� sinot
relative to the undisturbed position. At first glance, this seems
to be impossible, since the undisturbed ring momentum is

directed along ring axis and without account for the internal
structure of disturbances the flow momentum at such
oscillations would not be preserved.

The answer to this apparent paradox is that the momen-
tum disturbance in the second phase of oscillations is
connected not only with the ring axis inclination [38], but
also with the change in the internal vortex structure, i.e. the
momentum disturbance has two components. Using expres-
sion (2.26), we obtain that the first component connected with
the ring axis inclination is

d2P � ex
2p2

m2
o sinot ;

where ex is a unit vector in the ring plane, corresponding to
the azimuthal angle y � 0. The second contribution to the
momentum is associated with the fluid transport inside the
vortex ring (fluid flow is indicated in Fig. 10b by arrows)
which is characterized by the fluid flux P �
�2p=aj� sin y sinot through the core cross-section. This
secondary flow leading to a change in the core cross-section
area has, evidently, a momentum directed oppositely to that
associated with the ring axis inclination. Its calculations give
the following result:

d2P � ÿex 2p2

m2
o sinot ;

i.e. the contributions of two components are equal in value
and opposite in sign. Thus, the contributions of two
disturbance components to the momentum (ring plane
inclination and flow in the ring core along its mean line)
exactly compensate each other. This example is of great
importance, since it demonstrates in the leading approxima-
tion the presence of two harmonics simultaneously in vortex

a

b

c

d

Figure 10. Bulging standing mode, l � 0, n � �1, j5 1; the barrel-like

deformation is accompanied by a bending deformation in the same

approximation with a shift in phase by p=2.
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ring eigen-oscillations and permits an independent verifica-
tion of the correctness of calculations for this specific case.

For isolated oscillations with l5 1 the vortex boundary
disturbance (Fig. 9c, d) is:

xs
���
s�1
� exp

�
i�l� 1�c�ÿ m

4
exp�ilc�

ÿ �2l� 3�m
4�l� 1� exp

�
i�l� 2�c��O�m2� ; l5 1 ; �3:19a�

xs
���
s�1
� coscÿ i

�
Bn

An

�1=2

sinc�O�m� ; l � 0 : �3:19b�

In contrast to Bessel (bulging) oscillations, the isolated
(bending) modes of the vortex ring in the leading approxima-
tion coincide with the isolated modes of the cylindrical vortex
not only in frequency, but also in shape.

A comparison between Bessel and isolated modes with
neighbouring numbers l and identical n gives one more
example of the idea that the vortex ring oscillation dynamics
is determined not only by the global shape of the ring mean
line deformation, but also by the disturbance structure inside
the core. Thus, for example, the Bessel mode with l � 1, n � 2
and the bending mode with l � 0, n � 2 in successive phases
are given in Fig. 11. It is evident that the bending deformation
of the ring mean line for these oscillations coincides.
However, in the Bessel mode this bend is additionally
followed by an elliptical deformation of the core cross-
section. As a result, these modes, which are alike in respect
to the mean line deformation, have frequencies different by
several orders in m.

3.4 Disturbance energy
We find the disturbance energy for the vortex ring oscillations
described above. To calculate the energy we shall use
expression (2.35). The vortex ring eigen-oscillations will be
presented in the form e � �a� ib� exp�inyÿiot� where a and
b are real-valued vectors with components depending on the
coordinates s;c. Integration over y leads to the following
expression

E � po
m

�2p
0

�1
0

s2�acb s ÿ a sbc� dsdc : �3:20�

After integrating over c, only contributions from the
products of identical azimuthal harmonics remain.

For Bessel oscillations themain contribution to the energy
is made by the lth c-harmonic. Calculating integral (3.20) for
the case l5 1, we get:

E � p2l
2m2n

aj �O�mÿ1� : �3:21�

The energy sign depends on the sign of aj. For advancing
Bessel modes �aj > 0� the energy is positive and for lagging
ones �aj < 0� it is negative.

For bulging modes �l � 0� the energy is positive:

E � p2

m
�O�1� : �3:22�

For isolated oscillations (including an axisymmetric
mode) the main contribution is made by the c-harmonic
�l� 1�. Calculating integral (3.20) for the case l5 1 we find
that the energy is negative and is

E � ÿ p2

2m
l

l� 1
�O�1� : �3:23�

And finally for bendingmodes the energy is positive and is
determined by the expression:

E � p2m
4

Bn �O�m2� : �3:24�

Thus, the following situation persists for a vortex ring. All
the oscillations with frequencies close to zero (bulging and
bending modes l � 0) have positive energy. All the isolated
oscillations with l5 1 have negative energy. The Bessel
modes can have either positive or negative energy according
to whether the mode is advancing or lagging. Note, that the
isolated mode with negative energy can be among the Bessel
modes with positive energy as well as among those with
negative energy, depending on the relation between the
numbers n and l in formula (3.11).

Expressions (3.21) ± (3.24) are obtained for travelling
azimuthal waves of the type exp�ÿiot� iny�. For
exp�ÿiot� cos�ny� type standing waves the integration over
y in Eqn (3.20) gives half the value. This means that the
standing wave energy appears to be equal to half the running
wave energy.

Similar calculations for the cylindrical vortex show that
the energy of the respective oscillations per unit length in the
longitudinal direction is determined by expressions (3.21) ±
(3.24) divided by the ring length 2p=m.

As it will be shown in the further analysis, the sign of
oscillation energy determines the eigen-oscillation stability or

a b

Figure 11. Four phases (one period) of eigen-oscillations for fast Bessel

modes �1; 2; j� (a) and a slow bending mode �0; 2; 0� (b). For the Bessel

mode the bend is followed by a rotation of the elliptical core deformation.

The same mean line bend corresponds to eigen-oscillations, the frequen-

cies of which are different by several orders.
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the instability when vorticity profiles of a more general type
are considered.

4. Instability of a vortex ring with a smoothed
vorticity profile and transition to turbulence

Vortex ring oscillations were examined in Section 3 for the
cases when the vorticity was concentrated in a thin toroidal
core and this core was surrounded by a potential flow. It is of
interest to understand the effect of adding a weak vorticity to
the flow around the vortex core (in the ring envelope) on the
oscillation properties. Such smoothing of the vorticity profile
also corresponds to the physics of the process. Really, as the
vortex ring moves, the vorticity must penetrate from the
vortex core into the surrounding flow as a result of viscous
diffusion.

To clarify the mechanism of the vorticity effect on the
oscillation properties, first consider a simple oscillator Ð a
circular cylinder able to make its own elastic oscillationsÐ in
a two-dimensional circulating flow (potential or vortical).
This task may have both an exact solution (Sections 4.1.2,
4.1.3) and an approximate one (Section 4.1.4) based on
considering the energy balance in the system.

It appears that the appearance of monotonically decreas-
ing vorticity in the circular flow streamlining the oscillating
cylinder boundary could lead to instability. This instability
mechanism can easily be understood in the case of weak
vorticity when the task can be solved by perturbation
methods. It turns out that instability of this type occurs each
time when two conditions are simultaneously fulfilled: first,
the oscillator oscillations are of positive energy if the flow
around the cylinder is potential; second, these oscillations are
accompanied by the appearance of a critical layer, when the
monotonically decreasing vorticity is present in the flow.

Vortex flows in which the role of the oscillator is played by
the oscillating boundary of the vortex core can also possess a
similar instability. It appears that the simplest vortex for
which such an instability can be realized is a vortex ring
(Section 4.2). In this case the stability loss in the vortex ring
occurs simultaneously for a set of modes having positive
energy. In Section 4.2.2 it is shown that the critical layers
appear to fill up the whole region from the core region to the
ring envelope boundary. At the same time the critical layers
are absent inside the vortex core. In the critical layers the
amplitudes of fluid particle displacements achieve large
magnitudes and this leads to intensive fluid mixing in the
envelope region. It is shown that simultaneously with that
process vorticity field intensification also occurs in the
vicinity of each critical layer. This result agrees qualitatively
with the experimental data on the turbulent vortex ring
structure [18, 19] establishing a sharp boundary between the
laminar vortex core and the turbulent ring envelope. In
Section 4.3 the possible effect of non-linearity and viscosity
on the processes investigated is examined.

4.1 Effect of monotonically decreasing vorticity on
oscillation properties. Instability of oscillating cylinder in
circulating flow of ideal fluid
First of all we consider a simple problem where the
characteristic peculiarities of instability are displayed Ð a
rigid cylinder in a circulating flow. Cylinder oscillations are
supported not by the vorticity dynamics, but directly by an
elastic spring. It is assumed that the circulating flow has a
monotonically decreasing vorticity profile. It appears, that

such a simple system can become unstable. The problem can
be solved without any approximations and the increment can
be obtained directly from the exact dispersion relation [69]. At
the same time, if the vorticity is small, the solution can be
obtained from considering the energy balance in the system.
Such an approach permits not only finding the correct
expression for the increment, but also understanding the
physical mechanism of the instability. The instability is
based on the possibility of energy transfer from disturbances
in the critical layer to the cylinder oscillations. The total
energy in this case does not change, since a simultaneous
increase of disturbances with energy of different signs occurs.
This mechanism of instability is discussed in detail in Section
4.1.4.

4.1.1. Dispersion relationship. Cylinder oscillations in a
circulating flow are a special case of arbitrary body motion
in a fluid, which has been studied in detail starting with the
works of Kelvin and Tait [5, 70, 71]. At the same time, as is
noted inRef. [5], this problem becomes extremely complex for
an arbitrary vortical flow and, generally speaking, it permits a
general solution only in the case of a uniformly rotating fluid.
From the results obtained in this direction, we note works [72,
73] relating to sphere motion stability in a non-uniform flow
of ideal fluid and work [74] relating to stability of co-axial
cylinders with a uniformly rotating fluid between them. Note
also a new approach to the problem of stability of a
`body�fluid' system, developed in Ref. [75] and based on
extending the Arnold theorems to the case of arbitrary rigid
body motion in a vortical flow. Such an approach permits
formulating general criteria of flow stability under rather
wide assumptions, but it gives no criteria of the system
instability and this is characteristic of all the works in this
direction.

Consider a simple oscillator in a two-dimensional flow
with circulation. The system consists of a circular cylinder
with unit radius and mass M, which can be displaced in the
plane with Cartesian coordinates x; y (Fig. 12). The returning
force is characterized by the rigidity of the spring w. The
cylinder is in a flow of an incompressible ideal fluid with unit
density. The mean flow in the cylindrical coordinate system
has angular velocityU0�r� and vorticity O0�r�, related by the
relationship O0�r� � 2U0 � rU 00. It is assumed that U0�r�
and O0�r� are the monotonically decreasing functions. The
problem is solved in the linear approximation in disturbance
amplitudes.

As is known [76], a plane circular flow with a mono-
tonically decreasing vorticity profile near a fixed cylinder is
stable relative to two-dimensional disturbances. The oscilla-

y

x

U0�r�

Figure 12. Oscillator (circular cylinder on springs) in a circulating flow.
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tor is evidently also stable in the absence of a circulating flow.
At the same time, as will be shown below, the joint oscillations
of this system over a wide range of parameters appear to be
unstable.

To calculate the disturbances produced by the oscillating
cylinder in the flow, we use the equations for the displacement
field n (2.9a). Applying the curl operation to Eqn (2.9a) and
using the condition that the displacement field is divergence-
free, for exp�ÿiot� imj� type disturbances we get the
equation for the r-component of the field n subject to the
conditions of impermeability at the boundary of the oscillat-
ing cylinder and of disturbance decay at infinity:

d2xr

dr2
�
�
3

r
� 2mU 00
mU0 ÿ o

�
dxr

dr
� 1ÿm2

r2
xr � 0 ;

xr
���
r�1
� x0 ; xr

���
r�1
� 0 : �4:1�

This equation is an analogue of the well-known Rayleigh
equation for flows with circular streamlines . It is usually
written for the stream function A [76] as follows:

d2A

dr2
� 1

r
dA

dr
ÿ
�
m2

r2
� mO 00
r�mU0 ÿ o�

�
A � 0 : �4:2�

Equations (4.1) and (4.2) have a singularity in the critical
layer r � rc determined from the relationshipU0�rc� � o=m.
These equations are equivalent with account for the relation-
ship v r � imA=r � �ÿio� imU0�xr which follows from the
stream function definition and Eqn (2.9a).

The advantage of Eqn (4.1) for describing the disturbance
is displayed for the harmonics m � �1. In this case the latter
term on the left-hand side of this equation becomes zero and
this permits writing at once the general solution:

xr�r� � C1 � C2I�r� ; �4:3�

I�r� �
�1
r

dr

r3�mU0 ÿ o�2 :

The possibility of obtaining the general solution in the
case m � �1 is shown in Ref. [76]. The first term in Eqn (4.3)
corresponds to the constant vector field n with the contra-
variant components xr�r;j� � C1 exp��ij�, xj�r;j� �
��i=r�C1 exp��ij� and is a simple displacement of the flow
as a whole. The presence of this elementary disturbance
among the solutions permits obtaining the general solution
in an analytical form for a flow with an arbitrary velocity
profile U0�r�.

Further we restrict ourselves to the case m � 1. This case
for o > 0 corresponds to anticlockwise cylinder rotation (see
Fig. 12). Constants C1 and C2 in the solution (4.3) can be
found from the boundary condition (4.1). As a result, we find
that the disturbances generated by the oscillating cylinder in
the flow are

x i�r;j; t� � x i�r� exp�ÿiot� ij� ;

xr�r� � I�r;o�
I0�o� x0 ; �4:4�

where I0�o� is the value of function I�r;o� when r � 1. The
component xj can be found from the condition of incompres-
sibility of the field n.

To obtain the equation describing the system oscillations,
we find the pressure disturbance pb at the oscillating cylinder
boundary. Using the Euler equations, we express the pressure
disturbance through the displacement field:

p � �o2 ÿU 2
0 � rxr � �U0 ÿ o�2r2 dxr

dr
: �4:5�

The pressure at any point is equal to P0 � p, where P0 is the
pressure in the steady flow, and p is the pressure disturbance
(4.5). Since we are interested in the pressure not at a fixed
space point but on themoving cylinder surface, we get for this
value in the linear approximation pb � x0 dP0=dr� p, where
dP0=dr and p are taken at the undisturbed cylinder boundary
r � 1. Using the exact equation dP0=dr � rU 2

0 and Eqn (4.5)
we obtain

pb �
�
o2 ÿ 1

I0�o�
�
x0 : �4:6�

The force acting on the cylinder is composed of the elastic
force of the spring and the pressure force which is found by
integration of Eqn (4.6) over the cylinder boundary. The
balance of forces acting on the cylinder is expressed by
�ÿMo2 � k�x0 � ÿppb. Hence we obtain the dispersion
relationship

D�o� � o2
0 ÿ o2 � g

�
o2 ÿ 1

I0�o�
�
� 0 ; �4:7�

I0�o� �
�1
1

dr

r3
�
U0�r� ÿ o

�2 ; �4:8�

where g � p=M is the ratio of the mass of fluid displaced by
the cylinder to the cylinder mass,o2

0 � w=M. The integrand in
Eqn (4.8) has a singularity at the point r � rc, where
U0�rc� � o.

In the specific case of potential flow the angular velocity is
U0�r� � UM=r2 and the integral of Eqn(4.8) can easily be
calculated:

I0 �
�
2o�oÿUM�

�ÿ1
: �4:9�

Then we get from dispersion equation (4.7):

o1;2 � gUM

1� g
�

�������������������������������������
gUM

1� g

�2

� o2
0

1� g

s
: �4:10�

Thus, in the potential flow case the oscillating system
possesses two real eigen-frequencies o1;2 for any parameters
of the system. If the fluid is at rest, we get from Eqn (4.10)
o1;2 � �o0=

�����������
1� g
p

. This result corresponds to the oscilla-
tions with account for the apparent additional fluid mass.
Finally, the case g � 0 corresponds to a weightless fluid which
evidently does not affect the oscillation frequency equal too0.

4.1.2 Exact solution for a specific case of vorticity of type
X0 � XM=q. The angular velocity field for this flow is
U0 � G=r2 � OM=r, where the first term corresponds to a
potential flow component and the second corresponds to a
vorticity contribution. In the case considered integral (4.8) is
calculated precisely and is equal to:

I0 � 2G� OM

4Q 2�oÿ Gÿ OM� �
OM

8Q 3
ln

PÿQ

P�Q
; �4:11�
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where P � oÿ OM=2, Q �
�������������������������
Go� O 2

M=4
q

. The logarithmic
function in the complex plane o is made single-valued by
introducing a cut 0 < o < UM, where UM � G� OM. The
requirement that I0�o� for o > UM takes on a positive real
value selects the logarithmic function branch. Substituting
Eqn (4.11) into Eqn (4.7), we get the transcendental equation
determining the system eigen-frequencies. We shall not carry
out a complete investigation of Eqn (4.11) and restrict
ourselves to investigating the effect of the circulating flow
on two eigen-frequencies of the oscillator, in a function of the
parameters g and o0.

At g � 0 (a very heavy cylinder) the fluid has no influence
on the oscillations and the system has two eigen-oscillations
with frequencies o1;2 � �o0. As g increases (the cylinder
mass decreases) the frequency o2 remains real and the
frequency o1 behaves differently depending on the relation-
ship between the values o0 and UM.

If o0 < UM then for 0 < g < g0, where g0 � 1ÿ o2
0=U

2
M,

this eigen-frequency is split into two complex-conjugated
frequencies (Fig. 13), one of which corresponds to unstable
oscillations and the other to decaying ones; at g � g0 these
frequencies become real and merge into one eigen-frequency
o1 � UM; at g > g0 this frequency is real and increases from
UM to o1, where o1 is the solution of the equation
o2
1I�o1� � 1.

Ifo0 > UM, the eigen-frequencyo1 as well aso2, remains
real for all the values of g, i.e. the oscillations considered
remain stable for any cylinder mass.

Thus, for g < 1 there exists a range of frequencies o0, for
which instability occurs. When g approaches unity, this range
becomes narrower and for g5 1 this instability is absent.

4.1.3 Case of weak vorticity (dispersion equation solution).We
assume further that the circulating flow is weakly vortical
�OM 5UM�. In this case general expressions for integral (4.8)
and an increment value can be obtained. With the use of the
relationships O0 � 2U0 � rU 00, O 00 � �U 00r3� 0=r2 and of
integration by parts, Eqn (4.8) can be transformed:

I0 � 1

2o�oÿUM�
ÿ
1ÿ OM=�2UM�

�ÿ �UM

0

f�z�
zÿ o

dz ; �4:12�

where

f�z� � U0O 00
oU 0 30 r 4

; z � U0�r� ;

and the prime means derivative with respect to r. Since the
vorticity and its derivative are assumed to be small, one can
neglect the quantity OM=�2UM� in the first term and
seemingly the whole second term. However, rejecting the
second term, one must be careful, since the Cauchy type
integral can take not only real values, but also complex ones.
At the same time, the presence of even a small imaginary part
in the dispersion relationship corresponds to instability, i.e. to
a qualitative change in the flow dynamics.

Consider the integral term in Eqn (4.12). As is known, the
Cauchy type integral has a discontinuity along the integration
contour (here the integration contour is a segment of the real
axis from 0 to UM). Following Ref. [77], we separate the
singularity under the integral and make an integration:�UM

0

f�z� dz
zÿ o

�
�UM

0

f�o�
zÿ o

dz�
�UM

0

f�z� ÿ f�o�
zÿ o

dz

� f�o� ln oÿUM

o
�
�UM

0

f�z� ÿ f�o�
zÿ o

dz :

In the latter equation the integral determines a regular
function, real and finite for all the real values of o, and the
first term determines a multiple-valued function, the regular
branch of which can be selected with the use of an analytical
continuation from the real o > UM, at which the integral�UM

0 dz=�oÿ z� is not singular and has a real positive value.
On the cut from 0 to UM only the imaginary part of the
integral is discontinuous. Since at the analytical continuation
from large o values to the value on the cut, the point UM is
passed from above, the imaginary part of the logarithm gets
the increment �ip, and the imaginary part of the integral is
equal to �ip f�o� on the upper edge of the cut. It is equal to
ÿip f�o� on the lower edge, since the pointUM is passed from
below.

Now use the condition of smallness of vorticity and its
derivative. Keeping only leading terms in small vorticity in
the real and imaginary parts of I0, we get for real o

I0 � 1

2o�oÿUM� � ip f�o� �O

�
OM

UM

�
;

f�o� � O 00
r 4�U 00�3

����
r�rc�o�

; �4:13�

where the critical layer coordinate rc is found from the
equation U0�rc� � o and the signs � correspond to the
upper and lower edges of the cut 0 < o < UM. The appear-
ance of the purely imaginary part in Eqn (4.13) and,
respectively, in the dispersion relation shows that the
oscillation frequency in the interval from 0 to UM cannot
remain real, in contrast to the case of potential flow. Note
also, that Eqn (4.11) in the case of small vorticity naturally
transfers into the general expression (4.13).

Since the imaginary part of I0 is small, the imaginary part
of the frequency will be also small, i.e. the eigen-frequency can
be presented aso � oR � id, d=oR 5 1. Restricting ourselves
to the principal terms we get, as a result, the system of
equations for finding the real oR and the imaginary d parts
of the eigen-frequency

�g� 1�o2
R ÿ 2oRgUM ÿ o2

0 � 0 ; �4:14a�

�g� 1�
�
oR ÿ gUM

g� 1

�
d � �2pg f�oR�o2

R�oR ÿUM�2 ;

0 < oR < UM : �4:14b�

11

oo00 �� 11..22

oo00 �� 00..77

oo00 �� 00..11

RReeoo aa

00 00..44 00..88 gg

22

IImmoo bb

00 00..44 00..88 gg

oo00 �� 11..22

oo00 �� 00::77

oo00 �� 00::11

00..22

00..11

Figure 13. (a) Real part, (b) imaginary part of eigen-frequency for the

unstable mode as a function of the parameter g. The imaginary part of the

decaying mode is symmetric relative to the g-axis.
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IfoR 4 0 oroR 5UM then d � 0. In Eqn (4.14b) for growing
oscillations, the plus sign is to be taken and for decaying
oscillations the minus sign is to be taken.

Equation (4.14a) coincides with the equation for the
potential flow case and leads to two roots of type (4.10).
One of these roots is positive, the other is negative. The
negative root is of no interest since no imaginary part in I0
appears and such an oscillation is always stable. Accounting
for a small vorticity in the next approximation can only
slightly displace this frequency along the real axis. We
consider further only the root with a positive real part:

oR � gUM

1� g
�

�������������������������������������
gUM

1� g

�2

� o2
0

1� g

s
: �4:15�

If the system parameters are such that 0 < oR < UM, the
frequencyo is complex and for calculating its imaginary part,
we use (4.14b). In this case the plus sign corresponding to the
upper edge of the cut is taken for increasing oscillations
�d > 0� and the minus sign Ð for attenuating oscillations
�d < 0�. The solutions exist if these signs correspond to the
sign of d determined from Eqn (4.14b). Since in the case
considered oR ÿ gUM=�g� 1� > 0 and f�oR� > 0, the sign of
d obtained from (4.14b) agrees with the assumption on the
sign of the right-hand side in this equation. As a result, we get

d � � 2pg f�oR�o2
R�oR ÿUM�2�������������������������������������

o2
0�1� g� � g2UM

q : �4:16�

Thus, the eigen-frequency o1 is split into a pair of complex-
conjugated frequencies, one of which corresponds to an
unstable oscillation and the other to an attenuating one
(Fig. 14).

Note, that if the signs of the left-hand and right-hand sides
in Eqn (4.16) were different (e.g., in the cases g < 0 or
O 00�rc� > 0), this would mean that there are no continuous
solutions of Eqn (4.1) decreasing at infinity. Such a situation
holds for Kelvin vortex oscillations in a weakly vortical flow.
The decreasing vorticity in the mean flow outside the vortex
core leads to displacement of the eigen-frequencies from the
upper (causal) sheet of o-plane under the cut to the non-
physical sheet [78].

Neglecting the weak vorticity in the expression for the
mean flow, we get from Eqn (4.16):

d � ÿ gpr0O
0
0�r0��oR ÿUM�2

4UM

��1� g�oR ÿ gUM

� ; �4:17�

where r0 � Re �rc�, the value of r0 in the leading approxima-
tion is determined by the relationship oR � UM=r20.

Note that the instability described cannot be realized for
flows with g > 1 (light cylinder). Really, the condition

oR < UM is to be fulfilled for the appearance of instability.
This condition can easily be rewritten using Eqn (4.15) as
o2

0=UM < 1ÿ g, which is impossible for g5 1, since UM is a
positive value. On the contrary, for g < 1 (heavy cylinder)
there always exists a range of oscillator parameters, for which
the flowwill be unstable. This result agrees with the numerical
analysis of the above case of a vorticity of arbitrary value and
completely corresponds to the stability criterion for a light
cylinder obtained in Ref. [75].

4.1.4 Case of weak vorticity (the energy approach). Let us
consider the effect of the oscillator stability loss in a
circulating flow from the standpoint of energy balance in the
system. In the case of a weakly vortical flow �O0 5U0� the
law of energy conservation permits us to find the imaginary
increments to eigen-frequencies in a rather simple way.
Furthermore, the energy approach is equally applicable to
both oscillations with m � 1 and with arbitrary m, when a
solution of Eqn (4.3) cannot be built.

Consider the disturbances of type exp�ÿiot� imj� with
an arbitrary harmonic numberm. In the case of weak vorticity
it is more suitable to use not the displacement field n for
describing disturbances with arbitrary m, as was done above,
but the stream function A, since in Eqn (4.2) the small
vorticity effect is localized in the last term which is small
almost everywhere except in the vicinity of the singularity.
Making use of the perturbation methods, one can show that
the solution satisfying the boundary condition on the cylinder
surface and the condition at infinity, is [79]

A � A0�r�
ÿ
1� ag�r�� ;

g�r� � �rÿ rc� ln�rÿ rc� � g1�r� ; a � O 00�rc�
rcU

0
0�rc�

5 1 ;

�4:18�

where A0�r� � �UM ÿ o=m�x0 rÿm is the solution of the
problem of cylinder oscillations with an amplitude x0 in a
potential flow; g1�r� is the function continuously differen-
tiated on the real axis and limited as r!1; the regular
singularity r � rc is determined by the condition
mU0�rc� � o.

Equation (4.18) shows that the solution itself remains
continuous in the vicinity of the singularity point. Only the
stream function derivative appears to be broken. This
discontinuity is connected with the presence of a logarithmic
term inA�r� and determines the jump of the imaginary part of
the velocity j-component at the critical layer. In a potential
flow this discontinuity is absent but for a vortical flow, as will
be shown below, it leads to flow energy extraction from the
vicinity of the critical layer and, as result, the system loses
stability. We find the jump of the value Im vj.

For a weakly vortical flow �a5 1� the eigen-oscillation
frequencies are slightly different from the eigen-frequencies in
the potential flowou i.e. o � ou �O�a� [for oscillations with
m � 1 the frequencies ou are determined by the relation
(4.10)]. For the complex frequency o the singularity point rc
is also complex and is located close to the real axis at the
point:

rc � r0 � i
d

mU 00�r0�
�O�a2� ; �4:19�

where d � Imo � O�a�, r0 � Re rc, the streamline r � r0
corresponds to the critical layer in the flow. Consider the

o1o2

U0�1�

oÿ

o� U0�1�

o2

Figure 14. Split-up of eigen-frequency o1 at the cut.
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vicinity of the critical layer r0 ÿ D < r < r0 � D, where
a5D5 1. Since the singularity point rc shifts into the
complex plane, as determined by Eqn (4.19), and its
imaginary part is much less than D, the function ln�rÿ rc�
in this interval gets an addition�ipwhere the sign depends on
the singularity point position either in the upper half-plane or
in the lower one. Since U 00 < 0 the singularity is in the lower
half plane for growing oscillations and in the upper half plane
for decaying ones. According to this, theminus sign is selected
for d > 0, and the plus sign is selected for d < 0. Using Eqn
(4.18) and the equations connecting the velocity field with the
stream function, we get:

Im vj
���
r�r0�D

ÿ Im vj
���
r�r0ÿD

� � pa
m

��v r0 �r0����O�aD� ;
�4:20�

where v r
0 � imA0=r is the velocity r-component calculated

for the potential flow case and the plus and minus signs
correspond to the cases d > 0 and d < 0.

Consider now the energy balance between the small region
jrÿ r0j < D and the rest of the flow. The energy flux through
an arbitrary line r � const is quadratic with respect to
disturbance amplitude and is equal to [80]:

J �
�2p
0

Re �p� r2U0v
j�Re �vr�r dj � pr3

m
Re �ovr�vj� :

In this expression the external normal direction is selected to
be positive. The energy flux from the vicinity of the critical
layer is determined by the difference in J-values at the
boundary of this region, i.e. DJ � Jjr�r0�D ÿ Jjr�r0ÿD. For
eigen-oscillations in the potential flow DJ � 0, since the
system oscillation frequency ou and the velocity field
component vju are real and the component vr0 is purely
imaginary. In the vortical flow case the energy flux DJ is
distinct from zero. In the leading approximation it is
determined by the jump of the quantity Im vj. Using Eqn
(4.20), we get:

DJ � � p2aou r30
m2

��vr0 �r0���2 �O�a2� : �4:21�

Thus, the energy flux DJ for a weakly vortical flow can be
expressed through the r-component of the velocity vr0 found
from the solution of a simpler problem with a � 0, and the
vorticity effect on the system oscillations is determined only
by the parameter a.

Examine now the vicinity of the critical layer as a separate
subsystem which is the source or the sink of energy depending
on the sign of the energy flux DJ. Then the remaining flow
region is the other subsystem with varying energy E. It is
evident that the values DJ and E are related by the energy
balance equation DJ � dE=dt.

Outside the vicinity of the critical layer the shape of
disturbances and their energy in the leading approximation
are found from the solution with a � 0. Since the potential
disturbance energy near the oscillating cylinder is determined
only by oscillation amplitudes, a slow variation of the
disturbance energy E in a weakly vortical flow can occur
only at the expense of amplitude variations e�t� �
e�0� exp�dt�. The energy E is quadratically dependent on the
oscillation amplitudes, therefore the energy balance equation
leads to the following expression for an oscillation increment

(decrement)

d � DJ
2E

: �4:22�

Thus, considering the system energy balance one can find
the shift d of eigen-oscillations into the complex planewithout
solving the complete problem of disturbances in a vortical
flow. To this end, it is sufficient to solve the problem of
disturbances in the potential circulating flow with the help of
which the energy flux DJ and energy E are determined.

Note that in contrast to the external region where the
disturbance energy slightly changes on conversion from a
potential flow to weakly vortical one, a strong disturbance
energy change takes place in the internal region (in the vicinity
of the critical layer). Really, for the potential flow the
disturbance energy E 0 in the small vicinity of the line r � rc
is proportional to the area of the region, i.e. E 05E. In the
weakly vortical flow case the total energy of unstable
oscillations must be equal to zero, since otherwise in the case
of growing oscillation amplitude, the energy would not be
preserved; in this case E� E 0 � 0, i.e. E 0 � ÿE.

Equation (4.22) is the consequence of the law of energy
conservation and therefore is of universal character. The
advantages of the approach described are especially impor-
tant in the case of flows with a complex structure (e.g. a vortex
ring). Really, for calculating the energy fluxDJ in Eqn (4.22) it
is sufficient to know the velocity disturbance in an approx-
imation of the potential external streamline of the oscillator
and to use Eqn (4.21), since the energy flux is determined only
by the local flow structure in the vicinity of the critical layer. It
is evidently of no importance in this case what is the cause of
the oscillations, whether it is cylinder elasticity or vortex ring
oscillations. In turn, the disturbance energy E depends on the
oscillator type (cylinder on a spring, vortex oscillations etc.)
and needs to be calculated in each special case; however, it is
also sufficient to calculate this energy only in an approxima-
tion of the potential streamline.

Note that the sign of DJ is determined in Eqn (4.21)
according to the sign of d. In turn, the sign of d, according to
Eqn (4.22), is determined by the relation between DJ and E.
This circumstance can lead to two essentially different
situations [compare with the remark after Eqn (4.16)].

If E > 0, Eqns (4.21) and (4.22) have two solutions: with
d > 0, DJ > 0 and with d < 0, DJ < 0. This means that in this
case the appearance of the critical layer leads to splitting the
eigen-frequency into a pair of complex-conjugated frequen-
cies and the system becomes unstable. This instability
mechanism is similar to the instability mechanism of Miles
for wind waves on water [47, 81], when the wave on the heavy
fluid surface (with positive energy) interacts with the critical
layer in the non-uniform wind flow. If E < 0, Eqn (4.22) will
be incompatible with (4.21) for the energy flux DJ either for
positive d, or for negative d.

Making use of the results of Ref. [82], we find that for
eigen-oscillations with m � 1 (the cylinder centre rotating
about the equilibrium position in the potential flow) the
energy E is the following:

E �M

2

��g� 1�o2
1;2 � o2

0

�
x20 ;

where o1;2 are the eigen-frequencies determined from Eqn
(4.10). Since E is positive, the system can become unstable in
the frequency region 0 <o < UM. The oscillationwitho1 will
be unstable, since the critical layer exists for this oscillation.
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FromEqns (4.21) and (4.22), in the leading approximation we
obtain

d � ÿ pgo1�o1 ÿUM�2r0O 00�r0�
2UM

��g� 1�o2
1 � o2

0

� : �4:23�

With account for Eqn (4.15), this formula completely
coincides with Eqn (4.17). Thus, a consideration of the
energy balance in the system permits us not only to under-
stand the instability mechanism, but also to obtain a precise
expression for the increments.

4.2 Instability of Bessel and bulging oscillations of vortex
ring
The instability of an elastic cylinder in a circulating flow with
decreasing vorticity described above is realized at the expense
of the fact that the vicinity of the critical layer appears to be an
energy source for growing disturbances. As we see, this
instability mechanism is of a rather general character. It is
realized each time the oscillating system possesses positive
energy and its oscillations occur in the presence of a critical
layer. The cause of disturbances in the flow seems to be of no
importance in this case, whether it is a solid cylinder or some
other oscillator. The appearance of the critical layer is
connected only with the relationship between the phase
velocity of oscillations and the angular velocity of the mean
flow.

4.2.1 Stability of Rankin's vortex.At first glance, an instability
of the type examined could be realized for Rankin's
cylindrical vortex considered in Section 3.2. The vortex core
boundary in this flow would play the role of an oscillator in a
circulating flow. The addition of weak vorticity field to the
flow around the core could cause the appearance of the
critical layer and real frequency shift into the complex plane.
However a more careful analysis shows that the instability
mechanism under consideration is not realized for any
cylindrical vortex oscillations. Really, for isolated oscilla-
tions with l5 1, even if the critical layer appears, the energy of
these oscillations is negative (see Section 3.4). The bending
mode has positive energy, but its angular phase velocity is
against the flow and therefore the critical layer does not
appear [see (3.4b)]. It is evident that the critical layer also does
not appear for bulging oscillations (angular phase velocity
o=m of these oscillations is equal to infinity) having positive
energy. Bessel oscillations with l5 1 can be of two types:
advancing and lagging with an angular phase velocity,
respectively, larger or less than the flow velocity at the vortex
boundary [see remark after (3.3)]. Only the advancing modes
possess positive energy, but no critical layer appears for them,
since their phase velocity is larger than the angular velocity in
the whole flow. The lagging Bessel oscillations, on the
contrary, have critical layers, but their energy is negative.
Thus, Rankin's vortex with a smoothed vorticity profile has
no instability described above and this could be expected,
since it is known that a cylindrical vortex with a monotoni-
cally decreasing vorticity profile is stable [76, 83].

4.2.2 Instability of a vortex ring. The situation is fundamen-
tally different for a vortex ring and this is connected with the
difference in the oscillation shape of cylindrical vortex and the
vortex ring. Both conditions for instability appearance
described above are fulfilled for a whole family of vortex
ring oscillations.

As was indicated above [see the remark after formula
(3.15)], for Bessel oscillations of a vortex ring with frequency
number l (including bulging modes with l � 0) the core
boundary deformation in the leading approximation is a
sum of the lth and the �l� 1� harmonics and the velocity
disturbance outside the core is �l� 1� harmonic. This
distinguishes Bessel oscillations of a vortex ring from similar
oscillations of a cylindrical vortex which include only the l
harmonic. The presence of the �l� 1� harmonic leads to the
appearance of the critical layer for all Bessel oscillations of the
vortex ring and not only for the lagging ones as is character-
istic of the cylindrical vortex case.

Thus, for advancing Bessel oscillations of a vortex ring
(including bulging modes) both conditions of instability
appearance are fulfilled: the oscillations have a positive
energy and are accompanied by the appearance of the critical
layer. This means that if some monotonically decreasing
vorticity is added to the flow around the vortex core, these
oscillations lose stability.

A complete consideration of the spectral problem for a
vortex ring with an arbitrary vorticity profile is a very
complex task. However, if the vorticity in the region outside
the core is small �a5 1�, an increment of instability can be
found on the basis of considering the energy balance in the
system, i.e. using the method used above for an oscillating
cylinder in a circulating flow.

We note some peculiarities of the appearance of the
critical layers for the vortex ring, in comparison with the
cylindrical geometry flow. First, the streamlines in the
vortex ring case are of circular shape only in the leading
approximation in terms of the parameter mr. Therefore the
condition of resonance interaction between the mean flow
and unsteady disturbances is, generally speaking, not the
condition of coincidence of the flow velocity with the
disturbance phase velocity, but is the condition of coin-
cidence of the oscillation period with the period of fluid
particle rotation. Second, the vortex ring oscillations are a
sum of different harmonics exp�imc� and each of them has
its own rotation period Tm � 2pm=o. Thus, a multitude of
critical layers corresponding to different harmonics appear
for each eigen-oscillation. However, these peculiarities
manifest themselves not in the leading approximation, but
in higher approximations in term of m. The dynamics of
each oscillation in the leading approximation are deter-
mined only by one critical layer, the shape of which in this
approximation is circular.

Thus, for calculating the instability increment it is
sufficient:

(a) to have a solution for the case of potential flow outside
the vortex core and on the basis of this solution to find the
oscillation energy E;

(b) to find the energy flux DJ from the vicinity of the
critical layer.

Solutions of problem (a) for vortex ring oscillations are
given in Section 3 and the energies E are obtained in Section
3.5. To calculate the energy fluxDJ in problem (b), we can use
the general expression (4.21) obtained for cylinder oscilla-
tions. For this purpose, it is necessary only to find those
streamlines on which the critical layers corresponding to
different modes are located.

The velocity disturbance outside the core for Bessel
modes, according to Eqn (3.16), is of �l� 1� harmonic kind.
Taking into account that such disturbances possess a phase
angular velocity Up � o=�l� 1�, and the angular velocity of
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steady flow outside the core is

U0 � 1

2r2
�
1�O�rm�� ;

we obtain that the critical layers for Bessel (and bulging)
modes are on the streamlines r � r0

�
1�O�m�� where

r0 �
����������
l� 1

2o

r
; o � l

2
� mn

aj
�O�m2� ; l � 0; 1; 2; . . .

�4:24�
It is easy to see that all the critical layers are located

outside the vortex ring core and as the l-number increases they
are concentrated close to the boundary. We calculate the
instability increment values. To this end, we use Eqn (4.22).
Equation (4.21) gives an energy flux from the vicinity of the
critical layer per unit length in the coordinate s directed along
the ring mean line. Multiplying this expression by the ring
length 2p=m and using Eqn (3.16) for the disturbed velocity,
we find the total energy flux:

DJ � p3�3l� 2�2�l� 1�2
16n2a2j mr

2l�1
0

��O 00�r0��� : �4:25�

The bulging and advancing Bessel mode energy deter-
mined from Eqns (2.3), (2.4) can be presented by the unified
expression:

E � p2aj o
m2n

�
1�O�m�� : �4:26�

Substituting Eqns (4.25) and (4.26) into Eqn (4.22), we get
the instability increment:

d � �3l� 2�2�l� 1�2pm
25na3j r

2l�1
0 o

��O 00�r0��� : �4:27�

The increment value (4.27) appears to be proportional to
the derivative of vorticity in the critical layer and depends on
the oscillation parameters l, n, j.

It follows from Eqn (4.24) that the critical layers of Bessel
modes with l5 1 are located on the lines r �������������������l� 1�=lp �O�m� and fill the region 1 < r <

���
2
p

adjacent
to the vortex core. The higher the frequency number l, the
closer the corresponding critical layer is to the core boundary.
For Bessel modes with identical l and different radial numbers
j the critical layers cover a region of width Dr � O�m�,
according to the frequency spread of these modes.

The bulging modes have a frequency lower than that of
Bessel modes with l5 1. Correspondingly, the critical layers
of bulging modes fill a remote region r � O�mÿ1=2�. It follows
from Eqn (4.24) that these critical layers are on the lines

r �
��������
aj
2nm

r �
1�O�m�� ;

i.e. the farther they are from the vortex core, the greater the
radial number j is. For frequencies approaching zero, the
critical layers approach the boundary of the ring's envelope.
Thus, the critical layers fill the whole of the envelope from its
borders to those of the core.

We evaluate now the characteristic values of disturbances
near the critical layer. Differentiating (4.18), we obtain that
the velocity field disturbances are evaluated with the function

A0�r� and its derivative in the whole flow, i.e. with
disturbance value in the potential flow. The displacement
field

e r � ÿ i

mV0 ÿ o
v r ;

ej � ÿ i

mV0 ÿ o
vj ÿ V 00

�mV0 ÿ o�2 v
r �4:28�

near the critical layer is determined by velocity disturbances
in the potential flow and by the oscillation increment
d � Imo. Near the critical layer the r-component of the
displacement field reaches the value O�e=ma� and the j-
component reaches the value O�e=m2a2�, where e is the
disturbance amplitude, and m and a are small parameters,
the product of which determines the increment value. This
evaluation shows that the amplitude of fluid particle displace-
ments at small amplitudes of the core oscillations can be large.
The large amplitude of displacements near the critical layer
leads to intensive mixing of fluid particles (see Section 4.2.3).
We note that this behaviour of fluid particles is connected
only with resonant properties of the flow with circular
streamlines and with coincidence of the fluid particle
rotation period with the oscillation period (i.e. it is also
possible for potential flows, if the oscillator is forced by an
external force). The weak vorticity present in the flow around
the core only slightly affects velocity disturbances entering the
formula for Lagrangian particle displacement (4.28) but it is
taken into account indirectly through the increment value
which enters the denominator of this expression.

In contrast to the velocity and displacement fields,
differentiation of the potential part A0 of the stream function
(4.18) gives zero. The appearance of the vorticity disturbance
is connected only with the second term in Eqn (4.18) which
has a logarithmic singularity near the critical layer. On
differentiation of this term, one can easily evaluate the
vorticity disturbance which is of order ea over the whole
flow, except the critical layer, where the vorticity disturbance
is intensified and is of order e=a.

Hence the instability described above is accompanied near
the critical layer by two processes: the first process is
connected with intense mixing associated with large Lagran-
gian displacements of fluid particles and the second is
connected with the vorticity field intensification.

4.3 Non-linear stage of vortex ring instability and
transition to turbulence
Unstable oscillations of the vortex ring were considered
above at the linear stage of their development. This type of
oscillations is characterized by large fluid particle displace-
ments in the critical layer. Therefore for increasing amplitude
the non-linear effects begin to manifest themselves first of all
in this region. The non-linear interaction between oscillations
and themean flow leads to decreasing the energy flux from the
vicinity of the critical layer with increasing oscillation
amplitude and when this amplitude reaches some limiting
value, this energy flux becomes zero.

Indeed, in the vicinity of the critical layer, with account for
non-linear effects, a region of finite size is formed, where the
process of intensive mixing of fluid particles takes place and
this leads to smoothing the mean vorticity profile. A similar
situation appears in the phase space of Hamiltonian systems
in the case of non-linear resonance. The intensive mixing
region for such systems coincides with the resonant layer (see,
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for example, Ref. [84]).When there are several resonant layers
in the system, they can overlap, forming a whole region of
stochastic motion, within which intensive transport of fluid
particles along and across the main system of streamlines
occurs.

Since the critical layers (4.24) are located very close to
each other, it is reasonable to assume that a multitude of
oscillations with different values of l, n, j for a vortex ring at
the non-linear stage achieves the limiting amplitudes, forming
a system of overlapping resonant layers, which are concen-
trated near the core boundary and fill up the whole ring
envelope region. Thus, the chaotization of fluid particle
motion in the vortex ring is very similar to the Lagrangian
chaos which is observed for oscillating regimes of Hamilto-
nian systems [85, 86], but with the difference that for the
vortex ring the Lagrangian chaos is accompanied by real
intensification of the vorticity field disturbances. At the same
time, according to Eqn (4.24), the resonant layers do not exist
inside the core, i.e. the core remains laminar. This result
qualitatively agrees with the above experimental data on the
turbulent vortex ring structure which show that a sharp
boundary between the turbulent ring envelope and the
laminar core (Fig. 15) is preserved in most of the vortex ring
trajectory. It would be more correct, from this point of view,
to speak not of turbulence suppression in the vortex core [19],
but of turbulence generation outside the core due to the
formation of a large number of critical layers and intensifica-
tionof the vorticity disturbances in them. Note that the
intense non-linear mixing in the resonant layer, by virtue of
(4.27), can be caused by very small vortex ring core
deformations. This means that the linear theory of oscilla-
tions of a vortex ring with a potential envelope is applicable to
a vortex ring with a weakly vortical envelope even for intense
non-linear processes in the vicinity of the critical layer.

4.3.1 The role of viscosity.Unstable oscillations of vortex ring
were considered above in the approximation of ideal fluid.
We evaluate the range of Reynolds numbers for which such a
consideration is valid. Small disturbances in the viscous fluid
are described by the Orr ± Sommerfeld equation:

ÿinH 4Aÿ �mU0 ÿ o�H 2A�mO 00
r

A � 0 ; �4:29�

where

H2 � d2

dr2
� 1

r
d

dr
ÿm2

r2
:

The viscosity can be neglected when the first term in this
equation is small in comparison with other terms over the
whole flow region. In this case the Orr ± Sommerfeld equation
(4.29) is reduced to the Rayleigh equation (4.2), i.e. the
disturbances can be described within the limits of an ideal
fluid. In making the evaluations one must take into account
that the viscous term in Eqn (4.29) contains senior derivatives
with respect to r. This means that this term has the largest
value in the region, where the disturbance gradients achieve
the maximum values. Such a region is, as we have seen, the
vicinity of the critical layer. Exactly here the viscosity has the
greatest influence on the oscillation properties. This influence
manifests itself in changing the energy flux DJ, in comparison
with an inviscid solution. This, in turn, will lead to the
decrease of the increment d and finally disappearance of
instability.

The solution of the Rayleigh equation (4.2) considered
above will be valid for a viscous fluid on condition that, if it is
substituted in the Orr ± Sommerfeld equation (4.28), the
viscous term appears small. The solution (4.22) near the
critical layer r � rc takes on the form (4.18):

A � �rÿ rc� ln�rÿ rc� :

Substituting this solution into Eqn (4.29), we obtain that the
first term of this equation (the viscous term) is of order
O
ÿ
n=�rÿ rc�3

�
and the second term is of order O

ÿ
U 00�rc�

�
.

The eigen-frequency for unstable oscillations is complex and
the point rc is also complex with the imaginary part
Im �rc� � d=U. Therefore for real r in the region, the closest
to the singularity point, the first term of Eqn (4.29) is of order
O�nU 0 30 =d3� and the second term is of orderO�U 00�. Thus, the
viscous term in the Orr ± Sommerfeld equation can be
neglected provided that

nU 0 20
d3

4 1 :

Note that this condition can also be obtained from the
condition that the characteristic time of viscous spreading of
disturbances in the vicinity of the critical layer is large in
comparison with the characteristic time of instability 1=d [88].

For a vortex ring with small vorticity outside the core
(Section 4.2) the increment is determined by Eqn (4.27) and
has the magnitude d � O�amU0�. If the vortex ring has no
distinct core and the vorticity profile is smoothly decreasing,
the parameter a characterising the vorticity gradient value in

a
b c

d

Figure 15. Vortex ring at different distances from the exit plane of the vortex generator nozzle (25, 35, 40 and 50 calibres, respectively). Visualization is

performed using helium additions (according to materials of Ref. [87]). As the ring moves away from the nozzle exit plane the turbulence coloured by

helium is shed into the wake revealing the laminar core.
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the critical layer will no longer be small. Though for a vortex
ring with a � O�1� no solution has been obtained, one can
expect that in this case instability will also arise. This is
indicated, in particular, by the solution for an oscillating
cylinder in a circulating flow with a noticeable vorticity
(Section 4.1.2). Thus, assuming that for the vortex ring with
a � O�1� the instability mechanism exists and extending the
above evaluation to this case, we get d � O�mU0�. Note that
the increment in this case also remains small and this is
connected with the high energy of Bessel oscillations (as
follows from the results of Section 3.5, at equal amplitudes
the energy of Bessel oscillation appears O�mÿ1� times greater
than the energy in oscillations of other types). Evaluating the
Reynolds number from the vortex ring radius and its
translation velocity and using the above evaluations, we get
that the viscous effects can be neglected at Reynolds numbers
Re5Re0, where

Re0 � O�mÿ3� : �4:30�

Thus, there exists a threshold value of the Reynolds number
Re0, starting with which the mechanism of instability and
chaotization of fluid particle motion in the ring envelope can
manifest itself. For Reynolds numbers Re < Re0 the viscous
effects will be dominant and instability will be absent. The
estimate (4.30) agrees well with the value Re0 � 103 known
from the experiments related to generation of laminar and
turbulent vortex rings, where rings with the characteristic
value m � 0:1 [15] were investigated.

5. A turbulent vortex ring as a sound source.
The possibility of non-contact diagnostics of
unsteady processes in vortices

The photos of turbulent vortex ring presented in the previous
section show that the turbulence could really be generated
according to the scenario proposed, which assumes that the
chaotic behaviour of fluid particles in the region of the vortex
ring envelope occurs preserving the laminar flow in the core.
However in addition to visualization there exists another non-
contact method for diagnostics of unsteady process in
vortices Ð their sound radiation. It is of interest to examine
how the above ideas agree with the theory of sound radiation
by a vortex ring and with the experimental works in this
direction. Since the agreement is rather good, it seems
reasonable to present a short review of these results.

5.1 Theory of sound radiation by a vortex ring
As is known, the unsteady motion of vortices in a compres-
sible medium is accompanied by sound radiation of quadru-
pole character [89 ± 91]. If the characteristic Mach number is
small and the vorticity is localized in a region with a
characteristic size substantially less than the sound wave
length, the sound field can be expressed through the unsteady
velocity field calculated in the approximation of incompres-
sible fluid. To calculate the sound field generated by a vortex,
it appeared possible to connect the sound field only with that
part of the incompressible flow in which the vorticity is
different from zero [92, 93]. The most suitable expression for
the sound field which linearly connects the sound field with
the unsteady field of vorticity was obtained in Refs [94, 95].

The theory describing the acoustic radiation of unsteady
vortices is based on the fact that at small Mach numbers M
there exist two spatial scales in the problem: the dimension l of

the region where the vorticity is different from zero, and the
sound wavelength l. Really, at the characteristic velocity in
the vortex ring u the characteristic frequency is of order u=l
and the sound wavelength is l � c0=o � c0l=u � l=M (where
c0 is the sound velocity). It follows from this evaluation that
l4 l for M5 1. The spatial scales l and l determine two
regions: an internal one, where the flow is determined by
vorticity dynamics, and an external one, where the acoustic
disturbances with wave structure are formed. The radiation
solution can be obtained with the use of matching of the far
asymptotics of the incompressible solution in the internal
region and the near asymptotics of the wave field in the
external region [96 ± 99]. In the case of low-frequency volume
oscillations or solid body oscillations, when the principal
terms in themultipole expansion of the source are amonopole
or a dipole, such a solution can be easily built (see Ref. [80]
Ch. 8). However, in the case of acoustic radiation of unsteady
vortices the principal term of the expansion is a quadrupole
and a series of peculiarities appear which make the procedure
of matching much more complex [96, 100].

The final expression for the sound field is

p � r0c
2
0

xixj
x3

q2

qt 2
Cij

�
tÿ x

c0

�
; �5:1�

where p is the sound pressure, r0 is the medium density,

Cij � 1

12p
d

dt

�
�X� y�i yj d3y

is the quadrupole moment written in M�ohring's form [94],
X�t� is the unsteady field of vorticity found in the approxima-
tion of incompressible fluid, and x is the radius-vector of
observation point. Thus, to calculate the sound field in a
weakly compressible fluid it is enough to find the dynamics of
an unsteady vortex flow in an incompressible fluid and to
substitute the expression obtained forX�t� in Eqn (5.1).

On the basis of this theory the sound radiation produced
by vortex ring oscillations was found in Ref. [32]. These
oscillations are examined in detail in Section 3. We give here
a short description of these results. The oscillations which
radiate sound most efficiently can easily be distinguished.
First of all, compare slow oscillations, the frequencies of
which are close to zero [bending modes with o � O�m2 ln m�
and bulging modes with o � O�m�] and the fast oscillations
with frequencies o � O�1� which are close to semi-integer
values of l=2 (see Fig. 8). Since the frequency o enters
expression (5.1) for the sound field in the third power, the
sound radiation efficiency of bulging and bending oscillations
is several orders lower than the efficiency of fast oscillations
and they can be excluded from our consideration.

The fast oscillations, in their turn, can be divided into
different types, depending on the efficiency of their acoustic
radiation. The quadrupole moment is evidently different
from zero only for those oscillations which have azimuthal
numbers n � 0; 1; 2. The radiation of all the oscillations with
n5 3 contributes in higher orders and is inefficient when
M5 1. Hence, of all the fast oscillations only three types
remain: axisymmetric modes and modes which look like the
first and the second azimuthal harmonics. With the use of
direct calculation one can show that the most efficient
oscillations among all those are the oscillations with
frequency number l � 1. The point is that the greater l, the
higher the harmonics which determine the oscillation form
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in the vortex cross-section. In its turn, the higher the
harmonic number in the core cross-section, the larger its
multipole type in the leading approximation and the smaller
the contribution made by this harmonic to the quadrupole
moment Cij�t�.

Thus, the most efficient sound-radiating modes are those
with n � 0; 1; 2 and frequency number l � 1. These are a set of
Bessel modes of two types (n � 1 and n � 2), isolated modes
of two types (n � 1 and n � 2) and axisymmetric modes
�n � 0� (Fig. 16). All these modes have close frequencies and
fill up the interval Do=o � O�m�. Hence, if all the oscillations
are excited in the vortex ring, its sound field must have a
narrow-band spectrum with characteristic dimensionless
frequency o � 1=2 corresponding to l � 1. In this case the
peak width is determined by an interval of frequency
distribution of radiating modes of the vortex core.

It is easy to see that the above results for sound radiation
can be extended to a vortex ring with a smoothed vorticity
profile. Indeed, in Section 4.3 it is shown that the effect of
weak vorticity surrounding the core on the oscillation form is
localized in the vicinity of the critical layer. As for the rest of
the flow, the addition of weak vorticity to the mean flow only
slightly affects the disturbances generated by the core
boundary deformation. This means that a small change of
the vorticity profile slightly affects the far asymptotics of the
incompressible flow oscillations and, respectively, the results
of asymptotic matching with the sound field in a weakly
compressible fluid. Therefore the acoustic radiation of a
vortex ring with a small vorticity outside the core �a5 1�
and of a vortex ring with a potential flow outside the core
�a � 0� will be close in the case of equal amplitudes of core
deformation. Thus, the theory of sound radiation by a vortex
ring developed in Ref. [32] and described above will also be
valid in the case of a weak monotonically decreasing vorticity
outside the core, despite the fact that in this case the flow
outside the core will be turbulent.

Though a weak vorticity outside the core has no effect on
the characteristics of sound radiation from the vortex core
oscillations, the presence of this vorticity is very important,
from the standpoint of sound radiation, since it produces
conditions for sound-generating oscillation excitation. The
instability examined in Section 3 transforms a vortex ring into
a real oscillator, the multiple oscillations of which are
supported at the expense of energy transfer from the mean
flow into unsteady fluctuations of different scales. From the
sound generation standpoint, the multipole structure of
oscillations appears to be a serious filter cutting off almost
all the oscillations and preserving only a small fraction of the
efficiently radiating modes.

5.2 Possible mechanisms of sound radiation by a turbulent
vortex ring
As has already been noted, the vortex rings with high
Reynolds numbers obtained experimentally appear to be
turbulent and the vortex motion is accompanied by a
turbulent wake. If the vortex ring turbulence is organized
according to the above model, the turbulent fluctuations in
the ring envelope are passively connected with the vortex core
oscillations, and the sound radiation is determined only by
eigen-oscillations of the laminar core, according to the theory
described above. Such a radiation must be of narrow-band
character with a peak frequency determined by the vortex
core parameters.

If the model developed above is not realized and the ring
envelope turbulence is determined by its own dynamics, one
can expect that, according to the Lighthill theory [90, 91], the
turbulence will be followed by broad-band sound radiation
which is produced by disturbances of different scales. In this
case the radiation described above which is connected with
the core oscillations, will be either comparable with the
turbulence sound radiation or will be substantially less than
that broad-band component and the above picture of
radiation will `sink' in the vortex envelope noise.

Finally, one more sound source can appear which is
connected with the fact that the vortex ring motion is
followed by an intensive wake. This wake radiation could be
of narrow-band character similar to aeolian tones arising on
vortex separation in flows past obstacles (cylinders, spheres
etc. [101]).

Thus the most probable mechanisms of radiation in real
vortex rings could be associated with the following processes:

Ð a vortex train in the ring wake similar to von Karman's
vortex train (Fig. 17a);

Ð small-scale turbulent fluctuations in the vortex envel-
ope (Fig.17b);

Ð eigen-oscillations of the vortex core (Fig. 17c) excited
at the moment of ring formation or developing due to
instability.

The answer to the question of which of these three
scenarios is realized in reality may be obtained experimen-
tally.

5.3 Experimental investigation of vortex ring noise and
comparison between the theory and experiments
Experiments recently carried out in the anechoic chamber
(Fig. 18a) of Central Institute of Aerohydrodynamics have
shown [102, 103] that acoustic radiation of a vortex ring is
concentrated in a fairly narrow frequency band with the
maximum close to a frequency depending on the mean
parameters of vortex ring size and circulation (Fig. 18b).
This fact means that the scenario of Fig. 17b is not realized,

n � 0

1=2 o

�1; 1; j� n � 1

1=2 o

�1; n; j� n � 2

1=2 o

Figure 16. Spectrum of radiating modes.

ba c

Figure 17. Possible mechanisms of sound radiation: by unsteady vorticity

in the wake (a); by turbulent fluctuations in the `envelope' (b); by vortex

core modes (c).
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since small-scale turbulence radiation must have a broad-
band spectrum.

We compare the characteristic frequency peak in the
radiation spectrum obtained experimentally at f0 � 1200 Hz
with the theoretical value o � O0=2. To this end we express
this frequency through the quantities measured in the
experiment Ð the translation velocity of the vortex

V � mO0a

4

�
ln

8

m
ÿ 1

4

�
;

the ring radius R and the vortex core radius a. Hence we
have:

o � O0

2
� 2V

Rm2
ÿ
ln�8=m� ÿ 1=4

� :
Substituting the measurement results V � 8 m sÿ1, m � 0:12,
R � 0:035 m into this formula, we find that the frequency
f0 � �o=2p� predicted theoretically satisfactorily corresponds
to the measured value. This not only supports the scenario of
Fig. 17c, but also excludes the scenario of Fig. 17a since the
characteristic frequency of vortices shed off an obstacle with
dimensions equal to the vortex ring dimensions, o � 0:1V=R
[101], is several orders lower than the measured one. The
scenario of Fig. 17c is also confirmed by the peak width in the
spectrum. The sound-radiating modes are to fill up the
frequency interval:

Do
o
�
�
ÿ 4m

a1
;
4m
a1

�
:

This value corresponds to Do � 300 Hz in dimensional units
and this also agrees with the experimental data.

Thus, the acoustic experiment data show that despite the
fact that throughout the ring envelope, turbulent motion of
fluid particles with large amplitudes occurs over a wide
frequency range, the sound field is determined by small
oscillations of the vortex core which cause not only the
vortex ring turbulence, but sound radiation as well.

6. Conclusions

Let us sum up certain results now. The work considers
oscillations of vortex rings with profiles of mean vorticity
close to uniform (isochronous). It is shown that in the case of
slight smoothing of the mean vorticity profile the majority of
vortex ring eigen-oscillations become unstable. The energetics
of the process of stability loss connected with the appearance
of a number of critical layers in the ellipsoidal region
surrounding the core is examined in detail. Such a mechan-
ism becomes possible owing to the complex form of each
oscillation, permitting energy exchange between the oscilla-
tions and the mean flow, which is impossible in topologically
more simple vortex structures (for example in Rankin's
cylindrical vortex). The vortex ring seems to be the simplest
vortex in an unbounded fluid, in which such an instability can
be realized.

The problem of aerodynamic sound generation by
oscillations in a weakly compressible fluid is considered in
short. It is shown that the appearance of the critical layer
slightly affects the sound field, the amplitude of which turns
out to be connected mainly with the amplitude of the vortex
core boundary oscillations. In this case the instability
considered leads to generation of oscillations of different
space and time scales and the acoustic radiation separates a
narrow range of oscillations capable of efficient sound
generation. As a result, the vortex ring noise is displayed as
a rather narrow peak in the spectrum, the frequency of which
agrees well with the experimental one.

The presence of multiple instabilities leading to vorticity
generation in the critical layers and the intensification of
Lagrangian displacement of fluid particles in the vortex ring
envelope permitted a hypothesis that the mechanism of
turbulence generation in vortex rings at high Re-numbers
(and simultaneous preservation of laminar motion in the core
whose fluctuations, according to Section 4.2.2, are deter-
mined only by small oscillations of its boundary) can be
associated with the processes examined above. For a more
reliable answer to the questions set in the work a complete
study of the non-linear problem is certainly necessary. This
would result in a description of flow regimes close to self-
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Figure 18. (a) Scheme of experiment in an anechoic chamber: (1) vortex generator submerged in a container with sand, (2) vortex ring, AÐ trigger, BÐ

measuring transducer; (b) averaged spectrum of sound pressure: of vortex ring (I), background noise (II). Delay time from the moment of ring launch

t � 220 ms. Initial diameter of vortex rings is 4 cm.
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oscillatory. Such a consideration would allow, on the one
hand, a prediction of the limiting amplitude of unsteady
disturbances in the ring; on the other hand, such predictions
could be compared with acoustic experiments, after the
analysis of the mean relation of the zeroth, first and second
azimuthal modes in sound-generating vortex oscillations.
Achieving quantitative agreement in such a problem could
be the determining argument in support of one or other
scenario of turbulent fluctuation development in a vortex
ring.

The work was supported by RFBR grant 99-01-00199.
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